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Preface

Numerical Analysis is a text for students of engineering, science, mathematics, and com-
puter science who have completed elementary calculus and matrix algebra. The primary

goal is to construct and explore algorithms for solving science and engineering problems.
The not-so-secret secondary mission is to help the reader locate these algorithms in a land-
scape of some potent and far-reaching principles. These unifying principles, taken together,
constitute a dynamic field of current research and development in modern numerical and
computational science.

The discipline of numerical analysis is jam-packed with useful ideas. Textbooks run the
risk of presenting the subject as a bag of neat but unrelated tricks. For a deep understanding,
readers need to learn much more than how to code Newton’s Method, Runge–Kutta, and
the Fast Fourier Transform. They must absorb the big principles, the ones that permeate
numerical analysis and integrate its competing concerns of accuracy and efficiency.

The notions of convergence, complexity, conditioning, compression, and orthogonality
are among the most important of the big ideas. Any approximation method worth its salt
must converge to the correct answer as more computational resources are devoted to it, and
the complexity of a method is a measure of its use of these resources. The conditioning
of a problem, or susceptibility to error magnification, is fundamental to knowing how it
can be attacked. Many of the newest applications of numerical analysis strive to realize
data in a shorter or compressed way. Finally, orthogonality is crucial for efficiency in many
algorithms, and is irreplaceable where conditioning is an issue or compression is a goal.

In this book, the roles of the five concepts in modern numerical analysis are emphasized
in short thematic elements called Spotlights. They comment on the topic at hand and make
informal connections to other expressions of the same concept elsewhere in the book. We
hope that highlighting the five concepts in such an explicit way functions as a Greek chorus,
accentuating what is really crucial about the theory on the page.

Although it is common knowledge that the ideas of numerical analysis are vital to the
practice of modern science and engineering, it never hurts to be obvious. The Reality Checks
provide concrete examples of the way numerical methods lead to solutions of important
scientific and technological problems. These extended applications were chosen to be timely
and close to everyday experience. Although it is impossible (and probably undesirable) to
present the full details of the problems, the Reality Checks attempt to go deeply enough to
show how a technique or algorithm can leverage a small amount of mathematics into a great
payoff in technological design and function. The Reality Checks proved to be extremely
popular as a source of student projects in the first edition, and have been extended and
amplified in the second edition.

NEW TO THIS EDITION. The second edition features a major expansion of methods
for solving systems of equations. The Cholesky factorization has been added to Chapter 2 for
the solution of symmetric positive-definite matrix equations. For large linear systems, dis-
cussion of the Krylov approach, including the GMRES method, has been added to Chapter
4, along with new material on the use of preconditioners for symmetric and nonsymmet-
ric problems. Modified Gram–Schmidt orthogonalization and the Levenberg–Marquardt
Method are new to this edition. The treatment of PDEs in Chapter 8 has been extended to
nonlinear PDEs, including reaction-diffusion equations and pattern formation. Expository
material has been revised for greater readability based on feedback from students, and new
exercises and computer problems have been added throughout.

TECHNOLOGY. The software package MATLAB is used both for exposition of
algorithms and as a suggested platform for student assignments and projects. The amount
of MATLAB code provided in the text is carefully modulated, due to the fact that too much
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tends to be counterproductive. More MATLAB code is found in the early chapters, allowing
the reader to gain proficiency in a gradual manner. Where more elaborate code is provided
(in the study of interpolation, and ordinary and partial differential equations, for example),
the expectation is for the reader to use what is given as a jumping-off point to exploit and
extend.

It is not essential that any particular computational platform be used with this textbook,
but the growing presence of MATLAB in engineering and science departments shows that
a common language can smooth over many potholes. With MATLAB, all of the inter-
face problems—data input/output, plotting, and so on—are solved in one fell swoop. Data
structure issues (for example those that arise when studying sparse matrix methods) are
standardized by relying on appropriate commands. MATLAB has facilities for audio and
image file input and output. Differential equations simulations are simple to realize due
to the animation commands built into MATLAB. These goals can all be achieved in other
ways. But it is helpful to have one package that will run on almost all operating systems and
simplify the details so that students can focus on the real mathematical issues. Appendix B
is a MATLAB tutorial that can be used as a first introduction to students, or as a reference
for those already familiar.

The text has a companion website, www.pearsonhighered.com/sauer, that
contains the MATLAB programs taken directly from the text. In addition, new material and
updates will be posted for users to download.

SUPPLEMENTS. To provide help for students, the Student’s Solutions Manual
(SSM: 0-321-78392) is available, with worked-out solutions to selected exercises. The
Instructor’s Solutions Manual (ISM: 0-321-783689) contains detailed solutions to the
odd-numbered exercises, and answers to the even-numbered exercises. The manuals also
show how to use MATLAB software as an aid to solving the types of problems that are
presented in the Exercises and Computer Problems.

DESIGNINGTHE COURSE. Numerical Analysis is structured to move from founda-
tional, elementary ideas at the outset to more sophisticated concepts later in the presentation.
Chapter 0 provides fundamental building blocks for later use. Some instructors like to start
at the beginning; others (including the author) prefer to start at Chapter 1 and fold in top-
ics from Chapter 0 when required. Chapters 1 and 2 cover equation-solving in its various
forms. Chapters 3 and 4 primarily treat the fitting of data, interpolation and least squares
methods. In chapters 5–8, we return to the classical numerical analysis areas of continuous
mathematics: numerical differentiation and integration, and the solution of ordinary and
partial differential equations with initial and boundary conditions.

Chapter 9 develops random numbers in order to provide complementary methods to
Chapters 5–8: the Monte-Carlo alternative to the standard numerical integration schemes
and the counterpoint of stochastic differential equations are necessary when uncertainty is
present in the model.

Compression is a core topic of numerical analysis, even though it often hides in plain
sight in interpolation, least squares, and Fourier analysis. Modern compression techniques
are featured in Chapters 10 and 11. In the former, the Fast Fourier Transform is treated
as a device to carry out trigonometric interpolation, both in the exact and least squares
sense. Links to audio compression are emphasized, and fully carried out in Chapter 11
on the Discrete Cosine Transform, the standard workhorse for modern audio and image
compression. Chapter 12 on eigenvalues and singular values is also written to emphasize
its connections to data compression, which are growing in importance in contemporary
applications. Chapter 13 provides a short introduction to optimization techniques.

Numerical Analysis can also be used for a one-semester course with judicious choice
of topics. Chapters 0–3 are fundamental for any course in the area. Separate one-semester
tracks can be designed as follows:

www.pearsonhighered.com/sauer
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C H A P T E R

0
Fundamentals
This introductory chapter provides basic building
blocks necessary for the construction and understand-
ing of the algorithms of the book. They include fun-
damental ideas of introductory calculus and function
evaluation, the details of machine arithmetic as it is car-
ried out on modern computers, and discussion of the
loss of significant digits resulting from poorly-designed
calculations.

After discussing efficient methods for evaluating
polynomials, we study the binary number system, the
representation of floating point numbers and the com-
mon protocols used for rounding. The effects of the
small rounding errors on computations are magnified
in ill-conditioned problems. The battle to limit these
pernicious effects is a recurring theme throughout the
rest of the chapters.

The goal of this book is to present and discuss methods of solving mathematical prob-
lems with computers. The most fundamental operations of arithmetic are addition and

multiplication. These are also the operations needed to evaluate a polynomial P (x) at a
particular value x. It is no coincidence that polynomials are the basic building blocks for
many computational techniques we will construct.

Because of this, it is important to know how to evaluate a polynomial. The reader
probably already knows how and may consider spending time on such an easy problem
slightly ridiculous! But the more basic an operation is, the more we stand to gain by doing it
right. Therefore we will think about how to implement polynomial evaluation as efficiently
as possible.

0.1 EVALUATING A POLYNOMIAL

What is the best way to evaluate

P (x) = 2x4 + 3x3 − 3x2 + 5x − 1,

say, at x = 1/2? Assume that the coefficients of the polynomial and the number 1/2 are
stored in memory, and try to minimize the number of additions and multiplications required
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to get P (1/2). To simplify matters, we will not count time spent storing and fetching
numbers to and from memory.

METHOD 1 The first and most straightforward approach is

P

(
1
2

)
= 2 ∗ 1

2
∗ 1

2
∗ 1

2
∗ 1

2
+ 3 ∗ 1

2
∗ 1

2
∗ 1

2
− 3 ∗ 1

2
∗ 1

2
+ 5 ∗ 1

2
− 1 = 5

4
. (0.1)

The number of multiplications required is 10, together with 4 additions. Two of the additions
are actually subtractions, but because subtraction can be viewed as adding a negative stored
number, we will not worry about the difference.

There surely is a better way than (0.1). Effort is being duplicated—operations can
be saved by eliminating the repeated multiplication by the input 1/2. A better strategy is
to first compute (1/2)4, storing partial products as we go. That leads to the following method:

METHOD 2 Find the powers of the input number x =1/2 first, and store them for future use:

1
2

∗ 1
2

=
(

1
2

)2

(
1
2

)2

∗ 1
2

=
(

1
2

)3

(
1
2

)3

∗ 1
2

=
(

1
2

)4

.

Now we can add up the terms:

P

(
1
2

)
= 2 ∗

(
1
2

)4

+ 3 ∗
(

1
2

)3

− 3 ∗
(

1
2

)2

+ 5 ∗ 1
2

− 1 = 5
4

.

There are now 3 multiplications of 1/2, along with 4 other multiplications. Counting up,
we have reduced to 7 multiplications, with the same 4 additions. Is the reduction from 14
to 11 operations a significant improvement? If there is only one evaluation to be done, then
probably not. Whether Method 1 or Method 2 is used, the answer will be available before
you can lift your fingers from the computer keyboard. However, suppose the polynomial
needs to be evaluated at different inputs x several times per second. Then the difference
may be crucial to getting the information when it is needed.

Is this the best we can do for a degree 4 polynomial? It may be hard to imagine that
we can eliminate three more operations, but we can. The best elementary method is the
following one:

METHOD 3 (Nested Multiplication) Rewrite the polynomial so that it can be evaluated from the inside
out:

P (x) = −1 + x(5 − 3x + 3x2 + 2x3)

= −1 + x(5 + x(−3 + 3x + 2x2))

= −1 + x(5 + x(−3 + x(3 + 2x)))

= −1 + x ∗ (5 + x ∗ (−3 + x ∗ (3 + x ∗ 2))). (0.2)

Here the polynomial is written backwards, and powers of x are factored out of the rest of
the polynomial. Once you can see to write it this way—no computation is required to do
the rewriting—the coefficients are unchanged. Now evaluate from the inside out:
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multiply
1
2

∗ 2, add + 3 → 4

multiply
1
2

∗ 4, add − 3 → −1

multiply
1
2

∗ −1, add + 5 → 9
2

multiply
1
2

∗ 9
2

, add − 1 → 5
4

. (0.3)

This method, called nested multiplication or Horner’s method, evaluates the polynomial
in 4 multiplications and 4 additions. A general degree d polynomial can be evaluated in
d multiplications and d additions. Nested multiplication is closely related to synthetic
division of polynomial arithmetic.

The example of polynomial evaluation is characteristic of the entire topic of computa-
tional methods for scientific computing. First, computers are very fast at doing very simple
things. Second, it is important to do even simple tasks as efficiently as possible, since they
may be executed many times. Third, the best way may not be the obvious way. Over the
last half-century, the fields of numerical analysis and scientific computing, hand in hand
with computer hardware technology, have developed efficient solution techniques to attack
common problems.

While the standard form for a polynomial c1 + c2x + c3x2 + c4x3 + c5x4 can be
written in nested form as

c1 + x(c2 + x(c3 + x(c4 + x(c5)))), (0.4)

some applications require a more general form. In particular, interpolation calculations in
Chapter 3 will require the form

c1 + (x − r1)(c2 + (x − r2)(c3 + (x − r3)(c4 + (x − r4)(c5)))), (0.5)

where we call r1, r2, r3, and r4 the base points. Note that setting r1 = r2 = r3 = r4 = 0 in
(0.5) recovers the original nested form (0.4).

The following Matlab code implements the general form of nested multiplication
(compare with (0.3)):

%Program 0.1 Nested multiplication
%Evaluates polynomial from nested form using Horner’s Method
%Input: degree d of polynomial,
% array of d+1 coefficients c (constant term first),
% x-coordinate x at which to evaluate, and
% array of d base points b, if needed
%Output: value y of polynomial at x
function y=nest(d,c,x,b)
if nargin<4, b=zeros(d,1); end
y=c(d+1);
for i=d:-1:1
y = y.*(x-b(i))+c(i);

end

Running this Matlab function is a matter of substituting the input data, which consist
of the degree, coefficients, evaluation points, and base points. For example, polynomial
(0.2) can be evaluated at x = 1/2 by the Matlab command
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>> nest(4,[-1 5 -3 3 2],1/2,[0 0 0 0])

ans =

1.2500

as we found earlier by hand. The file nest.m, as the rest of the Matlab code shown in
this book, must be accessible from the Matlab path (or in the current directory) when
executing the command.

If the nest command is to be used with all base points 0 as in (0.2), the abbreviated
form

>> nest(4,[-1 5 -3 3 2],1/2)

may be used with the same result. This is due to the nargin statement in nest.m.
If the number of input arguments is less than 4, the base points are automatically set to
zero.

Because of Matlab’s seamless treatment of vector notation, the nest command can
evaluate an array of x values at once. The following code is illustrative:

>> nest(4,[-1 5 -3 3 2],[-2 -1 0 1 2])

ans =

-15 -10 -1 6 53

Finally, the degree 3 interpolating polynomial

P (x) = 1 + x

(
1
2

+ (x − 2)

(
1
2

+ (x − 3)

(
−1

2

)))

from Chapter 3 has base points r1 = 0, r2 = 2, r3 = 3. It can be evaluated at x = 1 by

>> nest(3,[1 1/2 1/2 -1/2],1,[0 2 3])

ans =

0

! EXAMPLE 0.1 Find an efficient method for evaluating the polynomial P (x) = 4x5 + 7x8 − 3x11 + 2x14.

Some rewriting of the polynomial may help reduce the computational effort
required for evaluation. The idea is to factor x5 from each term and write as a polyno-
mial in the quantity x3:

P (x) = x5(4 + 7x3 − 3x6 + 2x9)

= x5 ∗ (4 + x3 ∗ (7 + x3 ∗ (−3 + x3 ∗ (2)))).

For each input x, we need to calculate x ∗ x = x2, x ∗ x2 = x3, and x2 ∗ x3 = x5 first.
These three multiplications, combined with the multiplication of x5, and the three multipli-
cations and three additions from the degree 3 polynomial in the quantity x3 give the total
operation count of 7 multiplies and 3 adds per evaluation. "
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0.1 Exercises

1. Rewrite the following polynomials in nested form. Evaluate with and without nested form at
x = 1/3.

(a) P (x) = 6x4 + x3 + 5x2 + x + 1

(b) P (x) = −3x4 + 4x3 + 5x2 − 5x + 1

(c) P (x) = 2x4 + x3 − x2 + 1

2. Rewrite the following polynomials in nested form and evaluate at x = −1/2:

(a) P (x) = 6x3 − 2x2 − 3x + 7

(b) P (x) = 8x5 − x4 − 3x3 + x2 − 3x + 1

(c) P (x) = 4x6 − 2x4 − 2x + 4

3. Evaluate P (x) = x6 − 4x4 + 2x2 + 1 at x = 1/2 by considering P (x) as a polynomial in x2

and using nested multiplication.

4. Evaluate the nested polynomial with base points P (x) = 1 + x(1/2 + (x − 2)(1/2 + (x − 3)

(−1/2))) at (a) x = 5 and (b) x = −1.

5. Evaluate the nested polynomial with base points P (x) = 4 + x(4 + (x − 1)(1 + (x − 2)

(3 + (x − 3)(2)))) at (a) x = 1/2 and (b) x = −1/2.

6. Explain how to evaluate the polynomial for a given input x, using as few operations as
possible. How many multiplications and how many additions are required?
(a) P (x) = a0 + a5x5 + a10x10 + a15x15

(b) P (x) = a7x7 + a12x12 + a17x17 + a22x22 + a27x27.

7. How many additions and multiplications are required to evaluate a degree n polynomial with
base points, using the general nested multiplication algorithm?

0.1 Computer Problems

1. Use the function nest to evaluate P (x) = 1 + x + ·· · + x50 at x = 1.00001. (Use the
Matlab ones command to save typing.) Find the error of the computation by comparing with
the equivalent expression Q(x) = (x51 − 1)/(x − 1).

2. Use nest.m to evaluate P (x) = 1 − x + x2 − x3 + ·· · + x98 − x99 at x = 1.00001. Find a
simpler, equivalent expression, and use it to estimate the error of the nested multiplication.

0.2 BINARY NUMBERS

In preparation for the detailed study of computer arithmetic in the next section, we need
to understand the binary number system. Decimal numbers are converted from base 10 to
base 2 in order to store numbers on a computer and to simplify computer operations like
addition and multiplication. To give output in decimal notation, the process is reversed. In
this section, we discuss ways to convert between decimal and binary numbers.

