
Chapter 6

Index of a vector field in the

plane

References: Strogatz; Coddington-Levinson, page 398.

Let γ be a simple closed curve in the plane, and let f = (f1, f2) be a
continuous vectorfield in the plane. Let us traverse the curve in the coun-
terclockwise direction, and let us keep track of what the vector f(x) in our
moving frame. Clearly by the time we (i.e. the point x) come back to our
starting point, the vector f(x) returns to its initial value. The integer num-
ber of revolutions the vector f(x) made is called the index. More precisely

Definition 6.1. Index of a vectorfield f on the curve γ is the number of turns
the vector f(x) makes as the point x traverses γ exactly once in a counter-
clockwise direction. More precisely, we parametrize γ by x(t) = (x(t), y(t)),
0 ≤ t ≤ 1, going counterclockwise. Let θ(t) = arg f be the angle formed with
the x–axis, and define

iγ(f) =
1

2π
(θ(1)− θ(0)). (6.1)

This can be rewritten as

iγ(f) =
1

2π

∮
f1df2 − f2df1

f2
1 + f2

2

=
1

2π

∫ 1

0

f ∧ ḟ

f2
dt, (6.2)

where f = f(x(t)), provided the curve and the vector field are differentiable.
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118 CHAPTER 6. INDEX OF A VECTOR FIELD IN THE PLANE

Remarks. 1. The definition only makes sense if f ̸= 0 on γ, since the
argument of a zero vector is undefined. 2. We insist on continuity of θ(t);
without this continuity assumption θ(t) is multiple valued; with this conti-
nuity assumption, (6.1) is defined uniquely, independent of the particular
choice of θ(t).

Figure 6.1 gives examples of various indices.

Figure 6.1: Index around a curve surrounding the spiral, the saddle, the
dipole and the double saddle.

Theorem 6.1. If there are no equilibria inside and on a closed non-selfintersecting
curve γ, then iγ(f) = 0.

The index therefore detects equilibria: a nonzero index implies the pres-
ence of equilibria inside γ. Is the converse of this theorem true?
Proof of Theorem 6.1. Referring to Figure 6.2, let us divide the domain
D bounded by γ into small subdomains, denoting the boundaries of these
by γn, n = 1, 2, . . . , N . The domains are chosen to have diameters so small
that the argument of f varies by less than 2π over each γk.∗ Thus

iγn(f) = 0 for all n = 1, . . . , N (6.3)

since the change of angle over γn is an integer multiple of 2π on the one
hand, but is strictly less in absolute value than 2π on the other (by our
construction of γn), and hence is zero.

∗note that we use f ̸= 0 and the continuity of f here.
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But

iγ(f) =
N
∑

n=1

iγn(f),

as Figure 6.2 explains: when adding up the indices over each γn, the angle
changes over shared edges cancel out, leaving only the angle changes over
the unshared arcs of γn.

♦

Figure 6.2: Proving that the index is zero if no equilibria inside γ are present.

Theorem 6.2. Let f be a continuous vector field, and let γ0, γ1 be two
simple closed curves such that one can be continuously deformed into the
other without passing through the equilibria of f . Then

iγ0(f) = iγ1(f) (6.4)

Proof. Without the loss of generality, let us always parametrize the curves
γ0, γ1 by t ∈ [0, 1]. Let γ(t, τ), τ ∈ [0, 1] be a deformation mentioned in the
statement of the theorem, i.e. a continuous function from [0, 1]× [0, 1] → R2

such that γ(t, 0) = γ0(t) and γ(t, 1) = γ1(t).
Since f(γ(t, τ)) ̸= 0 for all 0 ≤ t, τ ≤ 1, the argument of f is also a

continuous function of t, τ ; we conclude that the index

iγ(·,τ) =
1

2π
(θ(1, τ)− θ(0, τ))

is also continuous in τ . But being also integer, the only way for it to be
continuous is to be a constant: iγ(·,0 = iγ(·,1, i.e. iγ0(f) = iγ1(f). ♦

The last theorem suggests that what really determines γ in iγ(f) is not
the particular choice of γ, but rather the equilibria inside γ. This leads to
the definition of the index of an equilibrium, as follows.

