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Chapter 1

1. S = {(R, R), (R, G), (R, B), (G, R), (G, G), (G, B),
(B, R), (B, G), (B, B)}

The probability of each point in S is 1/9.

2. S = {(R, G), (R, B), (G, R), (G, B), (B, R), (B, G)}

3. S = {(e1, e2, …, en), n ≥ 2} where ei ∈ (heads, tails}.
In addition, en = en−1 = heads and for i = 1, …, n −
2 if ei = heads, then ei+1 = tails.

P{4 tosses} = P{(t, t, h, h)} + P{(h, t, h, h)}

= 2
[

1
2

]4
= 1

8

4. (a) F(E ∪ G)c = FEcGc

(b) EFGc

(c) E ∪ F ∪ G

(d) EF ∪ EG ∪ FG

(e) EFG

(f) (E ∪ F ∪ G)c = EcFcGc

(g) (EF)c(EG)c(FG)c

(h) (EFG)c

5.
3
4

. If he wins, he only wins $1, while if he loses, he

loses $3.

6. If E(F ∪ G) occurs, then E occurs and either F or G
occur; therefore, either EF or EG occurs and so

E(F ∪ G) ⊂ EF ∪ EG

Similarly, if EF ∪ EG occurs, then either EF or EG
occurs. Thus, E occurs and either F or G occurs; and
so E(F ∪ G) occurs. Hence,

EF ∪ EG ⊂ E(F ∪ G)

which together with the reverse inequality proves
the result.

7. If (E ∪ F)c occurs, then E ∪ F does not occur, and so
E does not occur (and so Ec does); F does not occur
(and so Fc does) and thus Ec and Fc both occur.
Hence,

(E ∪ F)c ⊂ EcFc

If EcFc occurs, then Ec occurs (and so E does not),
and Fc occurs (and so F does not). Hence, neither E
or F occurs and thus (E ∪ F)c does. Thus,

EcFc ⊂ (E ∪ F)c

and the result follows.

8. 1 ≥ P(E ∪ F) = P(E) + P(F) − P(EF)

9. F = E ∪ FEc, implying since E and FEc are disjoint
that P(F) = P(E) + P(FE)c.

10. Either by induction or use

n∪
1

Ei = E1 ∪ Ec
1E2 ∪ Ec

1Ec
2E3 ∪ · · · ∪ Ec

1 · · · Ec
n−1En

and as each of the terms on the right side are
mutually exclusive:

P(∪
i
Ei) = P(E1) + P(Ec

1E2) + P(Ec
1Ec

2E3) + · · ·
+ P(Ec

1 · · · Ec
n−1En)

≤ P(E1) + P(E2) + · · · + P(En) (why?)

11. P{sum is i} =

⎧⎪⎪⎨
⎪⎪⎩

i − 1
36

, i = 2, …, 7

13 − i
36

, i = 8, …, 12

12. Either use hint or condition on initial outcome as:

P{E before F}
= P{E before F | initial outcome is E}P(E)

+ P{E before F | initial outcome is F}P(F)

+ P{E before F | initial outcome neither E

or F}[1 − P(E) − P(F)]

4



Answers and Solutions 5

= 1 · P(E) + 0 · P(F) + P{E before F}
= [1 − P(E) − P(F)]

Therefore, P{E before F} = P(E)
P(E) + P(F)

13. Condition an initial toss

P{win} =
12

∑
i=2

P{win | throw i}P{throw i}

Now,

P{win| throw i} = P{i before 7}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 i = 2, 12

i − 1
5 + 1

i = 3, …, 6

1 i = 7, 11

13 − i
19 − 1

i = 8, …, 10

where above is obtained by using Problems 11
and 12.

P{win} ≈ .49.

14. P{A wins} =
∞
∑
n=0

P{A wins on (2n + 1)st toss}

=
∞
∑
n=0

(1 − P)2nP

= P
∞
∑
n=0

[(1 − P)2]n

= P
1

1 − (1 − P)2

= P
2P − P2

= 1
2 − P

P{B wins} = 1 − P{A wins}

= 1 − P
2 − P

16. P(E ∪ F) = P(E ∪ FEc)

= P(E) + P(FEc)

since E and FEc are disjoint. Also,

P(F) = P(FE ∪ FEc)

= P(FE) + P(FEc) by disjointness

Hence,

P(E ∪ F) = P(E) + P(F) − P(EF)

17. Prob{end} = 1 − Prob{continue}
= 1 − P({H, H, H} ∪ {T, T, T})

= 1 − [Prob(H, H, H) + Prob(T, T, T)].

Fair coin: Prob{end} = 1 −
[

1
2

· 1
2

· 1
2

+ 1
2

· 1
2

· 1
2

]

= 3
4

Biased coin: P{end} = 1 −
[

1
4

· 1
4

· 1
4

+ 3
4

· 3
4

· 3
4

]

= 9
16

18. Let B = event both are girls; E = event oldest is
girl; L = event at least one is a girl.

(a) P(B|E) = P(BE)
P(E)

= P(B)
P(E)

= 1/4
1/2

= 1
2

(b) P(L) = 1 − P(no girls) = 1 − 1
4

= 3
4

,

P(B|L) = P(BL)
P(L)

= P(B)
P(L)

= 1/4
3/4

= 1
3

19. E = event at least 1 six P(E)

= number of ways to get E
number of sample pts

= 11
36

D = event two faces are different P(D)

= 1 − Prob(two faces the same)

= 1 − 6
36

= 5
6

P(E|D) = P(ED)
P(D)

= 10/36
5/6

= 1
3

20. Let E = event same number on exactly two of the
dice; S = event all three numbers are the same;
D = event all three numbers are different. These
three events are mutually exclusive and define the
whole sample space. Thus, 1 = P(D) + P(S) +
P(E), P(S) = 6/216 = 1/36; for D have six possible
values for first die, five for second, and four for
third.

∴ Number of ways to get D = 6 · 5 · 4 = 120.

P(D) = 120/216 = 20/36

∴ P(E) = 1 − P(D) − P(S)

= 1 − 20
36

− 1
36

= 5
12
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21. Let C = event person is color blind.

P(Male|C)

= P(C|Male) P(Male)
P(C|Male P(Male) + P(C|Female) P(Female)

= .05 × .5
.05 × .5 + .0025 × .5

= 2500
2625

= 20
21

22. Let trial 1 consist of the first two points; trial 2 the
next two points, and so on. The probability that
each player wins one point in a trial is 2p(1 − p).
Now a total of 2n points are played if the first (a − 1)
trials all result in each player winning one of the
points in that trial and the nth trial results in one of
the players winning both points. By independence,
we obtain

P{2n points are needed}
= (2p(1 − p))n−1(p2 + (1 − p)2), n ≥ 1

The probability that A wins on trial n is
(2p(1 − p))n−1p2 and so

P{A wins} = p2
∞
∑
n=1

(2p(1 − p))n−1

= p2

1 − 2p(1 − p)

23. P(E1)P(E2|E1)P(E3|E1E2) · · · P(En|E1 · · · En−1)

= P(E1)
P(E1E2)

P(E1)
P(E1E2E3)

P(E1E2)
· · · P(E1 · · · En)

P(E1 · · · En−1)

= P(E1 · · · En)

24. Let a signify a vote for A and b one for B.

(a) P2,1 = P{a, a, b} = 1/3

(b) P3,1 = P{a, a} = (3/4)(2/3) = 1/2

(c) P3,2 = P{a, a, a} + P{a, a, b, a}
= (3/5)(2/4)[1/3 + (2/3)(1/2)] = 1/5

(d) P4,1 = P{a, a} = (4/5)(3/4) = 3/5

(e) P4,2 = P{a, a, a} + P{a, a, b, a}
= (4/6)(3/5)[2/4 + (2/4)(2/3)] = 1/3

(f) P4,3 = P{always ahead|a, a}(4/7)(3/6)

= (2/7)[1 − P{a, a, a, b, b, b|a, a}
− P{a, a, b, b|a, a} − P{a, a, b, a, b, b|a, a}]

= (2/7)[1 − (2/5)(3/4)(2/3)(1/2)

− (3/5)(2/4) − (3/5)(2/4)(2/3)(1/2)]

= 1/7

(g) P5,1 = P{a, a} = (5/6)(4/5) = 2/3

(h) P5,2 = P{a, a, a} + P{a, a, b, a}
= (5/7)(4/6)[(3/5) + (2/5)(3/4)] = 3/7

By the same reasoning we have

(i) P5,3 = 1/4

(j) P5,4 = 1/9

(k) In all the cases above, Pn,m = n − n
n + n

25. (a) P{pair} = P{second card is same
denomination as first}

= 3/51

(b) P{pair|different suits}
= P{pair, different suits}

P{different suits}
= P{pair}/P{different suits}

= 3/51
39/51

= 1/13

26. P(E1) =
(

4
1

)(
48
12

)/(52
13

)
= 39 · 38 · 37

51 · 50 · 49

P(E2|E1) =
(

3
1

)(
36
12

)/(39
13

)
= 26 · 25

38 · 37

P(E3|E1E2) =
(

2
1

)(
24
12

)/(26
13

)
= 13/25

P(E4|E1E2E3) = 1

P(E1E2E3E4) = 39 · 26 · 13
51 · 50 · 49

27. P(E1) = 1
P(E2|E1) = 39/51, since 12 cards are in the ace of
spades pile and 39 are not.

P(E3|E1E2) = 26/50, since 24 cards are in the piles
of the two aces and 26 are in the other two piles.

P(E4|E1E2E3) = 13/49

So

P{each pile has an ace} = (39/51)(26/50)(13/49)
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28. Yes. P(A|B) > P(A) is equivalent to P(AB) >
P(A)P(B), which is equivalent to P(B|A) > P(B).

29. (a) P(E|F) = 0

(b) P(E|F) = P(EF)/P(F) = P(E)/P(F) ≥
P(E) = .6

(c) P(E|F) = P(EF)/P(F) = P(F)/P(F) = 1

30. (a) P{George|exactly 1 hit}

= P{George, not Bill}
P{exactly 1}

= P{G, not B}
P{G, not B} + P{B, not G)}

= (.4)(.3)
(.4)(.3) + (.7)(.6)

= 2/9

(b) P{G|hit}
= P{G, hit}/P{hit}
= P{G}/P{hit} = .4/[1 − (.3)(.6)]
= 20/41

31. Let S = event sum of dice is 7; F = event first
die is 6.

P(S) = 1
6

P(FS) = 1
36

P(F|S) = P(F|S)
P(S)

= 1/36
1/6

= 1
6

32. Let Ei = event person i selects own hat.
P (no one selects own hat)

= 1 − P(E1 ∪ E2 ∪ · · · ∪ En)

= 1 −
[
∑
i1

P(Ei1) − ∑
i1<i2

P(Ei1Ei2) + · · ·

+ (−1)n+1P(E1E2En)
]

= 1 − ∑
i1

P(Ei1) − ∑
i1<i2

P(Ei1Ei2)

− ∑
i1<i2<i3

P(Ei1Ei2Ei3) + · · ·

+ (−1)nP(E1E2En)

Let k ∈ {1, 2, … , n}. P(Ei1 EI2 Eik) = number of
ways k specific men can select own hats ÷
total number of ways hats can be arranged
= (n − k)!/n!. Number of terms in summation
∑i1<i2<···<ik = number of ways to choose k vari-

ables out of n variables =
[

n
k

]
= n!/k!(n − k)!.

Thus,

∑
i1<···<ik

P(Ei1Ei2 · · · Eik)

= ∑
i1<···<ik

(n − k)!
n!

=
[

n
k

]
(n − k)!

n!
= 1

k!

∴ P(no one selects own hat)

= 1 − 1
1!

+ 1
2!

− 1
3!

+ · · · + (−1)n 1
n!

= 1
2!

− 1
3!

+ · · · + (−1)n 1
n!

33. Let S = event student is sophomore; F = event
student is freshman; B = event student is boy;
G = event student is girl. Let x = number of
sophomore girls; total number of students =
16 + x.

P(F) = 10
16 + x

P(B) = 10
16 + x

P(FB) = 4
16 + x

4
16 + x

= P(FB) = P(F)P(B) = 10
16 + x

10
16 + x

⇒ x = 9

34. Not a good system. The successive spins are
independent and so

P{11th is red|1st 10 black} = P{11th is red}
= P

[
= 18

38

]

35. (a) 1/16

(b) 1/16

(c) 15/16, since the only way in which the
pattern H, H, H, H can appear before the pat-
tern T, H, H, H is if the first four flips all land
heads.

36. Let B = event marble is black; Bi = event that box
i is chosen. Now

B = BB1 ∪ BB2P(B) = P(BB1) + P(BB2)

= P(B|B1)P(B1) + P(B|B2)P(B2)

= 1
2

· 1
2

+ 2
3

· 1
2

= 7
12

37. Let W = event marble is white.
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P(B1|W) = P(W|B1)P(B1)
P(W|B1)P(B1) + P(W|B2)P(B2)

=
1
2

· 1
2

1
2

· 1
2

+ 1
3

· 1
2

=
1
4
5
12

= 3
5

38. Let TW = event transfer is white; TB = event trans-
fer is black; W = event white ball is drawn from
urn 2.

P(TW |W) = P(W|TW )P(TW )
P(W|TW )P(TW ) + P(W|TB)P(TB)

=
2
7

· 2
3

2
7

· 2
3

+ 1
7

· 1
3

=
4
21
5
21

= 4
5

39. Let W = event woman resigns; A, B, C are events
the person resigning works in store A, B, C, respec-
tively.

P(C|W)

= P(W|C)P(C)
P(W|C)P(C) + P(W|B)P(B) + P(W|A)P(A)

=
.70 × 100

225

.70 × 100
225

+ .60 × 75
225

+ .50
50

225

= 70
225

/140
225

= 1
2

40. (a) F = event fair coin flipped; U = event two-
headed coin flipped.

P(F|H) = P(H|F)P(F)
P(H|F)P(F) + P(H|U)P(U)

=
1
2

· 1
2

1
2

· 1
2

+ 1 · 1
2

=
1
4
3
4

= 1
3

(b) P(F|HH) = P(HH|F)P(F)
P(HH|F)P(F) + P(HH|U)P(U)

=
1
4

· 1
2

1
4

· 1
2

+ 1 · 1
2

=
1
8
5
8

= 1
5

(c) P(F|HHT)

= P(HHT|F)P(F)
P(HHT|F)P(F) + P(HHT|U)P(U)

= P(HHT|F)P(F)
P(HHT|F)P(F) + 0

= 1

since the fair coin is the only one that can show
tails.

41. Note first that since the rat has black parents and
a brown sibling, we know that both its parents are
hybrids with one black and one brown gene (for
if either were a pure black then all their offspring
would be black). Hence, both of their offspring’s
genes are equally likely to be either black or brown.

(a) P(2 black genes | at least one black gene)

= P(2 black genes)
P(at least one black gene)

= 1/4
3/4

= 1/3

(b) Using the result from part (a) yields the follo-
wing:

P(2 black genes | 5 black offspring)

= P(2 black genes)
P(5 black offspring)

= 1/3
1(1/3) + (1/2)5(2/3)

= 16/17

where P(5 black offspring) was computed by con-
ditioning on whether the rat had 2 black genes.

42. Let B = event biased coin was flipped; F and U
(same as above).

P(U|H)

= P(H|U)P(U)
P(H|U)P(U) + P(H|B)P(B) + P(H|F)P(F)

=
1 · 1

3

1 · 1
3

+ 3
4

· 1
3

+ 1
2

· 1
3

=
1
3
9

12

= 4
9

43. Let i = event coin was selected; P(H|i) = i
10

.

P(5|H) = P(H|5)P(5)
10

∑
i=1

P(H|i)P(i)

=
5
10

· 1
10

10

∑
i=1

1
10

· 1
10

= 5
10

∑
i=1

i

= 1
11
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44. Let W = event white ball selected.

P(T|W) = P(W|T)P(T)
P(W|T)P(T) + P(W|H)P(H)

=
1
5

· 1
2

1
5

· 1
2

+ 5
12

· 1
2

= 12
37

45. Let Bi = event ith ball is black; Ri = event ith ball
is red.

P(B1|R2) = P(R2|B1)P(B1)
P(R2|B1)P(B1) + P(R2|R1)P(R1)

=
r

b + r + c
· b

b + r
r

b + r + c
· b

b + r
+ r + c

b + r + c
· r

b + r

= rb
rb + (r + c)r

= b
b + r + c

46. Let X( = B or = C) denote the jailer’s answer to
prisoner A. Now for instance,

P{A to be executed|X = B}
= P {A to be executed, X = B}

P {X = B}
= P {A to be executed} P {X = B|A to be executed}

P {X = B}
= (1/3)P {X = B|A to be executed}

1/2
.

Now it is reasonable to suppose that if A is to be
executed, then the jailer is equally likely to answer
either B or C. That is,

P{X = B| A to be executed} = 1
2

and so,

P{A to be executed|X = B} = 1
3

Similarly,

P{A to be executed|X = C} = 1
3

and thus the jailer’s reasoning is invalid. (It is true
that if the jailer were to answer B, then A knows
that the condemned is either himself or C, but it is
twice as likely to be C.)

47. 1. 0 ≤ P(A|B) ≤ 1

2. P(S|B) = P(SB)
P(B)

= P(B)
P(B)

= 1

3. For disjoint events A and D

P(A ∪ D|B) = P((A ∪ D)B)
P(B)

= P(AB ∪ DB)
P(B)

= P(AB) + P(DB)
P(B)

= P(A|B) + P(D|B)

Direct verification is as follows:

P(A|BC)P(C|B) + P(A|BCc)P(Cc|B)

= P(ABC)
P(BC)

P(BC)
P(B)

+ P(ABCc)
P(BCc)

P(BCc)
P(B)

= P(ABC)
P(B)

+ P(ABCc)
P(B)

= P(AB)
P(B)

= P(A|B)



Chapter 2

1. P{X = 0} =
[

7
2

]/[
10
2

]
= 14

30

2. −n, −n + 2, −n + 4, …, n − 2, n

3. P{X = −2} = 1
4

= P{X = 2}

P{X = 0} = 1
2

4. (a) 1, 2, 3, 4, 5, 6

(b) 1, 2, 3, 4, 5, 6

(c) 2, 3, …, 11, 12

(d) −5, −4, …, 4, 5

5. P{max = 6} = 11
36

= P{min = 1}

P{max = 5} = 1
4

= P{min = 2}

P{max = 4} = 7
36

= P{min = 3}

P{max = 3} = 5
36

= P{min = 4}

P{max = 2} = 1
12

= P{min = 5}

P{max = 1} = 1
36

= P{min = 6}

6. (H, H, H, H, H), p5 if p = P {heads}

7. p(0) = (.3)3 = .027

p(1) = 3(.3)2(.7) = .189

p(2) = 3(.3)(.7)2 = .441

p(3) = (.7)3 = .343

8. p(0) = 1
2

, p(1) = 1
2

9. p(0) = 1
2

, p(1) = 1
10

, p(2) = 1
5

,

p(3) = 1
10

, p(3.5) = 1
10

10. 1 −
[

3
2

] [
1
6

]2 [5
6

]
−
[

3
3

] [
1
6

]3
= 200

216

11.
3
8

12.
[

5
4

] [
1
3

]4 [2
3

]
+
[

5
5

] [
1
3

]5
= 10 + 1

243
= 11

243

13.
10

∑
i = 7

(
10
i

)[
1
2

]10

14. P{X = 0} = P{X = 6} =
[

1
2

]6
= 1

64

P{X = 1} = P{X = 5} = 6
[

1
2

]6
= 6

64

P{X = 2} = P{X = 4} =
[

6
2

] [
1
2

]6
= 15

64

P{X = 3} =
[

6
3

] [
1
2

]6
= 20

64

15.
P{X = k}

P{X = k − 1}

=
n!

(n − k)! k!pk(1 − p)n−k

n!
(n − k + 1)!(k − 1)!pk−1(1 − p)n−k+1

= n − k + 1
k

p
1 − p

Hence,

P {X = k}
P {X = k − 1} ≥ 1 ↔ (n − k + 1)p > k(1 − p)

↔ (n + 1)p ≥ k

The result follows.

16. 1 − (.95)52 − 52(.95)51(.05)

17. Follows since there are
n!

x1! · · · xr!
permutations of n

objects of which x1 are alike, x2 are alike, …, xr are
alike.

10
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18. Follows immediately.

19. P {X1 + · · · + Xk = m}

=
[

n
m

]
(p1 + · · · + pk)m(pk+1 + · · · + pr)n−m

20.
5!

2!1!2!

[
1
5

]2 [ 3
10

]2 [1
2

]1
= .054

21. 1−
[

3
10

]5
− 5

[
3

10

]4 [ 7
10

]
−
[

5
2

] [
3
10

]3 [ 7
10

]2

22.
1
32

23. In order for X to equal n, the first n − 1 flips must
have r − 1 heads, and then the nth flip must land
heads. By independence the desired probability is
thus[

n − 1
r − 1

]
pr−1(1 − p)n−rxp

24. It is the number of tails before heads appears for
the rth time.

25. A total of 7 games will be played if the first 6 result
in 3 wins and 3 losses. Thus,

P{7 games} =
(

6
3

)
p3(1 − p)3

Differentiation yields

d
dp

P {7} = 20
[
3p2(1 − p)3 − p33(1 − p)2

]

= 60p2(1 − p)2 [1 − 2p
]

Thus, the derivative is zero when p = 1/2. Taking
the second derivative shows that the maximum is
attained at this value.

26. Let X denote the number of games played.

(a) P {X = 2} = p2 + (1 − p)2

P {X = 3} = 2p(1 − p)

E [X] = 2
{

p2 + (1 − p)2
}

+ 6p(1 − p)

= 2 + 2p(1 − p)
Since p(1 − p) is maximized when p = 1/2, we
see that E[X] is maximized at that value of p.

(b) P {X = 3} = p3 + (1 − p)3

P {X = 4}
= P {X = 4, I has 2 wins in first 3 games}

+ P {X = 4, II has 2 wins in first 3 games}
= 3p2(1 − p)p + 3p(1 − p)2(1 − p)

P {X = 5}
= P {each player has 2 wins in the first

4 games}
= 6p2(1 − p)2

E [X] = 3
[
p3 + (1 − p)3

]
+ 12p(1 − p)

[
p2 + (1 − p)2

]
+ 30p2(1 − p)2

Differentiating and setting equal to 0 shows
that the maximum is attained when p = 1/2.

27. P {same number of heads} = ∑
i

P{A = i, B = i}

= ∑
i

(
k
i

)
(1/2)k

(
n − k

i

)
(1/2)n−k

= ∑
i

(
k
i

)(
n − k

i

)
(1/2)n

= ∑
i

(
k

k − i

)(
n − k

i

)
(1/2)n

=
(

n
k

)
(1/2)n

Another argument is as follows:

P{# heads of A = # heads of B}
= P{# tails of A = # heads of B}

since coin is fair

= P{k − # heads of A = # heads of B}
= P{k = total # heads}

28. (a) Consider the first time that the two coins give
different results. Then

P {X = 0} = P {(t, h)|(t, h) or (h, t)}

= p(1 − p)
2p(1 − p) = 1

2

(b) No, with this procedure

P {X = 0} = P {first flip is a tail} = 1 − p

29. Each flip after the first will, independently, result
in a changeover with probability 1/2. Therefore,
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P {k changeovers} =
(

n − 1
k

)
(1/2)n−1

30.
P {X = i}

P {X = i − 1} = e−λλi/i!
e−λλi−1/(i − 1)!

= λ/i

Hence, P{X = i} is increasing for λ ≥ i and
decreasing for λ < i.

32. (a) .394 (b) .303 (c) .091

33. c
∫ 1

−1

(
1 − x2

)
dx = 1

c

[
x − x3

3

]∣∣∣∣∣
1

−1

= 1

c = 3
4

F(y) = 3
4

∫ 1

−1
(1 − x2)dx

= 3
4

[
y − y3

3
+ 2

3

]
, −1 < y < 1

34. c
∫ 2

0

(
4x − 2x2

)
dx = 1

c(2x2 − 2x3/3) = 1

8c/3 = 1

c = 3
8

P
{

1
2

< X <
3
2

}
= 3

8

∫ 3/2

1/2

(
4x − 2x2

)
dx

= 11
16

35. P {X > 20} =
∫ ∞

20

10
x2 dx = 1

2

36. P {D ≤ x} = area of disk of radius x
area of disk of radius 1

= πx2

π
= x2

37. P {M ≤ x} = P {max(X1, …, Xn) ≤ x}
= P {X1 ≤ x, …, Xn ≤ x}

=
n∏

i=1

P {Xi ≤ x}

= xn

fM(x) = d
dx

P {M ≤ x} = nxn−1

38. c = 2

39. E [X] = 31
6

40. Let X denote the number of games played.

P {X = 4} = p4 + (1 − p)4

P {X = 5} = P {X = 5, I wins 3 of first 4}
+ P {X = 5, II wins 3 of first 4}

= 4p3(1 − p)p + 4(1 − p)3p(1 − p)

P {X = 6} = P {X = 6, I wins 3 of first 5}
+ P {X = 6, II wins 3 of first 5}

= 10p3(1 − p)2p + 10p2(1 − p)3(1 − p)

P {X = 7} = P{first 6 games are split}
= 20p3(1 − p)3

E [X] =
7

∑
i=4

iP{X = i}

When p = 1/2, E[X] = 93/16 = 5.8125

41. Let Xi equal 1 if a changeover results from the ith

flip and let it be 0 otherwise. Then

number of changeovers =
n

∑
i=2

Xi

As,

E [Xi] = P {Xi = 1} = P {flip i − 1 �= flip i}
= 2p(1 − p)

we see that

E[number of changeovers] =
n

∑
i=2

E [Xi]

= 2(n − 1)p(1 − p)

42. Suppose the coupon collector has i different types.
Let Xi denote the number of additional coupons
collected until the collector has i + 1 types. It
is easy to see that the Xi are independent geomet-
ric random variables with respective parameters
(n − i)/n, i = 0, 1, …, n − 1. Therefore,

∑
[

n−1

∑
i=0

Xi

]
=

n−1

∑
i=0

∑ [Xi] =
n−1

∑
i=0

n/(n − i)

= n
n

∑
j=1

1/j
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43. (a) X =
n

∑
i=1

Xi

(b) E [Xi] = P {Xi = 1}
= P{red ball i is chosen before all n

black balls}
= 1/(n + 1) since each of these n + 1

balls is equally likely to be the
one chosen earliest

Therefore,

E [X] =
n

∑
i=1

E [Xi] = n/(n + 1)

44. (a) Let Yi equal 1 if red ball i is chosen after the
first but before the second black ball,
i = 1, …, n. Then

Y =
n

∑
i=1

Yi

(b) E[Yi] = P{Yi = 1}
= P{red ball i is the second chosen from

a set of n + 1 balls}
= 1/(n + 1) since each of the n + 1 is

equally likely to be the second one
chosen.

Therefore,

E[Y] = n/(n + 1)

(c) Answer is the same as in Problem 41.

(d) We can let the outcome of this experiment be
the vector (R1, R2, …, Rn) where Ri is the num-
ber of red balls chosen after the (i − 1)st but
before the ith black ball. Since all orderings of
the n + m balls are equally likely it follows that
all different orderings of R1, …, Rn will have
the same probability distribution.
For instance,

P {R1 = a, R2 = b} = P {R2 = a, R1 = b}
From this it follows that all the Ri have the
same distribution and thus the same mean.

45. Let Ni denote the number of keys in box i,
i = 1, …, k. Then, with X equal to the number

of collisions we have that X =
k

∑
i=1

(Ni − 1)+ =
k

∑
i=1

(Ni − 1 + I {Ni = 0}) where I {Ni = 0} is equal

to 1 if Ni = 0 and is equal to 0 otherwise. Hence,

E[X] =
k

∑
i=1

(rpi − 1 + (1 − pi)r) = r − k

+
k

∑
i=1

(1 − pi)r

Another way to solve this problem is to let Y denote
the number of boxes having at least one key, and
then use the identity X = r − Y, which is true since
only the first key put in each box does not result in

a collision. Writing Y =
k

∑
i=1

I{Ni > 0} and taking

expectations yields

E[X] = r − E[Y] = r −
k

∑
i=1

[1 − (1 − pi)r]

= r − k +
k

∑
i=1

(1 − pi)r

46. Using that X =
∞
∑
n=1

In, we obtain

E[X] =
∞
∑
n=1

E[In] =
∞
∑
n=1

P{X ≥ n}

Making the change of variables m = n − 1 gives

E[X] =
∞
∑

m=0
P{X ≥ m + 1} =

∞
∑

m=0
P{X > m}

(b) Let

In =
{

1, if n ≤ X
0, if n > X

Jm =
{

1, if m ≤ Y
0, if m > Y

Then

XY =
∞
∑
n=1

In

∞
∑

m=1
Jm =

∞
∑
n=1

∞
∑

m=1
InJm

Taking expectations now yields the result

E[XY] =
∞
∑
n=1

∞
∑

m=1
E[InJm]

=
∞
∑
n=1

∞
∑

m=1
P(X ≥ n, Y ≥ m)
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47. Let Xi be 1 if trial i is a success and 0 otherwise.

(a) The largest value is .6. If X1 = X2 = X3, then

1.8 = E[X] = 3E[X1] = 3P{X1= 1}
and so

P{X = 3} = P{X1 = 1} = .6

That this is the largest value is seen by Markov’s
inequality, which yields

P{X ≥ 3} ≤ E[X]/3 = .6

(b) The smallest value is 0. To construct a probabil-
ity scenario for which P{X = 3} = 0 let U be a
uniform random variable on (0, 1), and define

X1 = 1 if U ≤ .6
0 otherwise

X2 = 1 if U ≥ .4
0 otherwise

X3 = 1 if either U ≤ .3 or U ≥ .7
0 otherwise

It is easy to see that

P{X1 = X2 = X3 = 1} = 0

49. E[X2] − (E[X])2 = Var(X) = E(X − E[X])2 ≥ 0.
Equality when Var(X) = 0, that is, when X is
constant.

50. Var(cX) = E[(cX − E[cX])2]

= E[c2(X − E(X))2]

= c2Var(X)

Var(c + X) = E[(c + X − E[c + X])2]

= E[(X − E[X])2]

= Var(X)

51. N =
r

∑
i=1

Xj where Xi is the number of flips between

the (i − 1)st and ith head. Hence, Xi is geometric
with mean 1/p. Thus,

E[N] =
r

∑
i=1

E[Xi] = r
p

52. (a)
n

n + 1
(b) 0
(c) 1

53.
1

n + 1
,

1
2n + 1

−
[

1
n + 1

]2
.

54. (a) Using the fact that E[X + Y] = 0 we see that
0 = 2p(1, 1) − 2p(−1, −1), which gives the
result.

(b) This follows since

0 = E[X − Y] = 2p(1, −1) − 2p(−1, 1)

(c) Var(X) = E[X2] = 1

(d) Var(Y) = E[Y2] = 1

(e) Since

1 = p(1, 1) + p(−1, 1) + p(1, −1) + p(−1, 1)

= 2p(1, 1) + 2p(1, −1)

we see that if p = 2p(1, 1) then
1 − p = 2p(1, −1)
Now,

Cov(X, Y) = E[XY]

= p(1, 1) + p(−1, −1)

−p(1, −1) − p(−1, 1)

= p − (1 − p) = 2p − 1

55. (a) P(Y = j) =
j

∑
i=0

(
j
i

)
e−2λλj/j!

= e−2λ λj

j!

j

∑
i=0

(
j
i

)
1i1j−i

= e−2λ (2λ)j

j!

(b) P(X = i) =
∞
∑
j=i

(
j
i

)
e−2λλj/j!

= 1
i!

e−2λ
∞
∑
j=i

1
( j − i)!

λj

= λi

i!
e−2λ

∞
∑
k=0

λk/k!

= e−λ λi

i!

(c) P(X = i, Y − X = k) = P(X = i, Y = k + i)

=
(

k + i
i

)
e−2λ λk+i

(k + i)!

= e−λ λi

i!
e−λ λk

k!
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showing that X and Y − X are independent
Poisson random variables with mean λ. Hence,

P(Y − X = k) = e−λ λk

k!

56. Let Xj equal 1 if there is a type i coupon in the
collection, and let it be 0 otherwise. The number of

distinct types is X =
n

∑
i=1

Xi.

E[X] =
n

∑
i=1

E[Xi] =
n

∑
i=1

P{Xi = 1} =
n

∑
i=1

(1 − pi)k

To compute Cov(Xi, Xj) when i �= j, note that XiXj
is either equal to 1 or 0 if either Xi or Xj is equal to
0, and that it will equal 0 if there is either no type i
or type j coupon in the collection. Therefore,

P{XiXj = 0} = P{Xi = 0} + P{Xj = 0}
− P{Xi = Xj = 0}

= (1 − pi)k + (1 − pj)k

−(1 − pi − pj)k

Consequently, for i �= j

Cov(Xi, Xj) = P{XiXj = 1} − E[Xi]E[Xj]

= 1 − [(1 − pi)k + (1 − pj)k

−(1 − pi − pj)k] − (1 − pi)k(1 − pj)k

Because Var(Xi) = (1 − pi)k[1 − (1 − pi)k]
we obtain

Var(X) =
n

∑
i=1

Var(Xi) + 2 ∑ ∑
i<j

Cov(Xi, Xj)

=
n

∑
i=1

(1 − pi)k[1 − (1 − pi)k]

+ 2 ∑
j

∑
i<j

[1 − [(1 − pi)k

+ (1 − pj)k − (1 − pi − pj)k]

− (1 − pi)k(1 − pj)k

57. It is the number of successes in n + m independent
p-trials.

58. Let Xi equal 1 if both balls of the ith withdrawn pair
are red, and let it equal 0 otherwise. Because

E[Xi] = P{Xi = 1} = r(r − 1)
2n(2n − 1)

we have

E[X] =
n

∑
i=1

E[Xi]

= r(r − 1)
(4n − 2)

because

E[XiXj] = r(r − 1)(r − 2)(r − 3)
2n(2n − 1)(2n − 2)2n − 3)

For Var(X) use

Var(X) = ∑
i

Var(Xi) + 2 ∑
i<j

Cov(Xi, Xj)

= n Var(X1) + n(n − 1) Cov(X1, X2)

where

Var(X1) = E[X1](1 − E[X1])

Cov(X1, X2) = r(r − 1)(r − 2)(r − 3)
2n(2n − 1)(2n − 2)(2n − 3)

− (E[X1])2

59. (a) Use the fact that F(Xi) is a uniform (0, 1) ran-
dom variable to obtain

p = P{F(X1) < F(X2) > F(X3) < F(X4)}
= P{U1 < U2 > U3 < U4}

where the Ui, i = 1, 2, 3, 4, are independent
uniform (0, 1) random variables.

(b) p =
∫ 1

0

∫ 1

x1

∫ x2

0

∫ 1

x3

dx4dx3dx2dx1

=
∫ 1

0

∫ 1

x1

∫ x2

0
(1 − x3)dx3dx2dx1

=
∫ 1

0

∫ 1

x1

(x2 − x2
2/2)dx2dx1

=
∫ 1

0
(1/3 − x2

1/2 + x3
1/6)dx1

= 1/3 − 1/6 + 1/24 = 5/24

(c) There are 5 (of the 24 possible) orderings such
that X1 < X2 > X3 < X4. They are as follows:

X2 > X4 > X3 > X1

X2 > X4 > X1 > X3

X2 > X1 > X4 > X3

X4 > X2 > X3 > X1

X4 > X2 > X1 > X3
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60. E[etX] =
∫ 1

0
etxdx = e t −1

t

d
dt

E[etX] = te t − e t + 1
t2

d2

dt2 E[etX] = [t2(te 2 + et − et) − 2t(te t − et + 1)]
t4

= t2et − 2(te t − e t + 1)
t3

To evaluate at t = 0, we must apply l’Hospital’s
rule.

This yields

E[X] = lim
t = 0

tet + et − et

2t
= lim

t = 0

et

2
= 1

2

E[X2] = lim
t = 0

2tet + t2et − 2tet − 2et + 2et

3t2

= lim
t = 0

et

3
= 1

3

Hence, Var(X) = 1
3

−
[

1
2

]2
= 1

12

61. (a) fX(x) =
∫ ∞

x
λ2e−λydy

= λe−λx

(b) fY(y) =
∫ y

0
λ2e−λydx

= λ2ye−λy

(c) Because the Jacobian of the transformation
x = x, w = y − x is 1, we have

fX,W (x, w) = fX,Y(x, x + w) = λ2e−λ(x+w)

= λe−λx λe−λw

(d) It follows from the preceding that X and
W are independent exponential random vari-
ables with rate λ.

62. E[eαλX] =
∫

eαλxλe−λxdx = 1
1 − α

Therefore,

P = − 1
αλ

ln(1−α)

The inequality ln(1 − x) ≤ −x shows that
P ≥ 1/λ.

63. φ(t) =
∞
∑
n=1

etn(1 − p)n−1p

= pet
∞
∑
n=1

((1 − p)et)n−1

= pet

1 − (1 − p)et

64. (See Section 2.3 of Chapter 5.)

65. Cov(Xi, Xj) = Cov(μi +
n

∑
k=1

aikZk , μj +
n

∑
t=1

ajtZt)

=
n

∑
t=1

n

∑
k=1

Cov(ajkZk , ajtZt)

=
n

∑
t=1

n

∑
k=1

aikajtCov(Zk , Zt)

=
n

∑
k=1

aikajk

where the last equality follows since

Cov(Zk , Zt) = 1 if k = t
0 if k �= t

66. P
{∣∣∣∣X1 + · · · + Xn − nμ

n

∣∣∣∣ >∈
}

= P {|X1 + · · · + Xn − nμ| > n ∈}
≤ Var {X1 + · · · + Xn} /n2 ∈2

= nσ2/n2 ∈2

→ 0 as n → ∞

67. P{5 < X < 15} ≥ 2
5

68. (a) P {X1 + · · · + X10 > 15} ≤ 2
3

(b) P {X1 + · · · + X10 > 15} ≈ 1 − Φ

[
5√
10

]

69. Φ(1) − Φ

[
1
2

]
= .1498

70. Let Xi be Poisson with mean 1. Then

P

{
n

∑
1

Xi ≤ n

}
= e−n

n

∑
k=0

nk

k!

But for n large
n

∑
1

xi − n has approximately a nor-

mal distribution with mean 0, and so the result
follows.
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71. (a) P {X = i} =
[

n
i

] [
m

k − i

]/[
n + m

k

]

i = 0, 1,…, min(k, n)

(b) X =
k

∑
i=1

Xi

E[X] =
K

∑
i=1

E[Xi] = kn
n + m

since the ith ball is equally likely to be
either of the n + m balls, and so
E[Xi] = P{Xi = 1} = n

n + m

X =
n

∑
i=1

Yi

E[X] =
n

∑
i=1

E[Yi]

=
n

∑
i=1

P{ith white ball is selected}

=
n

∑
i=1

k
n + m

= nk
n + m

72. For the matching problem, letting

X = X1 + · · · + XN

where

Xi =
{

1 if ith man selects his own hat
0 otherwise

we obtain

Var(X) =
N

∑
i=1

Var(Xi) + 2 ∑∑
i < j

Cov(Xi, Xj)

Since P{Xi = 1} = 1/N, we see

Var(Xi) = 1
N

[
1 − 1

N

]
= N − 1

N2

Also

Cov(Xi, Xj) = E[XiXj] − E[Xi]E[Xj]

Now,

XiXj =

⎧⎪⎨
⎪⎩

1 if the ith and jth men both select
their own hats

0 otherwise

and thus

E[XiXj] = P{Xi = 1, Xj = 1}
= P{Xi = 1}P{Xj = 1|Xi = 1}
= 1

N
1

N − 1

Hence,

Cov(Xi, Xj) = 1
N(N − 1)

−
[

1
N

]2
= 1

N2(N − 1)

and

Var(X) = N − 1
N

+ 2
[

N
2

]
1

N2(N − 1)
= N − 1

N
+ 1

N
= 1

73. As Ni is a binomial random variable with para-
meters (n, Pi), we have (a) E[Ni] = nPji (b) Var(Xi) =
nPi = (1 − Pi); (c) for i �= j, the covariance of Ni and
Nj can be computed as

Cov(Ni, Nj) = Cov

[
∑
k

Xk , ∑
k

Yk

]

where Xk(Yk) is 1 or 0, depending upon whether or
not outcome k is type i( j). Hence,

Cov(Ni, Nj) = ∑
k

∑
�

Cov(Xk , Y�)

Now for k �= �, Cov(Xk , Y�) = 0 by independence of
trials and so

Cov(Ni, Nj) = ∑
k

Cov(Xk , Yk)

= ∑
k

(E[XkYk] − E[Xk]E[Yk])

= −∑
k

E[Xk]E[Yk] (since XkYk = 0)

= −∑
k

PiPj

= −nPiPj
(d) Letting

Yi =
{

1, if no type i’s occur
0, otherwise

we have that the number of outcomes that never

occur is equal to
r

∑
1

Yi and thus,

E

[
r

∑
1

Yi

]
=

r

∑
1

E[Yi]

=
r

∑
1

P{outcomes i does not occur}

=
r

∑
1

(1 − Pi)n

74. (a) As the random variables are independent,
identically distributed, and continuous, it fol-
lows that, with probability 1, they will all have
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different values. Hence the largest of X1, …, Xn
is equally likely to be either X1 or X2 … or Xn.
Hence, as there is a record at time n when Xn
is the largest value, it follows that

P{a record occurs at n} = 1
n

(b) Let Ij =
{

1, if a record occurs at j
0, otherwise

Then

E

[
n

∑
1

Ij

]
=

n

∑
1

E[Ij] =
n

∑
1

1
j

(c) It is easy to see that the random variables
I1, I2, …, In are independent. For instance, for
j < k

P{Ij = 1/Ik = 1} = P{Ij = 1}
since knowing that Xk is the largest of
X1, …, Xj, …, Xk clearly tells us nothing about
whether or not Xj is the largest of X1, …, Xj.
Hence,

Var
n

∑
1

Ij =
n

∑
1

Var(Ij) =
n

∑
j=1

[
1
j

] [
j − 1

j

]

(d) P{N > n}
= P{X1 is the largest of X1, …, Xn} = 1

n
Hence,

E[N] =
∞
∑
n=1

P{N > n} =
∞
∑
n=1

1
n

= ∞

75. (a) Knowing the values of N1, …, Nj is equivalent
to knowing the relative ordering of the ele-
ments a1, …, aj. For instance, if N1 = 0, N2 = 1,
N3 = 1 then in the random permutation a2
is before a3, which is before a1. The indepen-
dence result follows for clearly the number
of a1,…, ai that follow ai+1 does not proba-
bilistically depend on the relative ordering of
a1, …, ai.