Binary numbers are expressed as

. . .b2b1b0.b−1b−2 . . . ,
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where each binary digit, or bit, is 0 or 1. The base 10 equivalent to the number is

. . .b222 + b121 + b020 + b−12−1 + b−22−2 . . . .

For example, the decimal number 4 is expressed as (100.)2 in base 2, and 3/4 is represented
as (0.11)2.

0.2.1 Decimal to binary

The decimal number 53 will be represented as (53)10 to emphasize that it is to be interpreted
as base 10. To convert to binary, it is simplest to break the number into integer and fractional
parts and convert each part separately. For the number (53.7)10 = (53)10 + (0.7)10, we
will convert each part to binary and combine the results.

Integer part. Convert decimal integers to binary by dividing by 2 successively and
recording the remainders. The remainders, 0 or 1, are recorded by starting at the decimal
point (or more accurately, radix) and moving away (to the left). For (53)10, we would have

53 ÷ 2 = 26 R 1

26 ÷ 2 = 13 R 0

13 ÷ 2 = 6 R 1

6 ÷ 2 = 3 R 0

3 ÷ 2 = 1 R 1

1 ÷ 2 = 0 R 1.

Therefore, the base 10 number 53 can be written in bits as 110101, denoted as
(53)10 = (110101.)2. Checking the result, we have 110101 = 25 + 24 + 22 + 20 =
32 + 16 +4 + 1 = 53.

Fractional part. Convert (0.7)10 to binary by reversing the preceding steps. Multiply
by 2 successively and record the integer parts, moving away from the decimal point to the
right.

.7 × 2 = .4 + 1

.4 × 2 = .8 + 0

.8 × 2 = .6 + 1

.6 × 2 = .2 + 1

.2 × 2 = .4 + 0

.4 × 2 = .8 + 0
....

Notice that the process repeats after four steps and will repeat indefinitely exactly the same
way. Therefore,

(0.7)10 = (.1011001100110 . . .)2 = (.10110)2,

where overbar notation is used to denote infinitely repeated bits. Putting the two parts
together, we conclude that

(53.7)10 = (110101.10110)2.
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0.2.2 Binary to decimal

To convert a binary number to decimal, it is again best to separate into integer and fractional
parts.

Integer part. Simply add up powers of 2 as we did before. The binary number
(10101)2 is simply 1 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 1 · 20 = (21)10.

Fractional part. If the fractional part is finite (a terminating base 2 expansion), proceed
the same way. For example,

(.1011)2 = 1
2

+ 1
8

+ 1
16

=
(

11
16

)

10
.

The only complication arises when the fractional part is not a finite base 2 expansion.
Converting an infinitely repeating binary expansion to a decimal fraction can be done in
several ways. Perhaps the simplest way is to use the shift property of multiplication by 2.

For example, suppose x = (0.1011)2 is to be converted to decimal. Multiply x by 24,
which shifts 4 places to the left in binary. Then subtract the original x:

24x = 1011.1011

x = 0000.1011.

Subtracting yields

(24 − 1)x = (1011)2 = (11)10.

Then solve for x to find x = (.1011)2 = 11/15 in base 10.
As another example, assume that the fractional part does not immediately repeat, as in

x = .10101. Multiplying by 22 shifts to y = 22x = 10.101. The fractional part of y, call it
z = .101, is calculated as before:

23z = 101.101

z = 000.101.

Therefore, 7z = 5, and y = 2 + 5/7, x = 2−2y = 19/28 in base 10. It is a good exercise
to check this result by converting 19/28 to binary and comparing to the original x.

Binary numbers are the building blocks of machine computations, but they turn
out to be long and unwieldy for humans to interpret. It is useful to use base 16
at times just to present numbers more easily. Hexadecimal numbers are represented
by the 16 numerals 0,1,2, . . . ,9,A,B,C,D,E,F . Each hex number can be repre-
sented by 4 bits. Thus (1)16 =(0001)2, (8)16 =(1000)2, and (F )16 =(1111)2 =(15)10.
In the next section, Matlab’s format hex for representing machine numbers will be
described.

0.2 Exercises

1. Find the binary representation of the base 10 integers. (a) 64 (b) 17 (c) 79 (d) 227

2. Find the binary representation of the base 10 numbers. (a) 1/8 (b) 7/8 (c) 35/16 (d) 31/64

3. Convert the following base 10 numbers to binary. Use overbar notation for nonterminating
binary numbers. (a) 10.5 (b) 1/3 (c) 5/7 (d) 12.8 (e) 55.4 (f ) 0.1

4. Convert the following base 10 numbers to binary. (a) 11.25 (b) 2/3 (c) 3/5 (d) 3.2 (e) 30.6
(f) 99.9
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5. Find the first 15 bits in the binary representation of π .

6. Find the first 15 bits in the binary representation of e.

7. Convert the following binary numbers to base 10: (a) 1010101 (b) 1011.101 (c) 10111.01
(d) 110.10 (e) 10.110 (f) 110.1101 (g) 10.0101101 (h) 111.1

8. Convert the following binary numbers to base 10: (a) 11011 (b) 110111.001 (c) 111.001
(d) 1010.01 (e) 10111.10101 (f) 1111.010001

0.3 FLOATING POINT REPRESENTATION OF REAL NUMBERS

In this section, we present a model for computer arithmetic of floating point numbers.
There are several models, but to simplify matters we will choose one particular model and
describe it in detail. The model we choose is the so-called IEEE 754 Floating Point Standard.
The Institute of Electrical and Electronics Engineers (IEEE) takes an active interest in
establishing standards for the industry. Their floating point arithmetic format has become
the common standard for single-precision and double precision arithmetic throughout the
computer industry.

Rounding errors are inevitable when finite-precision computer memory locations are
used to represent real, infinite precision numbers. Although we would hope that small errors
made during a long calculation have only a minor effect on the answer, this turns out to
be wishful thinking in many cases. Simple algorithms, such as Gaussian elimination or
methods for solving differential equations, can magnify microscopic errors to macro-
scopic size. In fact, a main theme of this book is to help the reader to recognize when a
calculation is at risk of being unreliable due to magnification of the small errors made by
digital computers and to know how to avoid or minimize the risk.

0.3.1 Floating point formats

The IEEE standard consists of a set of binary representations of real numbers. A floating
point number consists of three parts: the sign (+ or −), a mantissa, which contains the
string of significant bits, and an exponent. The three parts are stored together in a single
computer word.

There are three commonly used levels of precision for floating point numbers: single
precision, double precision, and extended precision, also known as long-double precision.
The number of bits allocated for each floating point number in the three formats is 32,64,
and 80, respectively. The bits are divided among the parts as follows:

precision sign exponent mantissa

single 1 8 23
double 1 11 52
long double 1 15 64

All three types of precision work essentially the same way. The form of a normalized
IEEE floating point number is

±1.bbb . . .b × 2p, (0.6)

where each of the N b’s is 0 or 1, and p is an M-bit binary number representing the exponent.
Normalization means that, as shown in (0.6), the leading (leftmost) bit must be 1.

When a binary number is stored as a normalized floating point number, it is “left-
justified,’’ meaning that the leftmost 1 is shifted just to the left of the radix point. The shift
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is compensated by a change in the exponent. For example, the decimal number 9, which is
1001 in binary, would be stored as

+1.001 × 23,

because a shift of 3 bits, or multiplication by 23, is necessary to move the leftmost one to
the correct position.

For concreteness, we will specialize to the double precision format for most of the
discussion. Single and long-double precision are handled in the same way, with the exception
of different exponent and mantissa lengths M and N . In double precision, used by many
C compilers and by Matlab, M = 11 and N = 52.

The double precision number 1 is

+1. 0000000000000000000000000000000000000000000000000000 × 20,

where we have boxed the 52 bits of the mantissa. The next floating point number greater
than 1 is

+1. 0000000000000000000000000000000000000000000000000001 × 20,

or 1 + 2−52.

DEFINITION 0.1 The number machine epsilon, denoted ϵmach, is the distance between 1 and the smallest
floating point number greater than 1. For the IEEE double precision floating point standard,

ϵmach = 2−52. ❒

The decimal number 9.4 = (1001.0110)2 is left-justified as

+1. 0010110011001100110011001100110011001100110011001100 110 . . . × 23,

where we have boxed the first 52 bits of the mantissa. A new question arises: How do we
fit the infinite binary number representing 9.4 in a finite number of bits?

We must truncate the number in some way, and in so doing we necessarily make a
small error. One method, called chopping, is to simply throw away the bits that fall off the
end—that is, those beyond the 52nd bit to the right of the decimal point. This protocol is
simple, but it is biased in that it always moves the result toward zero.

The alternative method is rounding. In base 10, numbers are customarily rounded up
if the next digit is 5 or higher, and rounded down otherwise. In binary, this corresponds to
rounding up if the bit is 1. Specifically, the important bit in the double precision format is
the 53rd bit to the right of the radix point, the first one lying outside of the box. The default
rounding technique, implemented by the IEEE standard, is to add 1 to bit 52 (round up) if
bit 53 is 1, and to do nothing (round down) to bit 52 if bit 53 is 0, with one exception: If
the bits following bit 52 are 10000 . . . , exactly halfway between up and down, we round up
or round down according to which choice makes the final bit 52 equal to 0. (Here we are
dealing with the mantissa only, since the sign does not play a role.)

Why is there the strange exceptional case? Except for this case, the rule means rounding
to the normalized floating point number closest to the original number—hence its name,
the Rounding to Nearest Rule. The error made in rounding will be equally likely to be
up or down. Therefore, the exceptional case, the case where there are two equally distant
floating point numbers to round to, should be decided in a way that doesn’t prefer up or
down systematically. This is to try to avoid the possibility of an unwanted slow drift in long
calculations due simply to a biased rounding. The choice to make the final bit 52 equal to
0 in the case of a tie is somewhat arbitrary, but at least it does not display a preference up
or down. Problem 8 sheds some light on why the arbitrary choice of 0 is made in case of
a tie.
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IEEE Rounding to Nearest Rule

For double precision, if the 53rd bit to the right of the binary point is 0, then round down
(truncate after the 52nd bit). If the 53rd bit is 1, then round up (add 1 to the 52 bit), unless
all known bits to the right of the 1 are 0’s, in which case 1 is added to bit 52 if and only if
bit 52 is 1.

For the number 9.4 discussed previously, the 53rd bit to the right of the binary point is
a 1 and is followed by other nonzero bits. The Rounding to Nearest Rule says to round up,
or add 1 to bit 52. Therefore, the floating point number that represents 9.4 is

+1. 0010110011001100110011001100110011001100110011001101 × 23. (0.7)

DEFINITION 0.2 Denote the IEEE double precision floating point number associated to x, using the Rounding
to Nearest Rule, by fl(x). ❒

In computer arithmetic, the real number x is replaced with the string of bits fl(x).
According to this definition, fl(9.4) is the number in the binary representation (0.7). We
arrived at the floating point representation by discarding the infinite tail .1100 × 2−52 ×
23 = .0110 × 2−51 × 23 = .4 × 2−48 from the right end of the number and then adding
2−52 × 23 = 2−49 in the rounding step. Therefore,

fl(9.4) = 9.4 + 2−49 − 0.4 × 2−48

= 9.4 + (1 − 0.8)2−49

= 9.4 + 0.2 × 2−49. (0.8)

In other words, a computer using double precision representation and the Rounding to Near-
est Rule makes an error of 0.2 × 2−49 when storing 9.4. We call 0.2 × 2−49 the rounding
error.

The important message is that the floating point number representing 9.4 is not equal
to 9.4, although it is very close. To quantify that closeness, we use the standard definition
of error.

DEFINITION 0.3 Let xc be a computed version of the exact quantity x. Then

absolute error = |xc − x|,
and

relative error = |xc − x|
|x| ,

if the latter quantity exists. ❒

Relative rounding error

In the IEEE machine arithmetic model, the relative rounding error of fl(x) is no more than
one-half machine epsilon:

|fl(x) − x|
|x| ≤ 1

2
ϵmach. (0.9)

In the case of the number x = 9.4, we worked out the rounding error in (0.8), which
must satisfy (0.9):

|fl(9.4) − 9.4|
9.4

= 0.2 × 2−49

9.4
= 8

47
× 2−52 <

1
2

ϵmach.
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! EXAMPLE 0.2 Find the double precision representation fl(x) and rounding error for x = 0.4.

Since (0.4)10 = (.0110)2, left-justifying the binary number results in

0.4 = 1.100110 × 2−2

= +1. 1001100110011001100110011001100110011001100110011001

100110 . . . × 2−2.

Therefore, according to the rounding rule, fl(0.4) is

+1. 1001100110011001100110011001100110011001100110011010 × 2−2.

Here, 1 has been added to bit 52, which caused bit 51 also to change, due to carrying in the
binary addition.

Analyzing carefully, we discarded 2−53 × 2−2 + .0110 × 2−54 × 2−2 in the trun-
cation and added 2−52 × 2−2 by rounding up. Therefore,

fl(0.4) = 0.4 − 2−55 − 0.4 × 2−56 + 2−54

= 0.4 + 2−54(−1/2 − 0.1 + 1)

= 0.4 + 2−54(.4)

= 0.4 + 0.1 × 2−52.

Notice that the relative error in rounding for 0.4 is 0.1/0.4 × ϵmach = 1/4 × ϵmach,
obeying (0.9). "

0.3.2 Machine representation

So far, we have described a floating point representation in the abstract. Here are a few more
details about how this representation is implemented on a computer. Again, in this section
we will discuss the double precision format; the other formats are very similar.

Each double precision floating point number is assigned an 8-byte word, or 64 bits, to
store its three parts. Each such word has the form

se1e2 . . . e11b1b2 . . .b52 , (0.10)

where the sign is stored, followed by 11 bits representing the exponent and the 52 bits
following the decimal point, representing the mantissa. The sign bit s is 0 for a positive
number and 1 for a negative number. The 11 bits representing the exponent come from the
positive binary integer resulting from adding 210 − 1 = 1023 to the exponent, at least for
exponents between −1022 and 1023. This covers values of e1 . . . e11 from 1 to 2046, leaving
0 and 2047 for special purposes, which we will return to later.

The number 1023 is called the exponent bias of the double precision format. It is used
to convert both positive and negative exponents to positive binary numbers for storage in
the exponent bits. For single and long-double precision, the exponent bias values are 127
and 16383, respectively.

Matlab’s format hex consists simply of expressing the 64 bits of the machine
number (0.10) as 16 successive hexadecimal, or base 16, numbers. Thus, the first 3 hex
numerals represent the sign and exponent combined, while the last 13 contain the mantissa.

For example, the number 1, or

1 = +1. 0000000000000000000000000000000000000000000000000000 × 20,
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has double precision machine number form

0 01111111111 0000000000000000000000000000000000000000000000000000

once the usual 1023 is added to the exponent. The first three hex digits correspond to

001111111111 = 3FF,

so the format hex representation of the floating point number 1 will be
3FF 0000000000000. You can check this by typing format hex into Matlab and enter-
ing the number 1.

! EXAMPLE 0.3 Find the hex machine number representation of the real number 9.4.

From (0.7), we find that the sign is s = 0, the exponent is 3, and the 52 bits of the
mantissa after the decimal point are

0010 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1101

→ (2CCCCCCCCCCCD)16.

Adding 1023 to the exponent gives 1026 = 210 + 2, or (10000000010)2. The sign
and exponent combination is (010000000010)2 = (402)16, making the hex format
4022CCCCCCCCCCCD. "

Now we return to the special exponent values 0 and 2047. The latter, 2047, is used to
represent ∞ if the mantissa bit string is all zeros and NaN, which stands for Not a Num-
ber, otherwise. Since 2047 is represented by eleven 1 bits, or e1e2 . . . e11 = (111 1111 1111)2,
the first twelve bits of Inf and -Inf are 0111 1111 1111 and 1111 1111 1111 ,
respectively, and the remaining 52 bits (the mantissa) are zero. The machine number NaN
also begins 1111 1111 1111 but has a nonzero mantissa. In summary,

machine number example hex format

+Inf 1/0 7FF0000000000000
-Inf –1/0 FFF0000000000000
NaN 0/0 FFFxxxxxxxxxxxxx

where the x’s denote bits that are not all zero.
The special exponent 0, meaning e1e2 . . . e11 = (000 0000 0000)2, also denotes a depar-

ture from the standard floating point form. In this case the machine number is interpreted
as the non-normalized floating point number

±0. b1b2 . . .b52 × 2−1022. (0.11)

That is, in this case only, the left-most bit is no longer assumed to be 1. These non-normalized
numbers are called subnormal floating point numbers. They extend the range of very small
numbers by a few more orders of magnitude. Therefore, 2−52 × 2−1022 = 2−1074 is the
smallest nonzero representable number in double precision. Its machine word is

0 00000000000 0000000000000000000000000000000000000000000000000001 .