Definition 6.2. The index of an isolated equilibrium point P of a vector
field is the index of the vector field over a simple closed curve γ containing
P and no other equilibrium points in its interior.
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For this definition to make sense we must show that the choice of γ in the
definition does not matter, i.e. that for any two curves γ0, γ1 surrounding
P and enclosing no other equilibria,

iγ0(f) = iγ1(f).

One way to show this is to argue that one curve can be deformed into the
other without passing through equilibria. Rather than proving the existence
of such a deformation, let us use a different way: surround the equilibrium
inside γ0 by a circle that lies entirely inside γ0, Figure 6.3, and form a
compound closed path as shown in the figure. The shaded region Γ (bounded
by γ, the circle and the two segments) encloses no equilibria and thus

iΓ(f) = 0, (6.5)

according to Threorem 6.1.∗ The angle changes over the back–and–forth
trip along the cut cancel, and (6.5) becomes

iγ(f)− iγC (f) = 0 (6.6)

Returning now to two curves γ0, γ1 surrounding the same equilibrium and
no others, we pick the circle lying inside both curves; by (6.6) iγk(f) = iγC (f),
k = 0, 1. e

Figure 6.3: The index over γ equal the index over a circle.

Theorem 6.3. The index of a vectorfield on a simple closed curve equals
the sum of indices of the equilibrium points inside that curve.

Proof is illustrated by Figure 6.4 and is left as an exercise.

Theorem 6.4. The index of the vectorfield tangent to a simple closed curve
(and not vanishing on this curve) equals 1.
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Figure 6.4: Proof of Theorem 6.3.

Figure 6.5: Proof of Theorem 6.4.

Proof. Although the statement is near–obvious for a convex curve, a glance
at a messy curve in Figure 6.5 makes it less clear how to prove the statement.

Let x = x(t), 0 ≤ t ≤ 1 be a parametrization of the curve, which we
position so that it lies in the upper half-plane and is tangent to the x–axis
at the origin, Figure 6.5(b). For an (s, t)–chord, consider its unit direction
vector:

U(s, t) =
x(t)− x(s)

|x(t)− x(s)| , 0 ≤ s ≤ t ≤ 1. (6.7)

Actually, U is undefined for s = t and for (s, t) = (0, 1) – precisely when
x(s) = x(t), with s ≤ t. We extend U by continuity for these values of s, t:
namely, we define

U(t, t) = lim
s↑t

U(s, t)

– this is precisely the unit tangent vector in the positive direction, the vector
in whose rotation we are interested. And we let U(0, 1) = limt↑1 U(0, t) =
−e1, the unit vector along the negative x–axis. With this definition U is
a vector field defined on the triangle 0 ≤ s ≤ t ≤ 1 in the (s, t)–plane,
Figure 6.5(c).

∗To make the path in Figure 6.3 non-selfintersecting, as required by Theorem 6.1, we
can spread the two lines by a small distance ε, and then take the limit of (6.5) as ε ↓ 0.
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Now the idea is to view U(s, t) as a vectorfield on the shaded triangle
in the Figure (note that we started with a vector field defined only on a
curve, and ended up with a vector field defined on a triangle!) Since the
unit vectorfield has no zeros,

iABCA(U) = 0 (6.8)

by Theorem 6.1. We conclude that

iAB(U) = iAC(U) + iCB(U); (6.9)

we use the same notation for the index even though AB, AC and CB are
not closed curves. But iAC(U) = π/2π = 1/2, since the vector U(0, t)
starts with e1, ends with −e1 and stays in the upper half plane. Similarly,
iCB = 1/2 since U(1, 0) = −e1, U(1, 1) = e1 and U(1, s) is in the lower half
plane for s ∈ [0, 1]. This shows that iAB(U) = 1, which is the claim of the
theorem, since U(t, t) is the tangent vector to the curve. ♦

The Bohl–Brower fixed point theorem

Theorem 6.5. Any continuous map x )→ φ(x) from a disk D into itself has
a fixed point.

Proof. Without the loss of generality, let D be the disk x2 + y2 ≤ 1.
Consider the displacement vector f(x) = φ(x) − x. We thus produced a
vector field on D, and our goal is to show that there exists an equilibrium
point x0 ∈ D, i.e. the point for which f(x0) = 0. Assuming that f(x) ̸= 0
for all x ∈ D (otherwise we are done), the index iCf over the boundary
circle C is well defined. But since the displacement vector f(x) points into
the disk, we have iC(f) = 1. Consequently, the vector field f vanishes at
some point inside D. ♦

The fundamental theorem of algebra

Theorem 6.6. Any polynomial has at least one root in the complex plane.
(The existence of n roots is then a simple consequence.)