(b) P{Ni = k} = 1
i

, k = 0, 1,…, i − 1

which follows since of the elements a1, …, ai+1
the element ai+1 is equally likely to be first or
second or … or (i + 1)st.

(c) E[Ni] = 1
i

i−1

∑
k=0

k = i − 1
2

E[N2
i ] = 1

i

i−1

∑
k=0

k2 = (i − 1)(2i − 1)
6

and so

Var(Ni) = (i − 1)(2i − 1)
6

− (i − 1)2

4

= i2 − 1
12

76. E[XY] = μxμy

E[(XY)2] = (μ2
x + σ2

x)(μ2
y + σ2

y)

Var(XY) = E[(XY)2] − (E[XY])2

77. If g1(x, y) = x + y, g2(x, y) = x − y, then

J =

∣∣∣∣∣∣∣
∂g1
∂x

∂g1
∂y

∂g2
∂x

∂g2
∂y

∣∣∣∣∣∣∣
= 2

Hence, if U = X + Y, V = X − Y, then

fU, V(u, v) = 1
2

fX, Y

[
u + v

2
,

u − v
2

]

= 2
4τσ2 exp

[
− 1

2σ2

[[
u + v

2
− μ

]2

+
[

u − v
2

− μ

]2
]]

= e−μ2/σ2

4τσ2 exp
[

uμ

σ2 − u2

4σ2

]

exp
{

− v2

4σ2

}

78. (a) φxi (ti) = φ(0, 0 … 0, 1, 0 … 0) with the 1 in the ith

place.

(b) If independent, then E
[
e∑tixi

]
= π

i

[
etixi
]

On the other hand, if the above is satisfied, then
the joint moment generating function is that of the
sum of n independent random variables the ith of
which has the same distribution as xi. As the joint
moment generating function uniquely determines
the joint distribution, the result follows.

79. K′(t) = E
[
XetX]

E
[
etX
]

K′′(t) = E
[
etX]E[X2etX]− E2[XetX]

E2
[
etX
]
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Hence,

K′(0) = E[X]

K′′(0) = E[X2] − E2[X] = Var(X)

80. Let Ii be the indicator variable for the event that Ai
occurs. Then

(
X
k

)
= ∑

i1<…<ik

Ii1 · · · Iik

Taking expectations yields

E
[(

X
k

)]
= Sk

Hence,

E[X] = S1, E
[

X(X − 1)
2

]
= S2

giving that

Var(X) = E[X2] − S2
1 = 2S2 + S1 − S2

1



Chapter 3

1. ∑
x

p
X|Y(x|y) = ∑x p(x, y)

pY(y)
= pY(y)

pY(y)
= 1

2. Intuitively it would seem that the first head would
be equally likely to occur on either of trials 1, …,
n − 1. That is, it is intuitive that

P{X1 = i|X1 + X2 =n}=1/(n − 1),

i = 1, …, n − 1

Formally,

P{X1 = i|X1 + X2 = n}

= P{X1 = i, X1 + X2 = n}
P{X1 + X2 = n}

= P{X1 = i, X2 = n − i}
P{X1 + X2 = n}

= p(1 − p)i−1p(1 − p)n−i−1(
n − 1

1

)
p(1 − p)n−2p

= 1/(n − 1)

In the above, the next to last equality uses the inde-
pendence of X1 and X2 to evaluate the numerator
and the fact that X1 + X2 has a negative binomial
distribution to evaluate the denominator.

3. E[X|Y = 1] = 2

E[X|Y = 2] = 5
3

E[X|Y = 3] = 12
5

4. No.

5. (a) P{X = i|Y = 3} = P{i white balls selected
when choosing 3 balls from 3 white and 6 red}

=

[
3
i

] [
6

3 − i

]
[

9
3

] , i = 0, 1, 2, 3

(b) By same reasoning as in (a), if Y = 1, then
X has the same distribution as the number of
white balls chosen when 5 balls are chosen
from 3 white and 6 red. Hence,

E[X|Y = 1] = 5
3
9

= 5
3

6. pX|Y(1|3) = P{X = 1, Y = 3}/P{Y = 3}
= P{1 white, 3 black, 2 red}

/P{3 black}

= 6!
1!3!2!

[
3

14

]1 [ 5
14

]3 [ 6
14

]2

/ 6!
3!3!

[
5

14

]3 [ 9
14

]3

= 4
9

pX|Y(0|3) = 8
27

pX|Y(2|3) = 2
9

pX|Y(3|3) = 1
27

E[X|Y = 1] = 5
3

7. Given Y = 2, the conditional distribution of X
and Z is

P{(X, Z) = (1, 1)|Y = 2} = 1
5

P{(1, 2)|Y = 2} = 0

P{(2, 1)|Y = 2} = 0

P{(2, 2)|Y = 2} = 4
5

So,

E[X|Y = 2] = 1
5

+ 8
5

= 9
5

E[X|Y = 2, Z = 1] = 1

20
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8. (a) E[X] = E[X|first roll is 6]
1
6

+ E[X|first roll is not 6]
5
6

= 1
6

+ (1 + E[X])
5
6

implying that E [X] = 6.

(b) E[X|Y = 1] = 1 + E[X] = 7

(c) E[X|Y = 5]

= 1
[

1
5

]
+ 2

[
4
5

] [
1
5

]
+ 3

[
4
5

]2 [1
5

]

+ 4
[

4
5

]3 [1
5

]
+ 6

[
4
5

]4 [1
6

]

+ 7
[

4
5

]4 [5
6

] [
1
6

]
+ · · ·

9. E[X|Y = y] = ∑
x

xP{X = x|Y = y}
= ∑

x
xP{X = x} by independence

= E[X]

10. (Same as in Problem 8.)

11. E[X|Y = y] = C
∫ y

−y
x(y2 − x2)dx = 0

12. fX|Y(x|y) =
1
y

exp
−x/y

exp−y

exp−y
∫

1
y

exp−x/ydx
= 1

y
exp−x/y

Hence, given Y = y, X is exponential with mean y.

13. The conditional density of X given that X > 1 is

fX|X > 1(x) = f (x)
P{X > 1} = λ exp−λx

exp−λ
when x > 1

E[X|X > 1] = expλ
∫ ∞

1
xλ exp−λx dx = 1 + 1/λ

by integration by parts.

14. fX|X < 1
2
(x) = f (x)

P {X < 1} , x <
1
2

= 1
1/2

= 2

Hence, E
[

X|X <
1
2

]
=
∫ 1/2

0
2x dx = 1

4

15. fX|Y = y(x|y) =
1
y

exp−y

fy(y)
=

1
y

exp−y

∫ y

0

1
y

exp−y dx

= 1
y

, 0 < x < y

E[X2|Y = y] = 1
y

∫ y

0
x2dx = y2

3

17. With K = 1/P{X = i}, we have that

fY|X
(
y|i)= KP{X = i|Y = y}fY(y)

= K1e−yyie−αyya−1

= K1e−(1+α)yya+i−1

where K1 does not depend on y. But as the pre-
ceding is the density function of a gamma random
variable with parameters (s + i, 1 + α) the result
follows.

18. In the following t = ∑n
i=1 xi, and C does not

depend on θ. For (a) use that T is normal with
mean nθ and variance n; in (b) use that T is gamma
with parameters (n, θ); in (c) use that T is bino-
mial with parameters (n, θ); in (d) use that T is Pois-
son with mean nθ.

(a) f (x1, ..., xn|T = t)

= f (x1, ..., xn, T = t)
fT(t)

= f (x1, ..., xn)
fT(t)

= C
exp{−∑ (xi − θ)2/2}
exp{−(t − nθ)2/2n}

= C exp{(t − nθ)2/2n − ∑ (xi − θ)2/2}

= C exp{t2/2n − θt + nθ2/2 − ∑ x2
i /2

+ θt − nθ2/2}

= C exp{(∑ xi)2/2n − ∑ x2
i /2}

(b) f (x1, …, xn|T = t) = f (x1, …, xn)
fT(t)

= θne−θ ∑ xi

θe−θt(θt)n−1/(n − 1)!

= (n − 1)!t1−n

Parts (c) and (d) are similar.
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19.
∫

E[X|Y = y] fY(y)dy

=
∫ ∫

xfX|Y(x|y)dx fY(Y)dy

=
∫ ∫

x
f (x, y)
fY(y)

dx fY(y)dy

=
∫

x
∫

f (x · y)dydx

=
∫

xfX(x)dx

= E[X]

20. (a) f (x|disease) = P{disease|x} f (x)∫
P{disease|x} f (x)dx

= P(x) f (x)∫
P(x) f (x)dx

(b) f (x|no disease) = [1 − P(x)] f (x)∫
[1 − P(x)] f (x)dx

(c)
f (x|disease)

f (x|no disease)
= C

P(x)
1 − P(x)

where C does not depend on x.

21. (a) X =
N

∑
i=1

Ti

(b) Clearly N is geometric with parameter 1/3;
thus, E[N] = 3.

(c) Since TN is the travel time corresponding to
the choice leading to freedom it follows that
TN = 2, and so E [TN] = 2.

(d) Given that N = n, the travel times Tii = 1,…,
n − 1 are each equally likely to be either 3 or
5 (since we know that a door leading back to the
nine is selected), whereas Tn is equal to 2 (since
that choice led to safety). Hence,

E

[
N

∑
i=1

Ti|N = n

]
= E

[
n−1

∑
i=1

Ti|N = n

]

+ E[Tn|N = n]

= 4(n − 1) + 2

(e) Since part (d) is equivalent to the equation

E

[
N

∑
i=1

Ti|N
]

= 4N − 2

we see from parts (a) and (b) that

E[X] = 4E[N] − 2

= 10

22. Letting Ni denote the time until the same outcome
occurs i consecutive times we obtain, upon condi-
tioning Ni−1, that

E[Ni] = E[E[Ni|Ni−1]]

Now,

E[Ni|Ni−1]

= Ni−1 +
1 with probability 1/n

E[Ni] with probability(n − 1)/n

The above follows because after a run of i − 1 either
a run of i is attained if the next trial is the same type
as those in the run or else if the next trial is different
then it is exactly as if we were starting all over at
that point.

From the above equation we obtain

E[Ni] = E[Ni−1] + 1/n + E[Ni](n − 1)/n

Solving for E[Ni] gives

E[Ni] = 1 + nE[Ni−1]

Solving recursively now yields

E[Ni] = 1 + n{1 + nE[Ni−2]}
= 1 + n + n2E[Ni−2]
·
·
= 1 + n + · · · + nk−1E[N1]

= 1 + n + · · · + nk−1

23. Let X denote the first time a head appears. Let us
obtain an equation for E[N|X] by conditioning on
the next two flips after X. This gives

E[N|X] = E[N|X, h, h]p2 + E[N|X, h, t]pq

+ E[N|X, t, h]pq + E[N|X, t, t]q2

where q = 1 − p. Now

E [N|X, h, h] = X + 1, E[N|X, h, t] = X + 1

E [N|X, t, h] = X + 2, E[N|X, t, t] = X + 2 + E[N]

Substituting back gives

E[N|X] = (X + 1)(p2 + pq) + (X + 2)pq

+ (X + 2 + E[N])q2

Taking expectations, and using the fact that X is
geometric with mean 1/p, we obtain

E[N] = 1 + p + q + 2pq + q2/p + 2q2 + q2E[N]
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Solving for E[N] yields

E[N] = 2 + 2q + q2/p
1 − q2

24. In all parts, let X denote the random variable whose
expectation is desired, and start by conditioning on
the result of the first flip. Also, h stands for heads
and t for tails.

(a) E[X] = E[X|h]p + E[X|t](1 − p)

=
(

1 + 1
1 − p

)
p +

(
1 + 1

p

)
(1 − p)

= 1 + p/(1 − p) + (1 − p)/p

(b) E[X] = (1 + E[number of heads before
first tail])p + 1(1 − p)

= 1 + p(1/(1 − p) − 1)

= 1 + p/(1 − p) − p

(c) Interchanging p and 1 − p in (b) gives result:
1 + (1 − p)/p − (1 − p)

(d) E [X] = (1 + answer from (a))p

+ (1 + 2/p)(1 − p)

= (2 + p/(1 − p) + (1 − p)/p)p

+ (1 + 2/p)(1 − p)

25. (a) Let F be the initial outcome.

E[N] =
3

∑
i=1

E[N|F = i]pi =
3

∑
i=1

(
1 + 2

pi

)
pi = 1 + 6 = 7

(b) Let N1,2 be the number of trials until both out-
come 1 and outcome 2 have occurred. Then

E[N1,2] = E[N1,2|F = 1]p1 + E[N1,2|F = 2]p2

+ E[N1,2|F = 3]p3

=
(

1 + 1
p2

)
p1 +

(
1 + 1

p1

)
p2

+ (1 + E[N1,2])p3

= 1 + p1

p2
+ p2

p1
+ p3E[N1,2]

Hence,

E[N1,2] =
1 + p1

p2
+ p2

p1

p1 + p2

26. Let NA and NB denote the number of games needed
given that you start with A and given that you start

with B. Conditioning on the outcome of the first
game gives

E[NA] = E[NA|w]pA + E[NA|l](1 − pA)

Conditioning on the outcome of the next game
gives

E [NA|w] = E[NA|ww]pB + E[NA|wl](1 − pB)

= 2pB + (2 + E[NA])(1 − pB)

= 2 + (1 − pB)E[NA]

As E[NA|l]= 1 + E[NB] we obtain

E[NA] = (2 + (1 − pB)E[NA])pA

+ (1 + E[NB])(1 − pA)

= 1 + pA + pA(1 − pB)E[NA]

+ (1 − pA)E[NB]

Similarly,

E[NB] = 1 + pB + pB(1 − pA)E[NB]

+ (1 − pB)E[NA]

Subtracting gives

E[NA] − E[NB]

= pA − pB + (pA − 1)(1 − pB)E[NA]

+ (1 − pB)(1 − pA)E[NB]

or

[1 + (1 − pA)(1 − pB)](E[NA] − E[NB]) = pA − pB

Hence, if pB > pA then E[NA] − E[NB] < 0, showing
that playing A first is better.

27. Condition on the outcome of the first flip to obtain

E[X] = E[X|H]p + E[X|T](1 − p)

= (1 + E[X])p + E[X|T](1 − p)

Conditioning on the next flip gives

E[X|T] = E[X|TH]p + E[X|TT](1 − p)

= (2 + E[X])p + (2 + 1/p)(1 − p)

where the final equality follows since given that
the first two flips are tails the number of additional
flips is just the number of flips needed to obtain a
head. Putting the preceding together yields

E[X] = (1 + E[X])p + (2 + E[X])p(1 − p)

+ (2 + 1/p)(1 − p)2

or

E[X] = 1
p(1 − p)2
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28. Let Yi equal 1 if selection i is red, and let it equal 0
otherwise. Then

E[Xk] =
k

∑
i=1

E[Yi]

E[Y1] = r
r + b

E[X1] = r
r + b

E[Y2] = E[E[Y2|X1]]

= E
[

r + mX1

r + b + m

]

=
r + m r

r + b
r + b + m

= r
r + b + m

+ m
r + b + m

r
r + b

= r
r + b + m

(
1 + m

r + b

)

= r
r + b

E[X2] = 2
r

r + b

To prove by induction that E[Yk] = r
r + b

, assume

that for all i < k, E[Yi] = r
r + b

.

Then

E[Yk] = E[E[Yk|Xk−1]]

= E
[

r + mXk−1

r + b + (k − 1)m

]

=
r + mE

[
∑i<k Yi

]
r + b + (k − 1)m

= r + m(k − 1) r
r+b

r + b + (k − 1)m

= r
r + b

The intuitive argument follows because each selec-
tion is equally likely to be any of the r + b types.

29. Let qi = 1 − pi, i = 1.2. Also, let h stand for hit and
m for miss.

(a) μ1 = E[N|h]p1 + E[N|m]q1

= p1(E[N|h, h]p2 + E[N|h, m]q2)

+ (1 + μ2)q1

= 2p1p2 + (2 + μ1)p1q2 + (1 + μ2)q1

The preceding equation simplifies to

μ1(1 − p1q2) = 1 + p1 + μ2q1

Similarly, we have that

μ2(1 − p2q1) = 1 + p2 + μ1q2

Solving these equations gives the solution.

h1 = E[H|h]p1 + E[H|m]q1

= p1(E[H|h, h]p2 + E[H|h, m]q2) + h2q1

= 2p1p2 + (1 + h1) p1q2 + h2q1

Similarly, we have that

h2 = 2p1p2 + (1 + h2)p2q1 + h1q2

and we solve these equations to find h1
and h2.

30. E[N] =
m

∑
j=1

E[N|Xo = j]p( j) =
m

∑
j=1

1
p( j)

p( j) = m

31. Let Li denote the length of run i. Conditioning on
X, the initial value gives

E[L1] = E[L1|X = 1]p + E[L1|X = 0](1 − p)

= 1
1 − p

p + 1
p

(1 − p)

= p
1 − p

+ 1 − p
p

and

E[L2] = E[L2|X = 1]p + E[L2|X = 0](1 − p)

= 1
p

p + 1
1 − p

(1 − p)

= 2

32. Let T be the number of trials needed for both at
least n successes and m failures. Condition on N,
the number of successes in the first n + m trials, to
obtain

E[T] =
n+m

∑
i=0

E[T|N = i]
(

n + m
i

)
pi(1 − p)n+m−i

Now use

E[T|N = i] = n + m + n − i
p

, i ≤ n
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E[T|N = i] = n + m + i − n
1 − p

, i > n

Let S be the number of trials needed for n
successes, and let F be the number needed for m
failures. Then T = max(S, F). Taking expectations
of the identity

min(S, F) + max(S, F) = S + F

yields the result

E[min(S, F)] = n
p

+ m
1 − p

− E[T]

33. Let I(A) equal 1 if the event A occurs and let it equal
0 otherwise.

E

[
T

∑
i=1

Ri

]
= E

[∞
∑
i=1

I(T ≥ i)Ri

]

=
∞
∑
i=1

E[I (T ≥ i) Ri]

=
∞
∑
i=1

E[I(T ≥ i)]E[Ri]

=
∞
∑
i=1

P{T ≥ i}E[Ri]

=
∞
∑
i=1

βi−1E[Ri]

= E

[∞
∑
i=1

βi−1Ri

]

34. Let X denote the number of dice that land on six
on the first roll.

(a) mn =
n

∑
i=0

E[N|X = i]
(n

i

)
(1/6)i(5/6)n−i

=
n

∑
i=0

(1 + mn−i)
(n

i

)
(1/6)i(5/6)n−i

= 1 + mn(5/6)n +
n−1

∑
i=1

mn−i

(n
i

)
(1/6)i

(5/6)n−i

implying that

mn = 1 + ∑n−1
i=1 mn−i

(n
i

)
(1/6)i(5/6)n−i

1 − (5/6)n

Starting with m0 = 0 we see that

m1 = 1
1 − 5/6

= 6

m2 = 1 + m1(2)(1/6)(5/6)
1 − (5/6)2 = 96/11

and so on.

(b) Since each die rolled will land on six with
probability 1/6, the total number of dice rolled
will equal the number of times one must roll
a die until six appears n times. Therefore,

E

[
N

∑
i=1

Xi

]
= 6n

35. np1 = E[X1]

= E[X1|X2 = 0](1 − p2)n

+ E[X1|X2 > 0][1 − (1 − p2)n]

= n
p1

1 − p2
(1 − p2)n

+ E[X1|X2 > 0][1 − (1 − p2)n]

yielding the result

E[X1|X2 > 0] = np1(1 − (1 − p2)n−1)
1 − (1 − p2)n

36. E[X] = E[X|X �= 0](1 − p0) + E[X|X = 0]p0

yielding

E[X|X �= 0] = E[X]
1 − p0

Similarly,

E[X2] = E[X2|X �= 0](1 − p0) + E[X2|X = 0]p0

yielding

E[X2|X �= 0] = E[X2]
1 − p0

Hence,

Var (X|X �= 0) = E[X2]
1 − p0

− E2[X]
(1 − p0)2

= μ2 + σ2

1 − p0
− μ2

(1 − p0)2

37. (a) E[X] = (2.6 + 3 + 3.4)/3 = 3

(b) E[X2] = [2.6 + 2.62 + 3 + 9 + 3.4 + 3.42]/3
= 12.1067, and Var(X) = 3.1067

38. Let X be the number of successes in the n trials.
Now, given that U = u, X is binomial with para-
meters (n, u). As a result,

E[X|U] = nU

E[X2|U] = n2U2 + nU(1 − U) = nU + (n2 − n)U2



26 Answers and Solutions

Hence,

E[X] = nE[U]

= E[X2] = E[nU + (n2 − n)U2]

= n/2 + (n2 − n)[(1/2)2 + 1/12]

= n/6 + n2/3
Hence,

Var(X) = n/6 + n2/12

39. Let N denote the number of cycles, and let X be the
position of card 1.

(a) mn = 1
n

n

∑
i=1

E[N|X = i] = 1
n

n

∑
i=1

(1 + mn−1)

= 1 + 1
n

n−1

∑
j=1

mj

(b) m1 = 1

m2 = 1 + 1
2

= 3/2

m3 = 1 + 1
3

(1 + 3/2) = 1 + 1/2 + 1/3

= 11/6

m4 = 1 + 1
4

(1 + 3/2 + 11/6) = 25/12

(c) mn = 1 + 1/2 + 1/3 + · · · + 1/n

(d) Using recursion and the induction hypothesis
gives

mn = 1 + 1
n

n−1

∑
j=1

(1 + · · · + 1/j)

= 1 + 1
n

(n − 1 + (n − 2)/2 + (n − 3)/3

+ · · · + 1/(n − 1))

= 1 + 1
n

[n + n/2 + · · · + n/(n − 1)

− (n − 1)]

= 1 + 1/2 + · · · + 1/n

(e) N =
n

∑
i=1

Xi

(f) mn =
n

∑
i=1

E[Xi] =
n

∑
i=1

P{i is last of 1,…, i}

=
n

∑
i=1

1/i

(g) Yes, knowing for instance that i + 1 is the last
of all the cards 1, …, i + 1 to be seen tells us
nothing about whether i is the last of 1, …, i.

(h) Var(N) =
n

∑
i=1

Var(Xi) =
n

∑
i=1

(1/i)(1 − 1/i)

40. Let X denote the number of the door chosen, and
let N be the total number of days spent in jail.

(a) Conditioning on X, we get

E[N] =
3

∑
i=1

E{N|X = i}P{X = 1}
The process restarts each time the prisoner
returns to his cell. Therefore,
E(N|X = 1) = 2 + E(N)

E(N|X = 2) = 3 + E(N)

E(N|X = 3) = 0

and
E(N) = (.5)(2 + E(N)) + (.3)(3 + E(N))

+ (.2)(0)
or

E(N) = 9.5 days
(b) Let Ni denote the number of additional days

the prisoner spends after having initially cho-
sen cell i.

E[N] = 1
3

(2 + E[N1]) + 1
3

(3 + E[N2]) + 1
3

(0)

= 5
3

+ 1
3

(E[N1] + E[N2])

Now,

E[N1] = 1
2

(3) + 1
2

(0) = 3
2

E[N2] = 1
2

(2) + 1
2

(0) = 1

and so,

E[N] = 5
3

+ 1
3

5
2

= 5
2

41. Let N denote the number of minutes in the maze.
If L is the event the rat chooses its left, and R the
event it chooses its right, we have by conditioning
on the first direction chosen:

E(N) = 1
2

E(N|L) + 1
2

E(N|R)

= 1
2

[
1
3

(2) + 2
3

(5 + E(N))
]

+ 1
2

[3 + E(N)]

= 5
6

E(N) + 21
6

= 21

.
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43. E[T|χ2
n] = 1√

χ2
n/n

E[Z|χ2
n] = 1√

χ2
n/n

E[Z] = 0

E[T2|χ2
n] = n

χ2
n

E[Z2|χ2
n] = n

χ2
n

E[Z2] = n
χ2

n

Hence, E[T] = 0, and

Var(T) = E[T2] = E
[

n
χ2

n

]

= n
∫ ∞

0

1
x

1
2 e−x/2(x/2)

n
2 −1

Γ (n/2)
dx

= n
2Γ (n/2)

∫ ∞

0

1
2

e−x/2(x/2)
n−2

2 −1 dx

= nΓ (n/2 − 1)
2Γ (n/2)

= n
2(n/2 − 1)

= n
n − 2

44. From Examples 4d and 4e, mean = 500, variance =
E[N]Var(X) + E2(X)Var(N)

= 10(100)2

12
+ (50)2(10)

= 33, 333

45. Now

E[Xn|Xn−1] = 0, Var(Xn|Xn−1) = βX2
n−1

(a) From the above we see that

E[Xn] = 0

(b) From (a) we have that Var(xn) = E[X2
n]. Now

E[X2
n] = E{E[X2

n|Xn−1]}
= E[βX2

n−1]

= βE[X2
n−1]

= β2E[X2
n−2]

·
= βnX2

0

46. (a) This follows from the identity Cov(U, V) =
E[UV] − E[U]E[V] upon noting that

E[XY] = E[E[XY|X]] = E[XE[Y|X]],

E[Y] = E[E[Y|X]]

(b) From part (a) we obtain
Cov(X, Y) = Cov(a + bX, X)

= b Var(X)

47. E[X2Y2|X] = X2E[Y2|X]

≥ X2(E[Y|X])2 = X2

The inequality following since for any random
variable U, E[U2] ≥ (E[U])2 and this remains true
when conditioning on some other random variable
X. Taking expectations of the above shows that

E[(XY)2] ≥ E[X2]

As

E[XY] = E[E[XY|X]] = E[XE[Y|X]] = E[X]

the result follows.

48. Var(Yi) = E[Var(Yi|X)] + Var(E[Yi|X])

= E[Var(Yi|X)] + Var(X)

= E[E[(Yi − E[Yi|X])2|X]] + Var(X)

= E[E[(Yi − X)2|X]] + Var(X)

= E[(Yi − X)2] + Var(X)

49. Let A be the event that A is the overall winner, and
let X be the number of games played. Let Y equal
the number of wins for A in the first two games.

P(A) = P(A|Y = 0)P(Y = 0)

+ P(A|Y = 1)P(Y = 1)

+ P(A|Y = 2)P(Y = 2)

= 0 + P(A)2p(1 − p) + p2

Thus,

P(A) = p2

1 − 2p(1 − p)

E[X] = E[X|Y = 0]P(Y = 0)

+ E[X|Y = 1]P(Y = 1)

+ E[X|Y = 2]P(Y = 2)

= 2(1 − p)2 + (2 + E[X])2p(1 − p) + 2p2

= 2 + E[X]2p(1 − p)

Thus,

E[X] = 2
1 − 2p(1 − p)

50. P{N = n} = 1
3

[ [
10
n

]
(.3)n(.7)10−n

+
[

10
n

]
(.5)n(.5)10−n

+
[

10
n

]
(.7)n(.3)10−n

]
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N is not binomial.

E[N] = 3
[

1
3

]
+ 5

[
1
3

]
+ 7

[
1
3

]
= 5

51. Let α be the probability that X is even. Condition-
ing on the first trial gives

α = P(even|X = 1)p + P(even|X > 1)(1 − p)
= (1 − α)(1 − p)

Thus,

α = 1 − p
2 − p

More computationally

α =
∞
∑
n=1

P(X = 2n) = p
1 − p

∞
∑
n=1

(1 − p)2n

= p
1 − p

(1 − p)2

1 − (1 − p)2 = 1 − p
2 − p

52. P{X + Y < x} =
∫

P{X + Y < x|X = s} fX(s)ds

=
∫

P{X + Y < x|X = s} fX(s)ds

=
∫

P{Y < x − s|X = s} fX(s)ds

=
∫

P{Y < x − s} fX(s)ds

=
∫

FY{x − s} fX(s)ds

53. P{X = n} =
∫ ∞

0
P{X = n|λ}e−λdλ

=
∫ ∞

0

e−λλn

n!
e−λdλ

=
∫ ∞

0
e−2λλn dλ

n!

=
∫ ∞

0
e−ttn dt

n!

[
1
2

]n+1

The result follows since

∫ ∞

0
e−ttndt = Γ (n + 1) = n!

54. P{N = k} =
10

∑
n=1

[
10 − n

10

]k−1 n
10

1
10

N is not geometric. It would be if the coin was
reselected after each flip.

56. Let Y = 1 if it rains tomorrow, and let Y = 0
otherwise.

E[X] = E[X|Y = 1]P{Y = 1}
+ E[X|Y = 0]P{Y = 0}

= 9(.6) + 3(.4) = 6.6

P{X = 0} = P{X = 0|Y = 1}P{Y = 1}
+ P{X = 0|Y = 0}P{Y = 0}

= .6e−9 + .4e−3

E[X2] = E[X2|Y = 1]P{Y = 1}
+ E[X2|Y = 0]P{Y = 0}

= (81 + 9)(.6) + (9 + 3)(.4) = 58.8

Therefore,

Var(X) = 58.8 − (6.6)2 = 15.24

57. Let X be the number of storms.

P{X ≥ 3} = 1 − P{X ≤ 2}

= 1 −
∫ 5

0
P{X ≤ 2|Λ = x}1

5
dx

= 1 −
∫ 5

0
[e−x + xe−x + e−xx2/2]

1
5

dx

58. Conditioning on whether the total number of flips,
excluding the jth one, is odd or even shows that the
desired probability is 1/2.

59. (a) P(AiAj) =
n

∑
k=0

P(AiAj|Ni = k)
(

n
k

)
pk

i (1 − pi)n−k

=
n

∑
k=1

P(Aj|Ni = k)
(

n
k

)
pk

i (1 − pi)n−k

=
n−1

∑
k=1

[
1 −

(
1 − pj

1 − pi

)n−k
](

n
k

)

× pk
i (1 − pi)n−k

=
n−1

∑
k=1

(
n
k

)
pk

i (1 − pi)n−k −
n−1

∑
k=1

×
(

1 − pj

1 − pi

)n−k (n
k

)

× pk
i (1 − pi)n−k
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= 1 − (1 − pi)n − pn
i −

n−1

∑
k=1

(
n
k

)

× pk
i (1 − pi − pj)n−k

= 1 − (1 − pi)n − pn
i − [(1 − pj)n

−(1 − pi − pj)n − pn
i ]

= 1 + (1 − pi − pj)n − (1 − pi)n

−(1 − pj)n

where the preceding used that conditional on
Ni = k, each of the other n − k trials indepen-
dently results in outcome j with probability

pj

1 − pi
.

(b) P(AiAj) =
n

∑
k=1

P(AiAj|Fi = k) pi(1 − pi)k−1

+ P(AiAj|Fi > n) (1 − pi)n

=
n

∑
k=1

P(Aj|Fi = k) pi(1 − pi)k−1

=
n

∑
k=1

[
1 −

(
1 − pj

1 − pi

)k−1
(1 − pj)n−k

]

× pi(1 − pi)k−1

(c) P(AiAj) = P(Ai) + P(Aj) − P(Ai ∪ Aj)

= 1 − (1 − pi)n + 1 − (1 − pj)n

−[1 − (1 − pi − pj)n]

= 1 + (1 − pi − pj)n − (1 − pi)n

−(1 − pj)n

60. (a) Intuitive that f (p) is increasing in p, since the
larger p is the greater is the advantage of going
first.

(b) 1

(c) 1/2 since the advantage of going first becomes
nil.

(d) Condition on the outcome of the first flip:

f (p) = P{I wins|h}p + P{I wins|t}(1 − p)

= p + [1 − f (p)](1 − p)

Therefore,

f (p) = 1
2 − p

61. (a) m1 = E[X|h]p1 + E[H|m]q1 = p1 + (1 + m2)

q1 = 1 + m2q1.

Similarly, m2 = 1 + m1q2. Solving these equa-
tions gives

m1 = 1 + q1

1 − q1q2
, m2 = 1 + q2

1 − q1q2

(b) P1 = p1 + q1P2

P2 = q2P1

implying that

P1 = p1

1 − q1q2
, P2 = p1q2

1 − q1q2

(c) Let fi denote the probability that the final hit
was by 1 when i shoots first. Conditioning on
the outcome of the first shot gives

f1 = p1P2 + q1 f2 and f2 = p2P1 + q2 f1

Solving these equations gives

f1 = p1P2 + q1p2P1

1 − q1q2

(d) and (e) Let Bi denote the event that both hits
were by i. Condition on the outcome of the first
two shots to obtain

P(B1) = p1q2P1 + q1q2P(B1) → P(B1)

= p1q2P1
1 − q1q2

Also,

P(B2) = q1p2(1 − P1) + q1q2P(B2) → P(B2)

= q1p2(1 − P1)
1 − q1q2

(f) E[N] = 2p1p2 + p1q2(2 + m1)

+ q1p2(2 + m1) + q1q2(2 + E[N])

implying that

E[N] = 2 + m1p1q2 + m1q1p2

1 − q1q2

62. Let W and L stand for the events that player A wins
a game and loses a game, respectively. Let P(A)
be the probability that A wins, and let P(C) be the
probability that C wins, and note that this is equal
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to the conditional probability that a player about
to compete against the person who won the last
round is the overall winner.

P(A) = (1/2)P(A|W) + (1/2)P(A|L)

= (1/2)[1/2 + (1/2)P(A|WL)]

+ (1/2)(1/2)P(C)

= 1/4 + (1/4)(1/2)P(C)

+ (1/4)P(C) = 1/4 + (3/8)P(C)

Also,

P(C) = (1/2)P(A|W) = 1/4 + (1/8)P(C)

and so

P(C) = 2/7, P(A) = 5/14,
P(B) = P(A) = 5/14

63. Let Si be the event there is only one type i in the
final set.

P{Si = 1} =
n−1

∑
j=0

P{Si = 1|T = j}P{T = j}

= 1
n

n−1

∑
j=0

P{Si = 1|T = j}

= 1
n

n−1

∑
j=0

1
n − j

The final equality follows because given that there
are still n − j − 1 uncollected types when the first
type i is obtained, the probability starting at that
point that it will be the last of the set of n − j types
consisting of type i along with the n − j − 1 yet
uncollected types to be obtained is, by symmetry,
1/(n − j). Hence,

E

[
n

∑
i=1

Si

]
= nE[Si] =

n

∑
k=1

1
k

64. (a) P(A) = 5/36 + (31/36)(5/6)P(A)

→ P(A) = 30/61

(b) E[X] = 5/36 + (31/36)[1 + 1/6 + (5/6)

(1 + E[X])] → E[X] = 402/61

(c) Let Y equal 1 if A wins on her first attempt, let
it equal 2 if B wins on his first attempt, and let
it equal 3 otherwise. Then

Var(X|Y = 1) = 0, Var(X|Y = 2) = 0,
Var(X|Y = 3) = Var(X)

Hence,

E[Var(X|Y)] = (155/216)Var(X)

Also,

E[X|Y = 1] = 1, E[X|Y = 2] = 2,
E[X|Y = 3] = 2 + E[X] = 524/61

and so

Var(E[X|Y]) = 12(5/36) + 22(31/216)

+ (524/61)2(155/216)

− (402/61)2 ≈ 10.2345

Hence, from the conditional variance formula we
see that

Var(X) ≈ z(155/216)Var(X) + 10.2345
→ Var(X) ≈ 36.24

65. (a) P{Yn = j} = 1/(n + 1), j = 0, …, n

(b) For j = 0, …, n − 1

P{Yn−1 = j} =
n

∑
i=0

1
n + 1

P{Yn−1 = j|Yn = i}

= 1
n + 1

(P{Yn−1 = j|Yn = j}

+ P{Yn−1 = j|Yn = j + 1})

= 1
n + 1

(P(last is nonred| j red)

+ P(last is red| j + 1 red)

= 1
n + 1

(
n − j

n
+ j + 1

n

)
= 1/n

(c) P{Yk = j} = 1/(k + 1), j = 0, …, k

(d) For j = 0, …, k − 1

P{Yk−1 = j} =
k

∑
i=0

P{Yk−1 = j|Yk = i}

P{Yk = i}

= 1
k + 1

(P{Yk−1 = j|Yk = j}

+ P{Yk−1 = j|Yk = j + 1})

= 1
k + 1

(
k − j

k
+ j + 1

k

)
= 1/k

where the second equality follows from the
induction hypothesis.

66. (a) E[G1 + G2] = E[G1] + E[G2]
= (.6)2 + (.4)3 + (.3)2 + (.7)3 = 5.1
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(b) Conditioning on the types and using that the
sum of independent Poissons is Poisson gives
the solution

P{5} = (.18)e−445/5! + (.54)e−555/5!

+ (.28)e−665/5!

67. A run of j successive heads can occur in the fol-
lowing mutually exclusive ways: (i) either there is
a run of j in the first n − 1 flips, or (ii) there is no
j-run in the first n − j − 1 flips, flip n − j is a tail,
and the next j flips are all heads. Consequently, (a)
follows. Condition on the time of the first tail:

Pj(n) =
j

∑
k=1

Pj(n − k)pk−1(.1 − p) + p j, j ≤ n

68. (a) pn

(b) After the pairings have been made there are
2k−1 players that I could meet in round k.
Hence, the probability that players 1 and 2 are
scheduled to meet in round k is 2k−1/(2n − 1).
Therefore, conditioning on the event R that
player I reaches round k gives

P{W2} = P{W2| R}pk−1

+ P{W2| Rc}(1 − pk−1)

= pn−1(1 − p)pk−1 + pn(1 − pk−1)

69. (a) Let I(i, j) equal 1 if i and j are a pair and 0 oth-
erwise. Then

E

[
∑
i<j

I(i, j)

]
=
⎛
⎝n

2

⎞
⎠1

n
1

n − 1
= 1/2

Let X be the size of the cycle containing person
1. Then

Qn =
n

∑
i=1

P{no pairs|X = i}1/n = 1
n ∑

i �=2
Qn−i

70. (a) Condition on X, the size of the cycle containing
person 1, to obtain

Mn =
n

∑
i=1

1
n

(1 + Mn−i) = 1 + 1
n

n−1

∑
j=1

Mj

(b) Any cycle containing, say, r people is counted
only once in the sum since each of the r people
contributes 1/r to the sum. The identity gives

E[C] = nE[1/C1] = n
n

∑
i=1

(1/i)(1/n) =
n

∑
i=1

1/i

(c) Let p be the desired probability.
Condition on X

p = 1
n

n

∑
i=k

(
n − k

i − k

)

(
n − 1
i − 1

)

(d)
(n − k)!

n!

72. For n ≥ 2

P{N > n|U1 = y}
= P{y ≥ U2 ≥ U3 ≥ · · · ≥ Un}
= P{Ui ≤ y, i = 2, …, n}

P{U2 ≥ U3 ≥ · · · geqUn|
Ui ≤ y, i = 2, …, n}

= yn−1/(n − 1)!