Be sure to understand the difference between the smallest representable number 2−1074 and
ϵmach = 2−52. Many numbers below ϵmach are machine representable, even though adding
them to 1 may have no effect. On the other hand, double precision numbers below 2−1074

cannot be represented at all.
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The subnormal numbers include the most important number 0. In fact, the subnormal
representation includes two different floating point numbers, +0 and −0, that are treated
in computations as the same real number. The machine representation of +0 has sign bit
s = 0, exponent bits e1 . . . e11 = 00000000000, and mantissa 52 zeros; in short, all 64 bits
are zero. The hex format for +0 is 0000000000000000. For the number −0, all is exactly
the same, except for the sign bit s = 1. The hex format for −0 is 8000000000000000.

0.3.3 Addition of floating point numbers

Machine addition consists of lining up the decimal points of the two numbers to be added,
adding them, and then storing the result again as a floating point number. The addition itself
can be done in higher precision (with more than 52 bits) since it takes place in a register
dedicated just to that purpose. Following the addition, the result must be rounded back to
52 bits beyond the binary point for storage as a machine number.

For example, adding 1 to 2−53 would appear as follows:

1. 00…0 × 20 + 1. 00…0 × 2−53

= 1. 0000000000000000000000000000000000000000000000000000 × 20

+ 0. 0000000000000000000000000000000000000000000000000000 1 × 20

= 1. 0000000000000000000000000000000000000000000000000000 1 × 20

This is saved as 1. × 20 = 1, according to the rounding rule. Therefore, 1 + 2−53 is equal
to 1 in double precision IEEE arithmetic. Note that 2−53 is the largest floating point number
with this property; anything larger added to 1 would result in a sum greater than 1 under
computer arithmetic.

The fact that ϵmach = 2−52 does not mean that numbers smaller than ϵmach are negli-
gible in the IEEE model. As long as they are representable in the model, computations with
numbers of this size are just as accurate, assuming that they are not added or subtracted to
numbers of unit size.

It is important to realize that computer arithmetic, because of the truncation and round-
ing that it carries out, can sometimes give surprising results. For example, if a double
precision computer with IEEE rounding to nearest is asked to store 9.4, then subtract 9,
and then subtract 0.4, the result will be something other than zero! What happens is the
following: First, 9.4 is stored as 9.4 + 0.2 × 2−49, as shown previously. When 9 is sub-
tracted (note that 9 can be represented with no error), the result is 0.4 + 0.2 × 2−49. Now,
asking the computer to subtract 0.4 results in subtracting (as we found in Example 0.2) the
machine number fl(0.4) = 0.4 + 0.1 × 2−52, which will leave

0.2 × 2−49 − 0.1 × 2−52 = .1 × 2−52(24 − 1) = 3 × 2−53

instead of zero. This is a small number, on the order of ϵmach, but it is not zero. Since
Matlab’s basic data type is the IEEE double precision number, we can illustrate this
finding in a Matlab session:

>> format long
>> x=9.4

x =

9.40000000000000

>> y=x-9
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y =

0.40000000000000

>> z=y-0.4

z =

3.330669073875470e-16

>> 3*2ˆ(-53)

ans =

3.330669073875470e-16

! EXAMPLE 0.4 Find the double precision floating point sum (1 + 3 × 2−53) − 1.

Of course, in real arithmetic the answer is 3 × 2−53. However, floating point
arithmetic may differ. Note that 3 × 2−53 = 2−52 + 2−53. The first addition is

1. 00…0 × 20 + 1. 10…0 × 2−52

= 1. 0000000000000000000000000000000000000000000000000000 × 20

+ 0. 0000000000000000000000000000000000000000000000000001 1 × 20

= 1. 0000000000000000000000000000000000000000000000000001 1 × 20.

This is again the exceptional case for the rounding rule. Since bit 52 in the sum is 1, we
must round up, which means adding 1 to bit 52. After carrying, we get

+ 1. 0000000000000000000000000000000000000000000000000010 × 20,

which is the representation of 1 + 2−51. Therefore, after subtracting 1, the result will be
2−51, which is equal to 2ϵmach = 4 × 2−53. Once again, note the difference between com-
puter arithmetic and exact arithmetic. Check this result by using Matlab. "

Calculations in Matlab, or in any compiler performing floating point calculation under
the IEEE standard, follow the precise rules described in this section. Although floating
point calculation can give surprising results because it differs from exact arithmetic, it is
always predictable. The Rounding to Nearest Rule is the typical default rounding, although,
if desired, it is possible to change to other rounding rules by using compiler flags. The
comparison of results from different rounding protocols is sometimes useful as an informal
way to assess the stability of a calculation.

It may be surprising that small rounding errors alone, of relative size ϵmach, are capable
of derailing meaningful calculations. One mechanism for this is introduced in the next
section. More generally, the study of error magnification and conditioning is a recurring
theme in Chapters 1, 2, and beyond.

0.3 Exercises

1. Convert the following base 10 numbers to binary and express each as a floating point number
fl(x) by using the Rounding to Nearest Rule: (a) 1/4 (b) 1/3 (c) 2/3 (d) 0.9
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2. Convert the following base 10 numbers to binary and express each as a floating point number
fl(x) by using the Rounding to Nearest Rule: (a) 9.5 (b) 9.6 (c) 100.2 (d) 44/7

3. For which positive integers k can the number 5 + 2−k be represented exactly (with no
rounding error) in double precision floating point arithmetic?

4. Find the largest integer k for which fl(19 + 2−k) > fl(19) in double precision floating point
arithmetic.

5. Do the following sums by hand in IEEE double precision computer arithmetic, using the
Rounding to Nearest Rule. (Check your answers, using Matlab.)

(a) (1 + (2−51 + 2−53)) − 1

(b) (1 + (2−51 + 2−52 + 2−53)) − 1

6. Do the following sums by hand in IEEE double precision computer arithmetic, using the
Rounding to Nearest Rule:

(a) (1 + (2−51 + 2−52 + 2−54)) − 1

(b) (1 + (2−51 + 2−52 + 2−60)) − 1

7. Write each of the given numbers in Matlab’s format hex. Show your work. Then check
your answers with Matlab. (a) 8 (b) 21 (c) 1/8 (d) fl (1/3) (e) fl (2/3) (f) fl (0.1) (g) fl (−0.1)
(h) fl (−0.2)

8. Is 1/3 + 2/3 exactly equal to 1 in double precision floating point arithmetic, using the IEEE
Rounding to Nearest Rule? You will need to use fl (1/3) and fl (2/3) from Exercise 1. Does
this help explain why the rule is expressed as it is? Would the sum be the same if chopping
after bit 52 were used instead of IEEE rounding?

9. (a) Explain why you can determine machine epsilon on a computer using IEEE double
precision and the IEEE Rounding to Nearest Rule by calculating (7/3 − 4/3) − 1. (b) Does
(4/3 − 1/3) − 1 also give ϵmach? Explain by converting to floating point numbers and
carrying out the machine arithmetic.

10. Decide whether 1 + x > 1 in double precision floating point arithmetic, with Rounding to
Nearest. (a) x = 2−53 (b) x = 2−53 + 2−60

11. Does the associative law hold for IEEE computer addition?

12. Find the IEEE double precision representation fl(x), and find the exact difference fl(x) − x for
the given real numbers. Check that the relative rounding error is no more than ϵmach/2.
(a) x = 1/3 (b) x = 3.3 (c) x = 9/7

13. There are 64 double precision floating point numbers whose 64-bit machine representations
have exactly one nonzero bit. Find the (a) largest (b) second-largest (c) smallest of these
numbers.

14. Do the following operations by hand in IEEE double precision computer arithmetic, using the
Rounding to Nearest Rule. (Check your answers, using Matlab.)
(a) (4.3 − 3.3) − 1 (b) (4.4 − 3.4) − 1 (c) (4.9 − 3.9) − 1

15. Do the following operations by hand in IEEE double precision computer arithmetic, using the
Rounding to Nearest Rule.
(a) (8.3 − 7.3) − 1 (b) (8.4 − 7.4) − 1 (c) (8.8 − 7.8) − 1
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16. Find the IEEE double precision representation fl(x), and find the exact difference fl(x) − x for
the given real numbers. Check that the relative rounding error is no more than ϵmach/2.
(a) x = 2.75 (b) x = 2.7 (c) x = 10/3

0.4 LOSS OF SIGNIFICANCE

An advantage of knowing the details of computer arithmetic is that we are therefore in a
better position to understand potential pitfalls in computer calculations. One major problem
that arises in many forms is the loss of significant digits that results from subtracting nearly
equal numbers. In its simplest form, this is an obvious statement. Assume that through
considerable effort, as part of a long calculation, we have determined two numbers correct
to seven significant digits, and now need to subtract them:

123.4567
− 123.4566

000.0001

The subtraction problem began with two input numbers that we knew to seven-digit accu-
racy, and ended with a result that has only one-digit accuracy. Although this example is
quite straightforward, there are other examples of loss of significance that are more subtle,
and in many cases this can be avoided by restructuring the calculation.

! EXAMPLE 0.5 Calculate
√

9.01 − 3 on a three-decimal-digit computer.

This example is still fairly simple and is presented only for illustrative purposes.
Instead of using a computer with a 52-bit mantissa, as in double precision IEEE standard
format, we assume that we are using a three-decimal-digit computer. Using a three-digit
computer means that storing each intermediate calculation along the way implies storing
into a floating point number with a three-digit mantissa. The problem data (the 9.01 and
3.00) are given to three-digit accuracy. Since we are going to use a three-digit computer,
being optimistic, we might hope to get an answer that is good to three digits. (Of course, we
can’t expect more than this because we only carry along three digits during the calculation.)
Checking on a hand calculator, we see that the correct answer is approximately 0.0016662 =
1.6662 × 10−3. How many correct digits do we get with the three-digit computer?

None, as it turns out. Since
√

9.01 ≈ 3.0016662, when we store this intermediate
result to three significant digits we get 3.00. Subtracting 3.00, we get a final answer of 0.00.
No significant digits in our answer are correct.

Surprisingly, there is a way to save this computation, even on a three-digit com-
puter. What is causing the loss of significance is the fact that we are explicitly subtracting
nearly equal numbers,

√
9.01 and 3. We can avoid this problem by using algebra to rewrite

the expression:

√
9.01 − 3 = (

√
9.01 − 3)(

√
9.01 + 3)√

9.01 + 3

= 9.01 − 32
√

9.01 + 3

= 0.01
3.00 + 3

= .01
6

= 0.00167 ≈ 1.67 × 10−3.

Here, we have rounded the last digit of the mantissa up to 7 since the next digit is 6. Notice
that we got all three digits correct this way, at least the three digits that the correct answer
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rounds to. The lesson is that it is important to find ways to avoid subtracting nearly equal
numbers in calculations, if possible. "

The method that worked in the preceding example was essentially a trick. Multiplying
by the “conjugate expression’’ is one trick that can help restructure the calculation. Often,
specific identities can be used, as with trigonometric expressions. For example, calculation
of 1 − cosx when x is close to zero is subject to loss of significance. Let’s compare the
calculation of the expressions

E1 = 1 − cosx

sin2 x
and E2 = 1

1 + cosx

for a range of input numbers x. We arrived at E2 by multiplying the numerator and denomi-
nator of E1 by 1 + cosx, and using the trig identity sin2 x + cos2 x = 1. In infinite precision,
the two expressions are equal. Using the double precision of Matlab computations, we get
the following table:

x E1 E2
1.00000000000000 0.64922320520476 0.64922320520476
0.10000000000000 0.50125208628858 0.50125208628857
0.01000000000000 0.50001250020848 0.50001250020834
0.00100000000000 0.50000012499219 0.50000012500002
0.00010000000000 0.49999999862793 0.50000000125000
0.00001000000000 0.50000004138685 0.50000000001250
0.00000100000000 0.50004445029134 0.50000000000013
0.00000010000000 0.49960036108132 0.50000000000000
0.00000001000000 0.00000000000000 0.50000000000000
0.00000000100000 0.00000000000000 0.50000000000000
0.00000000010000 0.00000000000000 0.50000000000000
0.00000000001000 0.00000000000000 0.50000000000000
0.00000000000100 0.00000000000000 0.50000000000000

The right column E2 is correct up to the digits shown. The E1 computation, due to the
subtraction of nearly equal numbers, is having major problems below x = 10−5 and has no
correct significant digits for inputs x = 10−8 and below.

The expression E1 already has several incorrect digits for x = 10−4 and gets worse as
x decreases. The equivalent expression E2 does not subtract nearly equal numbers and has
no such problems.

The quadratic formula is often subject to loss of significance. Again, it is easy to avoid
as long as you know it is there and how to restructure the expression.

! EXAMPLE 0.6 Find both roots of the quadratic equation x2 + 912x = 3.

Try this one in double precision arithmetic, for example, using Matlab. Neither
one will give the right answer unless you are aware of loss of significance and know how
to counteract it. The problem is to find both roots, let’s say, with four-digit accuracy. So far
it looks like an easy problem. The roots of a quadratic equation of form ax2 + bx + c = 0
are given by the quadratic formula

x = −b ±
√

b2 − 4ac

2a
. (0.12)

For our problem, this translates to

x = −912 ±
√

924 + 4(3)

2
.
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Using the minus sign gives the root

x1 = −2.824 × 1011,

correct to four significant digits. For the plus sign root

x2 = −912 +
√

924 + 4(3)

2
,

Matlab calculates 0. Although the correct answer is close to 0, the answer has no correct
significant digits—even though the numbers defining the problem were specified exactly
(essentially with infinitely many correct digits) and despite the fact that Matlab computes
with approximately 16 significant digits (an interpretation of the fact that the machine
epsilon of Matlab is 2−52 ≈ 2.2 × 10−16). How do we explain the total failure to get
accurate digits for x2?

The answer is loss of significance. It is clear that 912 and
√

924 + 4(3) are nearly
equal, relatively speaking. More precisely, as stored floating point numbers, their mantissas
not only start off similarly, but also are actually identical. When they are subtracted, as
directed by the quadratic formula, of course the result is zero.

Can this calculation be saved? We must fix the loss of significance problem. The
correct way to compute x2 is by restructuring the quadratic formula:

x2 = −b +
√

b2 − 4ac

2a

= (−b +
√

b2 − 4ac)(b +
√

b2 − 4ac)

2a(b +
√

b2 − 4ac)

= −4ac

2a(b +
√

b2 − 4ac)

= −2c

(b +
√

b2 − 4ac)
.

Substituting a,b,c for our example yields, according to Matlab, x2 = 1.062 × 10−11,
which is correct to four significant digits of accuracy, as required. "

This example shows us that the quadratic formula (0.12) must be used with care in
cases where a and/or c are small compared with b. More precisely, if 4|ac| ≪ b2, then b

and
√

b2 − 4ac are nearly equal in magnitude, and one of the roots is subject to loss of
significance. If b is positive in this situation, then the two roots should be calculated as

x1 = −b +
√

b2 − 4ac

2a
and x2 = − 2c

(b +
√

b2 − 4ac)
. (0.13)

Note that neither formula suffers from subtracting nearly equal numbers. On the other hand,
if b is negative and 4|ac| ≪ b2, then the two roots are best calculated as

x1 = −b +
√

b2 − 4ac

2a
and x2 = 2c

(−b +
√

b2 − 4ac)
. (0.14)
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0.4 Exercises

1. Identify for which values of x there is subtraction of nearly equal numbers, and find an
alternate form that avoids the problem.

(a)
1 − secx

tan2 x
(b)

1 − (1 − x)3

x
(c)

1
1 + x

− 1
1 − x

2. Find the roots of the equation x2 + 3x − 8−14 = 0 with three-digit accuracy.

3. Explain how to most accurately compute the two roots of the equation x2 + bx − 10−12 = 0,
where b is a number greater than 100.

4. Prove formula 0.14.

0.4 Computer Problems

1. Calculate the expressions that follow in double precision arithmetic (using Matlab, for
example) for x = 10−1, . . . ,10−14. Then, using an alternative form of the expression that
doesn’t suffer from subtracting nearly equal numbers, repeat the calculation and make a table
of results. Report the number of correct digits in the original expression for each x.

(a)
1 − secx

tan2 x
(b)

1 − (1 − x)3

x

2. Find the smallest value of p for which the expression calculated in double precision arithmetic
at x = 10−p has no correct significant digits. (Hint: First find the limit of the expression as
x → 0.)

(a)
tan x − x

x3 (b)
ex + cosx − sin x − 2

x3

3. Evaluate the quantity a +
√

a2 + b2 to four correct significant digits,
where a = −12345678987654321 and b = 123.

4. Evaluate the quantity
√

c2 + d − c to four correct significant digits,
where c = 246886422468 and d = 13579.

5. Consider a right triangle whose legs are of length 3344556600 and 1.2222222. How much
longer is the hypotenuse than the longer leg? Give your answer with at least four correct
digits.

0.5 REVIEW OF CALCULUS

Some important basic facts from calculus will be necessary later. The Intermediate Value
Theorem and the Mean Value Theorem are important for solving equations in Chapter 1.
Taylor’s Theorem is important for understanding interpolation in Chapter 3 and becomes
of paramount importance for solving differential equations in Chapters 6, 7, and 8.