Proof (an outline). The polynomial P (z) = zn + a1zn−1 + . . . an with
complex z (and with possibly complex coefficients) can be interpreted as a
vector field in the plane, and the goal is to show that this vector field has an
equilibrium. The main idea is to observe that the index of this over a very
large circle is determined by the leading term zn, since this term exceeds
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all the others combined and thus dictates the number of turns made. More
formally, there exists R so large that

Rn > |a1|Rn−1 + . . .+ |an|. (6.10)

The existence of such R follows from the fact that the ratio of the right to
left sides in (6.10) approaches 0 (and hence is less than 1 for some R). The
idea now is to deform P (z) into a simpler polynomial zn, by a continuous
deformation given by

Ps(z) = zn + s(a1z
n−1 + . . .+ an), (6.11)

with s going from 1 to 0. By (6.10) the vectorfield Ps never vanishes on
|z| = R, and thus the index remains constant in s. But i|z|=R(z

n) = n, and
thus i|z|=R(P (z)) = n ̸= 0. This implies that there exists at least one root
of P . In fact, we showed that the sum of indices of all equilibria is n. ♦

”You cannot comb a sphere”

Theorem 6.7. Any continuous vector field on the sphere (i.e. a function
which attaches to each point on the sphere a tangent vector at that point)
has at least one critical point.

Proof. Recall the definition of the stereographic projection, Figure 6.6: a
point N on the sphere is singled out, and any other a is mapped to the point
of intersection of the line Na with the tangent plane at S, the antipode of
N . In other words, A is the shadow of a with the source of light at N . If
a vector field is defined on the sphere, i.e. if each point has a velocity, the
shadows’ velocities are thereby defined as well, and so a vector field on the
sphere defines a vector field in the plane. And the equilibrium of one vector
field corresponds to an equilibrium of the other. This last remark will reduce
the problem of proving existence of equilibria on the sphere to the problem
in the plane.

Let N be a nonsingular point on the sphere (if such doesn’t exist, then
we have an everywhere zero vector field and there is nothing left to prove).
Treat N as the north pole, and surround it with a parallel. Figure 6.7 shows
the top view of the vector field (i.e. the projection of this small spherical
cap S+, and of the vector field through its boundary, onto the tangent plane
at N .)

Figure 6.6 shows the top view of the vector field on the spherical cap,
and the vector field in the plane, resulting from stereographic projection.
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Figure 6.6: Stereorgaphic projection reflects the direction of the field around
the tangent to the parallel.

Speaking intuitively at first, the stereographic projection flips the band be-
tween two parallels in Figure 6.6 inside out, i.e. the inner ring (as viewed
by the observer on the North pole) maps to the outer ring after projection.∗

Putting it more formally, if a bug, following the vector field, leaves the top
cap S+, he enters the south cap S−, and thus his stereographic shadow
enters the disk D which is the stereographic projection of S−.

In short, outward pointing vectors on the boundary of S+ map to inward
pointing vectors on the boundary of D. This fact, along with the fact that
the index around the parallel is zero, allows one to conclude that the index
around the boundary of D is 2, as Figure 6.7) suggests. I omit the details
of the proof (the idea is to first count full flips of the vector field in question
relative to the tangent vector to the circle; the answer turns out to be 1. But
the tangent itself makes 1 flip, so the true number of flips is 1 + 1 = 2.) ♦

Problem 6.1. Consider two vector fields f and g in R2. Show that if the
angle ∠(f(x),g(x)) < π for all x on a simple closed curve γ, then

iγf = iγg

Problem 6.2. Consider two vector fields f , g satisfying |g(x)| < |f(x)| for
all x on a simple closed curve γ. Show that

iγf = iγ(f + g)

∗This is only from the point of view of N : from the point of view of the South pole,
no inversion happens: for the South Pole observer, both b and B lie on the inner rings.
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Figure 6.7: Top view of the spherical cap S+ near the north pole (left); disk
D, the stereographic projection of the complementary south of
the parallel cap S− (right).

Problem 6.3. Let γ be a closed orbit on an f ODE ẋ = f(x in R2. Show
that a closed orbit of an autonomous ODE in R2 cannot enclose a saddle
equilibrium and no others.