E[N|U1 = y] =
∞
∑
n=0

P{N > n|U1 = y}

= 2 +
∞
∑
n=2

yn−1/(n − 1)! = 1 + ey

Also,

P{M > n|U1 = 1 − y} = P{M(y) > n − 1}
= yn−1/(n − 1)!

73. Condition on the value of the sum prior to going
over 100. In all cases the most likely value is 101.
(For instance, if this sum is 98 then the final sum
is equally likely to be either 101, 102, 103, or 104. If
the sum prior to going over is 95 then the final sum
is 101 with certainty.)

74. Condition on whether or not component 3 works.
Now

P{system works|3 works}
= P{either 1 or 2 works}P{either 4 or 5 works}
= (p1 + p2 − p1p2)(p4 + p5 − p4p5)

Also,

P{system works|3 is failed}
= P{1 and 4 both work, or 2 and 5 both work}
= p1p4 − p2p5 − p1p4p2p5

Therefore, we see that
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P{system works}
= p3(p1 + p2 − p1p2)(p4 + p5 − p4p5)

+ (1 − p3)(p1p4 + p2p5 − p1p4p2p5)

75. (a) Since A receives more votes than B (since a > a)
it follows that if A is not always leading then
they will be tied at some point.

(b) Consider any outcome in which A receives
the first vote and they are eventually tied,
say a, a, b, a, b, a, b, b…. We can correspond this
sequence to one that takes the part of the
sequence until they are tied in the reverse
order. That is, we correspond the above to the
sequence b, b, a, b, a, b, a, a… where the remain-
der of the sequence is exactly as in the original.
Note that this latter sequence is one in which
B is initially ahead and then they are tied. As
it is easy to see that this correspondence is one
to one, part (b) follows.

(c) Now,
P{B receives first vote and they are
eventually tied}
= P{B receives first vote}= n/(n + m)
Therefore, by part (b) we see that
P{eventually tied}= 2n/(n + m)
and the result follows from part (a).

76. By the formula given in the text after the ballot
problem we have that the desired probability is

1
3

(
15
5

)
(18/38)10(20/38)5

77. We will prove it when X and Y are discrete.

(a) This part follows from (b) by taking
g(x, y) = xy.

(b) E[g(X, Y)|Y = y] = ∑
y

∑
x

g(x, y)

P{X = x, Y = y|Y = y}
Now,

P{X = x, Y = y|Y = y}

=
⎧⎨
⎩

0, if y �= y

P{X = x, Y = y}, if y = y

So,

E
[
g(X, Y)|Y = y

]= ∑
k

g(x, y)P{X = x|Y = y}

= E[g(x, y)|Y = y

(c) E[XY] = E[E[XY|Y]]

= E[YE[X|Y]] by (a)

78. Let Qn, m denote the probability that A is never
behind, and Pn, m the probability that A is always
ahead. Computing Pn, m by conditioning on the first
vote received yields

Pn, m = n
n + m

Qn−1, m

But as Pn, m = n − m
n + m

, we have

Qn−1, m = n + m
n

n − m
n + m

= n − m
n

and so the desired probability is

Qn, m = n + 1 − m
n + 1

This also can be solved by conditioning on who
obtains the last vote. This results in the recursion

Qn, m = n
n + m

Qn−1, m + m
n + m

Qn, m − 1

which can be solved to yield

Qn, m = n + 1 − m
n + 1

79. Let us suppose we take a picture of the urn before
each removal of a ball. If at the end of the exper-
iment we look at these pictures in reverse order
(i.e., look at the last taken picture first), we will
see a set of balls increasing at each picture. The
set of balls seen in this fashion always will have
more white balls than black balls if and only if in
the original experiment there were always more
white than black balls left in the urn. Therefore,
these two events must have same probability, i.e.,
n − m/n + m by the ballot problem.

80. Condition on the total number of heads and then
use the result of the ballot problem. Let p denote the
desired probability, and let j be the smallest integer
that is at least n/2.

p =
n

∑
i=j

⎛
⎝n

i

⎞
⎠ pi(1 − p)n−i 2i − n

n

81. (a) f (x) = E[N] =
∫ 1

0
E[N|X1 = y]dy

E[N|X1 = y] =
{

1 if y < x

1 + f (y) if y > x

Hence,

f (x) = 1 +
∫ 1

x
f (y)dy
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(b) f ′(x) = −f (x)
(c) f (x) = ce−x. Since f (1) = 1, we obtain that c =

e, and so f (x) = e1−x.
(d) P{N > n} = P{x < X1 < X2 < · · · < Xn} =

(1 − x)n/n! since in order for the above event to
occur all of the n random variables must exceed
x (and the probability of this is (1 − x)n), and
then among all of the n! equally likely order-
ings of this variables the one in which they are
increasing must occur.

(e) E[N] =
∞
∑
n=0

P{N > n}

= ∑
n

(1 − x)n/n! = e1−x

82. (a) Let Ai denote the event that Xi is the kth largest
of X1, …, Xi. It is easy to see that these are
independent events and P(Ai) = 1/i.

P{Nk = n} = P(Ac
kAc

k+1 · · · Ac
n−1An)

= k − 1
k

k
k + 1

· · · n − 2
n − 1

1
n

= k − 1
n(n − 1)

(b) Since knowledge of the set of values
{X1, …, Xn} gives us no information about the
order of these random variables it follows that
given Nk = n, the conditional distribution
of XNk is the same as the distribution of the
kth largest of n random variables having
distribution F. Hence,

fXNk
(x) =

∞
∑
n=k

k − 1
n(n − 1)

n!
(n − k)!(k − 1)!

× (F(x))n−k(F(x))k−1f (x)

Now make the change of variable i = n − k. (c)
Follow the hint. (d) It follows from (b) and (c) that
fXNk

(x) = f (x).

83. Let Ij equal 1 if ball j is drawn before ball i and
let it equal 0 otherwise. Then the random variable
of interest is ∑

j �= i
Ij. Now, by considering the first

time that either i or j is withdrawn we see that
P{ j before i} = wj/(wi + wj). Hence,

E

[
∑
j �=i

Ij

]
= ∑

j �=i

wj

wi + wj

84. We have
E[Position of element requested at time t]

=
n

∑
i=i

E[Position at time t | ei selected]Pi

=
n

∑
i=1

E[Position of ei at time t]Pi

with Ij =
{

1, if ej precedes ei at time t

0, otherwise

We have

Position of ei at time t = 1 + ∑
j �=i

Ij

and so,

E[Position of ei at time t]

= 1 + ∑
j �=i

E(Ij)

= 1 + ∑
j �=i

P{ej precedes ei at time t}

Given that a request has been made for either
ei or ej, the probability that the most recent one was
for ej is Pj/(Pi + Pj). Therefore,

P{ej precedes ei at time t|ei or ej was requested}

= Pj

Pi + Pj

On the other hand,

P{ej precedes ei at time t | neither was ever
requested}

= 1
2

As

P{Neither ei or ej was ever requested by time t}
= (1 − Pi − Pj)t−1

we have

E[Position of ei at time t]

= 1 + ∑
j �=i

[
1
2(1 − Pi − Pj)t−1

+ Pj
Pj + Pi

(1 − (1 − Pi − Pj)t−1)
]

and

E[Position of element requested at t]

= ∑ PjE[Position of ei at time t]
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85. Consider the following ordering:

e1, e2, …, el−1, i, j, el+1, …, en where Pi < Pj

We will show that we can do better by inter-
changing the order of i and j, i.e., by taking
e1, e2, …, el−1, j, i, el+2, …, en. For the first ordering,
the expected position of the element requested is

Ei,j = Pe1 + 2Pe2 + · · · + (l − 1)Pel−1

+ lpi + (l + 1)Pj + (l + 2)Pel+2 + · · ·

Therefore,

Ei,j − Ej,i = l(Pi − Pj) + (l + 1)(Pj − Pi)

= Pj − Pi > 0

and so the second ordering is better. This shows
that every ordering for which the probabilities are
not in decreasing order is not optimal in the sense
that we can do better. Since there are only a finite
number of possible orderings, the ordering for
which p1 ≥ p2 ≥ p3 ≥ · · · ≥ pn is optimum.

87. (a) This can be proved by induction on m. It is
obvious when m = 1 and then by fixing the
value of x1 and using the induction hypothe-

sis, we see that there are
n

∑
i=0

[
n − i + m − 2

m − 2

]

such solutions. As
[

n − i + m − 2
m − 2

]
equals the

number of ways of choosing m − 1 items from
a set of size n + m − 1 under the constraint
that the lowest numbered item selected is
number i + 1 (that is, none of 1, …, i are
selected where i + 1 is), we see that

n

∑
i=0

[
n − i + m − 2

m − 2

]
=
[

n + m − 1
m − 1

]

It also can be proven by noting that each solu-
tion corresponds in a one-to-one fashion with
a permutation of n ones and (m − 1) zeros.
The correspondence being that x1 equals the
number of ones to the left of the first zero, x2
the number of ones between the first and sec-
ond zeros, and so on. As there are (n + m −
1)!/n!(m − 1)! such permutations, the result
follows.

(b) The number of positive solutions of x1 + · · · +
xm = n is equal to the number of nonnegative
solutions of y1 + · · · + ym = n − m, and thus

there are
[

n − 1
m − 1

]
such solutions.

(c) If we fix a set of k of the xi and require them
to be the only zeros, then there are by (b)

(with m replaced by m − k)

⎡
⎣ n − 1

m − k − 1

⎤
⎦ such

solutions. Hence, there are

⎡
⎣m

k

⎤
⎦
⎡
⎣ n − 1

m − k − 1

⎤
⎦

outcomes such that exactly k of the Xi are
equal to zero, and so the desired probability

is

⎡
⎣m

k

⎤
⎦
⎡
⎣ n − 1

m − k − 1

⎤
⎦
/⎡

⎣n + m − 1

m − 1

⎤
⎦.

88. (a) Since the random variables U, X1, …, Xn are all
independent and identically distributed it fol-
lows that U is equally likely to be the ith small-
est for each i + 1, …, n + 1. Therefore,

P{X = i} = P{U is the (i + 1)st smallest}
= 1/(n + 1)

(b) Given U, each Xi is less than U with probabil-
ity U, and so X is binomial with parameters
n, U. That is, given that U < p, X is bino-
mial with parameters n, p. Since U is uni-
form on (0, 1) this is exactly the scenario in
Section 6.3.

89. Condition on the value of In. This gives

Pn(K) = P

{
n

∑
j=1

jIj ≤ K|In = 1

}
1/2

+ P

{
n

∑
j=1

jIj ≤ K|In = 0

}
1/2

= P

{
n−1

∑
j=1

jIj + n ≤ K

}
1/2

+ P

{
n−1

∑
j=1

jIj ≤ K

}
1/2

= [Pn−1(k − n) + Pn−1(K)]/2

90. (a)
1

e−552/2! · 5e−5 · e−5

(b)
1

e−552/2! · 5e−5 · e−5 · e−552/2!
+ 1

e−552/2!

91.
1

p5(1 − p)3 + 1
p2(1 − p)

+ 1
p
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92. Let X denote the amount of money Josh picks up
when he spots a coin. Then

E[X] = (5 + 10 + 25)/4 = 10,

E[X2] = (25 + 100 + 625)/4 = 750/4

Therefore, the amount he picks up on his way to
work is a compound Poisson random variable with
mean 10 · 6 = 60 and variance 6 · 750/4 = 1125.
Because the number of pickup coins that Josh spots
is Poisson with mean 6(3/4) = 4.5, we can also view
the amount picked up as a compound Poisson ran-

dom variable S =
N

∑
i=1

Xi where N is Poisson with

mean 4.5, and (with 5 cents as the unit of mea-
surement) the Xi are equally likely to be 1, 2, 3.
Either use the recursion developed in the text or
condition on the number of pickups to determine
P(S = 5). Using the latter approach, with P(N =
i) = e−4.5(4.5)i/i!, gives

P(S = 5) = (1/3)P(N = 1) + 3(1/3)3P(N = 3)

+ 4(1/3)4P(N = 4) + 5(1/3)5P(N = 5)

94. Using that E[N] = rw/(w + b) yields

P{M − 1 = n}

= (n + 1)P{N = n + 1}
E[N]

=
(n + 1)

(
w

n + 1

)(
b

r − n − 1

)
(w + b)

rw
(

w + b
r

)

Using that

(n + 1)
(

w
n + 1

)

w
=
(

w − 1
n

)
w + b

r
(

w + b
r

)

= 1(
w + b − 1

r − 1

)

shows that

P{M − 1 = n} =

(
w − 1

n

)(
b

r − n − 1

)
(

w + b − 1
r − 1

)

Pw, r(k) = rw
k(w + b)

k

∑
i=1

iαiPw−1, r−1(k − i)

When k = 1

Pw, r(1) = rw
w + b

α1

(
b

r − 1

)
(

w + b − 1
r − 1

)

95. With α = P(Sn < 0 for all n > 0), we have

−E[X] = α = p−1β

96. With Pj = e−λλj/j!, we have that N, the number
of children in the family of a randomly chosen
family is

P(N = j) = jPj

λ
= e−λλj−1/( j − 1)! , j > 0

Hence,

P(N − 1 = k) = e−λλk/k! , k ≥ 0



Chapter 4

1. P01 = 1, P10 = 1
9

, P21 = 4
9

, P32 = 1

P11 = 4
9

, P22 = 4
9

P12 = 4
9

, P23 = 1
9

2, 3.

(RRR) (RRD) (RDR) (RDD) (DRR) (DRD) (DDR) (DDD)
(RRR) .8 .2 0 0 0 0 0 0
(RRD) .4 .6
(RDR) .6 .4
(RDD) .4 .6

P = (DRR) .6 .4
(DRD) .4 .6
(DDR) .6 .4
(DDD) .2 .8

where D = dry and R = rain. For instance, (DDR)
means that it is raining today, was dry yesterday,
and was dry the day before yesterday.

4. Let the state space be S = {0, 1, 2, 0, 1, 2}, where
state i(ī ) signifies that the present value is i, and
the present day is even (odd).

5. Cubing the transition probability matrix, we obtain
P3:⎡
⎢⎣

13/36 11/54 47/108
4/9 4/27 11/27
5/12 2/9 13/36

⎤
⎥⎦

Thus,

E[X3] = P(X3 = 1) + 2P(X3 = 2)

= 1
4

P3
01 + 1

4
P3

11 + 1
2

P3
21

+ 2
[

1
4

P3
02 + 1

4
P3

12 + 1
2

P3
22

]

6. It is immediate for n = 1, so assume for n. Now use
induction.

7. P2
30 + P2

31 = P31P10 + P33P11 + P33P31

= (.2)(.5) + (.8)(0) + (.2)(0) + (.8)(.2)

= .26

8. Let the state on any day be the number of the coin
that is flipped on that day.

P =
[

.7 .3

.6 .4

]

and so,

P2 =
[

.67 .33

.66 .34

]

and

P3 =
[

.667 .333

.666 .334

]

Hence,
1
2

[
P3

11 + P3
21

]
≡ .6665

If we let the state be 0 when the most recent flip
lands heads and let it equal 1 when it lands tails,
then the sequence of states is a Markov chain with
transition probability matrix[

.7 .3

.6 .4

]

The desired probability is P4
0, 0 = .6667

9. It is not a Markov chain because information about
previous color selections would affect probabili-
ties about the current makeup of the urn, which
would affect the probability that the next selection
is red.

10. The answer is 1 − P3
0, 2 for the Markov chain with

transition probability matrix⎡
⎣.5 .4 .1

.3 .4 .3
0 0 1

⎤
⎦

11. The answer is
P4

2, 2

1 − P4
2, 0

for the Markov chain with

transition probability matrix⎡
⎣1 0 0

.3 .4 .3

.2 .3 .5

⎤
⎦

36
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12. The result is not true. For instance, suppose that
P0, 1 = P0, 2 = 1/2, P1, 0 = 1, P2, 3 = 1. Given X0 = 0
and that state 3 has not been entered by time 2, the
equality implies that X1 is equally likely to be 1 or
2, which is not true because, given the information,
X1 is equal to 1 with certainty.

13. Pn
ij = ∑

k
Pn−r

ik Pr
kj > 0

14. (i) {0, 1, 2} recurrent.
(ii) {0, 1, 2, 3} recurrent.
(iii) {0, 2} recurrent, {1} transient, {3, 4} recurrent.
(iv) {0, 1} recurrent, {2} recurrent, {3} transient,

{4} transient.

15. Consider any path of states i0 = i, i1, i2, …, in = j
such that Pikik+1 > 0. Call this a path from i to j.
If j can be reached from i, then there must be a
path from i to j. Let i0, …, in be such a path. If all
of the values i0, …, in are not distinct, then there
is a subpath from i to j having fewer elements (for
instance, if i, 1, 2, 4, 1, 3, j is a path, then so is i, 1, 3, j).
Hence, if a path exists, there must be one with all
distinct states.

16. If Pij were (strictly) positive, then Pn
ji would be 0

for all n (otherwise, i and j would communicate).
But then the process, starting in i, has a positive
probability of at least Pij of never returning to i.
This contradicts the recurrence of i. Hence Pij = 0.

17.
n

∑
i=1

Yj/n → E[Y] by the strong law of large num-

bers. Now E[Y] = 2p − 1. Hence, if p > 1/2, then
E[Y] > 0, and so the average of the Yis converges
in this case to a positive number, which implies

that
n

∑
1

Yi → ∞ as n → ∞. Hence, state 0 can be

visited only a finite number of times and so must
be transient. Similarly, if p < 1/2, then E[Y] < 0,

and so lim
n

∑
1

Yi = −∞, and the argument is

similar.

18. If the state at time n is the nth coin to be flipped then
a sequence of consecutive states constitutes a two-
state Markov chain with transition probabilities

P1, 1 = .6 = 1 − P1, 2, P2, 1 = .5 = P2, 2

(a) The stationary probabilities satisfy

π1 = .6π1 + .5π2

π1 + π2 = 1

Solving yields that π1 = 5/9, π2 = 4/9. So the pro-
portion of flips that use coin 1 is 5/9.

(b) P4
1, 2 = .44440

19. The limiting probabilities are obtained from

r0 = .7r0 + .5r1

r1 = .4r2 + .2r3

r2 = .3r0 + .5r1

r0 + r1 + r2 + r3 = 1

and the solution is

r0 = 1
4

, r1 = 3
20

, r2 = 3
20

, r3 = 9
20

The desired result is thus

r0 + r1 = 2
5

20. If
m

∑
i=0

Pij = 1 for all j, then rj = 1/(M + 1)

satisfies

rj =
m

∑
i=0

riPij,
m

∑
0

rj = 1

Hence, by uniqueness these are the limiting prob-
abilities.

21. The transition probabilities are

Pi, j =
{

1 − 3α, if j = i
α, if j �= i

By symmetry,

Pn
ij = 1

3
(1 − Pn

ii), j �= i

So, let us prove by induction that

Pn
i, j =

⎧⎪⎪⎨
⎪⎪⎩

1
4

+ 3
4

(1 − 4α)n, if j = i

1
4

− 1
4

(1 − 4α)n, if j �= i

As the preceding is true for n = 1, assume it for n.
To complete the induction proof, we need to show
that

Pn+1
i, j =

⎧⎪⎪⎨
⎪⎪⎩

1
4

+ 3
4

(1 − 4α)n+1, if j = i

1
4

− 1
4

(1 − 4α)n+1, if j �= i
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Now,

Pn+1
i, i = Pn

i, i Pi, i + ∑
j �=i

Pn
i, j Pj, i

=
(

1
4

+ 3
4

(1 − 4α)n
)

(1 − 3α)

+ 3
(

1
4

− 1
4

(1 − 4α)n
)

α

= 1
4

+ 3
4

(1 − 4α)n(1 − 3α − α)

= 1
4

+ 3
4

(1 − 4α)n+1

By symmetry, for j �= i

Pn+1
ij = 1

3

(
1 − Pn+1

ii

)
= 1

4
− 1

4
(1 − 4α)n+1

and the induction is complete.

By letting n → ∞ in the preceding, or by using that
the transition probability matrix is doubly stochas-
tic, or by just using a symmetry argument, we
obtain that πi = 1/4.

22. Let Xn denote the value of Yn modulo 13. That is,
Xn is the remainder when Yn is divided by 13. Now
Xn is a Markov chain with states 0, 1, …, 12. It is
easy to verify that ∑

i
Pij = 1 for all j. For instance,

for j = 3:

∑
i

Pij = P2, 3 + P1, 3 + P0, 3 + P12, 3 + P11, 3 + P10, 3

= 1
6

+ 1
6

+ 1
6

+ 1
6

+ 1
6

+ 1
6

= 1

Hence, from Problem 20, ri = 1
13

.

23. (a) Letting 0 stand for a good year and 1 for a bad
year, the successive states follow a Markov chain
with transition probability matrix P:(

1/2 1/2
1/3 2/3

)

Squaring this matrix gives P2:(
5/12 7/12
7/18 11/18

)

Hence, if Si is the number of storms in year i then

E[S1] = E[S1|X1 = 0]P00 + E[S1|X1 = 1]P01

= 1/2 + 3/2 = 2
E[S2] = E[S2|X2 = 0]P2

00 + E[S2|X2 = 1]P2
01

= 5/12 + 21/12 = 26/12

Hence, E[S1 + S2] = 25/6.

(b) Multiplying the first row of P by the first column
of P2 gives

P3
00 = 5/24 + 7/36 = 29/72

Hence, conditioning on the state at time 3 yields

P(S3 = 0) = P(S3 = 0|X3 = 0)
29
72

+ P(S3 = 0|X3 = 1)

× 43
72

= 29
72

e−1 + 43
72

e−3

(c) The stationary probabilities are the solution of

π0 = π0
1
2

+ π1
1
3

π0 + π1 = 1

giving
π0 = 2/5 , π1 = 3/5.

Hence, the long-run average number of storms is
2/5 + 3(3/5) = 11/5.

24. Let the state be the color of the last ball selected,
call it 0 if that color was red, 1 if white, and
2 if blue. The transition probability matrix of this
Markov chain is

P =

⎡
⎢⎣

1/5 0 4/5
2/7 3/7 2/7
3/9 4/9 2/9

⎤
⎥⎦

Solve for the stationary probabilities to obtain the
solution.

25. Letting Xn denote the number of pairs of shoes
at the door the runner departs from at the begin-
ning of day n, then {Xn} is a Markov chain with
transition probabilities

Pi, i = 1/4, 0 < i < k

Pi, i−1 = 1/4, 0 < i < k

Pi, k−i = 1/4, 0 < i < k

Pi, k−i+1 = 1/4, 0 < i < k

The first equation refers to the situation where the
runner returns to the same door she left from and
then chooses that door the next day; the second to
the situation where the runner returns to the oppo-
site door from which she left from and then chooses
the original door the next day; and so on. (When
some of the four cases above refer to the same tran-
sition probability, they should be added together.
For instance, if i = 4, k = 8, then the preceding
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states that Pi, i = 1/4 = Pi, k−i. Thus, in this case,
P4, 4 = 1/2.) Also,

P0, 0 = 1/2
P0, k = 1/2
Pk, k = 1/4
Pk, 0 = 1/4
Pk, 1 = 1/4

Pk, k−1 = 1/4

It is now easy to check that this Markov chain is
doubly stochastic—that is, the column sums of the
transition probability matrix are all 1—and so the
long-run proportions are equal. Hence, the propor-
tion of time the runner runs barefooted is 1/(k + 1).

26. Let the state be the ordering, so there are n! states.
The transition probabilities are

P(i1, …, in),(ij , i1, …, ij−1, ij+1, …, in) = 1
n

It is now easy to check that this Markov chain is
doubly stochastic and so, in the limit, all n! possible
states are equally likely.

27. The limiting probabilities are obtained from

r0 = 1
9

r1

r1 = r0 + 4
9

r1 + 4
9

r2

r2 = 4
9

r1 + 4
9

r2 + r3

r0 + r1 + r2 + r3 = 1

and the solution is r0 = r3 = 1
20

, r1 = r2 = 9
20

.

28. Letting πw be the proportion of games the team
wins then

πw = πw(.8) + (1 − πw)(.3)

Hence, πw = 3/5, yielding that the proportion of
games that result in a team dinner is 3/5(.7) +
2/5(.2) = 1/2. That is, fifty percent of the time the
team has dinner.

29. Each employee moves according to a Markov chain
whose limiting probabilities are the solution of
∏

1
= .7

∏
1

+ .2
∏

2
+ .1

∏
3∏

2
= .2

∏
1

+ .6
∏

2
+ .4

∏
3∏

1
+
∏

2
+
∏

3
= 1

Solving yields
∏

1
= 6/17,

∏
2

= 7/17,
∏

3
=

4/17. Hence, if N is large, it follows from the law
of large numbers that approximately 6, 7, and 4 of
each 17 employees are in categories 1, 2, and 3.

30. Letting Xn be 0 if the nth vehicle is a car and letting it
be 1 if the vehicle is a truck gives rise to a two-state
Markov chain with transition probabilities

P00 = 4/5, P01 = 1/5
P10 = 3/4, P11 = 1/4

The long-run proportions are the solutions of

r0 = 4
5

r0 + 3
4

r1

r1 = 1
5

r0 + 1
4

r1

r0 + r1 = 1

Solving these gives the result

r0 = 15
19

, r1 = 4
19

That is, 4 out of every 19 cars is a truck.

31. Let the state on day n be 0 if sunny, 1 if cloudy, and 2
if rainy. This gives a three-state Markov chain with
transition probability matrix

0 1 2

0 0 1/2 1/2
P = 1 1/4 1/2 1/4

2 1/4 1/4 1/2

The equations for the long-run proportions are

r0 = 1
4

r1 + 1
4

r2

r1 = 1
2

r0 + 1
2

r1 + 1
4

r2

r2 = 1
2

r0 + 1
4

r1 + 1
2

r2

r0 + r1 + r2 = 1

By symmetry it is easy to see that r1 = r2. This
makes it easy to solve and we obtain the result

r0 = 1
5

, r1 = 2
5

, r2 = 2
5

32. With the state being the number of off switches this
is a three-state Markov chain. The equations for the
long-run proportions are
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r0 = 1
16

r0 + 1
4

r1 + 9
16

r2

r1 = 3
8

r0 + 1
2

r1 + 3
8

r2

r0 + r1 + r2 = 1

This gives the solution

r0 = 2/7, r1 = 3/7, r2 = 2/7

33. Consider the Markov chain whose state at time n is
the type of exam number n. The transition proba-
bilities of this Markov chain are obtained by condi-
tioning on the performance of the class. This gives
the following:

P11 = .3(1/3) + .7(1) = .8

P12 = P13 = .3(1/3) = .1

P21 = .6(1/3) + .4(1) = .6

P22 = P23 = .6(1/3) = .2

P31 = .9(1/3) + .1(1) = .4

P32 = P33 = .9(1/3) = .3

Let ri denote the proportion of exams that are type
i, i = 1, 2, 3. The ri are the solutions of the following
set of linear equations:

r1 = .8 r1 + .6 r2 + .4 r3

r2 = .1 r1 + .2 r2 + .3 r3

r1 + r2 + r3 = 1

Since Pi2 = Pi3 for all states i, it follows that
r2 = r3. Solving the equations gives the solution

r1 = 5/7, r2 = r3 = 1/7

34. (a) πi, i = 1, 2, 3, which are the unique solutions
of the following equations:

π1 = q2π2 + p3π3

π2 = p1π1 + q3π3

π1 + π2 + π3 = 1

(b) The proportion of time that there is a counter-
clockwise move from i that is followed
by 5 clockwise moves is πiqipi−1pipi+1
pi+2pi+3, and so the answer to (b) is

∑3
i=1 πiqipi − 1pipi + 1pi + 2pi + 3. In the pre-

ceding, p0 = p3, p4 = p1, p5 = p2, p6 = p3.

35. The equations are

r0 = r1 + 1
2

r2 + 1
3

r3 + 1
4

r4

r1 = 1
2

r2 + 1
3

r3 + 1
4

r4

r2 = 1
3

r3 + 1
4

r4

r3 = 1
4

r4

r4 = r0

r0 + r1 + r2 + r3 + r4 = 1

The solution is

r0 = r4 = 12/37, r1 = 6/37, r2 = 4/37,
r3 = 3/37

36. (a) p0P0, 0 + p1P0, 1 = .4p0 + .6p1

(b) p0P4
0, 0 + p1P4

0, 1 = .2512p0 + .7488p1

(c) p0π0 + p1π1 = p0/4 + 3p1/4

(d) Not a Markov chain.

37. Must show that

πj = ∑
i

πiPk
i, j

The preceding follows because the right-hand side
is equal to the probability that the Markov chain
with transition probabilities Pi, j will be in state j
at time k when its initial state is chosen according
to its stationary probabilities, which is equal to its
stationary probability of being in state j.

38. Because j is accessible from i, there is an n such that
Pn

i, j > 0. Because πiPn
i, j is the long-run proportion

of time the chain is currently in state j and had been
in state i exactly n time periods ago, the inequality
follows.

39. Because recurrence is a class property it follows
that state j, which communicates with the recur-
rent state i, is recurrent. But if j were positive recur-
rent, then by the previous exercise i would be as
well. Because i is not, we can conclude that j is null
recurrent.

40. (a) Follows by symmetry.

(b) If πi = a > 0 then, for any n, the proportion
of time the chain is in any of the states 1, …, n
is na. But this is impossible when n > 1/a.

41. (a) The number of transitions into state i by time
n, the number of transitions originating from
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state i by time n, and the number of time peri-
ods the chain is in state i by time n all differ
by at most 1. Thus, their long-run proportions
must be equal.

(b) riPij is the long-run proportion of transitions
that go from state i to state j.

(c) ∑j riPij is the long-run proportion of transi-
tions that are into state j.

(d) Since rj is also the long-run proportion of tran-
sitions that are into state j, it follows that

rj = ∑
j

riPij

42. (a) This is the long-run proportion of transitions
that go from a state in A to one in Ac.

(b) This is the long-run proportion of transitions
that go from a state in Ac to one in A.

(c) Between any two transitions from A to Ac there
must be one from Ac to A. Similarly between
any two transitions from Ac to A there must
be one from A to Ac. Therefore, the long-run
proportion of transitions that are from A to Ac

must be equal to the long-run proportion of
transitions that are from Ac to A.

43. Consider a typical state—say, 1 2 3. We must show
∏

123
=
∏

123
P123, 123 +

∏
213

P213, 123

+
∏

231
P231, 123

Now P123, 123 = P213, 123 = P231, 123 = P1 and thus,

∏
123

= P1

[∏
123

+
∏

213
+
∏

231

]

We must show that
∏

123
= P1P2

1 − P1
,
∏

213
= P2P1

1 − P2
,
∏

231
= P2P3

1 − P2

satisfies the above, which is equivalent to

P1P2 = P1

[
P2P1

1 − P2
+ P2P3

1 − P2

]

= P1

1 − P2
P2(P1 + P3)

= P1P2 since P1 + P3 = 1 − P2

By symmetry all of the other stationary equations
also follow.

44. Given Xn, Xn=1 is binomial with parameters m and
p = Xn/m. Hence, E[Xn+1|Xn] = m(Xn/m) = Xn,
and so E[Xn+1] = E[Xn]. So E[Xn] = i for all n.
To solve (b) note that as all states but 0 and m are
transient, it follows that Xn will converge to either
0 or m. Hence, for n large

E[Xn] = mP{hits m} + 0 P{hits 0}
= mP{hits m}

But E[Xn] = i and thus P{hits m} = i/m.

45. (a) 1, since all states communicate and thus all are
recurrent since state space is finite.

(b) Condition on the first state visited from i.

xi =
N−1

∑
j=1

Pijxj + PiN , i = 1, … , N − 1

x0 = 0, xN = 1

(c) Must show

i
N

=
N−1

∑
j=1

j
N

Pij + PiN

=
N

∑
j=0

j
N

Pij

and follows by hypothesis.

46. (a) Let the state be the number of umbrellas he has
at his present location. The transition probabil-
ities are

P0, r = 1, Pi, r−i = 1 − p, Pi, r−i+1 = p,
i = 1, …, r

(b) We must show that πj = ∑
i

πj Pij is satisfied by

the given solution. These equations reduce to

πr = π0 + π1p

πj = πr−j(1 − p) + πr−j+1p, j = 1, …, r − 1

π0 = πr(1 − p)

and it is easily verified that they are satisfied.

(c) pπ0 = pq
r + q

(d)
d
dp

[
p(1 − p)

4 − p

]
= (4 − p)(1 − 2p) + p(1 − p)

(4 − p)2

= p2 − 8p + 4
(4 − p)2

p2 − 8p + 4 = 0 ⇒ p = 8 − √
48

2
= .55
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47. {Yn, n ≥ 1} is a Markov chain with states (i, j).

P(i, j),(k, �) =
{

0, if j �= k
Pj�, if j = k

where Pj� is the transition probability for {Xn}.

lim
n → ∞ P{Yn = (i, j)} = lim

n
P{Xn = i, Xn+1 = j}

= lim
n

[P{Xn = i}Pij]

= riPij

48. Letting P be the desired probability, we obtain
upon conditioning on Xm−k−1 that

P = ∑
i �=0

P(Xm−k−1 �= 0, Xm−k = Xm−k+1 = · · · = Xm−1

= 0, Xm �= 0|Xm−k−1 = i)πi

= ∑
i �=0

Pi,0(P0,0)k−1(1 − P0,0)πi

= (P0,0)k−1(1 − P0,0) ∑
i �=0

πiPi,0

= (P0,0)k−1(1 − P0,0)

(
∑

i
πiPi,0 − π0P0,0

)

= (P0,0)k−1(1 − P0,0)(π0 − π0P0,0)

49. (a) No.

lim P{Xn = i} = pr1(i) + (1 − p)r2(i)

(b) Yes.

Pij = pP
(1)
ij + (1 − p)P

(2)
ij

50. Using the Markov chain of Exercise 9, μh, t = 1/.3,
μt, h = 1/.6. Also, the stationary probabilities of this
chain are πh = 2/3, πt = 1/3. Therefore,

E[A(t, t)] = 1
(1/3)(.4)(.6)(.3)(.6)(.3)(.4)

= 578.7

giving

E[N(tththtt)|X0 = h] = E[N(t, t)|X0 = h]

+ E(A(t, t)]

Also,

E[N(t, t)|X0 = h] = E[N(t)|X0 = h] + 1
(1/3)(.4)

= 13
1.2

= 10.8

Therefore, E[N(tththtt)|X0 = h] = 589.5

52. Let the state be the successive zonal pickup loca-
tions. Then PA, A = .6, PB, A = .3. The long-run
proportions of pickups that are from each zone are

πA = .6πA + .3πB = .6πA + .3(1 − πA)

Therefore, πA = 3/7, πB = 4/7. Let X denote the
profit in a trip. Conditioning on the location of the
pickup gives

E[X] = 3
7

E[X|A] + 4
7

E[X|B]

= 3
7

[.6(6) + .4(12)] + 4
7

[.3(12) + .7(8)]

= 62/7

53. With πi(1/4) equal to the proportion of time
a policyholder whose yearly number of acci-
dents is Poisson distributed with mean 1/4 is in
Bonus-Malus state i, we have that the average pre-
mium is

2
3

(326.375) + 1
3

[200π1(1/4) + 250π2(1/4)

+ 400π3(1/4) + 600π4(1/4)]

54. E[Xn+1] = E[E[Xn+1|Xn]]

Now given Xn,

Xn+1 =

⎧⎪⎪⎨
⎪⎪⎩

Xn + 1, with probability
M − Xn

M

Xn − 1, with probability
Xn

M

Hence,

E[Xn+1|Xn] = Xn + M − Xn

M
− Xn

M

= Xn + 1 − 2Xn

M

and so E[Xn+1] =
[

1 − 2
M

]
E[Xn] + 1.

It is now easy to verify by induction that the
formula presented in (b) is correct.

55. S11 = P{offspring is aa | both parents dominant}

= P{aa, both dominant}
P{both dominant}

=
r2 1

4
(1 − q)2 = r2

4(1 − q)2
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S10 = P{aa, 1 dominant and 1 recessive parent}
P{1 dominant and 1 recessive parent}

= P{aa, 1 parent aA and 1 parent aa}
2q(1 − q)

=
2qr

1
2

2q(1 − q)

= r
2(1 − q)

56. This is just the probability that a gambler starting
with m reaches her goal of n + m before going

broke, and is thus equal to
1 − (q/p)m

1 − (q/p)n+m ,

where q = 1 − p.

57. Let A be the event that all states have been visited
by time T. Then, conditioning on the direction of
the first step gives

P(A) = P(A|clockwise)p

+ P(A|counterclockwise)q

= p
1 − q/p

1 − (q/p)n + q
1 − p/q

1 − (p/q)n

The conditional probabilities in the preceding
follow by noting that they are equal to the proba-
bility in the gambler’s ruin problem that a gambler
that starts with 1 will reach n before going broke
when the gambler’s win probabilities are p and q.

58. Using the hint, we see that the desired proba-
bility is

P{Xn+1 = i + 1|Xn = i}
P{lim Xm = N|Xn = i, Xn + 1 = i + 1}

P{lim Xm = N|Xn = 1}

= pPi + 1
Pi

and the result follows from Equation (4.74).

59. Condition on the outcome of the initial play.

61. With P0 = 0, PN = 1

Pi = αiPi+1 + (1 − αi)Pi−1, i = 1, … , N − 1

These latter equations can be rewritten as

Pi+1 − Pi = βi(Pi − Pi−1)

where βi = (1 − αi)/αi. These equations can now
be solved exactly as in the original gambler’s ruin
problem. They give the solution

Pi =
1 + ∑i−1

j=1 Cj

1 + ∑N−1
j=1 Cj

, i = 1, …, N − 1

where

Cj =
j∏

i=1

βi

(c) PN−i, where αi = (N − i)/N

62. (a) Since ri = 1/5 is equal to the inverse of the
expected number of transitions to return to
state i, it follows that the expected number of
steps to return to the original position is 5.

(b) Condition on the first transition. Suppose it
is to the right. In this case the probability is
just the probability that a gambler who always
bets 1 and wins each bet with probability p
will, when starting with 1, reach γ before going
broke. By the gambler’s ruin problem this
probability is equal to

1 − q/p
1 − (q/p)γ

Similarly, if the first move is to the left then
the problem is again the same gambler’s ruin
problem but with p and q reversed. The desired
probability is thus

p − q
1 − (q/p)γ

= q − p
1 − (p/q)γ

64. (a) E

[∞
∑
k=0

Xk|X0 = 1

]
=

∞
∑
k=0

E[Xk|X0 = 1]

=
∞
∑
k=0

μk = 1
1 − μ

(b) E

[∞
∑
k=0

Xk|X0 = n

]
= n

1 − μ

65. r ≥ 0 = P{X0 = 0}. Assume that
r ≥ P{Xn−1 = 0}
P{Xn = 0 = ∑

j
P{Xn = 0|X1 = j}Pj

= ∑
j

[
P{Xn−1 = }]jPj

≤ ∑
j

rjPj

= r
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66. (a) r0 = 1
3

(b) r0 = 1

(c) r0 =
(√

3 − 1
)/

2

67. (a) Yes, the next state depends only on the present
and not on the past.

(b) One class, period is 1, recurrent.

(c) Pi, i+1 = P
N − i

N
, i = 0, 1, …, N − 1

Pi, i−1 = (1 − P)
i

N
, i = 1, 2, …, N

Pi, i = P
i

N
+ (1 − p)

(N − i)
N

, i = 0, 1, …, N

(d) See (e).

(e) ri =
[

N
i

]
pi(1 − p)N−i, i = 0, 1,…, N

(f) Direct substitution or use Example 7a.

(g) Time =
N−1

∑
j=i

Tj, where Tj is the number of

flips to go from j to j + 1 heads. Tj is geo-

metric with E[Tj] = N/j. Thus, E[time] =
N−1

∑
j=i

N/j.

68. (a) ∑
i

riQij = ∑
i

rjPji = rj ∑
i

Pji = rj

(b) Whether perusing the sequence of states in
the forward direction of time or in the reverse
direction the proportion of time the state is i
will be the same.

69. r(n1,…, nm) = M!
n1,…, nm!

[
1
m

]M

We must now show that

r(n1,…, ni − 1,…, nj + 1,…)
nj + 1

M
1

M − 1

= r(n1,…, ni,…, nj,…)
i

M
1

M − 1

or
nj + 1

(ni − 1)!(nj + 1)!
= ni

ni!nj!
, which follows.

70. (a) Pi, i+1 = (m − i)2

m2 , Pi, i−1 = i2

m2

Pi, i = 2i(m − i)
m2

(b) Since, in the limit, the set of m balls in urn 1 is
equally likely to be any subset of m balls, it is
intuitively clear that

πi =

(
m
i

)(
m

m − i

)
(

2m
m

) =

(
m
i

)2

(
2m
m

)

(c) We must verify that, with the πi given in (b),

πiPi, i+1 = πi+1Pi+1, i

That is, we must verify that

(m − i)
(

m
i

)
= (i + 1)

(
m

i + 1

)

which is immediate.