The graph of a continuous function has no gaps. For example, if the function is positive
for one x-value and negative for another, it must pass through zero somewhere. This fact is
basic for getting equation solvers to work in the next chapter. The first theorem, illustrated
in Figure 0.1(a), generalizes this notion.
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a b

y

c

(a)

a bc

f (c)

(b)

a b

f (c)

c

(c)

Figure 0.1 Three important theorems from calculus. There exist numbers c between

a and b such that: (a) f (c) = y, for any given y between f (a) and f (b), by Theorem

0.4, the Intermediate Value Theorem (b) the instantaneous slope of f at c equals

(f (b) − f (a))/(b − a) by Theorem 0.6, the Mean Value Theorem (c) the vertically shaded

region is equal in area to the horizontally shaded region, by Theorem 0.9, the Mean

Value Theorem for Integrals, shown in the special case g(x) = 1.

THEOREM 0.4 (Intermediate Value Theorem) Let f be a continuous function on the interval [a,b]. Then
f realizes every value between f (a) and f (b). More precisely, if y is a number between
f (a) and f (b), then there exists a number c with a ≤ c ≤ b such that f (c) = y. #

! EXAMPLE 0.7 Show that f (x) = x2 − 3 on the interval [1,3] must take on the values 0 and 1.

Because f (1) = −2 and f (3) = 6, all values between −2 and 6, including 0 and
1, must be taken on by f . For example, setting c =

√
3, note that f (c) = f (

√
3) = 0, and

secondly, f (2) = 1. "

THEOREM 0.5 (Continuous Limits) Let f be a continuous function in a neighborhood of x0, and assume
limn→∞ xn = x0. Then

lim
n→∞f (xn) = f

(
lim

n→∞xn

)
= f (x0). #

In other words, limits may be brought inside continuous functions.

THEOREM 0.6 (Mean Value Theorem) Let f be a continuously differentiable function on the interval
[a,b]. Then there exists a number c between a and b such that f ′(c) = (f (b) − f (a))/

(b − a). #

! EXAMPLE 0.8 Apply the Mean Value Theorem to f (x) = x2 − 3 on the interval [1,3].
The content of the theorem is that because f (1) = −2 and f (3) = 6, there must

exist a number c in the interval (1,3) satisfying f ′(c) = (6 − (−2))/(3 − 1) = 4. It is easy
to find such a c. Since f ′(x) = 2x, the correct c = 2. "

The next statement is a special case of the Mean Value Theorem.

THEOREM 0.7 (Rolle’s Theorem) Let f be a continuously differentiable function on the interval [a,b],
and assume that f (a) = f (b). Then there exists a number c between a and b such that
f ′(c) = 0. #
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x0

P0(x)

P1(x)

P2(x)f(x)

Figure 0.2 Taylor’s Theorem with Remainder. The function f (x), denoted by the solid

curve, is approximated successively better near x0 by the degree 0 Taylor polynomial

(horizontal dashed line), the degree 1 Taylor polynomial (slanted dashed line), and the

degree 2 Taylor polynomial (dashed parabola). The difference between f (x) and its

approximation at x is the Taylor remainder.

Taylor approximation underlies many simple computational techniques that we will
study. If a function f is known well at a point x0, then a lot of information about f at nearby
points can be learned. If the function is continuous, then for points x near x0, the function
value f (x) will be approximated reasonably well by f (x0). However, if f ′(x0) > 0, then f

has greater values for nearby points to the right, and lesser values for points to the left, since
the slope near x0 is approximately given by the derivative. The line through (x0,f (x0)) with
slope f ′(x0), shown in Figure 0.2, is the Taylor approximation of degree 1. Further small
corrections can be extracted from higher derivatives, and give the higher degree Taylor
approximations. Taylor’s Theorem uses the entire set of derivatives at x0 to give a full
accounting of the function values in a small neighborhood of x0.

THEOREM 0.8 (Taylor’s Theorem with Remainder) Let x and x0 be real numbers, and let f be k + 1 times
continuously differentiable on the interval between x and x0. Then there exists a number c

between x and x0 such that

f (x) = f (x0) + f ′(x0)(x − x0) + f ′′(x0)

2! (x − x0)2 + f ′′′(x0)

3! (x − x0)3 + ·· ·

+ f (k)(x0)

k! (x − x0)k + f (k+1)(c)

(k + 1)! (x − x0)k+1.

#

The polynomial part of the result, the terms up to degree k in x − x0, is called the
degree k Taylor polynomial for f centered at x0. The final term is called the Taylor
remainder. To the extent that the Taylor remainder term is small, Taylor’s Theorem gives a
way to approximate a general, smooth function with a polynomial. This is very convenient
in solving problems with a computer, which, as mentioned earlier, can evaluate polynomials
very efficiently.

! EXAMPLE 0.9 Find the degree 4 Taylor polynomial P4(x) for f (x) = sin x centered at the point
x0 = 0. Estimate the maximum possible error when using P4(x) to estimate sin x for
|x| ≤ 0.0001.
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The polynomial is easily calculated to be P4(x) = x − x3/6. Note that the degree
4 term is absent, since its coefficient is zero. The remainder term is

x5

120
cosc,

which in absolute value cannot be larger than |x|5/120. For |x| ≤ 0.0001, the remainder
is at most 10−20/120 and will be invisible when, for example, x − x3/6 is used in double
precision to approximate sin 0.0001. Check this by computing both in Matlab. "

Finally, the integral version of the Mean Value Theorem is illustrated in Figure 0.1(c).

THEOREM 0.9 (Mean Value Theorem for Integrals) Let f be a continuous function on the interval [a,b],
and let g be an integrable function that does not change sign on [a,b]. Then there exists a
number c between a and b such that

∫ b

a
f (x)g(x) dx = f (c)

∫ b

a
g(x) dx.

#

0.5 Exercises

1. Use the Intermediate Value Theorem to prove that f (c) = 0 for some 0 < c < 1.
(a) f (x) = x3 − 4x + 1 (b) f (x) = 5cosπx − 4 (c) f (x) = 8x4 − 8x2 + 1

2. Find c satisfying the Mean Value Theorem for f (x) on the interval [0,1]. (a) f (x) = ex

(b) f (x) = x2 (c) f (x) = 1/(x + 1)

3. Find c satisfying the Mean Value Theorem for Integrals with f (x),g(x) in the interval [0,1].
(a) f (x) = x,g(x) = x (b) f (x) = x2,g(x) = x (c) f (x) = x,g(x) = ex

4. Find the Taylor polynomial of degree 2 about the point x = 0 for the following functions:
(a) f (x) = ex2

(b) f (x) = cos5x (c) f (x) = 1/(x + 1)

5. Find the Taylor polynomial of degree 5 about the point x = 0 for the following functions:
(a) f (x) = ex2

(b) f (x) = cos2x (c) f (x) = ln(1 + x) (d) f (x) = sin2 x

6. (a) Find the Taylor polynomial of degree 4 for f (x) = x−2 about the point x = 1.

(b) Use the result of (a) to approximate f (0.9) and f (1.1).

(c) Use the Taylor remainder to find an error formula for the Taylor polynomial. Give error
bounds for each of the two approximations made in part (b). Which of the two approximations
in part (b) do you expect to be closer to the correct value?

(d) Use a calculator to compare the actual error in each case with your error bound from part (c).

7. Carry out Exercise 6 (a)–(d) for f (x) = ln x.

8. (a) Find the degree 5 Taylor polynomial P (x) centered at x = 0 for f (x) = cosx. (b) Find an
upper bound for the error in approximating f (x) = cosx for x in [−π/4,π/4] by P (x).

9. A common approximation for
√

1 + x is 1 + 1
2 x, when x is small. Use the degree 1 Taylor

polynomial of f (x) =
√

1 + x with remainder to determine a formula of form
√

1 + x =
1 + 1

2 x ± E. Evaluate E for the case of approximating
√

1.02. Use a calculator to compare the
actual error to your error bound E.
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Software and Further Reading

The IEEE standard for floating point computation is published as IEEE Standard 754 [1985].
Goldberg [1991] and Stallings [2003] discuss floating point arithmetic in great detail, and
Overton [2001] emphasizes the IEEE 754 standard. The texts Wilkinson [1994] and Knuth
[1981] had great influence on the development of both hardware and software.

There are several software packages that specialize in general-purpose scientific com-
puting, the bulk of it done in floating point arithmetic. Netlib (http://www.netlib.org) is
a collection of free software maintained by AT&T Bell Laboratories, the University of
Tennessee, and Oak Ridge National Laboratory. The collection consists of high-quality
programs available in Fortran, C, and Java, but it comes with little support. The comments
in the code are meant to be sufficiently instructive for the user to operate the program.

The Numerical Algorithms Group (NAG) (http://www.nag.co.uk) markets a library
containing over 1400 user-callable subroutines for solving general applied math problems.
The programs are available in Fortran and C and are callable from Java programs. NAG
includes libraries for shared memory and distributed memory computing.

The International Mathematics and Statistics Library (IMSL) is a product of Rogue
Wave Software (www.roguewave.com), and covers areas similar to those covered by the
NAG library. Fortran, C, and Java programs are available. It also provides PV-WAVE,
a powerful programming language with data analysis and visualization capabilities.

The computing environments Mathematica, Maple, and Matlab have grown to encom-
pass many of the same computational methods previously described and have built-in edit-
ing and graphical interfaces. Mathematica (http://www.wolframresearch.com) and Maple
(www.maplesoft.com) came to prominence due to novel symbolic computing engines.
Matlab has grown to serve many science and engineering applications through “tool-
boxes,’’ which leverage the basic high-quality software into divers directions.

In this text, we frequently illustrate basic algorithms with Matlab implementations.
The Matlab code given is meant to be instructional only. Quite often, speed and reliability
are sacrificed for clarity and readability. Readers who are new to Matlab should begin
with the tutorial in Appendix B; they will soon be doing their own implementations.

http://www.netlib.org
http://www.nag.co.uk
www.roguewave.com
http://www.wolframresearch.com
www.maplesoft.com


C H A P T E R

1
Solving Equations
A recently excavated cuneiform tablet shows that the
Babylonians calculated the square root of 2 correctly to
within five decimal places.Their technique is unknown,
but in this chapter we introduce iterative methods that
they may have used and that are still used by modern
calculators to find square roots.

The Stewart platform, a six-degree-of-freedom
robot that can be located with extreme precision, was
originally developed by Eric Gough of Dunlop Tire Cor-
poration in the 1950s to test airplane tires. Today its

applications range from flight simulators, which are
often of considerable mass, to medical and surgical
applications, where precision is very important. Solving
the forward kinematics problem requires determining
the position and orientation of the platform, given the
strut lengths.

Reality Check 1 on page 67 uses the
methods developed in this chapter to solve the forward
kinematics of a planar version of the Stewart platform.

Equation solving is one of the most basic problems in scientific computing. This chapter
introduces a number of iterative methods for locating solutions x of the equation

f (x) = 0. These methods are of great practical importance. In addition, they illustrate
the central roles of convergence and complexity in scientific computing.

Why is it necessary to know more than one method for solving equations? Often,
the choice of method will depend on the cost of evaluating the function f and perhaps its
derivative. If f (x) = ex − sin x, it may take less than one-millionth of a second to determine
f (x), and its derivative is available if needed. If f (x) denotes the freezing temperature of
an ethylene glycol solution under x atmospheres of pressure, each function evaluation may
require considerable time in a well-equipped laboratory, and determining the derivative
may be infeasible.

In addition to introducing methods such as the Bisection Method, Fixed-Point Iteration,
and Newton’s Method, we will analyze their rates of convergence and discuss their com-
putational complexity. Later, more sophisticated equation solvers are presented, including
Brent’s Method, that combines the best properties of several solvers.
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1.1 THE BISECTION METHOD

How do you look up a name in an unfamiliar phone book? To look up “Smith,’’ you might
begin by opening the book at your best guess, say, the letter Q. Next you may turn a
sheaf of pages and end up at the letter U. Now you have “bracketed’’ the name Smith and
need to hone in on it by using smaller and smaller brackets that eventually converge to
the name. The Bisection Method represents this type of reasoning, done as efficiently as
possible.

1.1.1 Bracketing a root

DEFINITION 1.1 The function f (x) has a root at x = r if f (r) = 0. ❒

The first step to solving an equation is to verify that a root exists. One way to ensure
this is to bracket the root: to find an interval [a,b] on the real line for which one of the pair
{f (a),f (b)} is positive and the other is negative. This can be expressed as f (a)f (b) < 0.
If f is a continuous function, then there will be a root: an r between a and b for which
f (r) = 0. This fact is summarized in the following corollary of the Intermediate Value
Theorem 0.4:

THEOREM 1.2 Let f be a continuous function on [a,b], satisfying f (a)f (b) < 0. Then f has a
root between a and b, that is, there exists a number r satisfying a < r < b and
f (r) = 0. #

In Figure 1.1, f (0)f (1) = (−1)(1) < 0. There is a root just to the left of 0.7. How can
we refine our first guess of the root’s location to more decimal places?

10.5

y

x

–1

1

Figure 1.1 A plot of f (x) = x3 + x − 1. The function has a root between 0.6 and 0.7.

We’ll take a cue from the way our eye finds a solution when given a plot of a function.
It is unlikely that we start at the left end of the interval and move to the right, stopping at the
root. Perhaps a better model of what happens is that the eye first decides the general location,
such as whether the root is toward the left or the right of the interval. It then follows that up
by deciding more precisely just how far right or left the root lies and gradually improves
its accuracy, just like looking up a name in the phone book. This general approach is made
quite specific in the Bisection Method, shown in Figure 1.2.
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a0 c0
a1

a2

c1

b2c2

b0
b1

Figure 1.2 The Bisection Method. On the first step, the sign of f (c0) is checked.

Since f (c0)f (b0) < 0, set a1 = c0,b1 = b0, and the interval is replaced by the right half

[a1,b1]. On the second step, the subinterval is replaced by its left half [a2,b2].

Bisection Method

Given initial interval [a,b] such that f (a)f (b) < 0
while (b − a)/2 > TOL

c = (a + b)/2
if f (c) = 0, stop, end
if f (a)f (c) < 0

b = c

else
a = c

end
end
The final interval [a,b] contains a root.
The approximate root is (a + b)/2.

Check the value of the function at the midpoint c = (a + b)/2 of the interval. Since
f (a) and f (b) have opposite signs, either f (c) = 0 (in which case we have found a root and
are done), or the sign of f (c) is opposite the sign of either f (a) or f (b). If f (c)f (a) < 0,
for example, we are assured a solution in the interval [a,c], whose length is half that of
the original interval [a,b]. If instead f (c)f (b) < 0, we can say the same of the interval
[c,b]. In either case, one step reduces the problem to finding a root on an interval of
one-half the original size. This step can be repeated to locate the function more and more
accurately.

A solution is bracketed by the new interval at each step, reducing the uncertainty in
the location of the solution as the interval becomes smaller. An entire plot of the func-
tion f is not needed. We have reduced the work of function evaluation to only what is
necessary.

! EXAMPLE 1.1 Find a root of the function f (x) = x3 + x − 1 by using the Bisection Method on the interval
[0,1].

As noted, f (a0)f (b0) = (−1)(1) < 0, so a root exists in the interval. The interval
midpoint is c0 = 1/2. The first step consists of evaluating f (1/2) = −3/8 < 0 and choosing
the new interval [a1,b1] = [1/2,1], since f (1/2)f (1) < 0. The second step consists of
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evaluating f (c1) = f (3/4) = 11/64 > 0, leading to the new interval [a2,b2] = [1/2,3/4].
Continuing in this way yields the following intervals:

i ai f (ai) ci f (ci) bi f (bi)

0 0.0000 − 0.5000 − 1.0000 +
1 0.5000 − 0.7500 + 1.0000 +
2 0.5000 − 0.6250 − 0.7500 +
3 0.6250 − 0.6875 + 0.7500 +
4 0.6250 − 0.6562 − 0.6875 +
5 0.6562 − 0.6719 − 0.6875 +
6 0.6719 − 0.6797 − 0.6875 +
7 0.6797 − 0.6836 + 0.6875 +
8 0.6797 − 0.6816 − 0.6836 +
9 0.6816 − 0.6826 + 0.6836 +

We conclude from the table that the solution is bracketed between a9 ≈ 0.6816
and c9 ≈ 0.6826. The midpoint of that interval c10 ≈ 0.6821 is our best guess for the
root.