71. If rj = c
Pij

Pji
, then

rjPjk = c
PijPjk

Pji

rkPkj = c
PjkPkj

Pki

and are thus equal by hypothesis.

72. Rate at which transitions from i to j to k occur =
riPijPjk , whereas the rate in the reverse order is
rkPkjPji. So, we must show

riPijPjk = rkPkjPji

Now, riPijPjk = rjPjiPjk by reversibility

= rjPjkPji

= rkPkjPji by reversibility

73. It is straightforward to check that riPij = rjPji. For
instance, consider states 0 and 1. Then

r0p01 = (1/5)(1/2) = 1/10

whereas

r1p10 = (2/5)(1/4) = 1/10

74. (a) The state would be the present ordering of the
n processors. Thus, there are n! states.

(b) Consider states x = (x1, …, xi−1, xi, xi+1, …, xn)
and x1 = (x1,…, xi−1, xi+1, xi, …, xn). With qt
equal to 1 − pt the time reversible equations
are

r(x)qxi
pxi+1

i−1∏
k=1

qxk = r(x1)qxi+1
pxi

i−1∏
k=1

qxk
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or

r(x) =
(

qxi+1/pxi+1

)(
qxi/pxi

)−1
r
(

x1
)

Suppose now that we successively utilize the above
identity until we reach the state (1, 2, …, n). Note
that each time j is moved to the left we multiply
by qj/pj and each time it moves to the right we

multiply by (qj/pj)
−1. Since xj, which is initially in

position j, is to have a net move of j − xj positions to
the left (so it will end up in position j − ( j − xj) = xj)
it follows from the above that

r(x) = C
∏

j

(
qxj/pxj

)j−x
j

The value of C, which is equal to r(1, 2, …, n), can be
obtained by summing over all states x and equating
to 1. Since the solution given by the above value
of r(x) satisfies the time reversibility equations it
follows that the chain is time reversible and these
are the limiting probabilities.

75. The number of transitions from i to j in any interval
must equal (to within 1) the number from j to i since
each time the process goes from i to j in order to get
back to i, it must enter from j.

76. We can view this problem as a graph with 64
nodes where there is an arc between 2 nodes if
a knight can go from one node to another in a
single move. The weights on each are equal to 1. It is
easy to check that ∑

i
∑

j
wij = 336, and for a corner

node i, ∑
j

wij = 2. Hence, from Example 7b, for

one of the 4 corner nodes i,
∏

i

= 2/336, and thus

the mean time to return, which equals 1/ri, is
336/2 = 168.

77. (a) ∑
a

yja = ∑
a

Eβ

[
∑
n

anI{Xn = j, an = a}
]

= Eβ

[
∑
n

an ∑
a

I{Xn = j, an = a}
]

= Eβ

[
∑
n

anI{Xn = j}
]

(b) ∑
j

∑
a

yja = Eβ

[
∑
n

an ∑
j

I{Xn = j}

]

= Eβ

[
∑ an

]
= 1

1 − α

∑
a

yja

= bj + Eβ

[ ∞
∑
n=1

= anI{Xn = j}

]

= bj + Eβ

[ ∞
∑
n=0

an+1I{Xn+1 = j}

]

= bj + Eβ

[ ∞
∑
n=0

= an+1 ∑
i, a

I{Xn = i, an = a}

I(Xn+1 = j}

]

= bj +
∞
∑
n=0

an+1 ∑
i, a

Eβ

[
I{Xn = i, an = a}

]
Pij(a)

= bj + a ∑
i, a

∑
n

anEβ

[
I(Xn = i, an = a}

]
Pij(a)

= bj + a ∑
i, a

yiaPij(a)

(c) Let dj, a denote the expected discounted time
the process is in j, and a is chosen when policy
β is employed. Then by the same argument as
in (b):

∑
a

dja

= bj + a ∑
i, a

∑
n

anEβ[I{Xn = i, an = a}] Pij(a)

= bj + a ∑
i, a

∑
n

anEβ

[
I{Xn= i}

] yia

∑
a

yia
Pij(a)

= bj + a ∑
i, a

∑
a

dia,
yia

∑
a

yia
Pij(a)

and we see from Equation (9.1) that the above
is satisfied upon substitution of dia = yia. As

it is easy to see that ∑i,a dia = 1
1 − a

, the result

follows since it can be shown that these linear
equations have a unique solution.

(d) Follows immediately from previous parts.
It is a well-know result in analysis (and
easily proven) that if limn→∞ an/n = a then
limn → ∞ ∑n

i ai/n also equals a. The result fol-
lows from this since
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E[R(Xn)] = ∑
j

R( j)P{Xn = j}

= ∑
i

R( j)rj

78. Let πj, j ≥ 0, be the stationary probabilities of the
underlying chain.

(a) ∑j πjp(s|j)

(b) p( j|s) = πjp(s|j)
∑j πjp(s|j)



Chapter 5

1. (a) e−1 (b) e−1

2. Let T be the time you spend in the system; let Si be
the service time of person i in the queue: let R be
the remaining service time of the person in service;
let S be your service time. Then,

E[T] = E[R + S1 + S2 + S3 + S4 + S]

= E[R] +
4

∑
i=1

E[Si] + E[S] = 6/μ

where we have used the lack of memory property
to conclude that R is also exponential with rate μ.

3. The conditional distribution of X, given that
X > 1, is the same as the unconditional distribution
of 1 + X. Hence, (a) is correct.

4. (a) 0 (b)
1

27
(c)

1
4

5. e−1 by lack of memory.

6. Condition on which server initially finishes first.
Now,

P{Smith is last|server 1 finishes first}
= P{server 1 finishes before server 2}

by lack of memory

= λ1

λ1 + λ2

Similarly,

P{Smith is last|server 2 finished first} = λ2

λ1 + λ2

and thus

P{Smith is last} =
[

λ1

λ1 + λ2

]2
+
[

λ2

λ1 + λ2

]2

7. P{X1 < X2| min(X1, X2)= t}

= P{X1 < X2, min(X1, X2) = t}
P{min(X1, X2) = t}

= P{X1 = t, X2 > t}
P{X1 = t, X2 > t} + P{X2 = t, X1 > t}

= f1(t)F̄2(t)
f1(t)F̄2(t) + f2(t)F̄1(t)

Dividing though by F̄1(t)F̄2(t) yields the result.
(For a more rigorous argument, replace ′′ = t”
by ” ∈ (t, t + ε)” throughout, and then let ε → 0.)

8. Let Xi have density fi and tail distribution F̄i.

r(t) =

n

∑
i=1

P{T = i}fi(t)

n

∑
j=1

P{T = j}F̄j(t)

=

n

∑
i=1

P{T = i}ri(t)F̄i(t)

n

∑
j=1

P{T = j}F̄j(t)

The result now follows from

P{T = i|X > t} = P{T = i}F̄i(t)
n

∑
j=1

P{T = j}F̄j(t)

9. Condition on whether machine 1 is still working at
time t, to obtain the answer,

1 − e−λ1t + e−λ1t λ1

λ1 + λ2

11. (a) Using Equation (5.5), the lack of memory prop-
erty of the exponential, as well as the fact that
the minimum of independent exponentials is
exponential with a rate equal to the sum of
their individual rates, it follows that

P(A1) = nμ

λ + nμ

47
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and, for j > 1,

P(Aj|A1 · · · Aj−1) = (n − j + 1)μ
λ + (n − j + 1)μ

Hence,

p =
n∏

j=1

(n − j + 1)μ
λ + (n − j + 1)μ

(b) When n = 2,
P{max Yi < X}

=
∫ ∞

0
P{max Yi < X|X = x}λe−λxdx

=
∫ ∞

0
P{max Yi < x}λe−λxdx

=
∫ ∞

0
(1 − e−μx)2λe−λxdx

=
∫ ∞

0
(1 − 2e−μx + e−2μx)2λe−λxdx

= 1 − 2λ

λ + μ
+ λ

2μ + λ

= 2μ2

(λ + μ)(λ + 2μ)

12. (a) P{X1 < X2 < X3}
= P{X1 = min(X1, X2, X3)}

P{X2 < X3|X1 = min(X1, X2, X3)}

= λ1

λ1 + λ2 + λ3
P{X2 < X3|X1

= min(X1, X2, X3)}

= λ1

λ1 + λ2 + λ3

λ2

λ2 + λ3

where the final equality follows by the lack of
memory property.

(b) P{X2 < X3|X1 = max(X1, X2, X3)}

= P{X2 < X3 < X1}
P{X2 < X3 < X1} + P{X3 < X2 < X1}

=
λ2

λ1 + λ2 + λ3

λ3

λ1 + λ3
λ2

λ1 + λ2 + λ3

λ3

λ1 + λ3
+ λ3

λ1 + λ2 + λ3

λ2

λ1 + λ2

= 1/(λ1 + λ3)
1/(λ1 + λ3) + 1/(λ1 + λ2)

(c)
1

λ1 + λ2 + λ3
+ 1

+ λ2 + λ3
+ 1

λ3

(d) ∑
i �=j �=k

λi

λ1 + λ2 + λ3

λj

λj + λk

[
1

λ1 + λ2 + λ3

+ 1
λj + λk

+ 1
λk

]

where the sum is over all 6 permutations of 1, 2, 3.

13. Let Tn denote the time until the nth person in line
departs the line.Also, let D be the time until the first
departure from the line, and let X be the additional
time after D until Tn. Then,

E[Tn] = E[D] + E[X]

= 1
nθ + μ

+ (n − 1)θ + μ

nθ + μ
E[Tn−1]

where E[X] was computed by conditioning on
whether the first departure was the person in line.
Hence,

E[Tn] = An + BnE[Tn−1]

where

An = 1
nθ + μ

, Bn = (n − 1)θ + μ

nθ + μ

Solving gives the solution

E[Tn] = An +
n−1

∑
i=1

An−i

n∏
j=n−i+1

Bj

= An +
n−1

∑
i=1

1/(nθ + μ)

= n
nθ + μ

Another way to solve the preceding is to let Ij equal
1 if customer n is still in line at the time of the ( j −
1)st departure from the line, and let Xj denote the
time between the ( j − 1)st and jth departure from
line. (Of course, these departures only refer to the
first n people in line.) Then

Tn =
n

∑
j=1

IjXj

The independence of Ij and Xj gives

E[Tn] =
n

∑
j=1

E[Ij]E[Xj]

But,

E[Ij] = (n − 1)θ + μ

nθ + μ
· · · (n − j + 1)θ + μ

(n − j + 2)θ + μ

= (n − j + 1)θ + μ

nθ + μ
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and

E[Xj] = 1
(n − j + 1)θ + μ

which gives the result.

14. (a) The conditional density of X gives that
X < c is

f (x|X < c) = f (x)
P{x < c} = λe−λx

1 − e−λc , 0 < x < c

Hence,

E[X|X < c] =
c∫

0

xλe−λxdx/(1 − e−λc)

Integration by parts yields

c∫
0

xλe−λx dx = −xe−λx
c
|
0
+

c∫
0

e−λxdx

= −ce−λc + (1 − e−λc)/λ

Hence,

E[X|X < c] = 1/λ − ce−λc/(1 − e−λc)

(b) 1/λ = E[X|X < c](1 − e−λc) + (c + 1/λ)e−λc

This simplifies to the same answer as given in
part (a).

15. Let Ti denote the time between the (i − 1)th and
the ith failure. Then the Ti are independent with Ti
being exponential with rate (101 − i)/200. Thus,

E[T] =
5

∑
i=1

E[Ti] =
5

∑
i=1

200
101 − i

Var(T) =
5

∑
i=1

Var(Ti) =
5

∑
i=1

(200)2

(101 − i)2

16. (a) Suppose i and j are initially begun, with k wait-
ing for one of them to be completed. Then

E[Ti] + E[Tj] + E[Tk] = 1
μi

+ 1
μj

+ 1
μi+μj

+ 1
μk

= ∑3
i=1

1
μi

+ 1
μi+μj

Hence, the preceding is minimized when μi +
μj is as large as possible, showing that it is opti-
mal to begin processing on jobs 2 and 3. Conse-
quently, to minimize the expected sum of the
completion times the jobs having largest rates
should be initiated first.

(b) Letting Xi be the processing time of job i, this
follows from the identity

2(M − S) + S =
3

∑
i=1

Xi

which follows because if we interpret Xi as the
work of job i then the total amount of work
is ∑3

i=1 Xi, whereas work is processed at rate
2 per unit time when both servers are busy and
at rate 1 per unit time when only a single pro-
cessor is working.

(c) E[S] = 1
μ

P(μ) + 1
λ

P(λ)

(d) P1,2(μ) = λ

μ + λ
<

λ

μ + λ
+ μ

μ + λ

λ

μ + λ

= P1,3(μ)

(e) If μ > λ then E[S] is minimized when P(μ) is as
large as possible. Hence, because minimizing
E[S] is equivalent to minimizing E[M], it fol-
lows that E[M] is minimized when jobs 1 and
3 are initially processed.

(f) In this case E[M] is minimized when jobs 1 and
2 are initially processed. In all cases E[M] is
minimized when the jobs having smallest rates
are initiated first.

17. Let Ci denote the cost of the ith link to be
constructed, i = 1, …, n − 1. Note that the first

link can be any of the
(

n
2

)
possible links.

Given the first one, the second link must connect
one of the 2 cities joined by the first link with one of
the n − 2 cities without any links. Thus, given the
first constructed link, the next link constructed will
be one of 2(n − 2) possible links. Similarly, given the
first two links that are constructed, the next one to
be constructed will be one of 3(n − 3) possible links,
and so on. Since the cost of the first link to be built

is the minimum of
(

n
2

)
exponentials with rate 1,

it follows that

E[C1] = 1
/(n

2

)

By the lack of memory property of the exponential
it follows that the amounts by which the costs of
the other links exceed C1 are independent exponen-
tials with rate 1. Therefore, C2 is equal to C1 plus
the minimum of 2(n − 2) independent exponentials
with rate 1, and so

E[C2] = E[C1] + 1
2(n − 2)



50 Answers and Solutions

Similar reasoning then gives

E[C3] = E[C2] + 1
3(n − 3)

and so on.

19. (c) Letting A = X(2) − X(1) we have
E[X(2)]

= E[X(1)] + E[A]

= 1
μ1 + μ2

+ 1
μ2

μ1

μ1 + μ2
+ 1

μ1

μ2

μ1 + μ2

The formula for E[A] being obtained by condi-
tioning on which Xi is largest.

(d) Let I equal 1 if X1 < X2 and let it be 2 otherwise.
Since the conditional distribution of A (either
exponential with rate μ1 or μ2) is determined
by I, which is independent of X(1), it follows
that A is independent of X(1).
Therefore,

Var(X(2)) = Var(X(1)) + Var(A)

With p = μ1/(μ1 + μ2) we obtain, upon condi-
tioning on I,

E[A] = p/μ2 + (1 − p)/μ1,

E[A2] = 2p/μ2
2 + 2(1 − p)/μ2

1

Therefore,
Var(A) = 2p/μ2

2 + 2(1 − p)/μ2
1

− (p/μ2 + (1 − p)/μ1)2

Thus,

Var(X(2))

= 1/(μ1 + μ2)2 + 2[p/μ2
2 + (1 − p)/μ2

1]

−(p/μ2 + (1 − p)/μ1)2

20. (a) PA = μ1

μ1 + μ2

(b) PB = 1 −
(

μ2

μ1 + μ2

)2

(c) E[T] = 1/μ1 + 1/μ2 + PA/μ2 + PB/μ2

21. E[time] = E[time waiting at 1] + 1/μ1

+ E[time waiting at 2] + 1/μ2

Now,
E[time waiting at 1] = 1/μ1 ,

E[time waiting at 2] = (1/μ2)
μ1

μ1 + μ2

The last equation follows by conditioning on
whether or not the customer waits for server 2.
Therefore,

E[time] = 2/μ1 + (1/μ2)[1 + μ1/(μ1 + μ2)]

22. E[time] = E[time waiting for server 1] + 1/μ1

+ E[time waiting for server 2] + 1/μ2

Now, the time spent waiting for server 1 is the
remaining service time of the customer with server
1 plus any additional time due to that customer
blocking your entrance. If server 1 finishes before
server 2 this additional time will equal the addi-
tional service time of the customer with server 2.
Therefore,

E[time waiting for server 1]

= 1/μ1 + E[Additional]

= 1/μ1 + (1/μ2[μ1/(μ1 + μ2)]

Since when you enter service with server 1 the cus-
tomer preceding you will be entering service with
server 2, it follows that you will have to wait for
server 2 if you finish service first. Therefore, condi-
tioning on whether or not you finish first

E[time waiting for server 2]

= (1/μ2)[μ1/(μ1 + μ2)]

Thus,

E[time] = 2/μ1 + (2/μ2)[μ1/(μ1 + μ2)] + 1/μ2

23. (a) 1/2.

(b) (1/2)n−1: whenever battery 1 is in use and a
failure occurs the probability is 1/2 that it is
not battery 1 that has failed.

(c) (1/2)n−i+1, i > 1.

(d) T is the sum of n − 1 independent exponentials
with rate 2μ (since each time a failure occurs
the time until the next failure is exponential
with rate 2μ).

(e) Gamma with parameters n − 1 and 2μ.

24. Let Ti denote the time between the (i − 1)th and the
ith job completion. Then the Ti are independent,
with Ti, i = 1, …, n − 1 being exponential with rate
μ1 + μ2. With probability

μ1

μ1 + μ2
, Tn is exponen-

tial with rate μ2, and with probability
μ2

μ1 + μ2
it is

exponential with rate μ1. Therefore,

E[T] =
n−1

∑
i=1

E[Ti] + E[Tn]

= (n − 1)
1

μ1 + μ2
+ μ1

μ1 + μ2

1
μ2

+ μ2

μ1 + μ2

1
μ1
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Var(T) =
n−1

∑
i=1

Var(Ti) + Var(Tn)

= (n − 1) 1
(μ1 + μ2)2 + Var(Tn)

Now use

Var(Tn) = E[T2
n] − (E[Tn])2

= μ1

μ1 + μ2

2
μ2

2
+ μ2

μ1 + μ2

2
μ2

1

−
(

μ1

μ1 + μ2

1
μ2

+ μ2

μ1 + μ2

1
μ1

)2

25. Parts (a) and (b) follow upon integration. For part
(c), condition on which of X or Y is larger and use
the lack of memory property to conclude that the
amount by which it is larger is exponential rate λ.
For instance, for x < 0,

fx − y(x)dx

= P{X < Y}P{−x < Y − X < −x + dx|Y > X}

= 1
2
λeλxdx

For (d) and (e), condition on I.

26. (a)
1

μ1 + μ2 + μ3
+

3

∑
i=1

μi

μ1 + μ2 + μ3

1
μi

= 4
μ1 + mu2 + μ3

(b)
1

μ1 + μ2 + μ3
+ (a) = 5

μ1 + μ2 + μ3

27. (a)
μ1

μ1 + μ3

(b)
μ1

μ1 + μ3

μ2

μ2 + μ3

(c) ∑
i

1
μi

+ μ1

μ1 + μ3

μ2

μ2 + μ3

1
μ3

(d) ∑
i

1
μi

+ μ1

μ1 + μ2

[
1
μ2

+ μ2

μ2 + μ3

1
μ3

]

+ μ2

μ1 + μ2

μ1

μ1 + μ3

μ2

μ2 + μ3

1
μ3

28. For both parts, condition on which item fails first.

(a) ∑
i �=1

λi
n

∑
j=1

λj

λ1

∑
j �=i

λj

(b)
1

n

∑
i=1

λj

+
n

∑
i=1

λi
n

∑
j=1

λj

1

∑
j �=i

λj

29. (a) fX|X + Y(x|c) = CfX. X+Y(x, c)

= C1 fXY(x, c−x)

= fX(x) fY(c − x)

= C2e−λxe−μ(c−x), 0 < x < c

= C3e−(λ−μ)x, 0 < x < c

where none of the Ci depend on x. Hence, we
can conclude that the conditional distribution
is that of an exponential random variable con-
ditioned to be less than c.

(b) E[X|X + Y = c] = 1 − e−(λ−μ)c(1 + (λ − μ)c)

λ(1 − e−(λ−μ)c)

(c) c = E [X + Y|X + Y = c] = E [X|X + Y = c]

+ E [Y|X + Y = c]
implying that

E[Y|X + Y = c]

= c − 1 − e−(λ−μ)c(1 + (λ − μ)c)

λ(1 − e−(λ−μ)c)

30. Condition on which animal died to obtain

E[additional life]

= E[additional life | dog died]

λd

λc + λd
+ E[additional life | cat died]

λc

λc + λd

= 1
λc

λd

λc + λd
+ 1

λd

λc

λc + λd

31. Condition on whether the 1 PM appointment is still
with the doctor at 1:30, and use the fact that if she or
he is then the remaining time spent is exponential
with mean 30. This gives

E[time spent in office]

= 30(1 − e−30/30) + (30 + 30)e−30/30

= 30 + 30e−1

32. (a) no; (b) yes
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33. (a) By the lack of memory property, no matter
when Y fails the remaining life of X is expo-
nential with rate λ.

(b) E [min (X, Y) |X > Y + c]

= E [min (X, Y) |X > Y, X − Y > c]

= E [min (X, Y) |X > Y]

where the final equality follows from (a).

34. (a)
λ

λ + μA

(b)
λ + μA

λ + μA + μB
· λ

λ + μB

37.
1
μ

+ 1
λ

38. Let k = min(n, m), and condition on M2(t).

P{N1(t) = n, N2(t) = m}

=
k

∑
j=0

P{N1(t) = n, N2(t) = m|M2(t) = j}

× e−λ2t (λ2t)j

j!

=
k

∑
j=0

e−λ1t (λ1t)n−j

(n − j)!
e−λ3t (λ3t)m−j

(m − j)!
e−λ2t (λ2t)j

j!

39. (a) 196/2.5 = 78.4

(b) 196/(2.5)2 = 31.36

We use the central limit theorem to justify approx-
imating the life distribution by a normal distri-
bution with mean 78.4 and standard deviation√

31.36 = 5.6. In the following, Z is a standard nor-
mal random variable.

(c) P{L < 67.2} ≈ P
{

Z <
67.2 − 78.4

5.6

}

= P{Z < −2} = .0227

(d) P{L > 90} ≈ P
{

Z >
90 − 78.4

5.6

}

= P{Z > 2.07} = .0192

(e) P{L > 100} ≈ P
{

Z >
100 − 78.4

5.6

}

= P{Z > 3.857} = .00006

40. The easiest way is to use Definition 5.1. It is easy
to see that {N(t), t ≥ 0} will also possess station-
ary and independent increments. Since the sum of

two independent Poisson random variables is also
Poisson, it follows that N(t) is a Poisson random
variable with mean (λ1 + λ2)t.

41. λ1/(λ1 + λ2)

42. (a) E[S4] = 4/λ

(b) E[S4|N(1) = 2]
=1 + E[time for 2 more events] = 1 + 2/λ

(c) E[N(4) − N(2)|N(1) = 3] = E[N(4) − N(2)]
= 2λ

The first equality used the independent increments
property.

43. Let Si denote the service time at server i, i = 1, 2 and
let X denote the time until the next arrival. Then,
with p denoting the proportion of customers that
are served by both servers, we have

p = P{X > S1 + S2}
= P{X > S1}PX > S1 + S2|X > S1}
= μ1

μ1 + λ

μ2

μ2 + λ

44. (a) e−λT

(b) Let W denote the waiting time and let X denote
the time until the first car. Then

E[W] =
∫ ∞

0
E[W|X = x]λe−λxdx

=
∫ T

0
E[W|X = x]λe−λxdx

+
∫ ∞

T
E[W|X = x]λe−λxdx

=
∫ T

0
(x + E[W|)λe−λxdx + Te−λT

Hence,

E[W] = T + eλT
∫ T

0
xλe−λxdx

45. E[N(T)] = E[E[N(T)|T]] = E[λT] = λE[T]

E[TN(T)] = E[E[TN(T)|T]] = E[TλT] = λE[T2]

E[N2(T)] = E
[
E[N2(T)|T]

]
= E[λT + (λT)2]

= λE[T] + λ2E[T2]

Hence,

Cov(T, N(T)) = λE[T2] − E[T]λE[T] = λσ2
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and

Var(N(T)) = λE[T] + λ2E[T2] − (λE[T])2

= λμ + λ2σ2

46. E[
N(t)

∑
i=1

Xi] = E

[
E[

N(t)

∑
i=1

Xi|N(t)]

]

= E[μN(t)] = μλt

E[N(t)
N(t)

∑
i=1

Xi] = E

[
E[N(t)

N(t)

∑
i=1

Xi|N(t)]

]

= E[μN2(t)] = μ(λt + λ2t2)
Therefore,

Cov(N(t),
N(t)

∑
i=1

Xi) = μ(λt + λ2t2) − λt(μλt) = μλt

47. (a) 1
/

(2μ) + 1/λ

(b) Let Ti denote the time until both servers are
busy when you start with i busy servers i =
0, 1. Then,

E[T0] = 1/λ + E[T1]

Now, starting with 1 server busy, let T be the
time until the first event (arrival or departure);
let X = 1 if the first event is an arrival and let it
be 0 if it is a departure; let Y be the additional
time after the first event until both servers are
busy.

E[T1] = E[T] + E[Y]

= 1
λ + μ

+ E[Y|X = 1]
λ

λ + μ

+ E[Y|X = 0]
μ

λ + μ

= 1
λ + μ

+ E[T0]
μ

λ + μ

Thus,

E[T0] − 1
λ

= 1
λ + μ

+ E[T0]
μ

λ + μ

or

E[T0] = 2λ + μ

λ2

Also,

E[T1] = λ + μ

λ2

(c) Let Li denote the time until a customer is lost
when you start with i busy servers. Then,
reasoning as in part (b) gives that

E[L2] = 1
λ + μ

+ E[L1]
μ

λ + μ

= 1
λ + μ

+ (E[T1] + E[L2])
μ

λ + μ

= 1
λ + μ

+ μ

λ2 + E[L2]
μ

λ + μ
Thus,

E[L2] = 1
λ

+ μ(λ + μ)
λ3

48. Given T, the time until the next arrival, N, the num-
ber of busy servers found by the next arrival, is a
binomial random variable with parameters n and
p = e−μT .

(a) E[N] =
∫

E[N|T = t]λe−λtdt

=
∫

ne−μtλe−λtdt = nλ

λ + μ

For (b) and (c), you can either condition on T, or
use the approach of part (a) of Exercise 11 to obtain

P{N = 0} =
n∏

j=1

(n − j + 1)μ
λ + (n − j + 1)μ

P{N = n − i}

= λ

λ + (n − i)μ

i∏
j=1

(n − j + 1)μ
λ + (n − j + 1)μ

49. (a) P{N(T) − N(s) = 1} = λ(T − s)e−λ(T−s)

(b) Differentiating the expression in part (a) and
then setting it equal to 0 gives

e−λ(T−s) = λ(T − s)e−λ(T−s)

implying that the maximizing value is

s = T − 1/λ

(c) For s = T − 1/λ, we have that λ(T − s) = 1 and
thus,

P{N(T) − N(s) = 1} = e−1

50. Let T denote the time until the next train arrives;
and so T is uniform on (0, 1). Note that, conditional
on T, X is Poisson with mean 7T.

(a) E[X] = E[E[X|T]] = E[7T] = 7/2
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(b) E[X|T]=7T, Var(X|T) = 7T. By the conditional
variance formula
Var(X) = 7E[T] + 49Var[T] = 7/2 + 49/12 =
91/12.

51. Condition on X, the time of the first accident, to
obtain

E[N(t] =
∫ ∞

0
E[N(t)|X = s]βe−βsds

=
∫ t

0
(1 + α(t − s))βe−βsds

52. This is the gambler’s ruin probability that, start-
ing with k, the gambler’s fortune reaches 2k
before 0 when her probability of winning each
bet is p = λ1/(λ1 + λ2). The desired probability is
1 − (λ2/λ1)k

1 − (λ2/λ1)2k .

53. (a) e−1

(b) e−1 + e−1(.8)e−1

54. (a) P{L1 = 0} = e−λm

(b) P{L1 < x} = e−λ(m−x)

(c) P{R1 = 1} = e−λ(1−m)

(d) P{R1 > x} = e−λ(x−m)

(e) E[R] =
∫ 1

0
P{R > x}dx

= m +
∫ 1

m
P{R > x}dx

= m +
∫ 1

m
e−nλ(x−m)dx

= m + 1 − e−nλ(1−m)

nλ

Now, using that

P{L > x} = 1 − P{L ≤ x} = 1 − e−nλ(m−x),
0 < x < m

gives

E{L} =
∫ m

0
(1 − e−nλ(m−x))dx = m − 1 − e−nλm

nλ

Hence,

E[R − L] = 1 − e−nλ(1−m)

nλ
+ 1 − e−nλm

nλ

≈ 2
nλ

when n is large

55. As long as customers are present to be served,
every event (arrival or departure) will, inde-
pendently of other events, be a departure with
probability p = μ/(λ + μ). Thus P{X = m} is the
probability that there have been a total of m tails at
themomentthat thenth headoccurs,whenindepen-
dent flips of a coin having probability p of coming
up heads are made: that is, it is the probability that
the nth head occurs on trial number n + m. Hence,

p{X = m} =
(

n + m − 1
n − 1

)
pn(1 − p)m

56. (a) It is a binomial (n, p) random variable.
(b) It is geometric with parameter p.
(c) It is a negative binomial with parameters r, p.
(d) Let 0 < i1 < i2, · · · < ir < n. Then,

P{events at i1, …, ir|N(n) = r}

= P{events at i1, …, ir, N(n) = r}
P{N(n) = r}

= Pr(1 − p)n−r(
n
r

)
Pr(1 − p)n−r

= 1(
n
r

)

57. (a) e−2

(b) 2 p.m.

58. Let Li = P{i is the last type collected}.

Li = P{Xi = max
j=1,…,n

Xj}

=
∫ ∞

0
pie−pix

∏
j �=i

(1 − e−pjx)dx

=
∫ 1

0

∏
j �=i

(1 − ypj/pi )dy (y = e−pix)

= E

⎡
⎣∏

j �=i

(1 − Upj/pi )

⎤
⎦

59. The unconditional probability that the claim is type
1 is 10/11. Therefore,

P(1|4000) = P(4000|1)P(1)
P(4000|1)P(1) + P(4000|2)P(2)

= e−410/11
e−410/11 + .2e−.81/11
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61. (a) Poisson with mean cG(t).

(b) Poisson with mean c[1 − G(t)].

(c) Independent.

62. Each of a Poisson number of events is classified as
either being of type 1 (if found by proofreader 1
but not by 2) or type 2 (if found by 2 but not by 1)
or type 3 (if found by both) or type 4 (if found by
neither).

(a) The Xi are independent Poisson random
variables with means

E[X1] = λp1(1 − p2),

E[X2] = λ(1 − p1)p2,

E[X3] = λp1p2,

E[X4] = λ(1 − p1)(1 − p2).

(b) Follows from the above.

(c) Using that (1 − p1)/p1 = E[X2]/E[X3] =
X2/X3 we can approximate p1 by X3/(X2 +
X3). Thus p1 is estimated by the fraction of
the errors found by proofreader 2 that are
also found by proofreader 1. Similarly, we can
estimate p2 by X3/(X1 + X3).

The total number of errors found, X1 + X2 +
X3, has mean

E[X1 + X2 + X3] = λ [1 − (1 − p1)(1 − p2)]

= λ

[
1 − X2X1

(X2 + X3)(X1 + X3)

]

Hence, we can estimate λ by

(X1 + X2 + X3)/
[

1 − X2X1

(X2 + X3)(X1 + X3)

]

For instance, suppose that proofreader 1 finds
10 errors, and proofreader 2 finds 7 errors,
including 4 found by proofreader 1. Then X1 =
6, X2 = 3, X3 = 4. The estimate of p1 is 4/7,
and that of p2 is 4/10. The estimate of λ is
13/ (1 − 18/70) = 17.5.

(d) Since λ is the expected total number of errors,
we can use the estimator of λ to estimate
this total. Since 13 errors were discovered we
would estimate X4 to equal 4.5.

63. Let X and Y be respectively the number of cus-
tomers in the system at time t + s that were present
at time s, and the number in the system at t + s
that were not in the system at time s. Since there

are an infinite number of servers, it follows that
X and Y are independent (even if given the num-
ber is the system at time s). Since the service dis-
tribution is exponential with rate μ, it follows that
given that X(s) = n, X will be binomial with param-
eters n and p = e−μt. Also Y, which is indepen-
dent of X(s), will have the same distribution as X(t).

Therefore, Y is Poisson with mean λ

t∫
0

e−μydy

= λ(1 − e−μt)/μ

(a) E[X(t + s)|X(s) = n]

= E[X|X(s) = n] + E[Y|X(s) = n].

= ne−μt + λ(1 − e−μt)/μ

(b) Var(X(t + s)|X(s) = n)
= Var(X + Y|X(s) = n)

= Var(X|X(s) = n) + Var(Y)

= ne−μt(1 − e−μt) + λ(1 − e−μt)/μ

The above equation uses the formulas for the
variances of a binomial and a Poisson random
variable.

(c) Consider an infinite server queuing system in
which customers arrive according to a Poisson
process with rate λ, and where the service
times are all exponential random variables
with rate μ. If there is currently a single cus-
tomer in the system, find the probability that
the system becomes empty when that cus-
tomer departs.

Condition on R, the remaining service time:

P{empty}

=
∫ ∞

0
P{empty|R = t}μe−μtdt

=
∫ ∞

0
exp

{
−λ

∫ t

0
e−μydy

}
μe−μtdt

=
∫ ∞

0
exp

{
−λ

μ
(1 − e−μt)

}
μe−μtdt

=
∫ 1

0
e−λx/μdx

= μ

λ
(1 − e−λ/μ)

where the preceding used that P{empty|
R = t} is equal to the probability that an
M/M/∞ queue is empty at time t.
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64. (a) Since, given N(t), each arrival is uniformly dis-
tributed on (0, t) it follows that

E[X|N(t)] = N(t)
∫ t

0
(t − s)ds/t = N(t) t/2

(b) Let U1, U2, … be independent uniform (0, t)
random variables.
Then

Var(X|N(t) = n) = Var

[
n

∑
i=1

(t − Ui)

]

= nVar(Ui) = nt2/12
(c) By (a), (b), and the conditional variance

formula,

Var(X) = Var(N(t)t/2) + E[N(t)t2/12]

= λtt2/4 + λtt2/12 = λt3/3

65. This is an application of the infinite server Pois-
son queue model. An arrival corresponds to a new
lawyer passing the bar exam, the service time is
the time the lawyer practices law. The number in
the system at time t is, for large t, approximately a
Poisson random variable with mean λμ where λ is
the arrival rate and μ the mean service time. This
latter statement follows from∫ n

0
[1 − G(y)]dy = μ

where μ is the mean of the distribution G. Thus, we
would expect 500 · 30 = 15, 000 lawyers.

66. The number of unreported claims is distributed as
the number of customers in the system for the infi-
nite server Poisson queue.

(a) e−a(t)(a(t))n/n!, where a(t) = λ

∫ t

0
Ḡ(y)dy

(b) a(t)μF, where μF is the mean of the distribution
F.

67. If we count a satellite if it is launched before time
s but remains in operation at time t, then the num-
ber of items counted is Poisson with mean m(t) =∫ s

0
Ḡ(t − y)dy. The answer is e−m(t).

68. E[A(t)|N(t) = n]

= E[A]e−αtE

[
n

∑
i=1

eαsi |N(t) = n

]

= E[A]e−αtE

[
n

∑
i=1

eαU(i)

]

= E[A]e−αtE

[
n

∑
i=1

eαUi

]

= nE[A]e−αtE
[
eαU

]

= nE[A]e−αt
∫ t

0
eαx 1

t
dx

= nE[A]
1 − e−αt

αt

Therefore,

E[A(t)] = E

[
N(t)E[A]

1 − e−αt

αt

]
= λE[A]

1 − e−αt

αt

Going backwards from t to 0, events occur accord-
ing to a Poisson process and an event occurring a
time s (from the starting time t) has value Ae−αs

attached to it.

69. (a) 1 − e−λ(t−s)

(b) e−λse−λ(t−s)[λ(t − s)]3/3!

(c) 4 + λ(t − s)

(d) 4s/t

70. (a) Let A be the event that the first to arrive is the
first to depart, let S be the first service time,
and let X(t) denote the number of departures
by time t.

P(A) =
∫

P(A|S = t)g(t)dt

=
∫

P{X(t) = 0}g(t)dt

=
∫

e−λ
∫ t

0
G(y)dy

g(t)dt

(b) Given N(t), the number of arrivals by t, the
arrival times are iid uniform (0, t). Thus, given
N(t), the contribution of each arrival to the total
remaining service times are independent with
the same distribution, which does not depend
on N(t).

(c) and (d) If, conditional on N(t), X is the
contribution of an arrival, then

E[X] = 1
t

∫ t

0

∫ ∞

t−s
(s + y − t)g(y)dyds

E[X2] = 1
t

∫ t

0

∫ ∞

t−s
(s + y − t)2g(y)dyds

E[S(t)] = λtE[X] Var(S(t)) = λtE[X2]
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71. Let U1, … be independent uniform (0, t) random
variables that are independent of N(t), and let U(i, n)

be the ith smallest of the first n of them.

P

{
N(t)

∑
i=1

g(Si) < x

}

= ∑
n

P

{
N(t)

∑
i=1

g(Si) < x|N(t) = n

}
P{N(t) = n}

= ∑
n

P

{
n

∑
i=1

g(Si) < x|N(t) = n

}
P{N(t) = n}

= ∑
n

P

{
n

∑
i=1

g(U(i,n)) < x

}
P{N(t) = n}

(Theorem 5.2)

= ∑
n

P

{
n

∑
i=1

g(Ui) < x

}
P{N(t) = n}

(
n

∑
i=1

g(U(i, n)) =
n

∑
i=1

g(Ui)

)

= ∑
n

P

{
n

∑
i=1

g(Ui) < x|N(t) = n

}
P{N(t) = n}

= ∑
n

P

{
N(t)

∑
i=1

g(Ui) < x|N(t) = n

}
P{N(t) = n}

= P

{
N(t)

∑
i=1

g(Ui) < x

}

72. (a) Call the random variable Sn. Since it is the
sum of n independent exponentials with rate
λ, it has a graze distribution with parameters n
and λ.

(b) Use the result that given Sn = t the set of times
at which the first n − 1 riders departed are
independent uniform (0, t) random variables.
Therefore, each of these riders will still be
walking at time t with probability

p =
∫ t

0
e−μ(t−s)ds/t = 1 − e−μt

μt

Hence, the probability that none of the riders
are walking at time t is (1 − p)n−1.

73. (a) It is the gamma distribution with parameters
n and λ.

(b) For n ≥ 1,
P{N = n|T = t}

= P{T = t|N = n}p(1 − p)n−1

fT(t)

= C (λt)n−1

(n − 1)! (1 − p)n−1

= C (λ(1 − p)t)n−1

(n − 1)!

= e−λ(1−p)t (λ(1 − p)t)n−1

(n − 1)!

where the last equality follows since the
probabilities must sum to 1.

(c) The Poisson events are broken into two classes,
those that cause failure and those that do not.
By Proposition 5.2, this results in two indepen-
dent Poisson processes with respective rates
λp and λ(1 − p). By independence it follows
that given that the first event of the first pro-
cess occurred at time t the number of events of
the second process by this time is Poisson with
mean λ(1 − p)t.

74. (a) Since each item will, independently, be found
with probability 1 − e−μt it follows that the
number found will be Poisson distribution
with mean λ(1 − e−μt). Hence, the total
expected return is Rλ(1 − e−μt) − Ct.

(b) Calculus now yields that the maximizing value
of t is given by

t = 1
μ

log
(

Rλμ

C

)

provided that Rλμ > C; if the inequality is
reversed then t = 0 is best.

(c) Since the number of items not found by any
time t is independent of the number found
(since each of the Poisson number of items will
independently either be counted with proba-
bility 1 − e−μt or uncounted with probability
e−μt) there is no added gain in letting the deci-
sion on whether to stop at time t depend on
the number already found.