Although the problem was to find a root, what we have actually found is an inter-
val [0.6816,0.6826] that contains a root; in other words, the root is r = 0.6821 ±
0.0005. We will have to be satisfied with an approximation. Of course, the approx-
imation can be improved, if needed, by completing more steps of the Bisection
Method. "

At each step of the Bisection Method, we compute the midpoint ci = (ai + bi)/2 of
the current interval [ai,bi], calculate f (ci), and compare signs. If f (ci)f (ai) < 0, we
set ai+1 = ai and bi+1 = ci . If, instead, f (ci)f (ai) > 0, we set ai+1 = ci and bi+1 = bi .
Each step requires one new evaluation of the function f and bisects the interval contain-
ing a root, reducing its length by a factor of 2. After n steps of calculating c and f (c),
we have done n + 2 function evaluations, and our best estimate of the solution is the
midpoint of the latest interval. The algorithm can be written in the following Matlab
code:

%Program 1.1 Bisection Method
%Computes approximate solution of f(x)=0
%Input: function handle f; a,b such that f(a)*f(b)<0,
% and tolerance tol
%Output: Approximate solution xc
function xc=bisect(f,a,b,tol)
if sign(f(a))*sign(f(b)) >= 0
error(’f(a)f(b)<0 not satisfied!’) %ceases execution

end
fa=f(a);
fb=f(b);
while (b-a)/2>tol
c=(a+b)/2;
fc=f(c);
if fc == 0 %c is a solution, done
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break
end
if sign(fc)*sign(fa)<0 %a and c make the new interval
b=c;fb=fc;

else %c and b make the new interval
a=c;fa=fc;

end
end
xc=(a+b)/2; %new midpoint is best estimate

To use bisect.m, first define a Matlab function by:
>> f=@(x) xˆ3+x-1;

This command actually defines a “function handle’’f, which can be used as input for other
Matlab functions. See Appendix B for more details on Matlab functions and function
handles. Then the command
» xc=bisect (f,0,1,0.00005)
returns a solution correct to a tolerance of 0.00005.

1.1.2 How accurate and how fast?

If [a,b] is the starting interval, then after n bisection steps, the interval [an,bn] has length
(b − a)/2n. Choosing the midpoint xc = (an + bn)/2 gives a best estimate of the solution r ,
which is within half the interval length of the true solution. Summarizing, after n steps of
the Bisection Method, we find that

Solution error = |xc − r| <
b − a

2n+1 (1.1)

and

Function evaluations = n + 2. (1.2)

A good way to assess the efficiency of the Bisection Method is to ask how much
accuracy can be bought per function evaluation. Each step, or each function evaluation,
cuts the uncertainty in the root by a factor of two.

DEFINITION 1.3 A solution is correct within p decimal places if the error is less than 0.5 × 10−p. ❒

! EXAMPLE 1.2 Use the Bisection Method to find a root of f (x) = cosx − x in the interval [0,1] to within
six correct places.

First we decide how many steps of bisection are required. According to (1.1), the
error after n steps is (b − a)/2n+1 = 1/2n+1. From the definition of p decimal places, we
require that

1
2n+1 < 0.5 × 10−6

n >
6

log10 2
≈ 6

0.301
= 19.9.

Therefore, n = 20 steps will be needed. Proceeding with the Bisection Method, the follow-
ing table is produced:
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k ak f (ak) ck f (ck) bk f (bk)

0 0.000000 + 0.500000 + 1.000000 −
1 0.500000 + 0.750000 − 1.000000 −
2 0.500000 + 0.625000 + 0.750000 −
3 0.625000 + 0.687500 + 0.750000 −
4 0.687500 + 0.718750 + 0.750000 −
5 0.718750 + 0.734375 + 0.750000 −
6 0.734375 + 0.742188 − 0.750000 −
7 0.734375 + 0.738281 + 0.742188 −
8 0.738281 + 0.740234 − 0.742188 −
9 0.738281 + 0.739258 − 0.740234 −

10 0.738281 + 0.738770 + 0.739258 −
11 0.738769 + 0.739014 + 0.739258 −
12 0.739013 + 0.739136 − 0.739258 −
13 0.739013 + 0.739075 + 0.739136 −
14 0.739074 + 0.739105 − 0.739136 −
15 0.739074 + 0.739090 − 0.739105 −
16 0.739074 + 0.739082 + 0.739090 −
17 0.739082 + 0.739086 − 0.739090 −
18 0.739082 + 0.739084 + 0.739086 −
19 0.739084 + 0.739085 − 0.739086 −
20 0.739084 + 0.739085 − 0.739085 −

The approximate root to six correct places is 0.739085. "

For the Bisection Method, the question of how many steps to run is a simple one—just
choose the desired precision and find the number of necessary steps, as in (1.1). We will
see that more high-powered algorithms are often less predictable and have no analogue to
(1.1). In those cases, we will need to establish definite “stopping criteria’’ that govern the
circumstances under which the algorithm terminates. Even for the Bisection Method, the
finite precision of computer arithmetic will put a limit on the number of possible correct
digits. We will look into this issue further in Section 1.3.

1.1 Exercises

1. Use the Intermediate Value Theorem to find an interval of length one that contains a root of the
equation. (a) x3 = 9 (b) 3x3 + x2 = x + 5 (c) cos2 x + 6 = x

2. Use the Intermediate Value Theorem to find an interval of length one that contains a root of the
equation. (a) x5 + x = 1 (b) sin x = 6x + 5 (c) ln x + x2 = 3

3. Consider the equations in Exercise 1. Apply two steps of the Bisection Method to find an
approximate root within 1/8 of the true root.

4. Consider the equations in Exercise 2. Apply two steps of the Bisection Method to find an
approximate root within 1/8 of the true root.

5. Consider the equation x4 = x3 + 10.

(a) Find an interval [a,b] of length one inside which the equation has a solution.

(b) Starting with [a,b], how many steps of the Bisection Method are required to calculate the
solution within 10−10? Answer with an integer.

6. Suppose that the Bisection Method with starting interval [−2,1] is used to find a root of the
function f (x) = 1/x. Does the method converge to a real number? Is it the root?
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1.1 Computer Problems

1. Use the Bisection Method to find the root to six correct decimal places. (a) x3 = 9
(b) 3x3 + x2 = x + 5 (c) cos2 x + 6 = x

2. Use the Bisection Method to find the root to eight correct decimal places. (a) x5 + x = 1
(b) sin x = 6x + 5 (c) ln x + x2 = 3

3. Use the Bisection Method to locate all solutions of the following equations. Sketch the
function by using Matlab’s plot command and identify three intervals of length one that
contain a root. Then find the roots to six correct decimal places. (a) 2x3 − 6x − 1 = 0
(b) ex−2 + x3 − x = 0 (c) 1 + 5x − 6x3 − e2x = 0

4. Calculate the square roots of the following numbers to eight correct decimal places by using
the Bisection Method to solve x2 − A = 0, where A is (a) 2 (b) 3 (c) 5. State your starting
interval and the number of steps needed.

5. Calculate the cube roots of the following numbers to eight correct decimal places by using the
Bisection Method to solve x3 − A = 0, where A is (a) 2 (b) 3 (c) 5. State your starting interval
and the number of steps needed.

6. Use the Bisection Method to calculate the solution of cosx = sin x in the interval [0,1] within
six correct decimal places.

7. Use the Bisection Method to find the two real numbers x, within six correct decimal places,
that make the determinant of the matrix

A =

⎡

⎢⎢⎢⎣

1 2 3 x

4 5 x 6
7 x 8 9
x 10 11 12

⎤

⎥⎥⎥⎦

equal to 1000. For each solution you find, test it by computing the corresponding determinant
and reporting how many correct decimal places (after the decimal point) the determinant has
when your solution x is used. (In Section 1.2, we will call this the “backward error’’ associated
with the approximate solution.) You may use the Matlab command det to compute the
determinants.

8. The Hilbert matrix is the n × n matrix whose ijth entry is 1/(i + j − 1). Let A denote the
5 × 5 Hilbert matrix. Its largest eigenvalue is about 1.567. Use the Bisection Method to decide
how to change the upper left entry A11 to make the largest eigenvalue of A equal to π .
Determine A11 within six correct decimal places. You may use the Matlab commands hilb,
pi, eig, and max to simplify your task.

9. Find the height reached by 1 cubic meter of water stored in a spherical tank of radius 1 meter.
Give your answer ±1 mm. (Hint: First note that the sphere will be less than half full. The
volume of the bottom H meters of a hemisphere of radius R is πH 2(R − 1/3H).)

1.2 FIXED-POINT ITERATION

Use a calculator or computer to apply the cos function repeatedly to an arbitrary starting
number. That is, apply the cos function to the starting number, then apply cos to the
result, then to the new result, and so forth. (If you use a calculator, be sure it is in radian
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mode.) Continue until the digits no longer change. The resulting sequence of numbers
converges to 0.7390851332, at least to the first 10 decimal places. In this section, our goal
is to explain why this calculation, an instance of Fixed-Point Iteration (FPI), converges.
While we do this, most of the major issues of algorithm convergence will come under
discussion.

1.2.1 Fixed points of a function

The sequence of numbers produced by iterating the cosine function appears to converge to
a number r . Subsequent applications of cosine do not change the number. For this input,
the output of the cosine function is equal to the input, or cosr = r .

DEFINITION 1.4 The real number r is a fixed point of the function g if g(r) = r . ❒

The number r = 0.7390851332 is an approximate fixed point for the function
g(x) = cosx. The function g(x) = x3 has three fixed points, r = −1,0, and 1.

We used the Bisection Method in Example 1.2 to solve the equation cosx − x = 0. The
fixed-point equation cosx = x is the same problem from a different point of view. When the
output equals the input, that number is a fixed point of cosx, and simultaneously a solution
of the equation cosx − x = 0.

Once the equation is written as g(x) = x, Fixed-Point Iteration proceeds by starting
with an initial guess x0 and iterating the function g.

Fixed-Point Iteration

x0 = initialguess

xi+1 = g(xi) for i = 0,1,2, . . .

Therefore,

x1 = g(x0)

x2 = g(x1)

x3 = g(x2)

...

and so forth. The sequence xi may or may not converge as the number of steps goes to
infinity. However, if g is continuous and the xi converge, say, to a number r , then r is a
fixed point. In fact, Theorem 0.5 implies that

g(r) = g

(
lim

i→∞
xi

)
= lim

i→∞
g(xi) = lim

i→∞
xi+1 = r. (1.3)

The Fixed-Point Iteration algorithm applied to a function g is easily written in
Matlab code:

%Program 1.2 Fixed-Point Iteration
%Computes approximate solution of g(x)=x
%Input: function handle g, starting guess x0,
% number of iteration steps k
%Output: Approximate solution xc
function xc=fpi(g, x0, k)
x(1)=x0;
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for i=1:k
x(i+1)=g(x(i));

end
xc=x(k+1);

After defining a Matlab function by

>> g=@(x) cos(x)

the code of Program 1.2 can be called as

>> xc=fpi(g,0,10)

to run 10 steps of Fixed-Point Iteration with initial guess 0.
Fixed-Point Iteration solves the fixed-point problem g(x) = x, but we are primarily

interested in solving equations. Can every equation f (x) = 0 be turned into a fixed-point
problem g(x) = x? Yes, and in many different ways. For example, the root-finding equation
of Example 1.1,

x3 + x − 1 = 0, (1.4)

can be rewritten as

x = 1 − x3, (1.5)

and we may define g(x) = 1 − x3. Alternatively, the x3 term in (1.4) can be isolated to
yield

x = 3√1 − x, (1.6)

where g(x) = 3
√

1 − x. As a third and not very obvious approach, we might add 2x3 to both
sides of (1.4) to get

3x3 + x = 1 + 2x3

(3x2 + 1)x = 1 + 2x3

x = 1 + 2x3

1 + 3x2 (1.7)

and define g(x) = (1 + 2x3)/(1 + 3x2).
Next, we demonstrate Fixed-Point Iteration for the preceding three choices of g(x).

The underlying equation to be solved is x3 + x − 1 = 0. First we consider the form
x = g(x) = 1 − x3. The starting point x0 = 0.5 is chosen somewhat arbitrarily. Applying
FPI gives the following result:

i xi

0 0.50000000
1 0.87500000
2 0.33007813
3 0.96403747
4 0.10405419
5 0.99887338
6 0.00337606
7 0.99999996
8 0.00000012
9 1.00000000

10 0.00000000
11 1.00000000
12 0.00000000
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Instead of converging, the iteration tends to alternate between the numbers 0 and 1. Neither
is a fixed point, since g(0) = 1 and g(1) = 0. The Fixed-Point Iteration fails. With the
Bisection Method, we know that if f is continuous and f (a)f (b) < 0 on the original
interval, we must see convergence to the root. This is not so for FPI.

The second choice is g(x) = 3
√

1 − x. We will keep the same initial guess, x0 = 0.5.

i xi

0 0.50000000
1 0.79370053
2 0.59088011
3 0.74236393
4 0.63631020
5 0.71380081
6 0.65900615
7 0.69863261
8 0.67044850
9 0.69072912

10 0.67625892
11 0.68664554
12 0.67922234

i xi

13 0.68454401
14 0.68073737
15 0.68346460
16 0.68151292
17 0.68291073
18 0.68191019
19 0.68262667
20 0.68211376
21 0.68248102
22 0.68221809
23 0.68240635
24 0.68227157
25 0.68236807

This time FPI is successful. The iterates are apparently converging to a number near 0.6823.
Finally, let’s use the rearrangement x = g(x) = (1 + 2x3)/(1 + 3x2). As in the

previous case, there is convergence, but in a much more striking way.

i xi

0 0.50000000
1 0.71428571
2 0.68317972
3 0.68232842
4 0.68232780
5 0.68232780
6 0.68232780
7 0.68232780

Here we have four correct digits after four iterations of Fixed-Point Iteration, and many
more correct digits soon after. Compared with the previous attempts, this is an astonishing
result. Our next goal is to try to explain the differences between the three outcomes.

1.2.2 Geometry of Fixed-Point Iteration

In the previous section, we found three different ways to rewrite the equation x3 + x − 1
= 0 as a fixed-point problem, with varying results. To find out why the FPI method converges
in some situations and not in others, it is helpful to look at the geometry of the method.

Figure 1.3 shows the three different g(x) discussed before, along with an illustration
of the first few steps of FPI in each case. The fixed point r is the same for each g(x).
It is represented by the point where the graphs y = g(x) and y = x intersect. Each step
of FPI can be sketched by drawing line segments (1) vertically to the function and then
(2) horizontally to the diagonal line y = x. The vertical and horizontal arrows in Figure 1.3
follow the steps made by FPI. The vertical arrow moving from the x-value to the function
g represents xi → g(xi). The horizontal arrow represents turning the output g(xi) on the
y-axis and transforming it into the same number xi+1 on the x-axis, ready to be input into
g in the next step. This is done by drawing the horizontal line segment from the output



34 | CHAPTER 1 Solving Equations

height g(xi) across to the diagonal line y = x. This geometric illustration of a Fixed-Point
Iteration is called a cobweb diagram.

y

x

1

x2 x0 x1r 1

(a)

1

y

x
x0

x2

x1r 1

(b)

y

x
x0 r 1

1

(c)

Figure 1.3 Geometric view of FPI. The fixed point is the intersection of g(x) and the

diagonal line. Three examples of g(x) are shown together with the first few steps of

FPI. (a) g(x) = 1 – x3 (b) g(x) = (1 – x)1/3 (c) g(x) = (1 + 2x3)/(1 + 3x2)

In Figure 1.3(a), the path starts at x0 = 0.5, and moves up to the function and horizontal
to the point (0.875,0.875) on the diagonal, which is (x1,x1). Next, x1 should be substituted
into g(x). This is done the same way it was done for x0, by moving vertically to the function.
This yields x2 ≈ 0.3300, and after moving horizontally to move the y-value to an x-value,
we continue the same way to get x3,x4, . . . . As we saw earlier, the result of FPI for this g(x)

is not successful—the iterates eventually tend toward alternating between 0 and 1, neither
of which are fixed points.

Fixed-Point Iteration is more successful in Figure 1.3(b). Although the g(x) here looks
roughly similar to the g(x) in part (a), there is a significant difference, which we will clarify
in the next section. You may want to speculate on what the difference is. What makes FPI
spiral in toward the fixed point in (b), and spiral out away from the fixed point in (a)?
Figure 1.3(c) shows an example of very fast convergence. Does this picture help with your
speculation? If you guessed that it has something to do with the slope of g(x) near the fixed
point, you are correct.

1.2.3 Linear convergence of Fixed-Point Iteration

The convergence properties of FPI can be easily explained by a careful look at the algorithm
in the simplest possible situation. Figure 1.4 shows Fixed-Point Iteration for two linear
functions g1(x) = − 3

2 x + 5
2 and g2(x) = − 1

2 x + 3
2 . In each case, the fixed point is x = 1,

but |g′
1(1)| =

∣∣ − 3
2

∣∣ > 1 while |g′
2(1)| =

∣∣ − 1
2

∣∣ < 1. Following the vertical and horizontal
arrows that describe FPI, we see the reason for the difference. Because the slope of g1 at
the fixed point is greater than one, the vertical segments, the ones that represent the change
from xn to xn+1, are increasing in length as FPI proceeds. As a result, the iteration “spirals
out’’ from the fixed point x = 1, even if the initial guess x0 was quite near. For g2, the
situation is reversed: The slope of g2 is less than one, the vertical segments decrease in
length, and FPI “spirals in’’ toward the solution. Thus, |g′(r)| makes the crucial difference
between divergence and convergence.

That’s the geometric view. In terms of equations, it helps to write g1(x) and g2(x) in
terms of x − r , where r = 1 is the fixed point:

g1(x) = − 3
2 (x − 1) + 1

g1(x) − 1 = − 3
2 (x − 1)

xi+1 − 1 = − 3
2 (xi − 1). (1.8)
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Figure 1.4 Cobweb diagram for linear functions. (a) If the linear function has slope

greater than one in absolute value, nearby guesses move farther from the fixed point

as FPI progresses, leading to failure of the method. (b) For slope less than one in

absolute value, the reverse happens, and the fixed point is found.

If we view ei = |r − xi | as the error at step i (meaning the distance from the best guess at
step n to the fixed point), we see from (1.8) that ei+1 = 3ei/2, implying that errors increase
at each step by a factor of approximately 3/2. This is divergence.

Repeating the preceding algebra for g2, we have

g2(x) = − 1
2 (x − 1) + 1

g2(x) − 1 = − 1
2 (x − 1)

xi+1 − 1 = − 1
2 (xi − 1).

The result is ei+1 = ei/2, implying that the error, the distance to the fixed point, is multiplied
by 1/2 on each step. The error decreases to zero as the number of steps increases. This is
convergence of a particular type.

DEFINITION 1.5 Let ei denote the error at step i of an iterative method. If

lim
i→∞

ei+1

ei
= S < 1,

the method is said to obey linear convergence with rate S. ❒

Fixed-Point Iteration for g2 is linearly convergent to the root r = 1 with rate S = 1/2.
Although the previous discussion was simplified because g1 and g2 are linear, the same
reasoning applies to a general continuously differentiable function g(x) with fixed point
g(r) = r , as shown in the next theorem.

THEOREM 1.6 Assume that g is continuously differentiable, that g(r) = r , and that S = |g′(r)| < 1. Then
Fixed-Point Iteration converges linearly with rate S to the fixed point r for initial guesses
sufficiently close to r . #

Proof. Let xi denote the iterate at step i. According to the Mean Value Theorem, there
exists a number ci between xi and r such that

xi+1 − r = g′(ci)(xi − r), (1.9)

where we have substituted xi+1 = g(xi) and r = g(r). Defining ei = |xi − r|, (1.9) can be
written as

ei+1 = |g′(ci)|ei . (1.10)
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If S = |g′(r)| is less than one, then by the continuity of g′, there is a small neighborhood
around r for which |g′(x)| < (S + 1)/2, slightly larger than S, but still less than one. If xi

happens to lie in this neighborhood, then ci does, too (it is trapped between xi and r),
and so

ei+1 ≤ S + 1
2

ei .

Thus, the error decreases by a factor of (S + 1)/2 or better on this and every future step.
That means limi→∞ xi = r , and taking the limit of (1.10) yields

lim
i→∞

ei+1

ei
= lim

i→∞
|g′(ci)| = |g′(r)| = S.

❒

According to Theorem 1.6, the approximate error relationship

ei+1 ≈ Sei (1.11)

holds in the limit as convergence is approached, where S = |g′(r)|. See Exercise 25 for a
variant of this theorem.

DEFINITION 1.7 An iterative method is called locally convergent to r if the method converges to r for initial
guesses sufficiently close to r . ❒

In other words, the method is locally convergent to the root r if there exists a neigh-
borhood (r − ϵ, r + ϵ), where ϵ > 0, such that convergence to r follows from all initial
guesses from the neighborhood. The conclusion of Theorem 1.6 is that Fixed-Point Iteration
is locally convergent if |g′(r)| < 1.

Theorem 1.6 explains what happened in the previous Fixed-Point Iteration runs for
f (x) = x3 + x − 1 = 0. We know the root r ≈ 0.6823. For g(x) = 1 − x3, the deriva-
tive is g′(x) = −3x2. Near the root r , FPI behaves as ei+1 ≈ Sei , where S = |g′(r)| =
| − 3(0.6823)2| ≈ 1.3966 > 1, so errors increase, and there can be no convergence. This
error relationship between ei+1 and ei is only guaranteed to hold near r , but it does mean
that no convergence to r can occur.

For the second choice, g(x) = 3
√

1 − x, the derivative is g′(x) = 1/3(1 − x)−2/3(−1),
and S = |(1 − 0.6823)−2/3/3| ≈ 0.716 < 1. Theorem 1.6 implies convergence, agreeing
with our previous calculation.

For the third choice, g(x) = (1 + 2x3)/(1 + 3x2),

g′(x) = 6x2(1 + 3x2) − (1 + 2x3)6x

(1 + 3x2)2

= 6x(x3 + x − 1)

(1 + 3x2)2 ,

and S = |g′(r)| = 0. This is as small as S can get, leading to the very fast convergence seen
in Figure 1.3(c).

! EXAMPLE 1.3 Explain why the Fixed-Point Iteration g(x) = cosx converges.

This is the explanation promised early in the chapter. Applying the cosine button
repeatedly corresponds to FPI with g(x) = cosx. According to Theorem 1.6, the solution
r ≈ 0.74 attracts nearby guesses because g′(r) = −sin r ≈ −sin 0.74 ≈ −0.67 is less than
1 in absolute value. "
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! EXAMPLE 1.4 Use Fixed-Point Iteration to find a root of cosx = sin x.

The simplest way to convert the equation to a fixed-point problem is to add x to
each side of the equation. We can rewrite the problem as

x + cosx − sin x = x

and define

g(x) = x + cosx − sin x. (1.12)

The result of applying the Fixed-Point Iteration method to this g(x) is shown in the
table.

i xi g(xi) ei = |xi − r| ei/ei−1
0 0.0000000 1.0000000 0.7853982
1 1.0000000 0.6988313 0.2146018 0.273
2 0.6988313 0.8211025 0.0865669 0.403
3 0.8211025 0.7706197 0.0357043 0.412
4 0.7706197 0.7915189 0.0147785 0.414
5 0.7915189 0.7828629 0.0061207 0.414
6 0.7828629 0.7864483 0.0025353 0.414
7 0.7864483 0.7849632 0.0010501 0.414
8 0.7849632 0.7855783 0.0004350 0.414
9 0.7855783 0.7853235 0.0001801 0.414

10 0.7853235 0.7854291 0.0000747 0.415
11 0.7854291 0.7853854 0.0000309 0.414
12 0.7853854 0.7854035 0.0000128 0.414
13 0.7854035 0.7853960 0.0000053 0.414
14 0.7853960 0.7853991 0.0000022 0.415
15 0.7853991 0.7853978 0.0000009 0.409
16 0.7853978 0.7853983 0.0000004 0.444
17 0.7853983 0.7853981 0.0000001 0.250
18 0.7853981 0.7853982 0.0000001 1.000
19 0.7853982 0.7853982 0.0000000

There are several interesting things to notice in the table. First, the iteration appears
to converge to 0.7853982. Since cosπ/4 =

√
2/2 = sin π/4, the true solution to the equa-

tion cosx − sin x = 0 is r = π/4 ≈ 0.7853982. The fourth column is the “error column.’’
It shows the absolute value of the difference between the best guess xi at step i and the
actual fixed point r . This difference becomes small near the bottom of the table, indicating
convergence toward a fixed point.

Notice the pattern in the error column. The errors seem to decrease by a constant
factor, each error being somewhat less than half the previous error. To be more precise, the
ratio between successive errors is shown in the final column. In most of the table, we are
seeing the ratio ek+1/ek of successive errors to approach a constant number, about 0.414.
In other words, we are seeing the linear convergence relation

ei ≈ 0.414ei−1. (1.13)

This is exactly what is expected, since Theorem 1.6 implies that

S = |g′(r)| = |1 − sin r − cosr| =
∣∣∣∣1 −

√
2

2
−

√
2

2

∣∣∣∣ = |1 −
√

2| ≈ 0.414. "

The careful reader will notice a discrepancy toward the end of the table. We have used
only seven correct digits for the correct fixed point r in computing the errors ei . As a result,



38 | CHAPTER 1 Solving Equations

the relative accuracy of the ei is poor as the ei near 10−8, and the ratios ei/ei−1 become
inaccurate. This problem would disappear if we used a much more accurate value for r .

! EXAMPLE 1.5 Find the fixed points of g(x) = 2.8x − x2.

The function g(x) = 2.8x − x2 has two fixed points 0 and 1.8, which can be
determined by solving g(x) = x by hand, or alternatively, by noting where the graphs of
y = g(x) and y = x intersect. Figure 1.5 shows a cobweb diagram for FPI with initial guess
x = 0.1. For this example, the iterates

x0 = 0.1000

x1 = 0.2700

x2 = 0.6831

x3 = 1.4461

x4 = 1.9579,

and so on, can be read as the intersections along the diagonal.

1

2

y

x
x0 x1 x2 x3 r1 2

Figure 1.5 Cobweb diagram for Fixed-Point Iteration. Example 1.5 has two fixed

points, 0 and 1.8. An iteration with starting guess 0.1 is shown. Only 1.8 will be con-

verged to by FPI.

Even though the initial point x0 = 0.1 is near the fixed point 0, FPI moves toward
the other fixed point x = 1.8 and converges there. The difference between the two fixed
points is that the slope of g at x = 1.8, given by g′(1.8) = −0.8, is smaller than one in
absolute value. On the other hand, the slope of g at the other fixed point x = 0, the one that
repels points, is g′(0) = 2.8, which is larger than one in absolute value. "

Theorem 1.6 is useful a posteriori—at the end of the FPI calculation, we know the
root and can calculate the step-by-step errors. The theorem helps explain why the rate of
convergence S turned out as it did. It would be much more useful to have that information
before the calculation starts. In some cases, we are able to do this, as the next example shows.

! EXAMPLE 1.6 Calculate
√

2 by using FPI.

An ancient method for determining square roots can be expressed as an FPI. Sup-
pose we want to find the first 10 digits of

√
2. Start with the initial guess x0 = 1. This guess

is obviously too low; therefore, 2/1 = 2 is too high. In fact, any initial guess 0 < x0 < 2,
together with 2/x0, form a bracket for

√
2. Because of that, it is reasonable to average the

two to get a better guess:

x1 = 1 + 2
1

2
= 3

2
.
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(b)(a)

Figure 1.6 Ancient calculation of
√

2. (a) Tablet YBC7289 (b) Schematic of tablet. The

Babylonians calculated in base 60, but used some base 10 notation. The < denotes 10,

and the ∇ denotes 1. In the upper left is 30, the length of the side. Along the middle

are 1, 24, 51, and 10, which represents the square root of 2 to five correct decimal

places (see Spotlight on page 39). Below, the numbers 42, 25, and 35 represent 30
√

2

in base 60.

Now repeat. Although 3/2 is closer, it is too large to be
√

2, and 2/(3/2) = 4/3 is too small.
As before, average to get

x2 =
3
2 + 4

3

2
= 17

12
= 1.416,

which is even closer to
√

2. Once again, x2 and 2/x2 bracket
√

2.
The next step yields

x3 =
17
12 + 24

17

2
= 577

408
≈ 1.414215686.

Check with a calculator to see that this guess agrees with
√

2 within 3 × 10−6. The FPI we
are executing is

xi+1 =
xi + 2

xi

2
. (1.14)

Note that
√

2 is a fixed point of the iteration.

Convergence The ingenious method of Example 1.6 converges to
√

2 within five

decimal places after only three steps. This simple method is one of the oldest in the

history of mathematics. The cuneiform tablet YBC7289 shown in Figure 1.6(a) was dis-

covered near Baghdad in 1962, dating from around 1750 B.C. It contains the base 60

approximation (1)(24)(51)(10) for the side length of a square of area 2. In base 10, this is

1 + 24
60

+ 51

602 + 10

603 = 1.41421296.

The Babylonians’method of calculation is not known,but some speculate it is the computation

of Example 1.6, in their customary base 60. In any case, this method appears in Book 1 of

Metrica, written by Heron of Alexandria in the first century A.D., to calculate
√

720.
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Before finishing the calculation, let’s decide whether it will converge. Accord-
ing to Theorem 1.6, we need S < 1. For this iteration, g(x) = 1/2(x + 2/x) and g′(x) =
1/2(1 − 2/x2). Evaluating at the fixed point yields

g′(
√

2) = 1
2

(
1 − 2

(
√

2)2

)
= 0, (1.15)

so S = 0. We conclude that the FPI will converge, and very fast.
Exercise 18 asks whether this method will be successful in finding the square root

of an arbitrary positive number. "

1.2.4 Stopping criteria

Unlike the case of bisection, the number of steps required for FPI to converge within a given
tolerance is rarely predictable beforehand. In the absence of an error formula like (1.1) for
the Bisection Method, a decision must be made about terminating the algorithm, called a
stopping criterion.

For a set tolerance, TOL, we may ask for an absolute error stopping criterion

|xi+1 − xi | < TOL (1.16)

or, in case the solution is not too near zero, the relative error stopping criterion

|xi+1 − xi |
|xi+1|

< TOL. (1.17)

A hybrid absolute/relative stopping criterion such as

|xi+1 − xi |
max(|xi+1|,θ)

< TOL (1.18)

for some θ > 0 is often useful in cases where the solution is near 0. In addition, good FPI
code sets a limit on the maximum number of steps in case convergence fails. The issue of
stopping criteria is important, and will be revisited in a more sophisticated way when we
study forward and backward error in Section 1.3.

The Bisection Method is guaranteed to converge linearly. Fixed-Point Iteration is only
locally convergent, and when it converges it is linearly convergent. Both methods require one
function evaluation per step. The bisection cuts uncertainty by 1/2 for each step, compared
with approximately S = |g′(r)| for FPI. Therefore, Fixed-Point Iteration may be faster or
slower than bisection, depending on whether S is smaller or larger than 1/2. In Section 1.4,
we study Newton’s Method, a particularly refined version of FPI, where S is designed to
be zero.

1.2 Exercises

1. Find all fixed points of the following g(x).

(a)
3
x

(b) x2 − 2x + 2 (c) x2 − 4x + 2

2. Find all fixed points of the following g(x).

(a)
x + 6

3x − 2
(b)

8 + 2x

2 + x2 (c) x5

3. Show that 1,2, and 3 are fixed points of the following g(x).

(a)
x3 + x − 6

6x − 10
(b)

6 + 6x2 − x3

11
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4. Show that −1,0, and 1 are fixed points of the following g(x).

(a)
4x

x2 + 3
(b)

x2 − 5x

x2 + x − 6

5. For which of the following g(x) is r =
√

3 a fixed point?

(a) g(x) = x√
3

(b) g(x) = 2x

3
+ 1

x
(c) g(x) = x2 − x (d) g(x) = 1 + 2

x + 1

6. For which of the following g(x) is r =
√

5 a fixed point?

(a) g(x) = 5 + 7x

x + 7
(b) g(x) = 10

3x
+ x

3
(c) g(x) = x2 − 5 (d) g(x) = 1 + 4

x + 1

7. Use Theorem 1.6 to determine whether Fixed-Point Iteration of g(x) is locally convergent to
the given fixed point r . (a) g(x) = (2x − 1)1/3, r = 1 (b) g(x) = (x3 + 1)/2, r = 1
(c) g(x) = sin x + x,r = 0

8. Use Theorem 1.6 to determine whether Fixed-Point Iteration of g(x) is locally convergent to
the given fixed point r . (a) g(x) = (2x − 1)/x2, r = 1 (b) g(x) = cosx + π + 1, r = π

(c) g(x) = e2x − 1, r = 0

9. Find each fixed point and decide whether Fixed-Point Iteration is locally convergent to it.
(a) g(x) = 1

2 x2 + 1
2 x (b) g(x) = x2 − 1

4 x + 3
8

10. Find each fixed point and decide whether Fixed-Point Iteration is locally convergent to it.
(a) g(x) = x2 − 3

2 x + 3
2 (b) g(x) = x2 + 1

2 x − 1
2

11. Express each equation as a fixed-point problem x = g(x) in three different ways.
(a) x3 − x + ex = 0 (b) 3x−2 + 9x3 = x2

12. Consider the Fixed-Point Iteration x → g(x) = x2 − 0.24. (a) Do you expect Fixed-Point
Iteration to calculate the root −0.2, say, to 10 or to correct decimal places, faster or slower than
the Bisection Method? (b) Find the other fixed point. Will FPI converge to it?

13. (a) Find all fixed points of g(x) = 0.39 − x2. (b) To which of the fixed-points is Fixed-Point
Iteration locally convergent? (c) Does FPI converge to this fixed point faster or slower than the
Bisection Method?

14. Which of the following three Fixed-Point Iterations converge to
√

2? Rank the ones that
converge from fastest to slowest.

(A) x −→ 1
2

x + 1
x

(B) x −→ 2
3

x + 2
3x

(C) x −→ 3
4

x + 1
2x

15. Which of the following three Fixed-Point Iterations converge to
√

5? Rank the ones that
converge from fastest to slowest.

(A) x −→ 4
5

x + 1
x

(B) x −→ x

2
+ 5

2x
(C) x −→ x + 5

x + 1

16. Which of the following three Fixed-Point Iterations converge to the cube root of 4? Rank the
ones that converge from fastest to slowest.

(A) g(x) = 2√
x

(B) g(x) = 3x

4
+ 1

x2 (C) g(x) = 2
3

x + 4
3x2

17. Check that 1/2 and −1 are roots of f (x) = 2x2 + x − 1 = 0. Isolate the x2 term and solve for
x to find two candidates for g(x). Which of the roots will be found by the two Fixed-Point
Iterations?