75. (a) {Yn} is a Markov chain with transition proba-
bilities given by

P0j = aj, Pi, i−1+j = aj, j ≥ 0

where

aj =
∫

e−λt(λt)j

j!
dG(t)
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(b) {Xn} is a Markov chain with transition proba-
bilities

Pi, i+1−j = βj, j = 0, 1, …, i, Pi, 0 =
∞
∑

k=i+1
βj

where

βj =
∫

e−μt(μt)j

j!
dF(t)

76. Let Y denote the number of customers served in
a busy period. Note that given S, the service time
of the initial customer in the busy period, it fol-
lows by the argument presented in the text that
the conditional distribution of Y − 1 is that of the

compound Poisson random variable
N(S)

∑
i=1

Yi, where

the Yi have the same distribution as does Y. Hence,

E[Y|S] = 1 + λSE[Y]

Var(Y|S) = λSE[Y2]

Therefore,

E[Y] = 1
1 − λE[S]

Also, by the conditional variance formula
Var(Y) = λE[S]E[Y2] + (λE[Y])2Var(S)

= λE[S]Var(Y) + λE[S](E[Y])2

+ (λE[Y])2Var(S)

implying that

Var(Y) = λE[S](E[Y])2 + (λE[Y])2Var(S)
1 − λE[S]

77. (a)
μ

λ + μ

(b)
λ

λ + μ

2μ

λ + 2μ

(c)
j−1∏
i=1

λ

λ + iμ
jμ

λ + jμ
, j > 1

(d) Conditioning on N yields the solution; namely
∞
∑
j=1

1
j

P(N = j)

(e)
∞
∑
j=1

P(N = j)
j

∑
i=0

1
λ + iμ

78. Poisson with mean 63.

79. Consider a Poisson process with rate λ in which an
event at time t is counted with probability λ(t)/λ
independently of the past. Clearly such a process
will have independent increments. In addition,

P{2 or more counted events in(t, t + h)}
≤ P{2 or more events in(t, t + h)}
= o(h)

and

P{1 counted event in (t, t + h)}

= P{1 counted | 1 event}P(1 event)

+ P{1 counted | ≥ 2 events}P{≥ 2}

=
∫ t+h

t

λ(s)
λ

ds
h

(λh + o(h)) + o(h)

= λ(t)
λ

λh + o(h)

= λ(t)h + o(h)

80. (a) No.

(b) No.

(c) P{T1 > t} = P{N(t) = 0} = e−m(t) where

m(t) =
∫ t

0
λ(s)ds

81. (a) Let Si denote the time of the ith event, i ≥ 1.
Let ti + hi < ti+1, tn + hn ≤ t.
P{ti < Si < ti + hi, i = 1, …, n|N(t) = n}
P{1 event in (ti, ti + hi), i = 1, …, n,

= no events elsewhere in (0, t)
P{N(t) = n}

=

[
n∏

i=1

e−(m(ti+hi)−m(ti))[m(ti + hi) − m(ti)]

]

e−[m(t)−∑i
m(ti+hi)−m(ti)]

e−m(t)[m(t)]n/n!

=
n

n∏
i

[m(ti + hi) − m(ti)]

[m(t)]n

Dividing both sides by h1 · · · hn and using the

fact that m(ti + hi) − m(ti) =
∫ ti+h

ti

λ(s) ds =
λ(ti)h + o(h) yields upon letting the hi → 0:
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fS1 ··· S2 (t1, …, tn|N(t) = n)

= n!
n∏

i=1

[λ(ti)/m(t)]

and the right-hand side is seen to be the joint
density function of the order statistics from a
set of n independent random variables from
the distribution with density function f (x) =
m(x)/m(t), x ≤ t.

(b) Let N(t) denote the number of injuries by time
t. Now given N(t) = n, it follows from part (b)
that the n injury instances are independent and
identically distributed. The probability (den-
sity) that an arbitrary one of those injuries was
at s is λ(s)/m(t), and so the probability that
the injured party will still be out of work at
time t is

p =
∫ t

0
P{out of work at t|injured at s} λ(s)

m(t)
dζ

=
∫ t

0
[1 − F(t − s)]

λ(s)
m(t)

dζ

Hence, as each of the N(t) injured parties have
the same probability p of being out of work at
t, we see that

E[X(t)]|N(t)] = N(t)p

and thus,

E[X(t)] = pE[N(t)]

= pm(t)

=
∫ t

0
[1 − F(t − s)]λ(s) ds

82. Interpret N as a number of events, and correspond
Xi to the ith event. Let I1, I2, …, Ik be k nonover-
laping intervals. Say that an event from N is
a type j event if its corresponding X lies in Ij,
j = 1, 2, …, k. Say that an event from N is a type
k + 1 event otherwise. It then follows that the num-
bers of type j, j = 1, …, k, events—call these num-
bers N(Ij), j = 1, …, k—are independent Poisson
random variables with respective means

E[N(Ij)] = λP{Xi ∈ Ij} = λ

∫
Ij

f (s)ds

The independence of the N(Ij) establishes that
the process {N(t)} has independent increments.
Because N(t + h) − N(t) is Poisson distributed with
mean

E[N(t + h) − N(t)] = λ

∫ t+h

t
f (s)ds

= λh f (t) + o(h)

it follows that

P{N(t + h) − N(t) = 0} = e−(λh f (t)+o(h))

= 1 − λh f (t) + o(h)

P{N(t + h) − N(t) = 1}
= (λh f (t) + o(h))e−(λh f (t) + o(h))

= (λh f (t) + o(h)

As the preceding also implies that

P{N(t + h) − N(t) ≥ 2} = o(h)

the verification is complete.

83. Since m(t) is increasing it follows that nonover-
lapping time intervals of the {N(t)} process will
correspond to nonoverlapping intervals of the
{No(t)} process. As a result, the independent
increment property will also hold for the {N(t)}
process. For the remainder we will use the
identity

m(t + h) = m(t) + λ(t)h + o(h)

P{N(t + h) − N(t) ≥ 2}
= P{No[m(t + h)] − No[m(t)] ≥ 2}
= P{No[m(t) + λ(t)h + o(h)] − No[m(t)] ≥ 2}
= o[λ(t)h + o(h)] = o(h)

P{N(t + h) − N(t) = 1}
= P{No[m(t) + λ(t)h + o(h)] − No[m(t)] = 1}
= P{1 event of Poisson process in interval

of length λ(t)h + o(h)]}
= λ(t)h + o(h)

84. There is a record whose value is between t and t +
dt if the first X larger than t lies between t and t + dt.
From this we see that, independent of all record
values less that t, there will be one between t and t +
dt with probability λ(t)dt where λ(t) is the failure
rate function given by

λ(t) = f (t)/[1 − F(t)]

Since the counting process of record values has,
by the above, independent increments we can con-
clude (since there cannot be multiple record val-
ues because the Xi are continuous) that it is a
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nonhomogeneous Poisson process with intensity
function λ(t). When f is the exponential density,
λ(t) = λ and so the counting process of record
values becomes an ordinary Poisson process with
rate λ.

85. $ 40,000 and $1.6 × 108.

86. (a) P{N(t) = n} = .3 e−3t(3t)n/n! + .7e−5t(5t)n/n!
(b) No!
(c) Yes! The probability of n events in any interval

of length t will, by conditioning on the type of
year, be as given in (a).

(d) No! Knowing how many storms occur in an
interval changes the probability that it is a
good year and this affects the probability dis-
tribution of the number of storms in other
intervals.

(e) P{good|N(1) = 3}

= P{N(1) = 3|good} P{good}
P{N(1) = 3|good}P{good} + P{N(1)

= 3|bad}P{bad}

= (e−333/3!).3
(e−333/3!).3 + (1e−553/3!).7

87. Cov[X(t), X(t + s)]

= Cov[X(t), X(t) + X(t + s) − X(t)]

= Cov[X(t), X(t)] + Cov[X(t), X(t + s) − X(t)]

= Cov[X(t), X(t)] by independent increments

= Var[X(t)] = λtE[Y2]

88. Let X(15) denote the daily withdrawal. Its mean
and variance are as follows:

E[X(15)] = 12 · 15 · 30 = 5400

Var[X(15)] = 12 · 15 · [30 · 30 + 50 · 50] = 612, 000

Hence,

P{X(15) ≤ 6000}

= P

{
X(15) − 5400√

612, 000
≤ 600√

612, 000

}

= P{Z ≤ .767} where Z is a standard normal

= .78 from Table 7.1 of Chapter 2.

89. Let Ti denote the arrival time of the first type i
shock, i = 1, 2, 3.

P{X1 > s, X2 > t}
= P{T1 > s, T3 > s, T2 > t, T3 > t}
= P{T1 > s, T2 > t, T3 > max(s, t)}

= e−λ1s e−λ2t e−λ3max(s, t)

90. P{X1 > s} = P{X1 > s, X2 > 0}
= e−λ1s e−λ3s

= e−(λ1+λ3)s

91. To begin, note that

P

[
X1 >

n

∑
2

Xi

]

= P{X1 > X2}P{X1 − X2 > X3|X1 > X2}
= P{X1 − X2 − X3 > X4|X1 > X2 + X3}…

= P{X1 − X2 · · · − Xn−1 > Xn|X1 > X2

+ · · · + Xn−1}
= (1/2)n−1

Hence,

P

{
M >

n

∑
i=1

Xi − M

}
=

n

∑
i−1

P

{
X1>

n

∑
j �=i

Xi

}

= n/2n−1

92. M2(t) =∑
i

Ji

where Ji =
{

1, if bug i contributes 2 errors by t
0, otherwise

and so

E[M2(t)] = ∑
i

P{Ni(t) = 2} =∑
i

e
−λit (λit)

2/2

93. (a) max(X1, X2) + min(X1, X2) = X1 + X2.
(b) This can be done by induction:

max{(X1, …, Xn)

= max(X1, max(X2, …, Xn))

= X1+ max(X2, …, Xn)

− min(X1, max(X2, …, Xn))

= X1+ max(X2, …, Xn)

− max(min(X1, X2), …, min (X1, Xn)).

Now use the induction hypothesis.
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A second method is as follows:
Suppose X1 ≤ X2 ≤ · · · ≤ Xn. Then the coeffi-
cient of Xi on the right side is

1 −
[

n − i
1

]
+
[

n − i
2

]
−
[

n − i
3

]
+ · · ·

= (1 − 1)n−i

=
{

0, i 	= n
1, i = n

and so both sides equal Xn. By symmetry the
result follows for all other possible orderings
of the X′s.

(c) Taking expectations of (b) where Xi is the time
of the first event of the ith process yields

∑
i

λ−1
i − ∑

i
∑
<j

(λi + λj)−1

+ ∑
i

∑
<j

∑
<k

(λi + λj + λk)−1 − · · ·

+ (−1)n+1

[
n

∑
1

λi

]−1

94. (i) P{X > t}
= P{no events in a circle of area rt2}
= e−λrt2

(ii) E[X] =
∫ ∞

0
P{X > t}dt

=
∫ ∞

0
e−λrt2

dt

= 1√
2rλ

∫ ∞

0
e−x2/2dx by x = t

√
2λr

= 1

2
√

λ

where the last equality follows since

1/
√

2r
∫ ∞

0
e−x2/2dx = 1/2 since it represents the

probability that a standard normal random
variable is greater than its mean.

95. E[L|N(t) = n] =

∫
xg(x)e−xt(xt)ndx∫
g(x)e−xt(xt)ndx

Conditioning on L yields

E[N(s)|N(t) = n]

= E[E[N(s)|N(t) = n, L]|N(t) = n]

= E[n + L(s − t)|N(t) = n]

= n + (s − t)E[L|N(t) = n]

For (c), use that for any value of L, given that there
have been n events by time t, the set of n event times
are distributed as the set of n independent uniform
(0, t) random variables. Thus, for s < t

E[N(s)|N(t) = n] = ns/t

96. E[N(s)N(t)|L] = E[E[N(s)N(t)|L, N(s)]|L]

= E[N(s)E[N(t)|L, N(s)]|L]

= E[N(s)[N(s) + L(t − s)]|L]

= E[N2(s)|L] + L(t − s)E[N(s)|L]

= Ls + (Ls)2 + (t − s)sL2

Thus,

Cov(N(s), N(t)) = sm1 + stm2 − stm2
1

97. With C = 1/P(N(t) = n), we have

fL|N(t)(λ|n) = Ce−λt (λt)n

n!
pe−pλ (pλ)m−1

(m − 1)!

= Ke−(p+t)λλn+m−1

where K does not depend on λ. But we recognize
the preceding as the gamma density with param-
eters n + m, p + t, which is thus the conditional
density.



Chapter 6

1. Let us assume that the state is (n, m). Male i mates
at a rate λ with female j, and therefore it mates at a
rate λm. Since there are n males, matings occur at
a rate λnm. Therefore,

v(n, m) = λnm

Since any mating is equally likely to result in a
female as in a male, we have

P(n, m); (n+1, m) = P(n, m)(n, m+1) = 1
2

2. Let NA(t) be the number of organisms in state A
and let NB(t) be the number of organisms in state B.
Then clearly {NA(t); NB(t)} is a continuous Markov
chain with

v{n, m} = αn + βm

P{n, m}; {n−1; m+1} = αn
αn + βm

P{n, m}; {n+2; m−1} = βm
αn + βm

3. This is not a birth and death process since we need
more information than just the number working.
We also must know which machine is working. We
can analyze it by letting the states be

b : both machines are working

1 : 1 is working, 2 is down

2 : 2 is working, 1 is down

01: both are down, 1 is being serviced

02: both are down, 2 is being serviced

vb = μ1 + μ2, v1 = μ1 + μ, v2 = μ2 + μ,

v01 = v02 = μ

Pb, 1 = μ2
μ2 + μ1

= 1 − Pb, 2, P1, b = μ
μ + μ1

= 1 − P1,02

P2, b = μ
μ + μ2

= 1 − P2, 01 , P01, 1 = P02, 2 = 1

4. Let N(t) denote the number of customers in the
station at time t. Then {N(t)} is a birth and death
process with

λn = λαn, μn = μ

5. (a) Yes.
(b) It is a pure birth process.
(c) If there are i infected individuals then

since a contact will involve an infected and
an uninfected individual with probability
i (n − i) /(n

2), it follows that the birth rates are
λi = λi(n − i)/(n

2), i = 1, …, n. Hence,

E[time all infected] = n(n − 1)
2λ

n

∑
i=1

1/[i(n−i)]

6. Starting with E[T0] = 1
λ0

= 1
λ

, employ the identity

E[Ti] = 1
λi

+ μi

λi
E
[
Ti−1

]
to successively compute E[Ti] for i = 1, 2, 3, 4.

(a) E[T0] + · · · + E[T3]
(b) E[T2] + E[T3] + E[T4]

7. (a) Yes!
(b) For n = (n1, … , ni, ni+1, …, nk−1) let

Si(n) = (n1, …, ni−1, ni+1 + 1, …, nk−1),

i = 1, …, k − 2

Sk−1(n) = (n1, …, ni, ni+1, …nk−1 − 1),

S0(n) = (n1 + 1, …, ni, ni+1, …, nk−1)
Then
qn, S1(n) = niμ, i = 1, …, k − 1

qn, S0(n) = λ

8. The number of failed machines is a birth and death
process with

λ0 = 2λ μ1 = μ2 = μ

λ1 = λ μn = 0, n �= 1, 2

62
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λn = 0, n > 1.

Now substitute into the backward equations.

9. Since the death rate is constant, it follows that as
long as the system is nonempty, the number of
deaths in any interval of length t will be a Poisson
random variable with mean μt. Hence,

Pij(t) = e−μt(μt)i − j/(i − j)!, 0 < j ≤ i

Pi, 0(t) =
∞
∑
k=i

e−μt(μt)k/k!

10. Let Ij(t) =
{

0, if machine j is working at time t

1, otherwise

Also, let the state be (I1(t), I2(t)).

This is clearly a continuous-time Markov chain
with

v(0, 0) = λ1 + λ2 λ(0, 0); (0, 1) = λ2 λ(0, 0); (1, 0) = λ1

v(0, 1) = λ1 + μ2 λ(0, 1); (0, 0) = μ2 λ(0, 1); (1, 1) = λ1

v(1, 0) = μ1 + λ2 λ(1, 0); (0, 0) = μ1 λ(1, 0); (1, 1) = λ2

v(1, 1) = μ1 + μ2 λ(1, 1); (0, 1) = μ1 λ(1, 1); (1, 0) = λ2

By the independence assumption, we have

(a) P(i, j)(k, �)(t) = P(i, k)(t)Q(j, �)(t)

where Pi, k(t) = probability that the first machine be
in state k at time t given that it was at state i at time
0.

Qj, �(t) is defined similarly for the second
machine. By Example 4(c) we have

P00(t) = [λ1e−(μ1+λ1)t + μ1]/(λ1 + μ1)

P10(t) = [μ1 − μ1e−(μ1+λ1)t]/(λ1 + μ1)

And by the same argument,

P11(t) = [μ1e−(μ1+λ1)t + λ1]/(λ1 + μ1)

P01(t) = [λ1 − λ1e−(μ1+λ1)t]/(λ1 + μ1)

Of course, the similar expressions for the sec-
ond machine are obtained by replacing (λ1, μ1)
by (λ2, μ2). We get P(i, j)(k, �)(t) by formula (a). For
instance,

P(0, 0)(0, 0)(t) = P(0, 0)(t)Q(0, 0)(t)

=
[
λ1e−(λ1+μ1)t + μ1

]
(λ1 + μ1) ×

[
λ2e−(λ2+μ2)t + μ2

]
(λ2 + μ2)

Let us check the forward and backward equations
for the state {(0, 0); (0, 0)}.

Backward equation

We should have

P′
(0, 0),(0, 0)(t) = (λ1 + λ2)

[
λ2

λ1 + λ2
P(0, 1)(0, 0)(t)

+ λ1
λ1 + λ2

P(1, 0)(0, 0)(t) − P(0, 0)(0, 0)(t)
]

or

P′
(0, 0)(0, 0)(t) = λ2P(0, 1)(0, 0)(t) + λ1P(1, 0)(0, 0)(t)

− (λ1 + λ2) P(0, 0)(0, 0)(t)

Let us compute the right-hand side (r.h.s.) of this
expression:

r.h.s.

= λ2

[
λ1e−(λ1+μ1)t + μ1

] [
μ2 − μ2e−(μ2+λ2)t

]
(λ1 + μ1)(λ2 + μ2)

+
[
μ1 − μ1e−(λ1+μ1)t

] [
λ2e−(λ2+μ2)t + μ2

]
(λ1 + μ1)(λ2 + μ2)

− (λ1 + λ2)

[
λ1e−(λ1+μ1)t + μ1

] [
λ2e−(λ2+μ2)t + μ2

]
(λ1 + μ1)(λ2 + μ2)

=
λ2

[
λ1e−(λ1+μ1)t + μ1

]
(λ1 + μ1)(λ2 + μ2)

×
[
μ2 − μ2e−(μ2+λ2)t − λ2e−(λ2+μ2)t − μ2

]

+
λ1

[
λ2e−(λ2+μ2)t + μ2

]
(λ1 + μ1)(λ2 + μ2)

×
[
μ1 − μ1e−(μ1+λ1)t − μ1 − λ1e−(λ1+μ1)t

]

=
[
−λ2e−(λ2+μ2)t

] [
λ1e−(λ1+μ1)t + μ1

λ1 + μ1

]

+ [−λ1e−(λ1+μ1)t]
[
λ2e−(λ2+μ2)t + μ2

λ2 + μ2

]

= Q′
00(t)P00(t) + P′

00(t)Q00(t) = [P00(t)Q00(t)]′

= [P(0, 0)(0, 0)(t)
]′

So, for this state, the backward equation is
satisfied.
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Forward equation

According to the forward equation, we should now
have

P′
(0, 0)(0, 0)(t) = μ2P(0, 0)(0, 1)(t) + μ1P(0, 0)(1, 0)(t)

− (λ1 + λ1)P(0, 0)(0, 0)(t)

Let us compute the right-hand side:

r.h.s.

= μ2

[
λ1e−(μ1+λ1)t + μ1

] [
λ2 − λ2e−(λ2+μ2)t

]
(λ1 + μ1)(λ2 + μ2)

+ μ1

[
λ1 − λ1e−(λ1+μ1)t

] [
λ2e−(λ2+μ2)t + μ2

]
(λ1 + μ1)(λ2 + μ2)

−(λ1 + λ2)

[
λ1e−(μ1+λ1)t + μ1

] [
λ2e−(μ2+λ2)t + μ2

]
(λ1 + μ1)(λ2 + μ2)

=
[
λ1e−(μ1+λ1)t + μ1

]
(λ1 + μ1)

×
[
μ2λ2 − λ2e−(λ2+μ2)t − λ2

[
λ2e−(μ2+λ2)t + μ2

]]
λ2 + μ2

+
[
λ2e−(μ2+λ2)t + μ2

]
(λ2 + μ2)

×
[
μ1

[
λ1 − λ1e−(λ1+μ1)t

]
− λ1

[
λ1e−(μ1+λ1)t + μ1

]]
(λ1 + μ1)

= P00(t)
[
−λ2e−(μ2+λ2)t

]
+ Q00(t)

[
−λ1e−(λ1+μ1)t

]

= P00(t)Q′
00(t) + Q00(t)P′00(t) = [P(0,0)(0,0)(t)

]
In the same way, we can verify Kolmogorov’s equa-
tions for all the other states.

11. (b) Follows from the hint upon using the lack of
memory property and the fact that εi, the min-
imum of j − (i − 1) independent exponentials
with rateλ, is exponential with rate (j − i + 1)λ.

(c) From (a) and (b)

P{T1 + · · · + Tj ≤ t} = P
{

max
1 ≤ i ≤ j

Xi ≤ t
}

= (1 − e−λt) j

(d) With all probabilities conditional on X(0) = 1

P1j(t) = P{X(t) = j}
= P{X(t) ≥ j} − P{X(t) ≥ j + 1}
= P{T1 + · · · + Tj ≤ t}

−P{T1 + · · · + Tj+1 ≤ t}

(e) The sum of independent geometrics, each
having parameter p = e−λt, is negative bino-
mial with parameters i, p. The result follows
since starting with an initial population of i is
equivalent to having i independent Yule pro-
cesses, each starting with a single individual.

12. (a) If the state is the number of individuals at time
t, we get a birth and death process with

λn = nλ + θ, n < N

λn = nλ, n ≥ N

μn = nμ

(b) Let Pi be the long-run probability that the
system is in state i. Since this is also the pro-
portion of time the system is in state i, we are

looking for
∞
∑

i = 3
Pi.

We have λkPk = μk+1Pk+1.

This yields

P1 = θ

μ
P0

P2 = λ + θ

2μ
P1 = θ(λ + θ)

2μ2 P0

P3 = 2λ + θ

2μ
P2 = θ(λ + θ)(2λ + θ)

6μ3 P0

For k ≥ 4, we get

Pk = (k − 1)λ
kμ

Pk−1

which implies

Pk = (k − 1)(k − 2) · · · (3)
(k)(k − 1) · · · (4)

[
λ

μ

]k−3

Pk = 3
k

[
λ

μ

]k−3
P3

therefore
∞
∑

k = 3
Pk = 3

[μ
λ

]3
P3

∞
∑

k = 3

1
k

[
λ

μ

]k
,
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but
∞
∑

k = 1

1
k

[
λ

μ

]k
= log

[
1

1 − λ

μ

]

= log
[

μ

μ − λ

]
if

λ

μ
< 1

So
∞
∑

k = 3
Pk = 3

[μ
λ

]3
P3

[
log
[

μ

μ − λ

]

−λ

μ
− 1

2

[
λ

μ

]2
]

∞
∑
k=3

Pk = 3
[μ
λ

]3
[

log
[

μ

μ − λ

]
− λ

μ
− 1

2

[
λ

μ

]2
]

θ(λ + θ)(2λ + θ)
6μ3 P0

Now
∞
∑
0

Pi = 1 implies

P0 =
[

1 + θ

μ
+ θ(λ + θ)

2μ2 + 1
2λ3 θ(λ + θ)(2λ + θ)

×
[

log
[

μ

μ − λ

]
− λ

μ
− 1

2

[
λ

μ

]2
]]−1

And finally,

∞
∑
k=3

Pk =
[ [

1
2λ3

][
log
[

μ

μ − λ

]
− λ

μ
− 1

2

[
λ

μ

]2
]

θ(λ + θ)(2λ + θ)

]/[
1 + θ

μ
+ θ(λ + θ)

2μ2

+θ(λ + θ)(2λ + θ)
2λ3

×
[

log
[

μ

μ − λ

]
− λ

μ
− 1

2

[
λ

μ

]2
]]

13. With the number of customers in the shop as the
state, we get a birth and death process with

λ0 = λ1 = 3, μ1 = μ2 = 4

Therefore

P1 = 3
4

P0, P2 = 3
4

, P1 =
[

3
4

]2
P0

And since
2

∑
0

Pi = 1, we get

P0 =
[

1 + 3
4

+
[

3
4

]2
]−1

= 16
37

(a) The average number of customers in the
shop is

P1 + 2P2 =
[

3
4

+ 2
[

3
4

]2
]

P0

= 30
16

[
1 + 3

4
+
[

3
4

]2
]−1

= 30
37

(b) The proportion of customers that enter the
shop is

λ(1 − P2)
λ

= 1 − P2 = 1 − 9
16

· 16
37

= 28
37

(c) Now μ = 8, and so

P0 =
[

1 + 3
8

+
[

3
8

]2
]−1

= 64
97

So the proportion of customers who now enter
the shop is

1 − P2 = 1 −
[

3
8

]2 264
97

= 1 − 9
97

= 88
97

The rate of added customers is therefore

λ

[
88
97

]
− λ

[
28
37

]
= 3

[
88
97

− 28
37

]
= 0.45

The business he does would improve by 0.45
customers per hour.

14. Letting the number of cars in the station be the state,
we have a birth and death process with

λ0 = λ1 = λ2 = 20, λi = 0, i > 2

μ1 = μ2 = 12

Hence,

P1 = 5
3

P0, P2 = 5
3

P1 =
[

5
3

]2
P0

P3 = 5
3

P2 =
[

5
3

]3
P0

and as
3

∑
0

Pi = 1, we have

P0 =
[

1 + 5
3

+
[

5
3

]2
+
[

5
3

]2
]−1

= 27
272
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(a) The fraction of the attendant’s time spent ser-
vicing cars is equal to the fraction of time
there are cars in the system and is therefore
1 − P0 = 245/272.

(b) The fraction of potential customers that are lost
is equal to the fraction of customers that arrive
when there are three cars in the station and is
therefore

P3 =
[

5
3

]3
P0 = 125/272

15. With the number of customers in the system as the
state, we get a birth and death process with

λ0 = λ1 = λ2 = 3, λi = 0, i ≥ 4

μ1 = 2, μ2 = μ3 = 4

Therefore, the balance equations reduce to

P1 = 3
2

P0, P2 = 3
4

P1 = 9
8

P0, P3 = 3
4

P2 = 27
32

P0

And therefore,

P0 =
[

1 + 3
2

+ 9
8

+ 27
32

]−1
= 32

143

(a) The fraction of potential customers that enter
the system is

λ(1 − P3)
λ

= 1 − P3 = 1 − 27
32

× 32
143

= 116
143

(b) With a server working twice as fast we would
get

P1 = 3
4

P0 P2 = 3
4

P1 =
[

3
4

]2
P0 P3 =

[
3
4

]3
P0

and P0 =
[

1 + 3
4

+
[

3
4

]2
+
[

3
4

]3
]−1

= 64
175

So that now

1 − P3 = 1 − 27
64

= 1 − 64
175

= 148
175

16. Let the state be

0: an acceptable molecule is attached

1: no molecule attached

2: an unacceptable molecule is attached.

Then this is a birth and death process with balance
equations

P12 = μ

λ
P0

P2 = λ(1 − α)
μ1

P1 = (1 − α)
α

μ2

μ1
P0

Since
2

∑
0

Pi = 1, we get

P0 =
[

1 + μ2

λα
+ 1 − α

α

μ2

μ1

]−1

= λαμ1

λαμ1 + μ1μ2 + λ(1 − α)μ2

P0 is the percentage of time the site is occupied by
an acceptable molecule.

The percentage of time the site is occupied by an
unacceptable molecule is

P2 = 1 − α

α

μ2

μ1
P0 = λ(1 − α)μ2

λαμ1 + μ1 + λ(1 − α)μ2

17. Say the state is 0 if the machine is up, say it is i
when it is down due to a type i failure, i = 1, 2. The
balance equations for the limiting probabilities are
as follows.

λP0 = μ1P1 + μ2P2

μ1P1 = λpP0

μ2P2 = λ(1 − p)P0

P0 + P1 + P2 = 1

These equations are easily solved to give the results

P0 = (1 + λp/μ1 + λ(1 − p)/μ2)−1

P1 = λpP0/μ1, P2 = λ(1 − p)P0/μ2

18. There are k + 1 states; state 0 means the machine
is working, state i means that it is in repair phase
i, i = 1, …, k. The balance equations for the limiting
probabilities are

λP0 = μkPk

μ1P1 = λP0

μiPi = μi−1Pi−1, i = 2, …, k

P0 + · · · + Pk = 1

To solve, note that

μiPi = μi−1Pi−1 = μi−2Pi−2 = · · · = λP0

Hence,

Pi = (λ/μi)P0
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and, upon summing,

1 = P0

[
1 +

k

∑
i=1

(λ/μi)

]

Therefore,

P0 =
[

1 +
k

∑
i=1

(λ
/
μi)

]−1

, Pi = (λ/μi)P0,

i = 1, …, k

The answer to part (a) is Pi and to part (b) is P0.

19. There are 4 states. Let state 0 mean that no
machines are down, state 1 that machine 1 is down
and 2 is up, state 2 that machine 1 is up and 2 is
down, and 3 that both machines are down. The bal-
ance equations are as follows:

(λ1 + λ2)P0 = μ1P1 + μ2P2

(μ1 + λ2)P1 = λ1P0 + μ1P3

(λ1 + μ2)P2 = λ2P0

μ1P3 = μ2P1 + μ1P2

P0 + P1 + P2 + P3 = 1

These equations are easily solved and the
proportion of time machine 2 is down is P2 + P3.

20. Letting the state be the number of down
machines, this is a birth and death process with
parameters

λi = λ, i = 0, 1
μi = μ, i = 1, 2

By the results of Example 3g, we have

E[time to go from 0 to 2] = 2/λ + μ/λ2

Using the formula at the end of Section 3, we have

Var(time to go from 0 to 2)

= Var(T0) + Var(T1)

= 1
λ2 + 1

λ(λ + μ)
+ μ

λ3 + μ

μ + λ
(2/λ + μ/λ2)2

Using Equation (5.3) for the limiting probabilities
of a birth and death process, we have

P0 + P1 = 1 + λ/μ

1 + λ/μ + (λ/μ)2

21. How we have a birth and death process with
parameters

λi = λ, i = 1, 2
μi = iμ, i = 1, 2

Therefore,

P0 + P1 = 1 + λ/μ

1 + λ/μ + (λ/μ)2/2

and so the probability that at least one machine is
up is higher in this case.

22. The number in the system is a birth and death pro-
cess with parameters

λn = λ/(n + 1), n ≥ 0
μn = μ, n ≥ 1

From Equation (5.3),

1/P0 = 1 +
∞
∑
n=1

(λ/μ)n/n! = eλ/μ

and

Pn = P0(λ/μ)n/n! = e−λ/μ(λ/μ)n/n!, n ≥ 0

23. Let the state denote the number of machines that
are down. This yields a birth and death process
with

λ0 = 3
10

, λ1 = 2
10

, λ2 = 1
10

, λi = 0, i ≥ 3

μ1 = 1
8

, μ2 = 2
8

, μ3 = 2
8

The balance equations reduce to

P1 = 3/10
1/8

P0 = 12
5

P0

P2 = 2/10
2/8

P1 = 4
5

P1 = 48
25

P0

P3 = 1/10
2/8

P2 = 4
10

P3 = 192
250

P0

Hence, using
3

∑
0

Pi = 1 yields

P0 =
[

1 + 12
5

+ 48
25

+ 192
250

]−1
= 250

1522

(a) Average number not in use

= P1 + 2P2 + 3P3 = 2136
1522

= 1068
761
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(b) Proportion of time both repairmen are busy

= P2 + P3 = 672
1522

= 336
761

24. We will let the state be the number of taxis wait-
ing. Then, we get a birth and death process with
λn = 1μn = 2. This is a M/M/1, and therefore,

(a) Average number of taxis waiting = 1
μ − λ

= 1
2 − 1

= 1

(b) The proportion of arriving customers that get
taxis is the proportion of arriving customers
that find at least one taxi waiting. The rate of
arrival of such customers is 2(1 − P0). The pro-
portion of such arrivals is therefore

2(1 − P0)
2

= 1 − P0 = 1 −
[

1 − λ

μ

]
= λ

μ
= 1

2

25. If Ni(t) is the number of customers in the ith
system (i = 1, 2), then let us take {N1(t), N2(t)}
as the state. The balance equation are with
n ≥ 1, m ≥ 1.

(a) λP0, 0 = μ2P0, 1

(b) Pn, 0(λ + μ1) = λPn−1, 0 + μ2Pn, 1

(c) P0, m(λ + μ2) = μ1P1, m−1 + μ2P0, m+1

(d) Pn, m(λ + μ1 + μ2) = λPn−1, m + μ1Pn+1, m−1

+ μ2Pn, m+1

We will try a solution of the form Cαnβm = Pn, m.
From (a), we get

λC = μ2Cβ = β = λ

μ2

From (b),

(λ + μ1) Cαn = λCαn−1 + μ2Cαnβ

or

(λ + μ1) α = λ + μ2αβ = λ + μ2α
λ

μ
= λ + λα

and μ1α = λ ⇒ α = λ

μ1

To get C, we observe that ∑
n, m

Pn, m = 1

but

∑
n, m

Pn, m = C ∑
n

αn ∑
m

βm = C
[

1
1 − α

] [
1

1 − β

]

and C =
[

1 − λ

μ1

] [
1 − λ

μ2

]

Therefore a solution of the form Cαnβn must be
given by

Pn, m =
[

1 − λ

μ1

] [
λ

μ1

]n [
1 − λ

μ2

] [
λ

μ2

]m

It is easy to verify that this also satisfies (c) and
(d) and is therefore the solution of the balance
equations.

26. Since the arrival process is Poisson, it follows that
the sequence of future arrivals is independent of
the number presently in the system. Hence, by
time reversibility the number presently in the sys-
tem must also be independent of the sequence of
past departures (since looking backwards in time
departures are seen as arrivals).

27. It is a Poisson process by time reversibility. If
λ > δμ, the departure process will (in the limit) be
a Poisson process with rate δμ since the servers will
always be busy and thus the time between depar-
tures will be independent random variables each
with rate δμ.

28. Let Px
ij, Vx

i denote the parameters of the X(t) and
Py

ij, Vy
i of the Y(t) process; and let the limiting prob-

abilities be Px
i , Py

i , respectively. By independence
we have that for the Markov chain
{X(t), Y(t)} its parameters are

V(i, �) = Vx
i + Vy

�

P(i, �),(j, �) = Vx
i

Vx
i + Vy

�

Px
ij

P(i, �), (i, k) = Vy
�

Vx
i + Vy

�

Py
�k

and

lim
t→∞ P{(X(t), Y(t)) = (i, j)} = Px

i Py
j

Hence, we need show that

Px
i Py

�Vx
i Px

ij = Px
j Py

�Vx
j Px

ji

(That is, rate from (i, �) to (j, �) equals the rate from
(j, �) to (i, �)). But this follows from the fact that the
rate from i to j in X(t) equals the rate from j to i;
that is,

Px
i Vx

i Px
ij = Px

j Vx
j Px

ji

The analysis is similar in looking at pairs (i, �) and
(i, k).



Answers and Solutions 69

29. (a) Let the state be S, the set of failed machines.

(b) For i ∈ S, j ∈ Sc,

qS, S − i = μi/|S|, qS, S+j = λj

where S − i is the set S with i deleted and S + j
is similarly S with j added. In addition, |S|
denotes the number of elements in S.

(c) PSqS, S−i = PS−iqS − i, S

(d) The equation in (c) is equivalent to

PSμi/|S| = PS − iλi

or

PS = PS−i|S|λi/μi

Iterating this recursion gives

PS = P0(|S|)!
∏
i∈S

(λi/μi)

where 0 is the empty set. Summing over all S
gives

1 = P0 ∑
S

(|S|)!
∏
i∈S

(λi/μi)

and so

PS =
(|S|)!

∏
i∈S

(λi/μi)

∑
S

(|S|)!
∏
i∈S

(λi/μi)

As this solution satisfies the time reversibility
equations, it follows that, in the steady state,
the chain is time reversible with these limiting
probabilities.

30. Since λij is the rate it enters j when in state i, all we
need do to prove both time reversibility and that
Pj is as given is to verify that

λkjPk = λjkPj

n

∑
1

Pj = 1

Since λkj = λjk , we see that Pj ≡ 1/n satisfies the
above.

31. (a) This follows because of the fact that all of the
service times are exponentially distributed and
thus memoryless.

(b) Let n = (n1, …, ni, …, nj, …, nr), where
ni > 0 and let n′ = (n1, …, ni − 1, …,
nj − 1, …, nr). Then qn, n′ = μi/(r − 1).

(c) The process is time reversible if we can find
probabilities P(n) that satisfy the equations

P(n)μi/(r − 1) = P(n′)μj/(r − 1)

where n and n′ are as given in part (b). The
above equations are equivalent to

μiP(n) = μj/P(n′)

Since ni = n′
i + 1 and n′

j = nj + 1 (where nk

refers to the kth component of the vector n), the
above equation suggests the solution

P(n) = C
r∏

k=1

(1/μk)nk

where C is chosen to make the probabili-
ties sum to 1. As P(n) satisfies all the time
reversibility equations it follows that the chain
is time reversible and the P(n) given above are
the limiting probabilities.

32. The states are 0, 1, 1′, n, n ≥ 2. State 0 means the
system is empty, state 1 (1′) means that there is
one in the system and that one is with server 1 (2);
state n, n ≥ 2, means that there are n customers in
the system. The time reversibility equations are as
follows:

(λ/2)P0 = μ1P1

(λ/2)P0 = μ2P1′

λP1 = μ2P2

λP1′ = μ1P2

λPn = μPn+1, n ≥ 2

where μ = μ1 + μ2. Solving the last set of equations
(with n ≥ 2) in terms of P2 gives

Pn+1 = (λ/μ)Pn

= (λ/μ)2Pn−1 = · · · = (λ/μ)n−1P2

That is,

Pn+2 = (λ/μ)nP2, n ≥ 0

The third and fourth equations above yield

P1 = (μ2/λ)P2

P1′ = (μ1/λ)P2

The second equation yields

P0 = (2μ2/λ)P1′ = (2μ1μ2/λ2)P2

Thus all the other probabilities are determined in
terms of P0. However, we must now verify that the
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top equation holds for this solution. This is shown
as follows:

P0 = (2μ1/λ)P1 = (2μ1μ2/λ2)P2

Thus all the time reversible equations hold when
the probabilities are given (in terms of P2) as shown
above. The value of P2 is now obtained by requiring
all the probabilities to sum to 1. The fact that this
sum will be finite follows from the assumption that
λ/μ < 1.

33. Suppose first that the waiting room is of
infinite size. Let Xi(t) denote the number of cus-
tomers at server i, i = 1, 2. Then since each of
the M/M/1 processes {Xi(t)} is time-reversible,
it follows by Problem 28 that the vector process
{(X1(t), X2(t)), t ≥ 0} is a time-reversible Markov
chain. Now the process of interest is just the trun-
cation of this vector process to the set of states A
where

A = {(0, m) : m ≤ 4} ∪ {(n, 0) : n ≤ 4}
∪ {(n, m) : nm > 0, n + m ≤ 5}

Hence, the probability that there are n with server 1
and n with server 2 is

Pn, m = k(λ1/μ1)n(1 − λ1/μ1)(λ2/μ2)m(1 − λ2/μ2),

= C(λ1/μ1)n(λ2/μ2)m, (n, m) ∈ A

The constant C is determined from

∑ Pn, n = 1

where the sum is over all (n, m) in A.

34. The process {Xi(t)} is a two state continuous-time
Markov chain and its limiting probability is

lim
t→∞ P{Xi(t) = 1} = μi/(μi + λi), i = 1, …, 4

(a) By independence,
proportion of time all working

=
4∏

i=1

μi/(μi + λi)

(b) It is a continuous-time Markov chain since the
processes {Xi(t)} are independent with each
being a continuous-time Markov chain.

(c) Yes, by Problem 28 since each of the processes
{Xi(t)} is time reversible.