18. Prove that the method of Example 1.6 will calculate the square root of any positive number.
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19. Explore the idea of Example 1.6 for cube roots. If x is a guess that is smaller than A1/3, then
A/x2 will be larger than A1/3, so that the average of the two will be a better approximation
than x. Suggest a Fixed-Point Iteration on the basis of this fact, and use Theorem 1.6 to decide
whether it will converge to the cube root of A.

20. Improve the cube root algorithm of Exercise 19 by reweighting the average. Setting g(x) =
wx + (1 − w)A/x2 for some fixed number 0 < w < 1, what is the best choice for w?

21. Consider Fixed-Point Iteration applied to g(x) = 1 − 5x + 15
2 x2 − 5

2 x3. (a) Show that
1 − √

3/5, 1, and 1 + √
3/5 are fixed points. (b) Show that none of the three fixed points is

locally convergent. (Computer Problem 7 investigates this example further.)

22. Show that the initial guesses 0,1, and 2 lead to a fixed point in Exercise 21. What happens to
other initial guesses close to those numbers?

23. Assume that g(x) is continuously differentiable and that the Fixed-Point Iteration g(x) has
exactly three fixed points, r1 < r2 < r3. Assume also that |g′(r1)| = 0.5 and |g′(r3)| = 0.5.
List all values of |g′(r2)| that are possible under these conditions.

24. Assume that g is a continuously differentiable function and that the Fixed-Point Iteration g(x)

has exactly three fixed points, −3,1, and 2. Assume that g′(−3) = 2.4 and that FPI started
sufficiently near the fixed point 2 converges to 2. Find g′(1).

25. Prove the variant of Theorem 1.6: If g is continuously differentiable and |g′(x)| ≤ B < 1 on an
interval [a,b] containing the fixed point r , then FPI converges to r from any initial guess in
[a,b].

26. Prove that a continuously differentiable function g(x) satisfying |g′(x)| < 1 on a closed
interval cannot have two fixed points on that interval.

27. Consider Fixed-Point Iteration with g(x) = x − x3. (a) Show that x = 0 is the only fixed
point. (b) Show that if 0 < x0 < 1, then x0 > x1 > x2 . . . > 0. (c) Show that FPI converges to
r = 0, while g′(0) = 1. (Hint: Use the fact that every bounded monotonic sequence converges
to a limit.)

28. Consider Fixed-Point Iteration with g(x) = x + x3. (a) Show that x = 0 is the only fixed
point. (b) Show that if 0 < x0 < 1, then x0 < x1 < x2 <.. . . (c) Show that FPI fails to
converge to a fixed point, while g′(0) = 1. Together with Exercise 27, this shows that FPI may
converge to a fixed point r or diverge from r when |g′(r)| = 1.

29. Consider the equation x3 + x − 2 = 0, with root r = 1. Add the term cx to both sides and
divide by c to obtain g(x). (a) For what c is FPI locally convergent to r = 1?(b) For what c

will FPI converge fastest?

30. Assume that Fixed-Point Iteration is applied to a twice continuously differentiable function
g(x) and that g′(r) = 0 for a fixed point r . Show that if FPI converges to r , then the error
obeys limi→∞(ei+1)/ei2 = M , where M = |g′′(r)|/2.

31. Define Fixed-Point Iteration on the equation x2 + x = 5/16 by isolating the x term. Find both
fixed points, and determine which initial guesses lead to each fixed point under iteration.
(Hint: Plot g(x), and draw cobweb diagrams.)

32. Find the set of all initial guesses for which the Fixed-Point Iteration x → 4/9 − x2 converges
to a fixed point.
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33. Let g(x) = a + bx + cx2 for constants a,b, and c. (a) Specify one set of constants a,b, and c

for which x = 0 is a fixed-point of x = g(x) and Fixed-Point Iteration is locally convergent to
0. (b) Specify one set of constants a,b, and c for which x = 0 is a fixed-point of x = g(x) but
Fixed-Point Iteration is not locally convergent to 0.

1.2 Computer Problems

1. Apply Fixed-Point Iteration to find the solution of each equation to eight correct decimal
places. (a) x3 = 2x + 2 (b) ex + x = 7 (c) ex + sin x = 4.

2. Apply Fixed-Point Iteration to find the solution of each equation to eight correct decimal
places. (a) x5 + x = 1 (b) sin x = 6x + 5 (c) ln x + x2 = 3

3. Calculate the square roots of the following numbers to eight correct decimal places by using
Fixed-Point Iteration as in Example 1.6: (a) 3 (b) 5. State your initial guess and the number of
steps needed.

4. Calculate the cube roots of the following numbers to eight correct decimal places, by using
Fixed-Point Iteration with g(x) = (2x + A/x2)/3, where A is (a) 2 (b) 3 (c) 5. State your
initial guess and the number of steps needed.

5. Example 1.3 showed that g(x) = cosx is a convergent FPI. Is the same true for g(x) = cos2 x?
Find the fixed point to six correct decimal places, and report the number of FPI steps needed.
Discuss local convergence, using Theorem 1.6.

6. Derive three different g(x) for finding roots to six correct decimal places of the following
f (x) = 0 by Fixed-Point Iteration. Run FPI for each g(x) and report results, convergence or
divergence. Each equation f (x) = 0 has three roots. Derive more g(x) if necessary until all
roots are found by FPI. For each convergent run, determine the value of S from the errors
ei+1/ei , and compare with S determined from calculus as in (1.11). (a) f (x) = 2x3 −
6x − 1 (b) f (x) = ex−2 + x3 − x (c) f (x) = 1 + 5x − 6x3 − e2x

7. Exercise 21 considered Fixed-Point Iteration applied to g(x) = 1 − 5x + 15
2 x2 − 5

2 x3 = x.
Find initial guesses for which FPI (a) cycles endlessly through numbers in the interval (0,1)

(b) the same as (a), but the interval is (1,2) (c) diverges to infinity. Cases (a) and (b) are
examples of chaotic dynamics. In all three cases, FPI is unsuccessful.

1.3 LIMITS OF ACCURACY

One of the goals of numerical analysis is to compute answers within a specified level of
accuracy. Working in double precision means that we store and operate on numbers that are
kept to 52-bit accuracy, about 16 decimal digits.

Can answers always be computed to 16 correct significant digits? In Chapter 0, it
was shown that, with a naive algorithm for computing roots of a quadratic equation, it
was possible to lose some or all significant digits. An improved algorithm eliminated
the problem. In this section, we will see something new—a calculation that a double-
precision computer cannot make to anywhere near 16 correct digits, even with the best
algorithm.
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1.3.1 Forward and backward error

The first example shows that, in some cases, pencil and paper can still outperform a
computer.

! EXAMPLE 1.7 Use the Bisection Method to find the root of f (x) = x3 − 2x2 + 4
3 x − 8

27 to within six
correct significant digits.

Note that f (0)f (1) = (−8/27)(1/27) < 0, so the Intermediate Value Theorem
guarantees a solution in [0,1]. According to Example 1.2, 20 bisection steps should be
sufficient for six correct places.

In fact, it is easy to check without a computer that r = 2/3 = 0.666666666 . . . is
a root:

f (2/3) = 8
27

− 2
(

4
9

)
+

(
4
3

)(
2
3

)
− 8

27
= 0.

How many of these digits can the Bisection Method obtain?

i ai f (ai) ci f (ci) bi f (bi)

0 0.0000000 − 0.5000000 − 1.0000000 +
1 0.5000000 − 0.7500000 + 1.0000000 +
2 0.5000000 − 0.6250000 − 0.7500000 +
3 0.6250000 − 0.6875000 + 0.7500000 +
4 0.6250000 − 0.6562500 − 0.6875000 +
5 0.6562500 − 0.6718750 + 0.6875000 +
6 0.6562500 − 0.6640625 − 0.6718750 +
7 0.6640625 − 0.6679688 + 0.6718750 +
8 0.6640625 − 0.6660156 − 0.6679688 +
9 0.6660156 − 0.6669922 + 0.6679688 +

10 0.6660156 − 0.6665039 − 0.6669922 +
11 0.6665039 − 0.6667480 + 0.6669922 +
12 0.6665039 − 0.6666260 − 0.6667480 +
13 0.6666260 − 0.6666870 + 0.6667480 +
14 0.6666260 − 0.6666565 − 0.666687 +
15 0.6666565 − 0.6666718 + 0.6666870 +
16 0.6666565 − 0.6666641 0 0.6666718 +

Surprisingly, the Bisection Method stops after 16 steps, when it computes f (0.6666641)=0.
This is a serious failure if we care about six or more digits of precision. Figure 1.7 shows
the difficulty. As far as IEEE double precision is concerned, there are many floating point
numbers within 10−5 of the correct root r = 2/3 that are evaluated to machine zero, and
therefore have an equal right to be called the root! To make matters worse, although the
function f is monotonically increasing, part (b) of the figure shows that even the sign of
the double precision value of f is often wrong.

Figure 1.7 shows that the problem lies not with the Bisection Method, but with
the inability of double precision arithmetic to compute the function f accurately enough
near the root. Any other solution method that relies on this computer arithmetic is bound to
fail. For this example, 16-digit precision cannot even check whether a candidate solution is
correct to six places. "

To convince you that it’s not the fault of the Bisection Method, we apply Matlab’s
most high-powered multipurpose rootfinder, fzero.m. We will discuss its details later in
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(a) (b)

Figure 1.7 The shape of a function near a multiple root. (a) Plot of f (x) =
x3 − 2x2 + 4/3x − 8/27. (b) Magnification of (a), near the root r = 2/3. There are

many floating point numbers within 10–5 of 2/3 that are roots as far as the computer

is concerned. We know from calculus that 2/3 is the only root.

this chapter; for now, we just need to feed it the function and a starting guess. It has no
better luck:

>> fzero(’x.ˆ3-2*x.ˆ2+4*x/3-8/27’,1)

ans =

0.66666250845989

The reason that all methods fail to get more than five correct digits for this example is
clear from Figure 1.7. The only information any method has is the function, computed in
double precision. If the computer arithmetic is showing the function to be zero at a nonroot,
there is no way the method can recover. Another way to state the difficulty is to say that
an approximate solution can be as close as possible to a solution as far as the y-axis is
concerned, but not so close on the x-axis.

These observations motivate some key definitions.

DEFINITION 1.8 Assume that f is a function and that r is a root, meaning that it satisfies f (r) = 0. Assume
that xa is an approximation to r . For the root-finding problem, the backward error of the
approximation xa is |f (xa)| and the forward error is |r − xa|. ❒

The usage of “backward’’ and “forward’’ may need some explanation. Our viewpoint
considers the process of finding a solution as central. The problem is the input, and the
solution is the output:

Data that
defines
problem

−→ Solution
process

−→ Solution

In this chapter, the “problem’’ is an equation in one variable, and the “solution process’’
is an algorithm that solves equations:

Equation −→ Equation
solver

−→ Solution

Backward error is on the left or input (problem data) side. It is the amount we would
need to change the problem (the function f ) to make the equation balance with the output
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approximation xa . This amount is |f (xa)|. Forward error is the error on the right or output
(problem solution) side. It is the amount we would need to change the approximate solution
to make it correct, which is |r − xa|.

The difficulty with Example 1.7 is that, according to Figure 1.7, the backward error
is near ϵmach ≈ 2.2 × 10−16, while forward error is approximately 10−5. Double precision
numbers cannot be computed reliably below a relative error of machine epsilon. Since the
backward error cannot be decreased further with reliability, neither can the forward error.

Example 1.7 is rather special because the function has a triple root at r = 2/3. Note
that

f (x) = x3 − 2x2 + 4
3

x − 8
27

=
(

x − 2
3

)3

.

This is an example of a multiple root.

DEFINITION 1.9 Assume that r is a root of the differentiable function f ; that is, assume that f (r) = 0. Then
if 0 = f (r) = f ′(r) = f ′′(r) = ·· · = f (m−1)(r), but f (m)(r) ̸= 0, we say that f has a root
of multiplicity m at r . We say that f has a multiple root at r if the multiplicity is greater
than one. The root is called simple if the multiplicity is one. ❒

For example, f (x) = x2 has a multiplicity two, or double, root at r = 0, because
f(0) = 0,f ′(0) = 2(0) = 0, but f ′′(0) = 2 ̸= 0. Likewise, f (x) = x3 has a multiplicity
three, or triple, root at r = 0, and f (x) = xm has a multiplicity m root there. Example 1.7
has a multiplicity three, or triple, root at r = 2/3.

Because the graph of the function is relatively flat near a multiple root, a great disparity
exists between backward and forward errors for nearby approximate solutions. The back-
ward error, measured in the vertical direction, is often much smaller than the forward error,
measured in the horizontal direction.

! EXAMPLE 1.8 The function f (x) = sin x − x has a triple root at r = 0. Find the forward and backward
error of the approximate root xc = 0.001.

The root at 0 has multiplicity three because

f (0) = sin 0 − 0 = 0

f ′(0) = cos0 − 1 = 0

f ′′(0) = −sin 0 − 0 = 0

f ′′′(0) = −cos0 = −1.

The forward error is FE = |r − xa| = 10−3. The backward error is the constant that would
need to be added to f (x) to make xa a root, namely BE = |f (xa)| = |sin(0.001) − 0.001|
≈ 1.6667 × 10−10. "

The subject of backward and forward error is relevant to stopping criteria for equation
solvers. The goal is to find the root r satisfying f (r) = 0. Suppose our algorithm produces
an approximate solution xa . How do we decide whether it is good enough?

Two possibilities come to mind: (1) to make |xa − r| small and (2) to make |f (xa)|
small. In case xa = r , there is no decision to be made—both ways of looking at it are the
same. However, we are rarely lucky enough to be in this situation. In the more typical case,
approaches (1) and (2) are different and correspond to forward and backward error.

Whether forward or backward error is more appropriate depends on the circumstances
surrounding the problem. If we are using the Bisection Method, both errors are easily
observable. For an approximate root xa , we can find the backward error by evaluating
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f (xa), and the forward error can be no more than half the length of the current interval.
For FPI, our choices are more limited, since we have no bracketing interval. As before, the
backward error is known as f (xa), but to know the forward error would require knowing
the true root, which we are trying to find.

Stopping criteria for equation-solving methods can be based on either forward or back-
ward error. There are other stopping criteria that may be relevant, such as a limit on com-
putation time. The context of the problem must guide our choice.

Functions are flat in the vicinity of a multiple root, since the derivative f ′ is zero
there. Because of this, we can expect some trouble in isolating a multiple root, as we have
demonstrated. But multiplicity is only the tip of the iceberg. Similar difficulties can arise
where no multiple roots are in sight, as shown in the next section.

1.3.2 The Wilkinson polynomial

A famous example with simple roots that are hard to determine numerically is discussed in
Wilkinson [1994]. The Wilkinson polynomial is

W(x) = (x − 1)(x − 2) · · ·(x − 20), (1.19)

which, when multiplied out, is

W(x) = x20 − 210x19 + 20615x18 − 1256850x17 + 53327946x16 − 1672280820x15

+ 40171771630x14 − 756111184500x13 + 11310276995381x12

− 135585182899530x11 + 1307535010540395x10 − 10142299865511450x9

+ 63030812099294896x8 − 311333643161390640x7

+ 1206647803780373360x6 − 3599979517947607200x5

+ 8037811822645051776x4 − 12870931245150988800x3

+ 13803759753640704000x2 − 8752948036761600000x

+ 2432902008176640000. (1.20)

The roots are the integers from 1 to 20. However, when W(x) is defined according to
its unfactored form (1.20), its evaluation suffers from cancellation of nearly equal, large
numbers. To see the effect on root-finding, define the Matlab m-file wilkpoly.m by
typing in the nonfactored form (1.20), or obtaining it from the textbook website.

Again we will try Matlab’s fzero. To make it as easy as possible, we feed it an
actual root x = 16 as a starting guess:

>> fzero(@wilkpoly,16)

ans =

16.01468030580458

The surprising result is that Matlab’s double precision arithmetic could not get the sec-
ond decimal place correct, even for the simple root r = 16. It is not due to a deficiency of the
algorithm—both fzero and Bisection Method have the same problem, as do Fixed-Point
Iteration and any other floating point method. Referring to his work with this polynomial,
Wilkinson wrote in 1984: “Speaking for myself I regard it as the most traumatic experience
in my career as a numerical analyst.’’The roots of W(x) are clear: the integers x = 1, . . . ,20.
To Wilkinson, the surprise had to do with the huge error magnification in the roots caused
by small relative errors in storing the coefficients, which we have just seen in action.
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The difficulty of getting accurate roots of the Wilkinson polynomial disappears if fac-
tored form (1.19) is used instead of (1.20). Of course, if the polynomial is factored before
we start, there is no need to compute roots.

1.3.3 Sensitivity of root-finding

The Wilkinson polynomial and Example 1.7 with the triple root cause difficulties for similar
reasons—small floating point errors in the equation translate into large errors in the root. A
problem is called sensitive if small errors in the input, in this case the equation to be solved,
lead to large errors in the output, or solution. In this section, we will quantify sensitivity
and introduce the concepts of error magnification factor and condition number.