(d) The model that supposes that one of the
phones is down is just a truncation of the pro-
cess {X(t)} to the set of states A, where A

includes all 16 states except (0, 0, 0, 0). Hence,
for the truncated model

P{all working/truncated}
= P{all working}/(1 − P(0, 0, 0, 0)

=

4∏
i=1

(μi/(μi + λi)

1 −
4∏

i=1

(λi/(λi + μi)

35. We must find probabilities Pn
i such that

Pn
i qn

ij = Pn
j qn

ji

or

cPn
i qij = Pn

j qji, if i ∈ A, j /∈ A
Piqij = cPn

j qji, if i /∈ A, j ∈ A
Piqij = Pjqji, otherwise

Now, Piqij = Pjqji and so if we let

Pn
i = kPi/c if i ∈ A

kPi if i /∈ A

then we have a solution to the above equations. By
choosing k to make the sum of the Pn

j equal to 1, we
have the desired result. That is,

k =
(

∑
i∈A

Pi/c − ∑
i/∈A

Pi

)−1

36. In Problem 3, with the state being the number of
machines down, we have

v0 = 2λ P0, 1 = 1

v1 = λ + μ P1, 0 = μ
(λ + μ)P1, 2 = 1

(λ + μ)

v2 = μ P2, 1 = 1

We will choose v = 2λ = 2μ, then the uniformized
version is given by

vn
i = 2(λ + μ) for i = 0, 1, 2

Pn
00 = 1 − 2λ

2(λ + μ)
= λ

(λ + μ)

Pn
01 = 2λ

2(λ + μ)
· 1 = λ

(λ + μ)

Pn
10 = λ + μ

2(λ + μ)
· μ

(λ + μ)
= μ

2(λ + μ)
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Pn
11 = 1 − λ + μ

2(λ + μ)
= 1

2

Pn
12 = λ + μ

2(λ + μ)
λ

(λ + μ)
= λ

2(λ + μ)

Pn
21 = μ

2(λ + μ)

Pn
22 = 1 − μ

2(λ + μ)
= 2λ + μ

2(λ + μ)

37. The state of any time is the set of down
components at that time. For S ⊂ {1, 2, …, n},
i /∈ S, j ∈ S

q(S, S + i) = λi

q(S, S − j) = μjα
|S|

where S + i = S ∪ {i}, S − j = S ∩ {j}c, |S| = number
of elements in S.

The time reversible equations are

P(S)μiα
|S| = P(S − i)λi, i ∈ S

The above is satisfied when, for S = {i1, i2, …, ik}

P(S) = λi1λi2 · · ·λik

μi1μi2 · · ·μik α
k(k+1)/2

P(φ)

where P(φ) is determined so that

∑ P(S) = 1

where the sum is over all the 2n subsets of
{1, 2, …, n}.

38. Say that the process is “on” when in state 0.

(a) E[0(t + h)] = E[0(t) + on time in (t, t + h)]

= n(t) + E[on time in (t, t + h)]
Now

E[on time in (t, t + h)|X(t) = 0] = h + o(h)

E[on time in (t, t + h)|X(t) = 1] = o(h)

So, by the above

n(t + h) = n(t) + P00(t)h + o(h)

(b) From (a) we see that

n(t + h) − n(t)
h

= P00(t) + o(h)/h

Let h = 0 to obtain

n′(t) = P00(t)

= μ

λ + μ
+ λ

λ + μ
e−(λ+μ)t

Integrating gives

n(t) = μt
λ + μ

− λ

(λ + μ)2 e−(λ+μ)t + C

Since m(0) = 0 it follows that C = λ/(λ + μ)2.

39. E[0(t)|x(0) = 1] = t − E[time in 1|X(0) = 1]

= t − λt
λ + μ

− μ

(λ + μ)2 [1 − e−(λ+μ)t]

The final equality is obtained from Example 7b (or
Problem 38) by interchanging λ and μ.

40. Cov[X(s), X(t)] = E[X(s)X(t)] − E[X(s)]EX(t)]

Now,

X(s)X(t) =
{

1 if X(s) = X(t) = 1
0 otherwise

Therefore, for s ≤ t

E[X(s)X(t)]

= P{X(s) = X(t) = 1|X(0) = 0}
= P00(s)P00(t − s) by the Markovian property

= 1
(λ + μ)2 [μ + λe−(λ+μ)s][μ + λe−(λ+μ)(t−s)]

Also,

E[X(s)]E[X(t)]

= 1
(λ+μ)2 [μ + λe−(λ+μ)s][μ + λe−(λ+μ)t]

Hence,

Cov[X(s), X(t)]

= 1
(λ+μ)2 [μ + λe−(λ+μ)s]λe−(λ+μ)t[e(λ+μ)s − 1]

41. (a) Letting Ti denote the time until a transition out
of i occurs, we have

Pij = P{X(Y) = j} = P{X(Y) = j | Ti < Y}

× vi
vi + λ

+ P{X(Y) = j|Y ≤ Ti} λ
λ + vi

= ∑
k

PikPkj
vi

vi + λ
+ δijλ

λ + vi

The first term on the right follows upon con-
ditioning on the state visited from i (which is k
with probability Pik) and then using the lack of
memory property of the exponential to assert
that given a transition into k occurs before time
Y then the state at Y is probabilistically the
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same as if the process had started in state k
and we were interested in the state after an
exponential time with rate λ. As qik = viPik ,
the result follows.

(b) From (a)

(λ + vi)P̄ij = ∑
k

qikP̄kj + λδij

or

−λδij = ∑
k

rikP̄kj − λP̄ij

or, in matrix terminology,

−λI = RP̄ − λIP̄

= (R − λI)P̄

implying that

P̄ = −λI(R − λI)−1 = −(R/λ − I)−1

= (I − R/λ)−1

(c) Consider, for instance,

P{X(Y1 + Y2) = j|X(0) = i}

= ∑
k

P{X(Y1 + Y2) = j|X(Y1) = k, X(0) = i)

P{X(Y1) = k|X(0) = i}

= ∑
k

P{X(Y1 + Y2) = j|X(Y1) = k}P̄ik

= ∑
k

P{X(Y2) = j|X(0) = k}P̄ik

= ∑
k

P̄kjP̄ik

and thus the state at time Y1 + Y2 is just the
2-stage transition probabilities of P̄ij. The gen-
eral case can be established by induction.

(d) The above results in exactly the same approx-
imation as Approximation 2 in Section 6.8.

42. (a) The matrix P∗ can be written as
P∗ = I + R/v

and so P∗n
ij can be obtained by taking the i, j

element of (I + R/v)n, which gives the result
when v = n/t.

(b) Uniformization shows that Pij(t) = E
[
P∗N

ij

]
,

where N is independent of the Markov chain
with transition probabilities P∗

ij and is Poisson
distributed with mean vt. Since a Poisson ran-
dom variable with mean vt has standard devi-
ation (vt)1/2, it follows that for large values of
vt it should be near vt. (For instance, a Poisson
random variable with mean 106 has standard
deviation 103 and thus will, with high proba-
bility, be within 3000 of 106.) Hence, since for
fixed i and j, P∗m

ij should not vary much for val-
ues of m about vt when vt is large, it follows
that, for large vt

E
[
P∗N

ij

]
≈ P∗n

ij , where n = vt



Chapter 7

1. (a) Yes, (b) no, (c) no.

2. (a) Sn is Poisson with mean nμ.

(b) P{N(t) = n}
= P{N(t) ≥ n} − P{N(t) ≥ n + 1}
= P{Sn ≤ t} − P{Sn+1 ≤ t}

=
[t]

∑
k=0

e−nμ(nμ)k/k!

−
[t]

∑
k=0

e−(n+1)μ[(n + 1)μ]k/k!

where [t] is the largest integer not exceeding t.

3. By the one-to-one correspondence of m(t) and F, it
follows that {N(t), t ≥ 0} is a Poisson process with
rate 1/2. Hence,

P{N(5) = 0) = e−5/2

4. (a) No! Suppose, for instance, that the interarrival
times of the first renewal process are identi-
cally equal to 1. Let the second be a Poisson
process. If the first interarrival time of the pro-
cess {N(t), t ≥ 0} is equal to 3/4, then we can
be certain that the next one is less than or equal
to 1/4.

(b) No! Use the same processes as in (a) for a coun-
ter example. For instance, the first interarrival
will equal 1 with probability e−λ, where λ is the
rate of the Poisson process. The probability will
be different for the next interarrival.

(c) No, because of (a) or (b).

5. The random variable N is equal to N(I) + 1 where
{N(t)} is the renewal process whose interarrival
distribution is uniform on (0, 1). By the results of
Example 2c,

E[N] = a (1) + 1 = e

6. (a) Consider a Poisson process having rate λ
and say that an event of the renewal process
occurs whenever one of the events numbered
r, 2r, 3r, … of the Poisson process occur. Then

P{N(t) ≥ n}
= P{nr or more Poisson events by t}

=
∞
∑

i=nr
e−λt(λt)i/i!

(b) E[N(t)]

=
∞
∑
n=1

P{N(t) ≥ n} =
∞
∑
n=1

∞
∑

i=nr
e−λt(λt)i/i!

=
∞
∑
i=r

[i/r]

∑
n=1

e−λt(λt)i/i! =
∞
∑
i=r

[i/r]e−λt(λt)i/i!

7. Once every five months.

8. (a) The number of replaced machines by time t
constitutes a renewal process. The time bet-
ween replacements equals

T, if lifetime of new machine is ≥ T

x, if lifetime of new machine is x, x < T.

Hence,
E[time between replacements]

=
∫ T

0
xf (x)dx + T[1 − F(T)]

and the result follows by Proposition 3.1.
(b) The number of machines that have failed in use

by time t constitutes a renewal process. The
mean time between in-use failures, E[F], can
be calculated by conditioning on the lifetime
of the initial machine as

E[F] = E[E[F|lifetime of initial machine]]

Now
E[F|lifetime of machine is x]

=
{

x, if x ≤ T

T + E[F], if x > T

73
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Hence,

E[F] =
∫ T

0
xf (x)dx + (T + E[F])[1 − F(T)]

or

E[F] =

∫ T

0
xf (x)dx + T[1 − F(T)]

F(T)
and the result follows from Proposition 3.1.

9. Ajob completion constitutes a reneval. Let T denote
the time between renewals. To compute E[T] start
by conditioning on W, the time it takes to finish the
next job:

E[T] = E[E[T|W]]

Now, to determine E[T|W = w] condition on S, the
time of the next shock. This gives

E[T|W = w] =
∞∫

0

E[T|W = w, S = x]λe−λxdx

Now, if the time to finish is less than the time of the
shock then the job is completed at the finish time;
otherwise everything starts over when the shock
occurs. This gives

E[T|W = w, S = x] =
{

x + E[T], if x < w
w, if x ≥ w

Hence,

E[T|W = w]

=
w∫

0

(x + E[T])λe−λxdx + w

∞∫
w

λe−λxdx

= E[T][1−e−λw]+1/λ − we−λw− 1
λ

e−λw−we−λw

Thus,

E[T|W] = (E[T] + 1/λ)(1 − e−λW )

Taking expectations gives

E[T] = (E[T] + 1/λ)(1 − E[e−λW ])

and so

E[T] = 1 − E[e−λW ]

λE[e−λW ]

In the above, W is a random variable having distri-
bution F and so

E[e−λW ] =
∞∫

0

e−λwf (w)dw

10. Yes, ρ/μ

11.
N(t)

t
= 1

t
+ number of renewals in (X1, t)

t

Since X1 < ∞, Proposition 3.1 implies that

number of renewals in (X1, t)
t

− 1
μ

as t − ∞.

12. Let X be the time between successive d-events.
Conditioning on T, the time until the next event
following a d-event, gives

E[X] =
∫ d

0
xλe−λxdx +

∫ ∞

d
(x + E[X]λe−λxdx

= 1/λ + E[X]e−λd

Therefore, E[X] = 1
λ(1 − e−λd)

(a)
1

E[X]
= λ(1 − e−λd)

(b) 1 − e−λd

13. (a) N1 and N2 are stopping times. N3 is not.

(b) Follows immediately from the definition of Ii.

(c) The value of Ii is completely determined
from X1, …, Xi−1 (e.g., Ii = 0 or 1 depend-
ing upon whether or not we have stopped
after observing X1, …, Xi−1). Hence, Ii is inde-
pendent of Xi.

(d)
∞
∑
i=1

E[Ii] =
∞
∑
i=1

P{N ≥ i} = E[N]

(e) E
[
X1 + · · · + XN1

] = E[N1]E[X]

But X1 + · · · + XN1 = 5, E[X] = p and so

E[N1] = 5/p

E
[
X1 + · · · + XN2

] = E[N2]E[X]

E[X] = p, E[N2] = 5p + 3(1 − p) = 3 + 2p

E
[
X1 + · · · + XN2

] = (3 + 2p)p

14. (a) It follows from the hint that N(t) is not a stop-
ping time since N(t) = n depends on Xn+1.

Now N(t) + 1 = n(⇔)N(t) = n − 1

(⇔)X1 + · · · + Xn−1 ≤ t,

X1 + · · · + Xn > t,

and so N(t) + 1 = n depends only on
X1, …, Xn. Thus N(t) + 1 is a stopping
time.
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(b) Follows upon application of Wald’s
equation—using N(t) + 1 as the stopping
time.

(c)
N(t)+1

∑
i=1

Xi is the time of the first renewal

after t. The inequality follows directly from this
interpretation since there must be at least one
renewal in the interval between t and t + m.

(e) t <
N(t)+1

∑
i=1

Xi < t + M

Taking expectations and using (b) yields

t < μ(m(t) + 1) < t + M

or

t − μ < μm(t) < t + M − μ

or
1
μ

− 1
t

<
m(t)

t
<

1
μ

+ M − μ

μt

Let t → ∞ to see that
m(t)

t
− 1

μ
.

15. (a) Xi =amount of time he has to travel after his ith
choice (we will assume that he keeps on mak-
ing choices even after becoming free). N is the
number of choices he makes until becoming
free.

(b) E[T] = E

[
N

∑
1

Xi

]
= E[N]E [X]

N is a geometric random variable with
P = 1/3, so

E[N] = 3, E[X] = 1
3

(2 + 4 + 6) = 4

Hence, E[T] = 12.

(c) E

[
N

∑
1

Xi|N = n

]
= (n − 1)

1
2

(4 + 6) + 2 = 5n −
3, since given N = n, X1, …, Xn−1 are equally

likely to be either 4 or 6, Xn = 2, E
(
∑n

1 Xi

)
=

4n.
(d) From (c),

E

[
N

∑
1

Xi

]
= E [5N − 3] = 15 − 3 = 12

16. No, since
N

∑
1=i

Xi = 4 and E[Xi] = 1/13, which would

imply that E [N] = 52, which is clearly incorrect.
Wald’s equation is not applicable since the Xi are
not independent.

17. (i) Yes. (ii) No—Yes, if F exponential.

18. We can imagine that a renewal corresponds to a
machine failure, and each time a new machine is
put in use its life distribution will be exponential
with rate μ1 with probability p, and exponential
with rate μ2 otherwise. Hence, if our state is the
index of the exponential life distribution of the
machine presently in use, then this is a 2-state
continuous-time Markov chain with intensity rates

q1, 2 = μ1(1 − p), q2, 1 = μ2p

Hence,

P11(t)

= μ1(1 − p)
μ1(1 − p) +μ2p

exp
{− [μ1(1 − p) +μ2p

]
t
}

+ μ2p
μ1(1 − p) +μ2p

with similar expressions for the other transition
probabilities (P12(t) = 1 − P11(t), and P22(t) is the
same with μ2p and μ1(1 − p) switching places).
Conditioning on the initial machine now gives

E[Y(t)]

= pE[Y(t)|X(0) = 1] + (1 − p)E[Y(t)|X(0) = 2]

= p
[

P11(t)
μ1

+ P12(t)
μ2

]
+ (1−p)

[
P21(t)

μ1
+ P22(t)

μ2

]

Finally, we can obtain m(t) from

μ[m(t) + 1] = t + E[Y(t)]

where

μ = p/μ1 + (1 − p)/μ2

is the mean interarrival time.

19. Since, from Example 2c, m(t) = et − 1, 0 < t ≤ 1,
we obtain upon using the identity t + E[Y(t)] =
μ[m(t) + 1] that E[Y(1)] = e/2 − 1.

20. Wn = (R1 + · · · + Rn)
(X1 + · · · + Xn)/n

− ER
EX

by the strong law of large numbers.

21.
μG

μ + 1/λ
, where μG is the mean of G.

22. Cost of a cycle = C1 + C2I − R(T)(1 − I).

I =
⎧⎨
⎩

1, if X < T
where X = life of car.

0, if X ≥ T
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Hence,

E[cost of a cycle]

= C1 + C2H(T) − R(T)[1 − H(T)]

Also,

E[time of cycle =
∫

E[time|X = x]h(x)dx

=
∫ t

0
xh(x)dx + T[1 − H(T)]

Thus the average cost per unit time is given by

C1 + C2H(T) − R(T)[1 − H(T)]∫ t

0
xh(x)dx + T[1 − H(T)]

23. Using that E[X] = 2p − 1, we obtain from Wald’s
equation when p �= 1/2 that

E[T](2p − 1) = E

[
T

∑
j=1

Xj

]

= (N − i)
1 − (q/p)i

1 − (q/p)N − i
[

1 − 1 − (q/p)i

1 − (q/p)N

]

= N
1 − (q/p)i

1 − (q/p)N − i

yielding the result:

E[T] =
N

1 − (q/p)i

1 − (q/p)N − i

2p − 1
, p �= 1/2

When p = 1/2, we can easily show by a condition-
ing argument that E[T] = i(N − i)

24. Let N1 = N denote the stopping time. Because
Xi, i ≥ 1, are independent and identically dis-
tributed, it follows by the definition of a stopping
time that the event {N1 = n} is independent of
the values Xn+i, i ≥ 1. But this implies that the
sequence of random variables XN1+1, XN1+2, … is
independent of X1, …, XN and has the same dis-
tribution as the original sequence Xi, i ≥ 1. Thus if
we let N2 be a stopping time on XN1+1, XN1+2, …
that is defined exactly as is N1 is on the original
sequence, then XN1+1, XN1+2, …, XN1+N2 is inde-
pendent of and has the same distribution as does
X1, …, XN1 . Similarly, we can define a stopping time
N3 on the sequence XN1+N2+1, XN1+N2+2, … that is
identically defined on this sequence as is N1 on
the original sequence, and so on. If we now con-
sider a reward process for which Xi is the reward
earned during period i, then this reward process is

a renewal reward process whose cycle lengths are
N1, N2, …. By the renewal reward theorem,

average reward per unit time = E[X1 + · · · + XN]
E[N]

But the average reward per unit time is

limn→∞
n

∑
i=1

Xi/n, which, by the strong law of large

numbers, is equal to E[X]. Thus,

E[X] = E[X1 + …XN]
E[N]

25. Say that a new cycle begins each time a train is
dispatched. Then, with C being the cost of a cycle,
we obtain, upon conditioning on N(t), the number
of arrivals during a cycle, that

E[C] = E[E|C|N(t)]] = E[K + N(t)ct/2]

= k + λct2/2

Hence,

average cost per unit time = E[C]
t

= K
t

+ λct/2

Calculus shows that the preceding is minimized
when t =

√
2K/(λc), with the average cost equal to√

2λKc.

On the other hand, the average cost for the N
policy of Example 7.12 is c(N − 1)/2 + λK/N. Treat-
ing N as a continuous variable yields that its
minimum occurs at N =

√
2λK/c, with a resulting

minimal average cost of
√

2λKc − c/2.

26.
[c + 2c + · · · + (N − 1)c]/λ + KNc + λK2c/2

N/λ + K

= c(N − 1)N/2λ + KNc + λK2c/2
N/λ + K

27. Say that a new cycle begins when a machine fails;
let C be the cost per cycle; let T be the time of a
cycle.

E[C] = K + c2

λ1 + λ2
+ λ1

λ1 + λ2

c1

λ2
+ λ2

λ1 + λ2

c1

λ1

E[T] = 1
λ1 + λ2

+ λ1

λ1 + λ2

1
λ2

+ λ2

λ1 + λ2

1
λ1

T the long-run average cost per unit time is
E[C]/E[T].

28. For N large, out of the first N items produced
there will be roughly Nq defective items.Also, there
will be roughly NPI inspected items, and as each
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inspected item will still be, independently, defec-
tive with probability q, it follows that there will be
roughly NPIq defective items discovered. Hence,
the proportion of defective items that are discov-
ered is, in the limit,

NP1q/Nq = PI = (1/p)k

(1/p)k − 1 + 1/α

29. (a) Imagine that you are paid a reward equal to
Wi on day i. Since everything starts over when
a busy period ends, it follows that the reward
process constitutes a renewal reward process
with cycle time equal to N and with the reward
during a cycle equal to W1 + · · · + WN .
Thus E[W], the average reward per unit time,
is E[W1 + · · · + WN]/E[N].

(b) The sum of the times in the system of all
customers and the total amount of work that
has been processed both start equal to 0 and
both increase at the same rate. Hence, they are
always equal.

(c) This follows from (b) by looking at the value
of the two totals at the end of the first busy
period.

(d) It is easy to see that N is a stopping time
for the Li, i ≥ 1, and so, by Wald’s Equation,

E

[
N

∑
i=1

Li

]
= E[L]E[N]. Thus, from (a) and (c),

we obtain that E[W] = E[L].

30.
A(t)

t
= t − SN(t)

t

= 1 − SN(t)

t

= 1 − SN(t)

N(t)
N(t)

t

The result follows since SN(t)/N(t) — μ (by the
strong law of large numbers) and N(t)/t — 1/μ.

31. P{E(t) > x|A(t) = s}
= P{0 renewals in (t, t + x]|A(t) = s}
= P{interarrival > x + s|A(t) = s}
= P{interarrival > x + s|interarrival > s}

= 1 − F(x + s)
1 − F(s)

32. Say that the system is off at t if the excess at t is less
than c. Hence, the system is off the last c time units
of a renewal interval. Hence,

proportion of time excess is less than c

= E[off time in a renewal cycle]/[X]

= E[min(X, c)]/E[X]

=
∫ c

0
(1 − F(x))dx/E[X]

33. Let B be the amount of time the server is busy in
a cycle; let X be the remaining service time of the
person in service at the beginning of a cycle.

E[B] = E[B|X < t](1 − e−λt) + E[B|X > t]e−λt

= E[X|X < t](1 − e−λt) +
(

t + 1
λ + μ

)
e−λt

= E[X] − E[X|X > t]e−λt +
(

t + 1
λ + μ

)
e−λt

= 1
μ −

(
t + 1

μ

)
e−λt +

(
t + 1

λ + μ

)
e−λt

= 1
μ

[
1 − λ

λ + μ
e−λt

]

More intuitively, writing X = B + (X − B), and not-
ing that X − B is the additional amount of service
time remaining when the cycle ends, gives

E[B] = E[X] − E[X − B]

= 1
μ

− 1
μ

P(X > B)

= 1
μ

− 1
μ

e−λt λ

λ + μ

The long-run proportion of time that the server is

busy is
E[B]

t + 1/λ
.

34. A cycle begins immediately after a cleaning starts.
Let C be the cost of a cycle.

E[C] = λC2T/4 + C1λ

∫ 3T/4

0
Ḡ(y)dy

where the preceding uses that the number of cus-
tomers in an M/G/∞ system at time t is Poisson

distributed with mean λ

∫ t

0
Ḡ(y)dy. The long-run

average cost is E[C]/T. The long-run proportion of

time that the system is being cleaned is
T/4

T
= 1/4.

35. (a) We can view this as an M/G/∞ system where
a satellite launching corresponds to an arrival
and F is the service distribution. Hence,

P{X(t) = k} = e−λ(t)[λ(t)]k/k!
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where λ(t) = λ

∫ t

0
(1 − F(s))ds.

(b) By viewing the system as an alternating
renewal process that is on when there is at least
one satellite orbiting, we obtain

lim P{X(t) = 0} = 1/λ

1/λ+ E[T]

where T, the on time in a cycle, is the quantity
of interest. From part (a)

lim P{X(t) = 0} = e−λμ

where μ =
∫ ∞

0
(1 − F(s))ds is the mean time

that a satellite orbits. Hence,

e−λμ = 1/λ

1/λ + E[T]

and so

E[T] = 1 − e−λμ

λe−λμ

36. (a) If we let Ni(t) denote the number of times
person i has skied down by time t, then {Ni(t)}
is a (delayed) renewal process. As N(t) =
∑ Ni(t), we have

lim
N(t)

t
= ∑

i
lim

Ni(t)
t

= ∑
i

1
μi + θi

where μi and θi are respectively the mean of
the distributions Fi and Gi.

(b) For each skier, whether they are climbing up or
skiing down constitutes an alternating renewal
process, and so the limiting probability that
skier i is climbing up is pi = μi/(μi + θi). From
this we obtain

lim P{U(t) = k} = ∑
S

{∏
i∈S

pi
∏
i∈Sc

(1 − pi)

}

where the above sum is over all of the
[n

k

]
sub-

sets S of size k.

(c) In this case the location of skier i, whether
going up or down, is a 2-state continuous-time
Markov chain. Letting state 0 correspond to
going up, then since each skier acts indepen-
dently according to the same probability, we
have

P{U(t) = k} =
[n

k

]
[P00(t)]k[1 − P00(t)]n−k

where P00(t) = (λe−(λ+μ)t + μ)/(λ + μ).

37. (a) This is an alternating renewal process, with
the mean off time obtained by conditioning on
which machine fails to cause the off period.

E[off] =
3

∑
i=1

E[off|i fails]P{i fails}

= (1/5)
λ1

λ1 + λ2 + λ3
+ (2)

λ2

λ1 + λ2 + λ3

+ (3/2)
λ3

λ1 + λ2 + λ3

As the on time in a cycle is exponential with
rate equal to λ1 + λ2 + λ3, we obtain that
p, the proportion of time that the system is
working is

p = 1/(λ1 + λ2 + λ3)
E[C]

where

E[C] = E[cycle time]

= 1/(λ1 + λ2 + λ3) + E[off]

(b) Think of the system as a renewal reward pro-
cess by supposing that we earn 1 per unit time
that machine 1 is being repaired. Then, r1, the
proportion of time that machine 1 is being
repaired is

r1 =
(1/5)

λ1

λ1 + λ2 + λ3
E[C]

(c) By assuming that we earn 1 per unit time when
machine 2 is in a state of suspended anima-
tion, shows that, with s2 being the propor-
tion of time that 2 is in a state of suspended
animation,

s2 =
(1/5)

λ1

λ1 + λ2 + λ3
+ (3/2)

λ3

λ1 + λ2 + λ3
E[C]

38. Let Te, f denote the time it takes to go from e to f ,
and let d be the distance between A to B. Then, with
S being the driver’s speed

E[TA, B] = 1
20

∫ 60

40
E[TA, B|S = s]ds

= 1
20

∫ 60

40

d
s

ds

= d
20

log(3/2)
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Also,

E[TB, A] = E[TB, A|S = 40](1/2) + E[TB, A|S

= 60](1/2) = 1
2

(d/40 + d/60)

= d/48

(a)
E[TA,B]

E[TA, B] + E[TB, A]
=

1
20

log(3/2)

1
20

log(3/2) + 1/48

(b) By assuming that a reward is earned at a rate
of 1 per unit time whenever he is driving at a
speed of 40 miles per hour, we see that p, the
proportion of time this is the case, is

p = (1/2)d/40
E [TA, B] + E [TB, A]

=
1
80

1
20

log(3/2) + 1/48

39. Let B be the length of a busy period. With S equal to
the service time of the machine whose failure initi-
ated the busy period, and T equal to the remaining
life of the other machine at that moment, we obtain

E[B] =
∫

E[B|S = s]g(s)ds

Now,

E[B|S = s] = E[B|S = s, T ≤ s](1 − e−λs)

+ E[B|S = s, T > s]e−λs

= (s + E[B])(1 − e−λs) + se−λs

= s + E[B](1 − e−λs)

Substituting back gives

E[B] = E[S] + E[B]E[1 − e−λs]

or

E[B] = E[S]
E[e−λs]

Hence,

E[idle] = 1/(2λ)
1/(2λ) + E[B]

40. Proportion of time 1 shoots =
1/(1 − P1)

3

∑
j=1

1/(1 − Pj)

by

alternating renewal process (or by semi-Markov
process) since 1/(1 − Pj) is the mean time marks-
man j shoots. Similarly, proportion of time i shoots

= 1/(1 − Pi)

∑ 1/(1 − Pj)
.

41.
∫ 1

0

(1 − F(x)dx
μ

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ 1

0

2 − x
2

dx = 3
4

in part (i)

∫ 1

0
e−x dx = 1 − e−1 in part (ii)

42. (a) Fe(x) = 1
μ

x∫
0

e−y/μdy = 1 − e−x/μ

(b) Fe(x) =1
c

x∫
0

dy = x/c, 0 ≤ x ≤ c

(c) You will receive a ticket if, starting when
you park, an official appears within 1 hour.
From Example 5.1c the time until the offi-
cial appears has the distribution Fe, which, by
part (a), is the uniform distribution on (0, 2).
Thus, the probability is equal to 1/2.

43. Since half the interarrival times will be exponential
with mean 1 and half will be exponential with mean
2, it would seem that because the exponentials with
mean 2 will last, on average, twice as long, that

F̄e(x) = 2
3

e−x/2 + 1
3

e−x

With μ= (1)1/2 + (2)1/2 = 3/2 equal to the mean
interarrival time

F̄e(x) =
∫ ∞

x

F̄(y)
μ

dy

and the earlier formula is seen to be valid.

44. Let T be the time it takes the shuttle to return. Now,
given T, X is Poisson with mean λT. Thus,

E[X|T] = λT, Var(X|T) = λT

Consequently,

(a) E[X] = E[E[X|T]] = λE[T]

(b) Var(X) = E[Var(X|T)] + Var(E[X|T])

= λE[T] + λ2Var(T)

(c) Assume that a reward of 1 is earned each time
the shuttle returns empty. Then, from renewal
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reward theory, r, the rate at which the shuttle
returns empty, is

r = P{empty}
E[T]

=
∫

P{empty|T = t}f (t)dt
E[T]

=
∫

e−λtf (t)dt
E[T]

= E[e−λT]
E[T]

(d) Assume that a reward of 1 is earned each time
that a customer writes an angry letter. Then,
with Na equal to the number of angry letters
written in a cycle, it follows that ra, the rate at
which angry letters are written, is

ra = E[Na]/E[T]

=
∫

E[Na|T = t] f (t)dt/E[T]

=
∫ ∞

c
λ(t − c)f (t)dt/E[T]

= λE[(T − c)+]/E[T]

Since passengers arrive at rate λ, this implies
that the proportion of passengers that write
angry letters is ra/λ.

(e) Because passengers arrive at a constant rate,
the proportion of them that have to wait more
than c will equal the proportion of time that the
age of the renewal process (whose event times
are the return times of the shuttle) is greater
than c. It is thus equal to F̄e(c).

45. The limiting probabilities for the Markov chain are
given as the solution of

r1 = r2
1
2

+ r3

r2 = r1

r1 + r2 + r3 = 1

or

r1 = r2 = 2
5

, r3 = 1
5

(a) r1 = 2
5

(b) Pi = riμi

∑i riμi
and so,

P1 = 2
9

, P2 = 4
9

, P3 = 3
9

.

46. Continuous-time Markov chain.

47. (a) By conditioning on the next state, we obtain
the following:

μj = E[time in i]

= ∑ E[time in i|next state is j]Pij

= ∑
i

tijPij

(b) Use the hint. Then,

E[reward per cycle]

= E[reward per cycle|next state is j]Pij

= tijPij

Also,

E[time of cycle] = E[time between visits to i]
Now, if we had supposed a reward of 1 per unit
time whenever the process was in state i and
0 otherwise then using the same cycle times as
above we have that

Pi = E[reward is cycle]
E[time of cycle]

= μi

E[time of cycle]

Hence,

E[time of cycle] = μi/Pi

and so

average reward per unit time = tijPijPi/μi

The above establishes the result since the aver-
age reward per unit time is equal to the pro-
portion of time the process is in i and will next
enter j.

48. Let the state be the present location if the taxi is
waiting or let it be the most recent location if it is on
the road. The limiting probabilities of the embed-
ded Markov chain satisfy

r1 = 2
3

r3

r2 = r1 + 1
3

r3

r1 + r2 + r3 = 1
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Solving yields

r1 = 1
4

, r2 = r3 = 3
8

The mean time spent in state i before entering
another state is

μ1 = 1 + 10 = 11, μ2 = 2 + 20 = 22,

μ3 = 4 +
[

2
3

]
15 +

[
1
3

]
25 = 67

3
,

and so the limiting probabilities are

P1 = 66
465

, P2 = 198
465

, P3 = 201
465

.

The time the state is i is broken into 2 parts—the
time ti waiting at i, and the time traveling. Hence,
the proportion of time the taxi is waiting at state i
is Piti/(ti/μi). The proportion of time it is traveling
from i to j is Pimij/(ti + μi).

49. Think of each interarrival time as consisting of n
independent phases—each of which is exponen-
tially distributed with rate λ—and consider the
semi–Markov process whose state at any time is
the phase of the present interarrival time. Hence,
this semi-Markov process goes from state 1 to 2 to
3 … to n to 1, and so on. Also the time spent in each
state has the same distribution. Thus, clearly the
limiting probabilities of this semi-Markov chain are
Pi = 1/n, i = 1, …, n. To compute lim P{Y(t) < x},
we condition on the phase at time t and note that if
it is n – i + 1, which will be the case with probability
1/n, then the time until a renewal occurs will be the
sum of i exponential phases, which will thus have
a gamma distribution with parameters i and λ.

50. (a)
Ni(m)

∑
j=1

Xj
i

(b)

Ni(m)

∑
j=1

Xj
i

∑
i

Ni(m)

∑
j=1

Xj
i

(c) Follows from the strong law of large numbers
since the Xj

i are independent and identically
distributed and have mean μi.

(d) This is most easily proven by first consider-
ing the model under the assumption that each
transition takes one unit of time. Then Ni(m)/m
is the rate at which visits to i occur, which, as

such visits can be thought of as being renewals,
converges to

(E[number of transitions between visits])−1

by Proposition 3.1. But, by Markov-chain the-
ory, this must equal xi. As the quantity in (d) is
clearly unaffected by the actual times between
transition, the result follows.
Equation (6.2) now follows by dividing numer-
ator and denominator of (b) by m; by writing

Xj
i

m
= Xj

i
Ni(m)

Ni(m)
(m)

and by using (c) and (d).

51. It is an example of the inspection paradox. Because
every tourist spends the same time in departing
the country, those questioned at departure consti-
tute a random sample of all visiting tourists. On
the other hand, if the questioning is of randomly
chosen hotel guests then, because longer staying
guests are more likely to be selected, it follows that
the average time of the ones selected will be larger
than the average of all tourists. The data that the
average of those selected from hotels was approx-
imately twice as large as from those selected at
departure are consistent with the possibility that
the time spent in the country by a tourist is expo-
nential with a mean approximately equal to 9.

52. (a) P{X1 + · · · + Xn < Y}
= P{X1 + · · · + Xn < Y|Xn < Y} P{Xn < Y}
= P{X1 + · · · + Xn−1 < Y} P{X < Y}
where the above follows because given that
Y > Xn the amount by which it is greater is,
by the lack of memory property, also exponen-
tial with rate λ. Repeating this argument yields
the result.

(b) E[N(Y)] =
∞
∑
n=1

P{N(Y) ≥ n}

=
∞
∑
n=1

P{X1 + · · · + Xn ≤ Y}

=
∞
∑
n=1

P{X < Y}n = P
1 − P

where

P = P{X < Y} =
∫

P{X < Y|X = x} f (x)dx

=
∫

e−λxf (x)dx = E[e−λx]
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54. Let T denote the number of variables that need
be observed until the pattern first appears. Also,
let T∞ denote the number that need be observed
once the pattern appears until it next appears. Let
p = p2

1p2
2p3

p−1 = E[T∞]

= E[T] − E[T1, 2]

= E[T] − (p1p2)−1

Hence, E[T] = 8383.333. Now, since E[I(5)I(8)] =
(.1)3(.2)3(.3)2, we obtain from Equation (7.45) that

Var(T∞) = (1/p)2 − 9/p + 2(1/p)3(.1)3(.2)3(.3)2

= 6.961943 × 107

Also,

Var(T1, 2) = (.02)−2 − 3(.02)−1 = 2350

and so

Var(T) = Var(T1, 2) + Var(T∞) ≈ 6.96 × 107

55. E[T(1)] = (.24)−2 + (.4)−1 = 19.8611,

E[T(2)] = 24.375, E[T12] = 21.875,

E[T2, 1] = 17.3611. The solution of the equations

19.861 = E[M] + 17.361P(2)

24.375 = E[M] + 21.875P(1)

1 = P(1) + P(2)

gives the results

P(2) ≈ .4425, E[M] ≈ 12.18

56. (a)
(10)10

10! ∑9
i=0 i!/(10)i

(b) Define a renewal process by saying that a
renewal occurs the first time that a run of
5 consecutive distinct values occur. Also, let a
reward of 1 be earned whenever the previous
5 datavaluesaredistinct.Then,lettingRdenote
therewardearnedbetweenrenewalepochs,we
have that

E[R] = 1 +
4

∑
i=1

E
[
reward earned a time i after

a renewal
]

= 1 +
4

∑
i=1

(
5 + i

i

)/(10
i

)

= 1 + 6/10 + 7/15 + 7/15 + 6/10

= 47/15
If Ri is the reward earned at time i then for i ≥ 5

E[Ri] = 10 · 9 · 8 · 7 · 6/(10)10 = 189/625

Hence,

E[T] = (47/15)(625/189) ≈ 10.362

57. P{
T

∑
i=1

Xi > x} = P{
T

∑
i=1

Xi > x|T = 0}(1 − ρ)

+ P{
T

∑
i=1

Xi > x|T > 0}ρ

= P{
T

∑
i=1

Xi > x|T > 0}ρ

= ρ

∫ ∞

0
P{

T

∑
i=1

Xi > x|T > 0, X1 = y} F̄(y)
μ

dy

= ρ

μ

∫ x

0
P{

T

∑
i=1

Xi > x|T > 0, X1 = y}F̄(y)dy

+ ρ

μ

∫ ∞

x
F̄(y)dy

= ρ

μ

∫ x

0
h(x − y)F̄(y)dy + ρ

μ

∫ ∞

x
F̄(y)dy

= h(0) + ρ

μ

∫ x

0
h(x − y)F̄(y)dy − ρ

μ

∫ x

0
F̄(y)dy

where the final equality used that

h(0) = ρ = ρ

μ

∫ ∞

0
F̄(y)dy



Chapter 8

1. (a) E[number of arrivals]

= E[E{number of arrivals|service
period is S}]

= E[λS]

= λ/μ

(b) P{0 arrivals}
= E[P{0 arrivals|service period is S}]

= E[P{N(S) = 0}]

= E[e−λS]

=
∫ x

0
e−λsμe−μsds

= μ

λ + μ

2. This problem can be modeled by an M/M/1
queue in which λ = 6, μ= 8. The average cost rate
will be

$10 per hour per machine × average number of
broken machines.

The average number of broken machines is just L,
which can be computed from Equation (3.2):

L = λ/(μ − λ)

= 6
2

= 3

Hence, the average cost rate = $30/hour.

3. Let CM = Mary’s average cost/hour and CA =
Alice’s average cost/hour.

Then, CM = $3 + $1× (Average number of cus-
tomers in queue when Mary works),

and CA = $C + $1 × (Average number of cus-
tomers in queue when Alice works).

The arrival stream has parameter λ = 10, and there
are two service parameters—one for Mary and one
for Alice:

μM = 20, μA = 30.

Set LM = average number of customers in
queue when Mary works and

LA = average number of customers in
queue when Alice works.

Then using Equation (3.2), LM = 10
(20 − 10)

= 1

LA = 10
(20 − 10)

= 1
2

So CM = $3 + $1/customer × LM customers
= $3 + $1
= $4/hour

Also, CA = $C + $1/customer × LA customers

= $C + $1 × 1
2

= $C + 1
2

/ hour

(b) We can restate the problem this way: If CA =
CM, solve for C.

4 = C + 1
2

⇒ C = $3.50/hour

i.e., $3.50/hour is the most the employer
should be willing to pay Alice to work. At a
higher wage his average cost is lower with
Mary working.

4. Let N be the number of other customers that were
in the system when the customer arrived, and let
C = 1/fW∗

Q
(x). Then

fN|W∗
Q

(n|x) = CfW∗
Q|N(x|n)P{N = n}

= Cμe−μx (μx)n−1

(n − 1)!
(λ/μ)n(1 − λ/μ)

= K
(λx)n−1

(n − 1)!

83
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where

K = 1
fW∗

Q
(x)

μe−μx(λ/μ)(1 − λ/μ)

Using

1 =
∞
∑
n=1

fN|W∗
Q

(n|x) = K
∞
∑
n=1

(λx)n−1

(n − 1)!
= Keλx

shows that

fN|W∗
Q

(n|x) = e−λx (λx)n−1

(n − 1)!
, n > 0

Thus, N − 1 is Poisson with mean λx.

The preceding also yields that for x > 0

fW∗
Q

(x) = eλxμe−μx(λ/μ)(1 − λ/μ)

= λ
μ (μ − λ)e−(μ−λ)x

Hence, for x > 0

P{W∗
Q ≤ x} = P{W∗

Q = 0} +
∫ x

0
fW∗

Q
(y)dy

= 1 − λ
μ + λ

μ (1 − e−(μ−λ)x)

5. Let I equal 0 if W∗
Q = 0 and let it equal 1 otherwise.

Then,

E[W∗
Q|I = 0] = 0

E[W∗
Q|I = 1] = (μ − λ)−1

Var(W∗
Q|I = 0) = 0

Var(W∗
Q|I = 1) = (μ − λ)−2

Hence,

E[Var(W∗
Q|I] = (μ − λ)−2λ/μ

Var(E[W∗
Q|I]) = (μ − λ)−2λ/μ(1 − λ/μ)

Consequently, by the conditional variance formula,

Var(W∗
Q) = λ

μ(μ − λ)2 + λ

μ2(μ − λ)

6. E[(S1 − Y)+] = E[(S1 − Y)+|S1 > Y]
λ

λ + μ

= λ

μ(λ + μ)

Also,

E[S1(S1 − Y)+]

= E[S1(S1 − Y)+|S1 > Y] λ
λ + μ

= λ
λ + μ

(E[(S1 − Y)(S1 − Y)+|S1 > Y]

+ E[Y(S1 − Y)+|S1 > Y])

= λ
λ + μ

(E[S2
1] + E[Y|S1 > Y]E[(S1 − Y)+|S1 > Y])

= λ
λ + μ

( 2
μ2 + 1

λ + μ
1
μ )

Hence,

Cov(S1, (S1 − Y)+ + S2) = λ
λ + μ

( 2
μ2 + 1

λ + μ
1
μ )

− λ
μ2(λ + μ)

= λ
μ2(λ + μ)

+ λ
μ(λ + μ)2

7. To compute W for the M/M/2, set up balance equa-
tions as

λp0 = μp1 (each server has rate μ)

(λ + μ)p1 = λp0 + 2μp2

(λ + 2μ)pn = λpn−1 + 2μpn+1, n ≥ 2

These have solutions Pn = ρn/2n−1p0 where
ρ = λ/μ.

The boundary condition
∞
∑
n=0

Pn = 1 implies

P0 = 1 − ρ/2
1 + ρ/2

= (2 − ρ)
(2 + ρ)

Now we have Pn, so we can compute L, and hence
W from L = λW :

L =
∞
∑
n=0

npn = ρp0

∞
∑
n=0

n
[
ρ
2

]n−1

= 2p0

∞
∑
n=0

n
[
ρ
2

]n

= 2 (2 − ρ)
(2 + ρ)

(ρ/2)
(1 − ρ/2)2

= 4ρ
(2 + ρ)(2 − ρ)

= 4μλ
(2μ + λ)(2μ − λ)

From L = λW we have

W = Wm/m/2 = 4μ

(2μ + λ)(2μ − λ)
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The M/M/1 queue with service rate 2μ has

Wm/m/1 = 1
2μ − λ

from Equation (3.3). We assume that in the
M/M/1 queue, 2μ > λ so that the queue is stable.

But then 4μ > 2μ + λ, or
4μ

2μ + λ
> 1, which

implies Wm/m/2 > Wm/m/1.

The intuitive explanation is that if one finds the
queue empty in the M/M/2 case, it would do no
good to have two servers. One would be better off
with one faster server.

Now let W1
Q = WQ(M/M/1)

W2
Q = WQ(M/M/2)

Then,

W1
Q = Wm/m/1 − 1/2μ

W2
Q = Wm/m/2 − 1/μ

So,

W1
Q = λ

2μ(2μ − λ)
(3.3)

and

W2
Q = λ2

μ(2μ − λ)(2μ + λ)

Then,

W1
Q > W2

Q ⇔ 1
2 > λ

(2μ + λ)
λ < 2μ

Since we assume λ < 2μ for stability in the
M/M/1, W2

Q < W1
Q whenever this comparison is

possible, i.e., whenever λ < 2μ.

8. This model is mathematically equivalent to the
M/M/1 queue with finite capacity k. The produced
items constitute the arrivals to the queue, and the
arriving customers constitute the services. That is,
if we take the state of the system to be the number
of items presently available then we just have the
model of Section 8.3.2.

(a) The proportion of customers that go away
empty-handed is equal to P0, the proportion
of time there are no items on the shelves. From
Section 8.3.2,

P0 = 1 − λ/μ

1 − (λ/μ)k+1

(b) W = L
λ(1 − Pk)

where L is given by Equation

(8.12).

(c) The average number of items in stock is L.

9. Take the state to be the number of customers at
server 1. The balance equations are

μP0 = μP1

2μPj = μPj+1 + μPj−1, 1 ≤ j < n

μPn = μPn−1

1 =
n

∑
j=0

Pj

It is easy to check that the solution to these equa-
tions is that all the Pjs are equal, so Pj = 1/(n + 1),
j = 0, …, n.

10. The state is the number of customers in the system,
and the balance equations are

mθP0 = μP1

((m − j)θ + μ)Pj = (m − j + 1)θPj−1

+ μPj+1, 0 < j < m

μPm = θPm−1

1 =
m

∑
j=0

Pj

(a) λα = ∑m
j=0 (m − j)θPj

(b) L/λα = ∑m
j=0 jPj/∑m

j=0 (m − j)θPj

11. (a) λP0 = αμP1

(λ + αμ)Pn = λPn−1 + αμPn+1, n ≥ 1

These are exactly the same equations as in the
M/M/1 with αμ replacing μ. Hence,

Pn =
[

λ

αμ

]n [
1 − λ

αμ

]
, n ≥ 0

and we need the condition λ < αμ.

(b) If T is the waiting time until the customer first
enters service, then conditioning on the num-
ber present when he arrives yields
E[T] = ∑

n
E[T|n present]Pn

= ∑
n

n
μ

Pn

= L
μ
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Since L = ∑ nPn, and the Pn are the same as
in the M/M/1 with λ and αμ, we have that
L = λ/(αμ − λ) and so

E[T] = λ

μ(αμ − λ)

(c) P{enters service exactly n times}
= (1 − α)n−1α

(d) This is expected number of services × mean
services time = 1/αμ

(e) The distribution is easily seen to be memory-
less. Hence, it is exponential with rate αμ.

12. (a) λp0 = μp1

(λ + μ)p1 = λp0 + 2μp2

(λ + 2μ)pn = λpn−1 + 2μpn+1 n ≥ 2

These are the same balance equations as for the
M/M/2 queue and have solution

p0 =
[

2μ − λ

2μ + λ

]
, pn = λn

2n−1μn p0

(b) The system goes from 0 to 1 at rate λp0 =
λ(2μ − λ)
(2μ + λ)

. The system goes from 2 to 1 at rate

2μp2 = λ2(2μ − λ)
μ(2μ + λ)

.

(c) Introduce a new state cl to indicate that the
stock clerk is checking by himself. The balance
equation for Pcl is

(λ + μ)pcl = μp2

The reason for p2 is that it is only if the checker
completes service first in p2 that the system
moves to state cl. Then

pcl = μ

λ + μ
p2 = λ2

2μ(λ + μ)
(2μ − λ)
(2μ + λ)

Finally, the proportion of time the stock clerk
is checking is

pcl +
∞
∑
n=2

pn = pcl + 2λ2

μ(2μ + λ)

13. Let the state be the idle server. The balance equa-
tions are

Rate Leave = Rate Enter,

(μ2 + μ3)P1 = μ1
μ1 + μ2

P3 + μ1
μ1 + μ3

P2,

(μ1 + μ3)P2 = μ2
μ2 + μ3

P1 + μ2
μ2 + μ1

P3,

μ1 + μ2 + μ3 = 1.

These are to be solved and the quantity Pi repre-
sents the proportion of time that server i is idle.

14. There are 4 states, defined as follows: 0 means the
system is empty, i that there are i type 1 customers
in the system, i = 1, 2, and 12 that there is one type
2 customer in the system.

(b) (λ1 + λ2)P0 = μ1P1 + μ2P12

(λ1 + μ1)P1 = λ1P0 + 2μ1P2

2μ1P2 = λ1P1

μ2P12 = λ2P0

P0 + P1 + P2 + P12 = 1

(c) W = L
λa

= P1 + 2P2 + P12

(λ1 + λ2)P0 + λ1P1

(d) Let F1 be the fraction of served customers that
are type 1. Then F1

= rate at which type 1 customers join the system
rate at which customers join the system

= λ1(P0 + P1)
λ1(P0 + P1) + λ2P0

15. There are four states = 0, 1A, 1B, 2. Balance equa-
tions are

2P0 = 2P1B

4P1A = 2P0 + 2P2

4P1B = 4P1A + 4P2

6P2 = 2P1B

P0 + P1A + P1B + P2 = 1 ⇒ P0 = 3
9

P1A = 2
9

, P1B = 3
9

, P2 = 1
9

(a) P0 + P1B = 2
3

(b) By conditioning upon whether the state was 0
or 1B when he entered we get that the desired
probability is given by

1
2

+ 1
2

2
6

= 4
6

(c) P1A + P1B + 2P2 = 7
9

(d) Again, condition on the state when he enters
to obtain

1
2

[
1
4

+ 1
2

]
+ 1

2

[
1
4

+ 2
6

1
2

]
= 7

12
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This could also have been obtained from (a)

and (c) by the formula W = L
λa

.

That is, W =
7
9

2
[

2
3

] = 7
12

.

16. Let the states be (0, 0), (1, 0), (0, 1), and (1, 1), where
state (i, j) means that there are i customers with
server 1 and j with server 2. The balance equations
are as follows.

λP00 = μ1P10 + μ2P01

(λ + μ1)P10 = λP00 + μ2P11

(λ + μ2)P01 = μ1P11

(μ1 + μ2)P11 = λP01 + λP10

P00 + P01 + P10 + P11 = 1

Substituting the values λ = 5, μ1 = 4, μ2 = 2 and
solving yields the solution

P00 = 128/513, P10 = 110/513, P01 = 100/513,

P11 = 175/513

(a) W = L/λa = [1(P01 + P10) + 2P11]/[λ(1 −
P11)] = 56/119
Another way is to condition on the state as seen
by the arrival. Letting T denote the time spent,
this gives

W = E[T|00]128/338 + E[T|01]100/338

+ E[T|10]110/338

= (1/4)(228/338) + (1/2)(110/338)

= 56/119

(b) P01 + P11 = 275/513

17. The state space can be taken to consist of states
(0, 0), (0, 1), (1, 0), (1, 1), where the ith component of
the state refers to the number of customers at server
i, i = 1, 2. The balance equations are

2P0, 0 = 6P0, 1

8P0, 1 = 4P1, 0 + 4P1, 1

6P1, 0 = 2P0, 0 + 6P1, 1

10P1, 1 = 2P0, 1 + 2P1, 0

1 = P0, 0 + P0, 1 + P1, 0 + P1, 1

Solving these equations gives P0, 0 = 1/2,
P0, 1 = 1/6, P1, 0 = 1/4, P1, 1 = 1/12.

(a) P1, 1 = 1/12

(b) W = L
λa

= P0, 1 + P1, 0 + 2P1, 1

2(1 − P1, 1)
= 7

22

(c)
P0, 0 + P0, 1

1 − P1, 1
= 8

11

18. (a) Let the state be (i, j, k) if there are i customers
with server 1, j customers with server 2, and k
customers with server 3.

(b) λP0,0,0 = μ3P0,0,1

(λ + μ1)P1,0,0 = λP0,0,0 + μ3P1,0,1

(λ + μ2)P0,1,0 = μ3P0,1,1

(λ + μ3)P0,0,1 = μ1P1,0,0 + μ2P0,1,0

(μ1 + μ2)P1,1,0 = λP1,0,0 + λP0,1,0 + μ3P1,1,1

(λ + μ1 + μ3)P1,0,1 = λP0,0,1 + μ2P1,1,1

(λ + μ2 + μ3)P0,1,1 = μ1P1,1,1

(μ1 + μ2 + μ3)P1,1,1 = λP0,1,1 + λP1,0,1

∑
i,j,k

Pi,j,k = 1

(c) W = L
λa

= P1,0,0 + P0,1,0 + P0,0,1 + 2(P1,1,0 + P1,0,1 + P0,1,1) + 3P1,1,1

λ(1 − P1,1,0 − P1,1,1)

(d) Let Q1,j,k be the probability that the person at
server 1 will be eventually served by server
3 when there are j currently at server 2 and
k at server 3. The desired probability is Q1,0,0.
Conditioning on the next event yields

Q1,0,0 = μ1

λ + μ1
+ λ

λ + μ1
Q1,1,0

Q1,1,0 = μ1

μ1 + μ2
+ μ2

μ1 + μ2
Q1,0,1

Q1,0,1 = λ

λ + μ1 + μ3
Q1,1,1 + μ3

λ + μ1 + μ3
Q1,0,0

Q1,1,1 = μ2

μ1 + μ2 + μ3
Q1,0,1 + μ3

μ1 + μ2 + μ3
Q1,1,0

Now solve for Q1,0,0.

19. (a) Say that the state is (n, 1) whenever it is a good
period and there are n in the system, and say
that it is (n, 2) whenever it is a bad period and
there are n in the system, n = 0, 1.

(b) (λ1 + α1)P0, 1 = μP1, 1 + α2P0, 2

(λ2 + α2)P0, 2 = μP1, 2 + α1P0, 1

(μ + α1)P1, 1 = λ1P0, 1 + α2P1, 2

(μ + α2)P1, 2 = λ2P0, 2 + α1P1, 1
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P0, 1 + P0, 2 + P1, 1 + P1, 2 = 1

(c) P0, 1 + P0, 2

(d) λ1P0, 1 + λ2P0, 2

20. (a) The states are 0, (1, 0), (0, 1) and (1, 1), where
0 means that the system is empty, (1, 0) that
there is one customer with server 1 and none
with server 2, and so on.

(b) (λ1 + λ2)P0 = μ1P10 + μ2P01

(λ1 + λ2 + μ1)P10 = λ1P0 + μ2P11

(λ1 + μ2)P01 = λ2P0 + μ1P11

(μ1 + μ2)P11 = λ1P01 + (λ1 + λ2)P10

P0 + P10 + P01 + P11 = 1

(c) L = P01 + P10 + 2P11

(d) W = L/λa = L/[λ1(1 − P11) + λ2(P0 + P10)]

21. (a) λ1P10

(b) λ2(P0 + P10)

(c) λ1P10/[λ1P10 + λ2(P0 + P10)]

(d) This is equal to the fraction of server 2’s cus-
tomers that are type 1 multiplied by the pro-
portion of time server 2 is busy. (This is true
since the amount of time server 2 spends with
a customer does not depend on which type of
customer it is.) By (c) the answer is thus

(P01 + P11)λ1P10/[λ1P10 + λ2(P0 + P10)]

22. The state is the pair (i, j), i = 0, 1, 0 ≤ j ≤ n where i
signifies the number of customers in service and j
the number in orbit. The balance equations are

(λ + jθ)P0,j = μP1,j, j = 0, …, N

(λ + μ)P1,j = λP0,j + (j + 1)θP0,j+1,

j = 0, …, N − 1

μP1,N = λP0,N

(c) 1 − P1, N

(d) The average number of customers in the sys-
tem is

L = ∑
i, j

(i + j)Pi, j

Hence, the average time that an entering cus-
tomer spends in the system is W = L/λ(1 −
P1,N), and the average time that an entering
customer spends in orbit is W − 1/μ.

23. (a) The states are n, n ≥ 0, and b. State n means
there are n in the system and state b means
that a breakdown is in progress.

(b) βPb = a(1 − P0)

λP0 = μP1 + βPb

(λ + μ + a)Pn = λPn−1 + μPn+1, n ≥ 1

(c) W = L/λn =
∞
∑
n=1

nPa/[λ(1 − Pb)]

(d) Since rate at which services are completed =
μ(1 − P0 − Pb) it follows that the proportion of
customers that complete service is

μ(1 − P0 − Pb)/λa

= μ(1 − P0 − Pb)/[λ(1 − Pb)]
An equivalent answer is obtained by condi-
tioning on the state as seen by an arrival. This
gives the solution

∞
∑
n=0

Pn[μ/(μ + a)]n+1

where the above uses that the probability that
n + 1 services of present customers occur
before a breakdown is [μ/(μ + a)]n+1.

(e) Pb

24. The states are now n, n ≥ 0, and n′, n ≥ 1 where
the state is n when there are n in the system and
no breakdown, and it is n′ when there are n in the
system and a breakdown is in progress. The balance
equations are

λP0 = μP1

(λ + μ + α)Pn = λPn−1 + μPn+1 + βPn′ , n ≥ 1

(β + λ)P1′ = αP1

(β + λ)Pn′ = αPn + λP(n−1)′ , n ≥ 2

∞
∑
n=0

Pn +
∞
∑
n=1

Pn′ = 1.

In terms of the solution to the above,

L =
∞
∑
n=1

n(Pn + Pn′)

and so

W = L/λα = L/λ
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25. (a) λP0 = μAPA + μBPB

(λ + μA)PA = aλP0 + μBP2

(λ + μB)PB = (1 − a)λP0 + μAP2

(λ + μA+μB)Pn = λPn−1 + (μA + μB)Pn+1′

n ≥ 2 where P1 = PA + PB.

(b) L = PA + PB +
∞
∑
n=2

nPn

Average number of idle servers = 2P0 +
PA + PB.

(c) P0 + PB + μA

μA + μB

∞
∑
n=2

Pn

26. States are 0, 1, 1′, …, k − 1(k − 1)′, k, k + 1, …
with the following interpretation

0 = system is empty

n = n in system and server is working

n′ = n in system and server is idle,

n = 1, 2, …, k − 1

(a) λP0 = μP1, (λ + μ)P1 = μP2

λP′
n = λP(n−1)′ n = 1, …, k − 1

(λ + μ)Pk = λP(k−1)′ + μPk+1 + λPk−1

(λ + μ)Pn = λPn−1 + μPn+1′ n > k

(b)
k − 1

λ
P0 +

k−1

∑
n=1

[
k − 1 − n

λ
+ n

μ

]
Pn′ +

∞
∑

n−1
Pn

n
μ

(c) λ < μ

27. (a) The special customer’s arrival rate is act θ
because we must take into account his ser-
vice time. In fact, the mean time between his
arrivals will be 1/θ + 1/μ1. Hence, the arrival
rate is (1/θ + 1/μ1)−1.

(b) Clearly we need to keep track of whether the
special customer is in service. For n ≥ 1, set

Pn = Pr{n customers in system regular cus-
tomer in service},

PS
n = Pr{n customers in system, special cus-

tomer in service}, and

P0 = Pr{0 customers in system}.

(λ + θ)P0 = μP1 + μ1PS
1

(λ + θ + μ)Pn = λPn−1 + μPn+1 + μ1PS
n+1

(λ + μ)PS
n = θPn−1 + λPS

n−1,

n ≥ 1
[
PS

0 = P0
]

(c) Since service is memoryless, once a customer
resumes service it is as if his service has
started anew. Once he begins a particular ser-
vice, he will complete it if and only if the next
arrival of the special customer is after his ser-
vice. The probability of this is Pr {Service <
Arrival of special customer}= μ/(μ + θ), since
service and special arrivals are independent
exponential random variables. So,
Pr{bumped exactly n times}

= (1 − μ/(μ + θ))n(μ/(μ + θ))

= (θ/(μ + θ))n(μ/(μ + θ))

In essence, the number of times a customer is
bumped in service is a geometric random vari-
able with parameter μ/(μ + θ).

28. If a customer leaves the system busy, the time until
the next departure is the time of a service. If a cus-
tomer leaves the system empty, the time until the
next departure is the time until an arrival plus the
time of a service.

Using moment-generating functions we get

E{eδD} = λ

μ
E{eδD|system left busy}

+
[

1 − λ

μ

]
E{eδD|system left empty}

=
[
λ

μ

] [
μ

μ − δ

]
+
[

1 − λ

μ

] [
E{eδ(X+Y)}

]

where X has the distribution of interarrival times,
Y has the distribution of service times, and X and
Y are independent.

Then

E{eδ(X+Y)} = E{eδXeδY)}

= E[eδX]E[eδY)] by independence

=
[

λ

λ − δ

] [
μ

μ − δ

]
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So,

E{eδD} =
[
λ
μ

][
μ

μ− δ

]
+
[
1 − λ

μ

][
λ

λ − δ

][
μ

μ− δ

]

= λ
(λ − δ) .

By the uniqueness of generating functions, it fol-
lows that D has an exponential distribution with
parameter λ.

29. (a) Let state 0 mean that the server is free; let state
1 mean that a type 1 customer is having a wash;
let state 2 mean that the server is cutting hair;
and let state 3 mean that a type 3 is getting a
wash.

(b) λP0 = μ1P1 + μ2P2

μ1P1 = λp1P0

μ2P2 = λp2P0 + μ1P3

μ1P3 = λp3P0

P0 + P1 + P2 + P3 = 1

(c) P2

(d) λP0
Direct substitution now verifies the equation.

31. The total arrival rates satisfy

λ1 = 5

λ2 = 10 + 1
3

5 + 1
2

λ3

λ3 = 15 + 1
3

5 + λ2

Solving yields that λ1 = 5, λ2 = 40, λ3 = 170/3.
Hence,

L =
3

∑
i=1

λi

μi − λi
= 82

13

W = L
r1 + r2 + r3

= 41
195

32. Letting the state be the number of customers at
server 1, the balance equations are

(μ2/2)P0 = (μ1/2)P1

(μ1/2 + μ2/2)P1 = (μ2/2)P0 + (μ1/2)P2

(μ1/2)P2 = (μ2/2)P1

P0 + P1 + P2 = 1

Solving yields that

P1 = (1 + μ1/μ2 + μ2/μ1)−1, P0 = μ1/μ2P1,

P2 = μ2/μ1P1

Hence, letting Li be the average number of cus-
tomers at server i, then

L1 = P1 + 2P2, L2 = 2 − L1

The service completion rate for server 1 is
μ1(1 − P0), and for server 2 it is μ2(1 − P2) .

33. (a) Use the Gibbs sampler to simulate a Markov
chain whose stationary distribution is that of
the queuing network system with m − 1 cus-
tomers. Use this simulated chain to estimate
Pi, m−1, the steady state probability that there
are i customers at server j for this system.
Since, by the arrival theorem, the distribu-
tion function of the time spent at server j in
the m customer system is ∑m−1

i=0 Pi, m−1Gi+1(x) ,
where Gk(x) is the probability that a gamma
(k, μ) random variable is less than or equal to
x, this enables us to estimate the distribution
function.

(b) This quantity is equal to the average number
of customers at server j divided by m.

34. WQ = LQ/λα =
∑j

λ2
j

μj(μj − λj)

∑j rj

35. Let S and U denote, respectively, the service time
and value of a customer. Then U is uniform on
(0, 1) and

E[S|U] = 3 + 4U, Var(S|U) = 5

Hence,

E[S] = E{E[S|U]} = 3 + 4E[U] = 5

Var(S) = E[Var(S|U)] + Var(E[S|U])

= 5 + 16Var(U) = 19/3

Therefore,

E[S2] = 19/3 + 25 = 94/3

(a) W = WQ + E[S] = 94λ/3
1 − δλ

+ 5

(b) WQ + E[S|U = x] = 94λ/3
1 − δλ

+ 3 + 4x
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36. The distributions of the queue size and busy
period are the same for all three disciplines; that of
the waiting time is different. However, the means
are identical. This can be seen by using W = L/λ,
since L is the same for all. The smallest vari-
ance in the waiting time occurs under first-come,
first-served and the largest under last-come, first-
served.

37. (a) The proportion of departures leaving behind
0 work

= proportion of departures leaving an
empty system

= proportion of arrivals finding an empty
system

= proportion of time the system is empty
(by Poisson arrivals)

= P0

(b) The average amount of work as seen by a
departure is equal to the average number it
sees multiplied by the mean service time (since
no customers seen by a departure have yet
started service). Hence,
Average work as seen by a departure

= average number it sees × E[S]
= average number an arrival sees × E[S]
= LE[S] by Poisson arrivals

= λ(WQ + E[S])E[S]

= λ2E[S]E[S2]
λ − λE[S] + λ(E[S])2

38. (a) Yn = number of arrivals during the (n + 1)st
service.

(b) Taking expectations we get

EXn+1 = EXn − 1 + EYn + Eδn

Letting n → ∞, EXn+1 and EXn cancel, and
EY∞ = EY1. Therefore,

Eδ∞ = 1 − EY1

To compute EY1, condition on the length of
service S; E[Y1|S = t] = λt by Poisson arrivals.
But E[λS] is just λES. Hence,

Eδ∞ = 1 − λES

(c) Squaring Equation (8.1) we get

(∗)X2
n+1 = X2

n + 1 + Y2
n + 2(XnYn − Xn) − 2Yn

+ δn(2Yn + 2Xn − 1)

But taking expectations, there are a few facts
to notice:

EδnSn = 0 since δnSn ≡ 0

Yn and Xn are independent random variables
because Yn = number of arrivals during the
(n + 1)st service. Hence,

EXnYn = EXnEYn

For the same reason, Yn and δn are independent
random variables, so EδnYn = EδnEYn.
EY2

n = λES + λ2ES2 by the same conditioning
argument of part (b).

Finally also note δ2
n ≡ δn.

Taking expectations of (*) gives

EX2
n+1 = EX2

n + 1 + λE(S) + λ2E(S2)

+ 2EXn(λE(S) − 1)

− 2λE(S) + 2λE(S)Eδn − Eδn

Letting n → ∞ cancels EX2
n and EX2

n+1, and
Eδn → Eδ∞ = 1 − λE(S). This leaves

0 = λ2E(S2) + 2EX∞(λE(S) − 1) + 2λE(S)

[1 − λE(S)]

which gives the result upon solving for EX∞.

(d) If customer n spends time Wn in system,
then by Poisson arrivals E[Xn|Wn] = λWn.
Hence, EXn = λEWn and letting n → ∞ yields
EX∞ = λW = L. It also follows since the aver-
age number as seen by a departure is always
equal to the average number as seen by an
arrival, which in this case equals L by Poisson
arrivals.

39. (a) a0 = P0 due to Poisson arrivals. Assuming that
each customer pays 1 per unit time while in
service the cost identity (2.1) states that
Average number in service = λE[S]
or

1 − P0 = λE[S]

(b) Since a0 is the proportion of arrivals that have
service distribution G1 and 1 − a0 the propor-
tion having service distribution G2, the result
follows.

(c) We have

P0 = E[I]
E[I] + E[B]
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and E[I] = 1/λ and thus,

E[B] = 1 − P0
λP0

= E[S]
1 − λE[S]

Now from (a) and (b) we have

E[S] = (1 − λE[S])E[S1] + λE[S]E[S2]

or

E[S] = E[S1]
1 + λE[S1] + λE[S2]

Substitution into E[B] = E[S]/(1 − λE[S]) now
yields the result.

40. (a) (i) A little thought reveals that time to go
from n to n − 1 is independent of n.

(ii) nE[B] = nE[S]
1 − λE[S]

(b) (i) E[T|N] = A + NE[B]
(ii) E[T] = A + E[N]E[B]

= A + λAE[S]
1 − λE[S]

= A
1 − λE[S]

41. E[N] = 2, E[N2] = 9/2, E[S2] = 2E2[S] = 1/200

W =
1

20
5
2
/4 + 4 · 2/400

1 − 8/20
= 41

480

WQ = 41
480

− 1
20

= 17
480

42. For notational ease, set α = λ1/(λ1 + λ2) = pro-
portion of customers that are type I.

ρ1 = λ1E(S1), ρ2E(S2)

Since the priority rule does not affect the amount of
work in system compared to FIFO and WQ

FIFO = V,
we can use Equation (6.5) for WQ

FIFO. Now WQ =
αW1

Q + (1 − α)W2
Q by averaging over both classes

of customers. It is easy to check that WQ then
becomes

WQ =
[
λ1ES2

1 + λ2ES2
2

]
[α(1 − ρ1 − ρ2) + (1 −α)]

2(1 − ρ1 − ρ2)(1 − ρ1)

which we wish to compare to

WQ
FIFO =

[
λ1ES2

1 + λ2ES2
2

]
2(1 − ρ1 − ρ2) · (1 − ρ1)

(1 − ρ1)

Then WQ < WQ
FIFO ⇔ α(−ρ1 − ρ2) ≤ −ρ1

⇔ αρ2 > (1 − α)ρ1

⇔ λ1
λ1 + λ2

· λ2E(S2)

> λ2
λ1 + λ2

· λ1ES1

⇔ E(S2) > E(S1)

43. Problem 42 shows that if μ1 > μ2, then serving 1’s
first minimizes average wait. But the same argu-
ment works if c1μ1 > c2μ2, i.e.,

E(S1)
c1

<
E(S2)
μ1

44. (a) As long as the server is busy, work decreases
by 1 per unit time and jumps by the service
of an arrival even though the arrival may go
directly into service. Since the bumped cus-
tomer’s remaining service does not change
by being bumped, the total work in system
remains the same as for nonpreemptive, which
is the same as FIFO.

(b) As far as type I customers are concerned, the
type II customers do not exist. A type I cus-
tomer’s delay only depends on other type I
customers in system when he arrives. There-
fore, W1

Q = V1 = amount of type I work in sys-
tem.
By part (a), this is the same V1 as for the
nonpreemptive case (6.6). Therefore,

W1
Q = λ1E(S1)W1

Q +
λ1E

[
S2

1

]
2

or

W1
Q =

λ1E
[
S2

1

]
2(1 − λ1E(S1)]

Note that this is the same as for an M/G/1
queue that has only type I customers.

(c) This does not account for the fact that some
type II work in queue may result from cus-
tomers that have been bumped from service,
and so their average work would not be E[S].

(d) If a type II arrival finds a bumped type II in
queue, then a type I is in service. But in the
nonpreemptive case, the only difference is that
the type II bumped customer is served ahead
of the type I, both of whom still go before the
arrival. So the total amount of work found fac-
ing the arrival is the same in both cases. Hence,
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V
2
Q (nonpreemptive) + E (extra time)

W
2
Q 5

total work found
by type II

extra time due
to being bumped

(e) As soon as a type II is bumped, he will not
return to service until all type I’s arriving dur-
ing the first type I’s service have departed, all
further type I’s who arrived during the addi-
tional type I services have departed, and so on.
That is, each time a type II customer is bumped,
he waits back in queue for one type I busy
period. Because the type I customers do not
see the type IIs at all, their busy period is just
an M/G1/1 busy period with mean

E(S1)
1−λ1E(S1)

So given that a customer is bumped N times,
we have

E{extra time|N} = NE(S1)
1 − λ1E(S1)

(f) Since arrivals are Poisson, E[N|S2] = λ1S2,
and so EN = λ1ES2.

(g) From (e) and (f),

E(extra time) = λ1E(S2)E(S1)
1 − λ1E(S1)

. Combining this

with (e) gives the result.

45. By regarding any breakdowns that occur during a
service as being part of that service, we see that
this is an M/G/1 model. We need to calculate the
first two moments of a service time. Now the time
of a service is the time T until something happens
(either a service completion or a breakdown) plus
any additional time A. Thus,

E[S] = E[T + A]

= E[T] + E[A]

To compute E[A] we condition upon whether the
happening is a service or a breakdown. This gives

E[A] = E[A|service]
μ

μ + α

+ E[A|breakdown]
α

μ + α

= E[A|breakdown]
α

μ + α

= (1/β + E[S])
α

μ + α

Since, E[T] = 1/(α + μ) we obtain

E[S] = 1
α + μ

+ (1/β + E[S])
α

μ + α

or

E[S] = 1/μ + α/(μβ)

We also need E[S2], which is obtained as follows.

E[S2] = E[(T + A)2]

= E[T2] + 2E[AT] + E[A2]

= E[T2] + 2E[A]E[T] + E[A2]

The independence of A and T follows because
the time of the first happening is independent of
whether the happening was a service or a break-
down. Now,

E[A2] = E[A2|breakdown] α
μ + α

= α

μ + α
E[(down time + Sα)2]

= α

μ + α

{
E[down2] + 2E[down]E[S] + E[S2]

}

= α

μ + α

{
2
β2 + 2

β

[
1
μ

+ α

μβ

]
+ E[S2]

}

Hence,

E[S2] = 2
(μ + β)2 + 2

[
α

β(μ + α)

+ α

μ + α

(
1
μ

+ α

μβ

)]

+ α

μ + α

{
2
β2 + 2

β

[
1
μ

+ α

μβ

]
+ E[S2]

}

Now solve for E[S2]. The desired answer is

WQ = λE[S2]
2(1 − λE[S])

In the above, Sα is the additional service needed
after the breakdown is over. Sα has the same dis-
tribution as S. The above also uses the fact that
the expected square of an exponential is twice the
square of its mean.

Another way of calculating the moments of S is to
use the representation

S =
N

∑
i=1

(Ti + Bi) + TN+1

where N is the number of breakdowns while a cus-
tomer is in service, Ti is the time starting when ser-
vice commences for the ith time until a happening
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occurs, and Bi is the length of the ith breakdown.
We now use the fact that, given N, all of the ran-
dom variables in the representation are indepen-
dent exponentials with the Ti having rate μ + α
and the Bi having rate β. This yields

E[S|N] = (N + 1)/(μ + α) + N/β

Var(S|N) = (N + 1)/(μ + α)2 + N/β2

Therefore, since 1 + N is geometric with mean
(μ + α)/μ (and variance α(α + μ)/μ2) we obtain

E[S] = 1/μ + α/(μβ)

and, using the conditional variance formula,

Var(S) = [1/(μ + α) + 1/β]2α(α + μ)/μ2

+ 1/[μ(μ + α)] + α/μβ2)

46. β is to be the solution of Equation (7.3):

β =
∫ ∞

0
e−μt(1−β)dG(t)

If G(t) = 1 − e−λt(λ < μ) and β = λ/μ

∫ ∞

0
e−μt(1−λ/μ)dG(t) =

∫ ∞

0
e−μt(1−λ/μ)λe−λtdt

=
∫ ∞

0
e−μtdt

= λ

μ
= β

The equation checks out.

47. For k = 1, Equation (8.1) gives

P0 = 1
1 + λE(S) = (λ)

(λ) + E(S) P1 = λ(ES)
1 + λE(S)

= E(S)
λ + E(S)

One can think of the process as an alteracting
renewal process. Since arrivals are Poisson, the time
until the next arrival is still exponential with
parameter λ.

end of 
service arrival

end of 
service

A
A S

S states

The basic result of alternating renewal processes is
that the limiting probabilities are given by

P{being in “state S”} = E(S)
E(A) + E(S)

and

P{being in “state A”} = E(A)
E(A) + E(S)

These are exactly the Erlang probabilities given
above since E[A] = 1/λ. Note this uses Poisson
arrivals in an essential way, viz., to know the distri-
bution of time until the next arrival after a service
is still exponential with parameter λ.

48. The easiest way to check that the Pi are correct is
simply to check that they satisfy the balance equa-
tions:

λp0 = μp1

(λ + μ)p1 = λp0 + 2μp2

(λ + 2μ)p2 = λp1 + 3μp3

(λ + iμ)pi = λpi−1 + (i + 1)μpi+1, 0 < i ≤ k

(λ + kμ)pn = λpn−1 + kμpn+1, n ≥ k

or

p1 = 1
μ

P0

p2 = λ2

2μ2 P0

pi = λi

μ1i!
P0, 0 < i ≤ k

pk+n = λk+n

μk+nk!kn P0, n ≥ 1

In this form it is easy to check that the pi of
Equation (8.2) solves the balance equations.

49. P3 =
(λE[S])3

3!
3

∑
j=0

(λE[S])j

j!

, λ = 2, E[S] = 1

= 8
38

50. (i) P{arrival finds all servers busy}

=
∞
∑
i=k

Pi =

[
λ

μ

]k kμ

kμ − λ

k!
k−1

∑
i=0

[
λ

μ

]i

1!
+
[
λ

μ

]k kμ

kμ − λ
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(ii) W = WQ + 1/μ where WQ is as given by
Equation (7.3), L = λW.

51. Note that when all servers are busy, the depar-
tures are exponential with rate kμ. Now see
Problem 26.

52. Sn is the service time of the nth customer. Tn is the
time between the arrival of the nth and (n + 1)st

customer.

53. 1/μF < k/μG, where μF and μG are the respective
means of F and G.



Chapter 9

1. If xi = 0, φ(x) = φ(0i, x).

If xi = 1, φ(x) = φ(1i, x).

2. (a) If mini xi = 1, then x = (1, 1, …, 1) and so
φ(x) = 1.
If maxi xi = 0, then x = (0, 0, …, 0) and so
φ(x) = 0.

(b) max(x, y) ≥ x ⇒ φ(max(x, y)) ≥ φ(x)

max(x, y) ≥ y ⇒ φ(max(x, y)) ≥ φ(y)

∴ φ(max(x, y)) ≥ max(φ(x), φ(y)).

(c) Similar to (b).

3. (a) If φ is series, then φ(x) = minixi and so φD(x) =
1 − mini (1 − xi) = max xi, and vice versa.

(b) φD,D(x) = 1 − φD(1 − x)

= 1 − [1 − φ(1 − (1 − x))]

= φ(x)

(c) An n − k + 1 of n.

(d) Say {1, 2, …, r} is a minimal path set. Then
φ(1, 1, …,︸ ︷︷ ︸

r

1, 0, 0, …0) = 1, and so

φD(0, 0, …,︸ ︷︷ ︸
r

0, 1, 1, …, 1) = 1 − φ(1, 1, …,

1, 0, 0, …, 0) = 0, implying that {1, 2, …, r} is a
cut set. We can easily show it to be minimal.
For instance,

φD(0, 0, …,︸ ︷︷ ︸
r−1

0, 1, 1, …, 1)

= 1 − φ(1, 1, …,︸ ︷︷ ︸
r−1

1, 0, 0, …, 0) = 1,

since φ(1, 1, …,︸ ︷︷ ︸
r−1

1, 0, 0, …, 0) = 0 since

{1, 2, …, r − 1} is not a path set.

4. (a) φ(x) = x1 max(x2, x3, x4)x5

(b) φ(x) = x1 max(x2x4, x3x5)x6

(c) φ(x) = max(x1, x2x3)x4

5. (a) Minimal path sets are

{1, 8}, {1, 7, 9}, {1, 3, 4, 7, 8}, {1, 3, 4, 9},

{1, 3, 5, 6, 9}, {1, 3, 5, 6, 7, 8}, {2, 5, 6, 9},

{2, 5, 6, 7, 8}, {2, 4, 9}, {2, 4, 7, 8},

{2, 3, 7, 9}, {2, 3, 8}.

Minimal cut sets are

{1, 2}, {2, 3, 7, 8}, {1, 3, 4, 5}, {1, 3, 4, 6},

{1, 3, 7, 9}, {4, 5, 7, 8}, {4, 6, 7, 8}, {8, 9}.

6. A minimal cut set has to contain at least one
component of each minimal path set. There are
6 minimal cut sets:

{1, 5}, {1, 6}, {2, 5}, {2, 3, 6}, {3, 4, 6}, {4, 5}.

7. {1, 4, 5}, {3}, {2, 5}.

8. The minimal path sets are {1, 3, 5}, {1, 3, 6},
{2, 4, 5}, {2, 4, 6}. The minimal cut sets are
{1, 2}, {3, 4}, {5, 6}, {1, 4}, {2, 3}.

9. (a) A component is irrelevant if its functioning or
not functioning can never make a difference as
to whether or not the system functions.

(b) Use the representation (2.1.1).
(c) Use the representation (2.1.2).

10. The system fails the first time at least one com-
ponent of each minimal path set is down—thus
the left side of the identity. The right side follows
by noting that the system fails the first time all of
the components of at least one minimal cut set are
failed.

11. r(p) = P{either x1x3 = 1 or x2x4 = 1}
P{either of 5 or 6 work}

= (p1p3 + p2p4 − p1p3p2p4)

(p5 + p6 − p5p5)

96
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12. The minimal path sets are

{1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 4}, {3, 5}.

With qi = 1 − Pi, the structure function is

r(p) = P{either of 1, 2, or 3 works}
P{either of 4 or 5 works}

= (1 − q1q2q3)(1 − q4q5)

13. Taking expectations of the identity

φ(X) = Xiφ(1i, X) + (1 − Xi)φ(0i, X)

noting the independence of Xi and φ(1i, X) and of
φ(0i, X).

14. r(p) = p3P{max(X1, X2) = 1 = max(X4, X5)}

+ (1 − p3)P{max(X1X4, X2X5) = 1}

= p3(p1 + p2 − p1p2)(p4 + p5 − p4p5)

+ (1 − p3)(p1p4 + p2p5 − p1p4p2p5)

15. (a) 7
32 ≤ r

[
1
2

]
≤ 1 −

[
7
8

]3 = 169
512

The exact value is r(1/2) = 7/32, which
agrees with the minimal cut lower bound since
the minimal cut sets {1}, {5}, {2, 3, 4} do not
overlap.

17. E[N2] = E[N2|N > 0]P{N > 0}
≥ (E[N|N > 0])2P{N > 0}

since E[X2] ≥ (E[X])2.

Thus,

E[N2]P{N > 0} ≥ (E[N|N > 0]P{N > 0})2

= (E[N])2

Let N denote the number of minimal path sets
having all of its components functioning. Then
r(p) = P{N > 0}.

Similarly, if we define N as the number of minimal
cut sets having all of its components failed, then
1 − r(p) = P{N > 0}.

In both cases we can compute expressions for E[N]
and E[N2] by writing N as the sum of indicator (i.e.,
Bernoulli) random variables. Then we can use the
inequality to derive bounds on r(p).

18. (a) {3}, {1, 4}, {1, 5}, {2, 4}, {2, 5}.

(b) P
{

system life > 1
2

}
= r

[
1
2 , 1

2 , …, 1
2

]

Now r(p) = p1p2p3 + p3p4p5 − p1p2p3p4p5

and so

P
{

system life < 1
2

}
= 1 − 1

8 − 1
8 + 1

32

= 25
32

19. X(i) is the system life of an n − i + 1 of n system
each having the life distribution F. Hence, the result
follows from Example 5e.

20. The densities are related as follows.

g(t) = a[F̄(t)]a−1f (t)

Therefore,

λC(t) = a[F̄(t)]a−1f (t)/[F̄(t)]a

= a f (t)/F̄(t)

= a λF(t)

21. (a) (i), (ii), (iv) − (iv) because it is two-of-three.

(b) (i) because it is series, (ii) because it can be
thought of as being a series arrangement of 1
and the parallel system of 2 and 3, which as
F2 = F3 is IFR.

(c) (i) because it is series.

22. (a) Ft(a) = P{X > t + a | X > t}

= P{X > t + a}
P{X > t} = F̄(t + a)

F̄(t)

(b) Suppose λ(t) is increasing. Recall that

F̄(t) = e− ∫ t
0 λ(s)ds

Hence,
F̄(t + a)

F̄(t)
= e− ∫ t+a

0 λ(s)ds, which decreases in t

since λ(t) is increasing. To go the other way,
suppose F̄(t + a)/F̄(t) decreases in t. Now for
a small

F̄(t + a)/F̄(t) = e−aλ(t)

Hence, e−aλ(t) must decrease in t and thus λ(t)
increases.
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23. (a) F̄(t) =
n∏

i=1
Fi(t)

λF(t) =
d
dt

F̄(t)

F̄(t)
=

n

∑
j=1

F
′
j (t)
∏
i �=j

Fj(t)

n∏
i=1

Fi(t)

=

n

∑
j=1

F
′
j (t)

Fj(t)

=
n

∑
j=1

λj(t)

(b) Ft(a) = P{additional life of t-year-old > a}

=

n∏
1

Fi(t + a)

Fi(t)

where Fi is the life distribution for component
i. The point being that as the system is series,
it follows that knowing that it is alive at time t
is equivalent to knowing that all components
are alive at t.

24. It is easy to show that λ(t) increasing implies that∫ t
0 λ(s) ds/t also increases. For instance, if we differ-

entiate, we get tλ(t) − ∫ t
0 λ(s) ds/t2, which is non-

negative since
∫ t

0 λ(s) ds ≤ ∫ t
0 λ(t) dt = tλ(t). A

counterexample is

�(t)

t

25. For x ≥ ξ,

1 − p = 1 − F(ξ) = 1 − F(x(ξ/x)) ≥ [1 − F(x)]ξ/x

since IFRA.

Hence,

1 − F(x) ≤ (1 − p)x/ξ = e−θx

For x ≤ ξ,

1 − F(x) = 1 − F(ξ(x/ξ)) ≥ [1 − F(ξ)]x/ξ

since IFRA.

Hence,

1 − F(x) ≥ (1 − p)x/ξ = e−θx

26. Either use the hint in the text or the following,
which does not assume a knowledge of concave
functions.

To show: h(y) ≡ λαxα + (1 − λα)yα

− (λx + (1 − λ)y)α ≥ 0,
0 ≤ y ≤ x,
where 0 ≤ λ ≤ 1, 0 ≤ α ≤ 1.

Note: h(0) = 0, assume y > 0, and let g(y) = h(y)/ya

g(y) =
[
λx
y

]α
+ 1 − λα −

[
λx
y

+ 1 − λ

]α

Let z = x/y. Now g(y) ≥ 0 ∀ 0 < y < x ⇔ f (z) ≥
0 ∀ z ≥ 1

where f (z) = (λz)α + 1 − λα − (λz + 1 − λ)α.

Now f (1) = 0 and we prove the result by showing
that f

′
(z) ≥ 0 whenever z > 1. This follows since

f
′
(z) = αλ(λz)α−1 − αλ(λz + 1 − λ)α−1

f
′
(z) ≥ 0 ⇔ (λz)α−1 ≥ (λz + 1 − λ)α−1

⇔ (λz)1−α ≤ (λz + 1 − λ)1−α

⇔ λz ≤ λz + 1 − λ

⇔ λ ≤ 1

27. If p > p0, then p = p0
α for some a ∈ (0, 1). Hence,

r(p) = r(p0
α) ≥ [r(p0)]α = p0

α = p

If p < p0, then p0 = pα for some a ∈ (0, 1). Hence,

pα = p0 = r(p0) = r(pα) ≥ [r(p)]α

28. (a) F̄(t) = (1 − t)
[

2 − t
2

]
, 0 ≤ t ≤ 1

E[lifetime] = 1
2

∫ 1

0
(1 − t)(2 − t) dt = 5

12

(b) F̄(t) =
{

1 − t2/2, 0 ≤ t ≤ 1

1 − t / 2, 1 ≤ t ≤ 2

E[lifetime] = 1
2

∫ 1

0
(2 − t2) dt + 1

2

∫ 2

1
(2 − t) dt

= 13
12
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29. Let X denote the time until the first failure and let
Y denote the time between the first and second fail-
ure. Hence, the desired result is

EX + EY = 1
μ1 + μ2

+ EY

Now,

E[Y] = E[Y|μ1 component fails first] μ1
μ1 + μ2

+ E[Y|μ2 component fails first] μ2
μ1 + μ2

= 1
μ2

μ1
μ1 + μ2

+ 1
μ1

μ2
μ1 + μ2

30. r(p) = p1p2p3 + p1p2p4 + p1p3p4 + p2p3p4

−3p1p2p3p4

r(1 − F̄(t))

=

⎧⎪⎪⎨
⎪⎪⎩

2(1 − t)2(1 − t/2) + 2(1 − t)(1 − t/2)2

−3(1 − t)2(1 − t/2)2, 0 ≤ t ≤ 1

0, 1 ≤ t ≤ 2

E[lifetime] =
∫ 1

0

[
2(1 − t)2(1 − t/2)

+ 2(1 − t)(1 − t/2)2

− 3(1 − t)2(1 − t/2)2
]
dt

= 31
60

31. Use the remark following Equation (6.3).

32. Let Ii equal 1 if Xi > cα and let it be 0
otherwise. Then,

E

[
n

∑
i=1

Ii

]
=

n

∑
i=1

E[Ii] =
n

∑
i=1

P{Xi > c∞}

33. The exact value can be obtained by conditioning on
the ordering of the random variables. Let M denote
the maximum, then with Ai,j,k being the even that
Xi < Xj < Xk , we have that

E[M] = ∑ E[M|Ai, j, k]P(Ai, j, k)

where the preceding sum is over all 6 possible per-
mutations of 1, 2, 3. This can now be evaluated by
using

P(Ai, j, k) = λi
λi + λj + λk

λj
λj + λk

E[M|Ai, j, k] = 1
λi + λj + λk

+ 1
λj + λk

+ 1
λk

35. (a) It follows when i = 1 since 0 = (1 − 1)n

= 1 − [n1] + [n
2
] · · · ± [n

n]. So assume it true for
i and consider i + 1. We must show that[

n − 1
i

]
=
[

n
i + 1

]
−
[

n
i + 2

]
+ · · · ±

[n
n

]

which, using the induction hypothesis, is
equivalent to
[

n − 1
i

]
=
[n

i

]
−
[

n − 1
i − 1

]

which is easily seen to be true.

(b) It is clearly true when i = n, so assume it for i.
We must show that

[
n − 1
i − 2

]
=
[

n
i − 1

]
−
[

n − 1
i − 1

]
+ · · · ±

[n
n

]

which, using the induction hypothesis,
reduces to[

n − 1
i − 2

]
=
[

n
i − 1

]
−
[

n − 1
i − 1

]

which is true.



Chapter 10

1. X(s) + X(t) = 2X(s) + X(t) − X(s).

Now 2X(s) is normal with mean 0 and variance 4s
and X(t) − X(s) is normal with mean 0 and variance
t − s. As X(s) and X(t) − X(s) are independent, it
follows that X(s) + X(t) is normal with mean 0 and
variance 4s + t − s = 3s + t.

2. The conditional distribution X(s) − A given that
X(t1) = A and X(t2) = B is the same as the condi-
tional distribution of X(s − t1) given that X(0) = 0
and X(t2 − t1) = B − A, which by Equation (10.4)

is normal with mean
s − t1

t2 − t1
(B − A) and variance

(s − t1)
t2 − t1

(t2 − s). Hence the desired conditional dis-

tribution is normal with mean A + (s − t1)(B − A)
t2 − t1

and variance
(s − t1)(t2 − s)

t2 − t1
.

3. E[X(t1)X(t2)X(t3)]

= E[E[X(t1)X(t2)X(t3) | X(t1), X(t2)]]

= E[X(t1)X(t2)E[X(t3) | X(t1), X(t2)]]

= E[X(t1)X(t2)X(t2)]

= E[E[X(t1)E[X2(t2) | X(t1)]]

= E[X(t1)E[X2(t2) | X(t1)]] (∗)

= E[X(t1){(t2 − t1) + X2(t1)}]

= E[X3(t1)] + (t2 − t1)E[X(t1)]

= 0

where the equality (∗) follows since given X(t1),
X(t2) is normal with mean X(t1) and variance
t2 − t1. Also, E[X3(t)] = 0 since X(t) is normal with
mean 0.

4. (a) P{Ta < ∞} = lim
t→∞ P{Ta ≤ t}

= 2√
2r

∫ ∞

0
e−y2/2dy by (10.6)

= 2P{N(0, 1) > 0} = 1

Part (b) can be proven by using

E[Ta] =
∫ ∞

0
P{Ta > t}dt

in conjunction with Equation (10.7).

5. P{T1 < T−1 < T2} = P{hit 1 before − 1 before 2}
= P{hit 1 before −1}

× P{hit −1 before 2 | hit 1 before −1}

= 1
2

P{down 2 before up 1}

= 1
2

1
3

= 1
6

The next to last equality follows by looking at the
Brownian motion when it first hits 1.

6. The probability of recovering your purchase price
is the probability that a Brownian motion goes up
c by time t. Hence the desired probability is

1 − P{ max
0≤s≤t

X(s) ≥ c} = 1 − 2√
2πt

∫ ∞

c/
√

t
e−y2/2dy

7. Let M = {maxt1≤s≤t2 X(s) > x}. Condition on X(t1)
to obtain

P(M) =
∫ ∞

−∞
P(M|X(t1) = y)

1√
2πt1

e−y2/2t1dy

Now, use that

P(M|X(t1) = y) = 1, y ≥ x

and, for y < x

P
(
M|X(t1) = y

)= P{ max
0<s<t2−t1

X(s) > x − y}

= 2P{X(t2 − t1) > x − y}

8. (a) Let X(t) denote the position at time t. Then

X(t) =
√

Δt
[t/Δt]

∑
i=1

Xi

100
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where

Xi =
{+ 1, if ith step is up

−1, if ith step is down
As

E[X1] = p − 1(1 − p)

= 2p − 1

= μ
√

Δt

and

Var(Xi) = E
[
X2

i

]
− (E [Xi])2

= 1 − μ2Δt since X2
i = 1

we obtain

E[X(t)] =
√

Δt
[

t
Δt

]
μ
√

Δt

→ μt as Δt → 0

Var(X(t)) = Δt
[

t
Δt

]
(1 − μ2Δt)

→ t as Δt → 0.

(b) By the gambler’s ruin problem the probability
of going up A before going down B is

1 − (q/p)B

1 − (q/p)A+B

when each step is either up 1 or down 1
with probabilities p and q = 1 − p. (This is
the probability that a gambler starting with
B will reach his goal of A + B before going

broke.) Now, when p = 1
2

(1 + μ
√

Δt), q =
1 − p = 1

2
(1 − μ

√
Δt) and so q/p =

1 − μ
√

Δt

1 + μ
√

Δt
. Hence, in this case the probability

of going up A/
√

Δt before going down B/
√

Δt
(we divide by

√
Δt since each step is now of

this size) is

(∗)

1 −
[

1 − μ
√

Δt

1 + μ
√

Δt

]B/
√

Δt

1 −
[

1 − μ
√

Δt

1 + μ
√

Δt

](A+B/
√

Δt)

Now

lim
Δt→0

[
1 − μ

√
Δt

1 + μ
√

Δt

]1/
√

Δt

= lim
h→0

[
1 − μh
1 + μh

]1/h

= lim
n→∞

⎡
⎣ 1 − μ

n
1 + μ

n

⎤
⎦

n

by n = 1/h

= e−μ

eμ = e−2μ

where the last equality follows from

lim
n→∞

[
1 + x

n

]n = ex

Hence the limiting value of (∗) as Δt → 0 is

1 − e−2μB

1 − e−2μ(A+B)

11. Let X(t) denote the value of the process at time
t = nh. Let Xi = 1 if the ith change results in the
state value becoming larger, and let Xi = 0 other-

wise. Then, with u = eσ
√

h, d = e−σ
√

h

X(t) = X(0)u∑n
i=1 Xi dn−∑n

i=1 Xi

= X(0)dn
(u

d

)∑n
i=1 Xi

Therefore,

log
(

X(t)
X(0)

)
= n log(d) +

n

∑
i=1

Xi log(u/d)

= − t
h
σ
√

h + 2σ
√

h
t/h

∑
i=1

Xi

By the central limit theorem, the preceding
becomes a normal random variable as h → 0. More-
over, because the Xi are independent, it is easy to
see that the process has independent increments.
Also,

E
[

log
(

X(t)
X(0)

)]

= − t
h

σ
√

h + 2σ
√

h
t
h

1
2

(1 + μ

σ

√
h)

= μt

and

Var
[

log
(

X(t)
X(0)

)]
= 4σ2h

t
h

p(1 − p)

→ σ2t

where the preceding used that p → 1/2 as h → 0.
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12. If we purchase x units of the stock and y of the
option then the value of our holdings at time 1 is

value =
{

150x + 25y if price is 150

25x if price is 25

So if

150x + 25y = 25x, or y = −5x

then the value of our holdings is 25x no matter what
the price is at time 1. Since the cost of purchasing
x units of the stock and −5x units of options is
50x − 5xc it follows that our profit from such a
purchase is

25x − 50x + 5xc = x(5c − 25)

(a) If c = 5 then there is no sure win.

(b) Selling |x| units of the stock and buying −5|x|
units of options will realize a profit of 5|x| no
matter what the price of the stock is at time 1.
(That is, buy x units of the stock and −5x units
of the options for x < 0.)

(c) Buying x units of the stock and −5x units of
options will realize a positive profit of 25x
when x > 0.

(d) Any probability vector (p, 1 − p) on (150, 25),
the possible prices at time 1, under which buy-
ing the stock is a fair bet satisfies the following:

50 = p(150) + (1 − p)(25)

or

p = 1/5

That is, (1/5, 4/5) is the only probability vector
that makes buying the stock a fair bet. Thus,
in order for there to be no arbitrage possibility,
the price of an option must be a fair bet under
this probability vector. This means that the
cost c must satisfy

c = 25(1/5) = 5

13. If the outcome is i then our total winnings are

xioi − ∑
j �=i

xj =
oi(1 + oi)−1 − ∑

j �=i
(1 + oj)−1

1 − ∑
k

(1 + ok)−1

=
(1 + oi)(1 + oi)−1 − ∑

j
(1 + oj)−1

1 − ∑
k

(1 + ok)−1

= 1

14. Purchasing the stock will be a fair bet under
probabilities (p1, p2, 1 − p1 − p2) on (50, 100, 200),
the set of possible prices at time 1, if

100 = 50p1 + 100p2 + 200(1 − p1 − p2)

or equivalently, if

3p1 + 2p2 = 2

(a) The option bet is also fair if the probabilities
also satisfy

c = 80(1 − p1 − p2)

Solving this and the equation 3p1 + 2p2 = 2
for p1 and p2 gives the solution
p1 = c/40, p2 = (80 − 3c)/80

1 − p1 − p2 = c/80
Hence, no arbitrage is possible as long as these
pi all lie between 0 and 1. However, this will
be the case if and only if
80 ≥ 3c

(b) In this case, the option bet is also fair if

c = 20p2 + 120(1 − p1 − p2)

Solving in conjunction with the equation

3p1 + 2p2 = 2 gives the solution

p1 = (c − 20)/30, p2 = (40 − c)/20

1 − p1 − p2 = (c − 20)/60
These will all be between 0 and 1 if and only if
20 ≤ c ≤ 40.

15. The parameters of this problem are

σ = .05, σ = 1, xo = 100, t = 10.

(a) If K = 100 then from Equation (4.4)

b = [.5 − 5 − log(100/100)]/
√

10

= −4.5
√

10 = −1.423

and

c = 100φ(
√

10 − 1.423) − 100e−.5φ(−1.423)

= 100φ(1.739) − 100e−.5[1 − φ(1.423)]

= 91.2

The other parts follow similarly.
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16. Taking expectations of the defining equation of a
Martingale yields

E[Y(s)] = E[E[Y(t)/Y(u), 0 ≤ u ≤ s]] = E[Y(t)]

That is, E[Y(t)] is constant and so is equal to E[Y(0)].

17. E [B(t)|B(u), 0 ≤ u ≤ s]

= E[B(s) + B(t) − B(s)|B(u), 0 ≤ u ≤ s]

= E[B(s)|B(u), 0 ≤ u ≤ s]

+ E[B(t) − B(s)|B(u), 0 ≤ u ≤ s]

= B(s) + E[B(t) − B(s)] by independent

increments

= B(s)

18. E[B2(t)|B(u), 0 ≤ u ≤ s] = E[B2(t)|B(s)]

where the above follows by using independent
increments as was done in Problem 17. Since the
conditional distribution of B(t) given B(s) is normal
with mean B(s) and variance t − s it follows that

E[B2(t)|B(s)] = B2(s) + t − s

Hence,

E[B2(t) − t|B(u), 0 ≤ u ≤ s] = B2(s) − s

Therefore, the conditional expected value of
B2(t) − t, given all the values of B(u), 0 ≤ u ≤ s,
depends only on the value of B2(s). From this it
intuitively follows that the conditional expectation
given the squares of the values up to time s is also
B2(s) − s. A formal argument is obtained by condi-
tioning on the values B(u), 0 ≤ u ≤ s and using the
above. This gives

E[B2(t) − t|B2(u), 0 ≤ u ≤ s]

= E
[
E[B2(t) − t|B(u), 0 ≤ u ≤ s]|B2(u),

0 ≤ u ≤ s]

= E[B2(s) − s|B2(u), 0 ≤ u ≤ s]

= B2(s) − s

which proves that {B2(t) − t, t ≥ 0} is a Martingale.
By letting t = 0, we see that

E[B2(t) − t] = E[B2(0)] = 0

19. Since knowing the value of Y(t) is equivalent to
knowing B(t) we have

E[Y(t)|Y(u), 0 ≤ u ≤ s]

= e−c2t/2E[ecB(t)|B(u), 0 ≤ u ≤ s]

= e−c2t/2E[ecB(t)|B(s)]

Now, given B(s), the conditional distribution of
B(t) is normal with mean B(s) and variance t − s.
Using the formula for the moment generating func-
tion of a normal random variable we see that

e−c2t/2E[ecB(t)|B(s)]

= e−c2t/2ecB(s)+(t−s)c2/2

= e−c2s/2ecB(s)

= Y(s)

Thus, {Y(t)} is a Martingale.

E[Y(t)] = E[Y(0)] = 1

20. By the Martingale stopping theorem

E[B(T)] = E[B(0)] = 0

However, B(T) = 2 − 4T and so

2 − 4E[T] = 0

or, E[T] = 1/2

21. By the Martingale stopping theorem

E[B(T)] = E[B(0)] = 0

But, B(T) = (x − μT)/σ and so

E[(x − μT)/σ] = 0

or

E[T] = x/μ

22. (a) It follows from the results of Problem 19 and
the Martingale stopping theorem that

E[exp{cB(T) − c2T/2}]

= E[exp{cB(0)}] = 1

Since B(T) = [X(T) − μT]/σ part (a) follows.

(b) This follows from part (a) since

−2μ[X(T) − μT]/σ2 − (2μ/σ)2T/2

= −2μX(T)/σ2
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(c) Since T is the first time the process hits A or
−B it follows that

X(T) =
{

A, with probability p
−B, with probability 1 − p

Hence, we see that

1 = E[e−2μX(T)/σ2
] = pe−2μA/σ2 + (1 − p)e2μB/σ2

and so

p = 1 − e2μB/σ2

e−2μA/σ2 − e2μB/σ2

23. By the Martingale stopping theorem we have

E[B(T)] = E[B(0)] = 0

Since B(T) = [X(T) − μT]/σ this gives the equality

E[X(T) − μT] = 0

or

E[X(T)] = μE[T]

Now

E[X(T)] = pA − (1 − p)B

where, from part (c) of Problem 22,

p = 1 − e2μB/σ2

e−2μA/σ2 − e2μB/σ2

Hence,

E[T] = A(1 − e2μB/σ2
) − B(e−2μA/σ2 − 1)

μ(e−2μA/σ2 − e2μB/σ2 )

24. It follows from the Martingale stopping theorem
and the result of Problem 18 that

E[B2(T) − T] = 0

where T is the stopping time given in this problem
and B(t) = [X(t) − μt]/σ. Therefore,

E[(X(T) − μT)2/σ2 − T] = 0

However, X(T) = x and so the above gives that

E[(x − μT)2] = σ2E[T]

But, from Problem 21, E[T] = x/μ and so the above
is equivalent to

Var(μT) = σ2x/μ

or

Var(T) = σ2x/μ3

25. The means equal 0.

Var
[∫ 1

0
tdX(t)

]
=
∫ 1

0
t2dt = 1

3

Var
[∫ 1

0
t2dX(t)

]
=
∫ 1

0
t4dt = 1

5

26. (a) Normal with mean and variance given by

E[Y(t)] = tE[X(1/t)] = 0

Var(Y(t)) = t2Var[X(1/t)] = t2/t = t

(b) Cov(Y(s), Y(t)) = Cov(sX(1/s), tX(1/t))

= st Cov(X(1/s), X(1/t))

= st
1
t

, when s ≤ t

= s, when s ≤ t

(c) Clearly {Y(t)} is Gaussian. As it has the same
mean and covariance function as the Brown-
ian motion process (which is also Gaussian) it
follows that it is also Brownian motion.

27. E[X(a2t)/a] = 1
a

E[X(a2t)] = 0

For s < t,

Cov(Y(s), Y(t)) = 1
a2 Cov(X(a2s), X(a2t))

= 1
a2 a2s = s

As {Y(t)} is clearly Gaussian, the result follows.

28. Cov(B(s) − s
t
B(t), B(t)) = Cov(B(s), B(t))

− s
t
Cov(B(t), B(t))

= s − s
t
t = 0

29. {Y(t)} is Gaussian with

E[Y(t)] = (t + 1)E(Z[t/(t + 1)]) = 0

and for s ≤ t

Cov(Y(s), Y(t))

= (s + 1)(t + 1) Cov
[

Z
[

s
s + 1

]
, Z

[
t

t + 1

]]

= (s + 1)(t + 1)
s

s + 1

[
1 − t

t + 1

]
(∗)

= s
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where (∗) follows since Cov(Z(s), Z(t)) = s(1 − t).
Hence, {Y(t)} is Brownian motion since it is also
Gaussian and has the same mean and covariance
function (which uniquely determines the distribu-
tion of a Gaussian process).

30. For s < 1

Cov[X(t), X(t + s)]

= Cov[N(t + 1) − N(t), N(t + s + 1) − N(t + s)]

= Cov(N(t + 1), N(t + s + 1) − N(t + s))

−Cov(N(t), N(t + s + 1) − N(t + s))

= Cov(N(t + 1), N(t + s + 1) − N(t + s)) (∗)

where the equality (∗) follows since N(t) is inde-
pendent of N(t + s + 1) − N(t + s). Now, for s ≤ t,

Cov(N(s), N(t)) = Cov(N(s), N(s) + N(t) − N(s))

= Cov(N(s), N(s))

= λs

Hence, from (∗) we obtain that, when s < 1,

Cov(X(t), X(t + s)) = Cov(N(t + 1), N(t + s + 1))

−Cov(N(t + 1), N(t + s))

= λ(t + 1) − λ(t + s)

= λ(1 − s)

When s ≥ 1, N(t + 1) − N(t) and N(t + s + 1) −
N(t + s) are, by the independent increments prop-
erty, independent and so their covariance is 0.

31. (a) Starting at any time t the continuation of the
Poisson process remains a Poisson process
with rate λ.

(b) E[Y(t)Y(t + s)]

=
∫ ∞

0
E[Y(t)Y(t + s) | Y(t) = y]λe−λydy

=
∫ ∞

0
yE[Y(t + s) | Y(t) = y]λe−λydy

+
∫ ∞

s
y(y − s)λe−λydy

=
∫ s

0
y

1
λ

λe−λydy +
∫ ∞

s
y(y − s)λe−λydy

where the above used that

E[Y(t)Y(t + s)|Y(t) = y]

=
⎧⎨
⎩

yE(Y(t + s)) = y
λ

, if y < s

y(y − s), if y > s

Hence,
Cov(Y(t), Y(t + s))

=
∫ s

0
ye−yλdy +

∫ ∞

s
y(y − s)λe−λydy − 1

λ2

32. (a) Var(X(t + s) − X(t))

= Cov(X(t + s) − X(t), X(t + s) − X(t))

= R(0) − R(s) − R(s) + R(0)

= 2R(0) − 2R(s)

(b) Cov(Y(t), Y(t + s))

= Cov(X(t + 1) − X(t), X(t + s + 1)

− X(t + s))

= Rx(s) − Rx(s − 1) − Rx(s + 1) + Rx(s)

= 2Rx(s) − Rx(s − 1) − Rx(s + 1), s ≥ 1

33. Cov(X(t), X(t + s))

= Cov(Y1 cos wt + Y2 sin wt,

Y1 cos w(t + s) + Y2 sin w(t + s))

= cos wt cos w(t + s) + sin wt sin w(t + s)

= cos(w(t + s) − wt)

= cos ws



Chapter 11

1. (a) Let u be a random number. If
i−1

∑
j=1

Pj < u ≤
i

∑
j=1

Pj

then simulate from Fi.(
In the above

i−1

∑
j=1

Pj ≡ 0 when i = 1.

)

(b) Note that

F(x) = 1
3

F1(X) + 2
3

F2(x)

where

F1(x) = 1 − e−2x, 0 < x < ∞

F2(x) =
{

x, 0 < x < 1

1, 1 < x

Hence, using (a), let U1, U2, U3 be random
numbers and set

X =
⎧⎨
⎩

−log U2

2
, if U1 < 1/3

U3, if U1 > 1/3

The above uses the fact that
−log U2

2
is expo-

nential with rate 2.

2. Simulate the appropriate number of geometrics
and sum them.

3. If a random sample of size n is chosen from a set of
N + M items of which N are acceptable then X, the
number of acceptable items in the sample, is such
that

P{X = k} =
[

N
k

] [
M

n − k

]/[
N + M

k

]

To simulate X note that if

Ij =
{

1, if the jth section is acceptable

0, otherwise

then

P{Ij =1| I1, …, Ij−1} =
N −

j−1

∑
1

Ii

N + M − (j − 1)
. Hence, we

can simulate I1, …, In by generating random num-
bers U1, …, Un and then setting

Ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩1, if Uj <

N −
j−1

∑
1

Ii

N + M − (j − 1)
0, otherwise

X =
n

∑
j=1

Ij has the desired distribution.

Another way is to let

Xj =
⎧⎨
⎩

1, the jth acceptable item is in the sample

0, otherwise

and then simulate X1, …, XN by generating random
numbers U1, …, UN and then setting

Xj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if Uj <

N −
j−1

∑
i=1

Ii

N + M − (j − 1)

0, otherwise

X =
N

∑
j=1

Xj then has the desired distribution.

The former method is preferable when n ≤ N and
the latter when N ≤ n.

4.
∂R
∂x

= x√
x2 + y2

,
∂R
∂y

= y√
x2 + y2

∂θ

∂x
= 1

1 +
[y

x

]2

[−y

x2

]
= −y

x2 + y2

∂θ

∂y
= 1

1 +
[y

x

]2

[
1
x

]
= x

x2 + y2

106
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Hence, the Jacobian of the transformation is

J =

∣∣∣∣∣∣∣∣

x√
x2 + y2

y√
x2 + y2

−y
x2 + y2

x
x2 + y2

∣∣∣∣∣∣∣∣
= 1√

x2 + y2

The joint density of R, θ is thus

fR,θ(s,θ) = sf X,Y

[√
x2 + y2, tan−1y/x

]

= s
πr2

= 1
2π

· 2s
r2 , 0 < θ < 2π, 0 < s < r

Hence, R and θ are independent with

fR(s) = 2s

r2 , 0 < s < r

fθ(θ) = 1
2π

, 0 < θ < 2π

As FR(s) = 2s

r2 and so F−1
R

(U) =
√

r2U = r
√

U, it

follows that we can generate R, θ by letting U1 and
U2 be random numbers and then setting R = r

√
U1

and θ = 2rU2.

(b) It is clear that the accepted point is uniformly
distributed in the desired circle. Since

P
{

Z2
1 + Z2

2 ≤ r2
}

= Area of circle
Area of square

= πr2

4r2 = π

4

it follows that the number of iterations needed
(or equivalently that one-half the number of
random numbers needed) is geometric with
mean π/4.

7. Use the rejection method with g(x) = 1. Differen-
tiating f (x)/g(x) and equating to 0 gives the two
roots 1/2 and 1. As f (.5) = 30/16 > f (1) = 0, we
see that c = 30/16, and so the algorithm is

Step 1: Generate random numbers U1 and U2.

Step 2: If U2 ≤ 16(U2
1 − 2U3

1 + U4
1), set X = U1.

Otherwise return to step 1.

8. (a) With f (x) = λe−λx(λx)n−1

(n − 1)!

and g(x) = λe−λx/n

n

f (x)/g(x) = n(λx)n−1e−λx(1−1/n)

(n − 1)!

Differentiating this ratio and equating to 0
yields the equation

(n − 1)xn−2 = xn−1λ(1 − 1/n)

or x = n/λ. Therefore,

c = max[ f (x)/g(x)] = nne−(n−1)

(n − 1)!

(b) By Stirling’s approximation

(n − 1)! ≈ (n − 1)n−1/2e−(n−1)(2π)1/2

and so

nne−(n−1)/(n − 1)

≈ (2π)−1/2
[

n
n − 1

]n
(n − 1)1/2

= [(n − 1)/2π]1/2

(1 − 1/n)n

≈ e[(n − 1)/2π]1/2

since (1 − 1/n)n ≈ e−1.

(c) Since

f (x)/cg(x) = e−λx(1−1/n)(λx)n−1 en−1

nn−1

the procedure is

Step 1: Generate Y, an exponential with rate
λ/n and a random number U.

Step 2: If U ≤ f (Y)/cg(Y), set X = Y. Other-
wise return to step 1.

The inequality in step 2 is equivalent, upon
taking logs, to

log U ≤ n − 1 − λY(1 − 1/n)

+ (n − 1) log(λY) − (n − 1) log n

or

−log U ≥ (n − 1)λY/n + 1 − n

−(n − 1) log(λY/n)

Now, Y1 = −log U is exponential with rate 1,
and Y2 = λY/n is also exponential with rate 1.
Hence, the algorithm can be written as given
in part (c).

(d) Upon acceptance, the amount by which Y1
exceeds (n − 1){Y2 − log(Y2) − 1} is exponen-
tial with rate 1.

10. Whenever i is the chosen value that satisfies
Lemma 11.1 name the resultant Q as Q(i).
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12. Let

Ij =
⎧⎨
⎩

1, if Xi = j for some i

0, otherwise

then

D =
n

∑
j=1

Ij

and so

E[D] = ∑
j

= 1nE[Ij] =
n

∑
j=1

[
1 −

[
n − 1

n

]k
]

= n

[
1 −

[
n − 1

n

]k
]

≈ n
[

1 − 1 + k
n

− k(k − 1)
2n2

]

13. P{X = i} = P{Y = i|U ≤ PY/CQY}

= P{Y = i, U ≤ PY/CQY}
K

= QiP{U ≤ PY/CQY|Y = i}
K

= QiPi/CQi
K

= Pi

CK

where K = P{U ≤ PY/CQY}. Since the above is a
probability mass function it follows that KC = 1.

14. (a) By induction we show that

(∗)P{X > k} = (1 − λ(1)) · · · (1 − λ(k))

The above is obvious for k = 1 and so assume
it true. Now

P {X > k + 1}

= P{X > k + 1|X > k}P{X > k}

= (1 − λ(k + 1))P{X > k}
which proves (*). Now

P{X = n}

= P{X = n|X > n − 1}P{X > n − 1}

= λ(n)P{X > n − 1}
and the result follows from (*).

(b) P{X = n}
= P{U1 > λ(1), U2 > λ(2), …, Un−1

> λ(n − 1), Un ≤ λ(n)}

= (1 − λ(1))(1 − λ(2)) · · ·

(1 − λ(n − 1))λ(n)

(c) Since λ(n) ≡ p it sets

X = min{n : U ≤ p}
That is, if each trial is a success with probability
p then it stops at the first success.

(d) Given that X ≥ n, then

P{X = n|X > n} = P
λ(n)

p
= λ(n)

15. Use 2μ = X.

16. (b) Let Ij denote the index of the jth smallest Xi.

17. (a) Generate the X(i) sequentially using that given
X(1), …, X(i−1) the conditional distribution of
X(i) will have failure rate function λi(t) given
by

λi(t) =

⎧⎪⎨
⎪⎩

0, t < X(i−1)

, X(0) ≡ 0.
(n − i + 1)λ(t), t > X(i−1)

(b) This follows since as F is an increasing function
the density of U(i) is

f(i)(t) = n!
(i − 1)!(n − i) (F(t))i−1

× (F(t))n−if (t)

= n!
(i − 1)!(n − i) ti−1(1 − t)n−i,

0 < t < 1

which shows that U(i) is beta.

(c) Interpret Yi as the ith interarrival time of a Pois-
son process. Now given Y1 + · · · + Yn+1 =
t, the time of the (n + 1)st event, it fol-
lows that the first n event times are distri-
buted as the ordered values of n uniform (0, t)
random variables. Hence,

Y1 + · · · + Yi

Y1 + · · · + Yn+i
, i = 1, …, n

will have the same distribution as U(1), …,
U(n).
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(d) fU(1), …|U(n)
(y1, …, yn−1|yn)

= f (y1, …, yn)
fU(n) (yn)

= n!
nyn−1

= (n − 1)!
yn−1 , 0 < y1 < · · · < yn−1 < y

where the above used that

FU(n) (y) = P{max Ui ≤ y} = yn

and so

FU(n) (y) = nyn−1

(e) Follows from (d) and the fact that if

F(y) = yn then F−1(U) = U1/n.

18. Consider a set of n machines each of which inde-
pendently functions for an exponential time with
rate 1. Then W1, the time of the first failure, is expo-
nential with rate n. Also given Wi−1, the time of the
ith failure, the additional time until the next failure
is exponential with rate n − (i − 1).

20. Since the interarrival distribution is geometric, it
follows that independent of when renewals prior
to k occurred there will be a renewal at k with proba-
bility p. Hence, by symmetry, all subsets of k points
are equally likely to be chosen.

21. Pm+1{i1, …, ik−1, m + 1}

= ∑
j≤m

j �=i1,…,ik−1

Pm{i1, …, ik−1, j} k
m + 1

1
k

= (m − (k − 1))
1[m
k

] 1
m + 1

1[
m + 1

k

]

25. See Problem 4.

27. First suppose n = 2.

Var(λX1 + (1 − λ)X2) = λ2σ2
1 + (1 − λ)2σ2

2.

The derivative of the above is 2λσ2
1 −2(1−λ)σ2

2 and
equating to 0 yields

λ = σ2
2

σ2
1 + σ2

2
= 1/σ2

1

1/σ2
1 + 1/σ2

2

Now suppose the result is true for n − 1. Then

Var

[
n

∑
i=1

λiXi

]
= Var

[
n−1

∑
i=1

λiXi

]
+ Var(λnXn)

= (1 − λn)2 Var

[
n−1

∑
i=1

λi
1 − λn

Xi

]

+ λ2
n Var Xn

Now by the inductive hypothesis for fixed λn the
above is minimized when

(∗)
λi

1 − λn
= 1/σ2

i
n−1

∑
j=1

1/σ2
j

, i = 1, …, n − 1

Hence, we now need choose λn so as to minimize

(1 − λn)2 1
n−1

∑
j=1

1/σ2
j

+ λ2
n σ2

n

Calculus yields that this occurs when

λn = 1

1 + σ2
n

n−1

∑
j=1

1/σ2
j

= 1/σ2
n

n

∑
j=1

1/σ2
j

Substitution into (*) now gives the result.

28. (a) E[I] = P{Y < g(X)}

=
∫ 1

0
P{Y < g(X)|X = x}dx

since X = U1

=
∫ 1

0

g(x)
b

dx

since Y is uniform (0, b).

(b) Var(bI) = b2Var(I)

= b2(E[I] − E2[I]) since I is Bernoulli

= b
∫ 1

0
g(x)dx −

[∫ 1

0
g(x)dx

]2

On the other hand
Var g(U) = E[g2(U)] − E2[g(U)]

=
∫ 1

0
g2(x)dx −

[∫ 1

0
g(x)dx

]2

≤
∫ 1

0
bg(x)dx −

[∫ 1

0
g(x)dx

]2
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since g(x) ≤ b
= Var(bI)

29. Use Hint.

30. In the following, the quantities Ci do not depend
on x.

ft(x) = C1etxe−(x−μ)2/(2σ)

= C2 exp{−(x2 − (2μ + 2tσ2)x)/(2σ)}

= C3 exp{−(x − (μ + tσ2))2/(2σ)}

31. Since E[Wn|Dn] = Dn + μ, it follows that to
estimate E[Wn] we should use Dn + μ. Since
E[Dn|Wn] �= Wn − μ, the reverse is not true and
so we should use the simulated data to determine
Dn and then use this as an estimate of E[Dn].

32. Var[(X + Y)/2]

= 1
4

[Var(X) + Var(Y) + 2Cov(X, Y)]

= Var(X) + Cov(X, Y)
2

Now it is always true that

Cov(V, W)√
Var(V)Var(W)

≤ 1

and so when X and Y have the same distribution

Cov(X, Y) ≤ Var(X)

33. (a) E[X2] ≤ E[aX] = aE[X]

(b) Var(X) = E[X2] − E2[X] ≤ aE[X] − E2[X]

(c) From (b) we have that

Var(X) ≤ a2
(

E[X]
a

)

(
1 − E[X]

a

)
≤ a2 max

0<p<1
p(1 − p) = a2/4

34. Use the estimator R + XQE[S]. Let A be the
amount of time the person in service at time
t0 has already spent in service. If E[R|A] is
easily computed, an even better estimator is
E[R|A] + XQE[S].

35. Use the estimator
k

∑
i=1

Ni/k2 where Ni = number

of j = 1, …, k : Xi < Yj.

36. P

(
3∏

i=1

Ui > .1

)
= P

(
3

∑
i=1

log(Ui) > − log(10)

)

= P

(
3

∑
i=1

− log(Ui) < log(10)

)

= P(N(log(10)) ≥ 3)

where N(t) is the number of events by time t of a
Poisson process with rate 1. Hence,

P

(
3∏

i=1

Ui > .1

)
= 1 − 1

10

2

∑
i=0

(log(10))i/i!
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