To understand what causes this magnification of error, we will establish a formula
predicting how far a root moves when the equation is changed. Assume that the problem is
to find a root r of f (x) = 0, but that a small change ϵg(x) is made to the input, where ϵ is
small. Let $r be the corresponding change in the root, so that

f (r + $r) + ϵg(r + $r) = 0.

Expanding f and g in degree-one Taylor polynomials implies that

f (r) + ($r)f ′(r) + ϵg(r) + ϵ($r)g′(r) + O(($r)2) = 0,

where we use the “big O’’notation O(($r)2) to stand for terms involving ($r)2 and higher
powers of $r . For small $r , the O(($r)2) terms can be neglected to get

($r)(f ′(r) + ϵg′(r)) ≈ −f (r) − ϵg(r) = −ϵg(r)

or

$r ≈ −ϵg(r)

f ′(r) + ϵg′(r)
≈ −ϵ

g(r)

f ′(r)
,

assuming that ϵ is small compared with f ′(r), and in particular, that f ′(r) ̸= 0.

Sensitivity Formula for Roots

Assume that r is a root of f (x) and r + $r is a root of f (x) + ϵg(x). Then

$r ≈ −ϵg(r)

f ′(r)
(1.21)

if ϵ ≪ f ′(r).

! EXAMPLE 1.9 Estimate the largest root of P (x) = (x − 1)(x − 2)(x − 3)(x − 4)(x − 5)(x − 6) −
10−6x7.

Set f (x) = (x − 1)(x − 2)(x − 3)(x − 4)(x − 5)(x − 6),ϵ = −10−6 and
g(x) = x7. Without the ϵg(x) term, the largest root is r = 6. The question is, how far does
the root move when we add the extra term?

The Sensitivity Formula yields

$r ≈ −ϵ67

5! = −2332.8ϵ,

meaning that input errors of relative size ϵ in f (x) are magnified by a factor of over 2000
into the output root. We estimate the largest root of P (x) to be r + $r = 6 − 2332.8ϵ =
6.0023328. Using fzero on P (x), we get the correct value 6.0023268. "
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The estimate in Example 1.9 is good enough to tell us how errors propagate in the root-
finding problem. An error in the sixth digit of the problem data caused an error in the third
digit of the answer, meaning that three decimal digits were lost due to the factor of 2332.8.
It is useful to have a name for this factor. For a general algorithm that produces an approx-
imation xc, we define its

error magnification factor = relative forward error
relative backward error

.

The forward error is the change in the solution that would make xa correct, which for
root-finding problems is |xa − r|. The backward error is a change in input that makes xc the
correct solution. There is a wider variety of choices, depending on what sensitivity we want
to investigate. Changing the constant term by |f (xa)| is the choice that was used earlier in
this section, corresponding to g(x) = 1 in the Sensitivity Formula (1.21). More generally,
any change in the input data can be used as the backward error, such as the choice g(x) = x7

in Example 1.9. The error magnification factor for root-finding is

error magnification factor =
∣∣∣∣

$r/r

ϵg(r)/g(r)

∣∣∣∣ =
∣∣∣∣
−ϵg(r)/(rf ′(r))

ϵ

∣∣∣∣ = |g(r)|
|rf ′(r)| , (1.22)

which in Example 1.9 is 67/(5!6) = 388.8.

! EXAMPLE 1.10 Use the Sensitivity Formula for Roots to investigate the effect of changes in the x15 term
of the Wilkinson polynomial on the root r = 16. Find the error magnification factor for this
problem.

Define the perturbed function Wϵ(x) = W(x) + ϵg(x), where g(x) =
−1,672,280,820x15. Note that W ′(16) = 15!4! (see Exercise 7). Using (1.21), the
change in the root can be approximated by

$r ≈ 16151,672,280,820ϵ

15!4! ≈ 6.1432 × 1013ϵ. (1.23)

Practically speaking, we know from Chapter 0 that a relative error on the order of machine
epsilon must be assumed for every stored number. A relative change in the x15 term of
machine epsilon ϵmach will cause the root r = 16 to move by

$r ≈ (6.1432 × 1013)(±2.22 × 10−16) ≈ ±0.0136

to r + $r ≈ 16.0136, not far from what was observed on page 47. Of course, many other
powers of x in theWilkinson polynomial are making their own contributions, so the complete
picture is complicated. However, the Sensitivity Formula allows us to see the mechanism
for the huge magnification of error.

Finally, the error magnification factor is computed from (1.22) as

|g(r)|
|rf ′(r)| = 16151,672,280,820

15!4!16
≈ 3.8 × 1012. "

The significance of the error magnification factor is that it tells us how many of the
16 digits of operating precision are lost from input to output. For a problem with error
magnification factor of 1012, we expect to lose 12 of the 16 and have about four correct
significant digits left in the root, which is the case for the Wilkinson approximation xc =
16.014 . . . .
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Conditioning This is the first appearance of the concept of condition number, a

measure of error magnification. Numerical analysis is the study of algorithms, which take data

defining the problem as input and deliver an answer as output. Condition number refers to

the part of this magnification that is inherent in the theoretical problem itself, irrespective of

the particular algorithm used to solve it.

It is important to note that the error magnification factor measures only magnification due

to the problem. Along with conditioning, there is a parallel concept, stability, that refers to the

magnification of small input errors due to the algorithm, not the problem itself. An algorithm

is called stable if it always provides an approximate solution with small backward error. If the

problem is well-conditioned and the algorithm is stable, we can expect both small backward

and forward error.

The preceding error magnification examples show the sensitivity of root-finding to a
particular input change. The problem may be more or less sensitive, depending on how
the input change is designed. The condition number of a problem is defined to be the
maximum error magnification over all input changes, or at least all changes of a prescribed
type. A problem with high condition number is called ill-conditioned, and a problem with
a condition number near 1 is called well-conditioned. We will return to this concept when
we discuss matrix problems in Chapter 2.

1.3 Exercises

1. Find the forward and backward error for the following functions, where the root is 3/4 and the
approximate root is xa = 0.74: (a) f (x) = 4x − 3 (b) f (x) = (4x − 3)2

(c) f (x) = (4x − 3)3 (d) f (x) = (4x − 3)1/3

2. Find the forward and backward error for the following functions, where the root is 1/3 and the
approximate root is xa = 0.3333: (a) f (x) = 3x − 1 (b) f (x) = (3x − 1)2

(c) f (x) = (3x − 1)3 (d) f (x) = (3x − 1)1/3

3. (a) Find the multiplicity of the root r = 0 of f (x) = 1 − cosx. (b) Find the forward and
backward errors of the approximate root xa = 0.0001.

4. (a) Find the multiplicity of the root r = 0 of f (x) = x2 sin x2. (b) Find the forward and
backward errors of the approximate root xa = 0.01.

5. Find the relation between forward and backward error for finding the root of the linear function
f (x) = ax − b.

6. Let n be a positive integer. The equation defining the nth root of a positive number A is
xn − A = 0. (a) Find the multiplicity of the root. (b) Show that, for an approximate nth root
with small forward error, the backward error is approximately nA(n−1)/n times the forward
error.

7. Let W(x) be the Wilkinson polynomial. (a) Prove that W ′(16) = 15!4! (b) Find an analogous
formula for W ′(j), where j is an integer between 1 and 20.

8. Let f (x) = xn − axn−1, and set g(x) = xn. (a) Use the Sensitivity Formula to give a
prediction for the nonzero root of fϵ(x) = xn − axn−1 + ϵxn for small ϵ. (b) Find the nonzero
root and compare with the prediction.
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1.3 Computer Problems

1. Let f (x) = sin x − x. (a) Find the multiplicity of the root r = 0. (b) Use Matlab’s fzero
command with initial guess x = 0.1 to locate a root. What are the forward and backward errors
of fzero’s response?

2. Carry out Computer Problem 1 for f (x) = sin x3 − x3.

3. (a) Use fzero to find the root of f (x) = 2x cosx − 2x + sin x3 on [−0.1,0.2]. Report the
forward and backward errors. (b) Run the Bisection Method with initial interval [−0.1,0.2]
to find as many correct digits as possible, and report your conclusion.

4. (a) Use (1.21) to approximate the root near 3 of fϵ(x) = (1 + ϵ)x3 − 3x2 + x − 3 for a
constant ϵ. (b) Setting ϵ = 10−3, find the actual root and compare with part (a).

5. Use (1.21) to approximate the root of f (x) = (x − 1)(x − 2)(x − 3)(x − 4) − 10−6x6

near r = 4. Find the error magnification factor. Use fzero to check your
approximation.

6. Use the Matlab command fzero to find the root of the Wilkinson polynomial near x = 15
with a relative change of ϵ = 2 × 10−15 in the x15 coefficient, making the coefficient slightly
more negative. Compare with the prediction made by (1.21).

1.4 NEWTON’S METHOD

Newton’s Method, also called the Newton–Raphson Method, usually converges much faster
than the linearly convergent methods we have seen previously. The geometric picture of
Newton’s Method is shown in Figure 1.8. To find a root of f (x) = 0, a starting guess
x0 is given, and the tangent line to the function f at x0 is drawn. The tangent line will
approximately follow the function down to the x-axis toward the root. The intersection
point of the line with the x-axis is an approximate root, but probably not exact if f curves.
Therefore, this step is iterated.

–1

1

y

x
x1

x0–1

Figure 1.8 One step of Newton’s Method. Starting with x0, the tangent line to the

curve y = f(x) is drawn. The intersection point with the x-axis is x1, the next approxima-

tion to the root.

From the geometric picture, we can develop an algebraic formula for Newton’s
Method. The tangent line at x0 has slope given by the derivative f ′(x0). One point
on the tangent line is (x0,f (x0)). The point-slope formula for the equation of a line is
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y − f (x0) = f ′(x0)(x − x0), so that looking for the intersection point of the tangent line
with the x-axis is the same as substituting y = 0 in the line:

f ′(x0)(x − x0) = 0 − f (x0)

x − x0 = − f (x0)

f ′(x0)

x = x0 − f (x0)

f ′(x0)
.

Solving for x gives an approximation for the root, which we call x1. Next, the entire process
is repeated, beginning with x1, to produce x2, and so on, yielding the following iterative
formula:

Newton’s Method

x0 = initial guess

xi+1 = xi − f (xi)

f ′(xi)
for i = 0,1,2, . . . .

! EXAMPLE 1.11 Find the Newton’s Method formula for the equation x3 + x − 1 = 0.

Since f ′(x) = 3x2 + 1, the formula is given by

xi+1 = xi − x3
i + xi − 1

3x2
i + 1

= 2x3
i + 1

3x2
i + 1

.

Iterating this formula from initial guess x0 = −0.7 yields

x1 = 2x3
0 + 1

3x2
0 + 1

= 2(−0.7)3 + 1
3(−0.7)2 + 1

≈ 0.1271

x2 = 2x3
1 + 1

3x2
1 + 1

≈ 0.9577.

These steps are shown geometrically in Figure 1.9. Further steps are given in the
following table:

i xi ei = |xi − r| ei/e2
i−1

0 −0.70000000 1.38232780
1 0.12712551 0.55520230 0.2906
2 0.95767812 0.27535032 0.8933
3 0.73482779 0.05249999 0.6924
4 0.68459177 0.00226397 0.8214
5 0.68233217 0.00000437 0.8527
6 0.68232780 0.00000000 0.8541
7 0.68232780 0.00000000

After only six steps, the root is known to eight correct digits. There is a bit more
we can say about the error and how fast it becomes small. Note in the table that once
convergence starts to take hold, the number of correct places in xi approximately doubles
on each iteration. This is characteristic of “quadratically convergent’’ methods, as we shall
see next.
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Figure 1.9 Three steps of newton’s method. Illustration of Example 1.11. Starting with

x0 = −0.7, the Newton’s Method iterates are plotted along with the tangent lines. The

method appears to be converging to the root. "

1.4.1 Quadratic convergence of Newton’s Method

The convergence in Example 1.11 is qualitatively faster than the linear convergence we
have seen for the Bisection Method and Fixed-Point Iteration. A new definition is needed.

DEFINITION 1.10 Let ei denote the error after step i of an iterative method. The iteration is quadratically
convergent if

M = lim
i→∞

ei+1

e2
i

< ∞. ❒

THEOREM 1.11 Let f be twice continuously differentiable and f (r) = 0. If f ′(r) ̸= 0, then Newton’s
Method is locally and quadratically convergent to r . The error ei at step i satisfies

lim
i→∞

ei+1

e2
i

= M,

where

M = f ′′(r)

2f ′(r)
. #

Proof. To prove local convergence, note that Newton’s Method is a particular form of
Fixed-Point Iteration, where

g(x) = x − f (x)

f ′(x)
,

with derivative

g′(x) = 1 − f ′(x)2 − f (x)f ′′(x)

f ′(x)2 = f (x)f ′′(x)

f ′(x)2 .

Since g′(r) = 0, Newton’s Method is locally convergent according to Theorem 1.6.
To prove quadratic convergence, we derive Newton’s Method a second way, this time

keeping a close eye on the error at each step. By error, we mean the difference between the
correct root and the current best guess.

Taylor’s formula in Theorem 0.8 tells us the difference between the values of a function
at a given point and another nearby point. For the two points, we will use the root r and the
current guess xi after i steps, and we will stop and take a remainder after two terms:
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f (r) = f (xi) + (r − xi)f
′(xi) + (r − xi)

2

2
f ′′(ci).

Here, ci is between xi and r . Because r is the root, we have

0 = f (xi) + (r − xi)f
′(xi) + (r − xi)

2

2
f ′′(ci)

− f (xi)

f ′(xi)
= r − xi + (r − xi)

2

2
f ′′(ci)

f ′(xi)
,

assuming that f ′(xi) ̸= 0. With some rearranging, we can compare the next Newton iterate
with the root:

xi − f (xi)

f ′(xi)
− r = (r − xi)

2

2
f ′′(ci)

f ′(xi)

xi+1 − r = e2
i

f ′′(ci)

2f ′(xi)

ei+1 = e2
i

∣∣∣∣
f ′′(ci)

2f ′(xi)

∣∣∣∣ . (1.24)

In this equation, we have defined the error at step i to be ei = |xi − r|. Since ci lies between
r and xi , it converges to r just as xi does, and

lim
i→∞

ei+1

e2
i

=
∣∣∣∣

f ′′(r)

2f ′(r)

∣∣∣∣ ,

the definition of quadratic convergence. ❒

The error formula (1.24) we have developed can be viewed as

ei+1 ≈ Me2
i , (1.25)

where M = |f ′′(r)/2f ′(r)|, under the assumption that f ′(r) ̸= 0. The approximation gets
better as Newton’s Method converges, since the guesses xi move toward r , and because ci

is caught between xi and r . This error formula should be compared with ei+1 ≈ Sei for the
linearly convergent methods, where S = |g′(r)| for FPI and S = 1/2 for bisection.

Although the value of S is critical for linearly convergent methods, the value of M is
less critical, because the formula involves the square of the previous error. Once the error
gets significantly below 1, squaring will cause a further decrease; and as long as M is not
too large, the error according to (1.25) will decrease as well.

Returning to Example 1.11, we can analyze the output table to demonstrate this error
rate. The right column shows the ratio ei/e2

i−1, which, according to the Newton’s Method
error formula (1.25), should tend toward M as convergence to the root takes place. For
f (x) = x3 + x − 1, the derivatives are f ′(x) = 3x2 + 1 and f ′′(x) = 6x; evaluating at
xc ≈ 0.6823 yields M ≈ 0.85, which agrees with the error ratio in the right column of the
table.

With our new understanding of Newton’s Method, we can more fully explain the square
root calculator of Example 1.6. Let a be a positive number, and consider finding roots of
f (x) = x2 − a by Newton’s Method. The iteration is

xi+1 = xi − f (xi)

f ′(xi)
= xi − x2

i − a

2xi

= x2
i + a

2xi
=

xi + a
xi

2
, (1.26)
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which is the method from Example 1.6, for arbitrary a.
To study its convergence, evaluate the derivatives at the root

√
a:

f ′(
√

a) = 2
√

a

f ′′(
√

a) = 2. (1.27)

Newton is quadratically convergent, since f ′(
√

a) = 2
√

a ̸= 0, and the convergence rate is

ei+1 ≈ Me2
i , (1.28)

where M = 2/(2 · 2
√

a) = 1/(2
√

a).

1.4.2 Linear convergence of Newton’s Method

Theorem 1.11 does not say that Newton’s Method always converges quadratically. Recall
that we needed to divide by f ′(r) for the quadratic convergence argument to make sense.
This assumption turns out to be crucial. The following example shows an instance where
Newton’s Method does not converge quadratically:

! EXAMPLE 1.12 Use Newton’s Method to find a root of f (x) = x2.

This may seem like a trivial problem, since we know there is one root: r = 0. But
often it is instructive to apply a new method to an example we understand thoroughly. The
Newton’s Method formula is

xi+1 = xi − f (xi)

f ′(xi)

= xi − x2
i

2xi

= xi

2
.

The surprising result is that Newton’s Method simplifies to dividing by two. Since the root
is r = 0, we have the following table of Newton iterates for initial guess x0 = 1:

i xi ei = |xi − r| ei/ei−1
0 1.000 1.000
1 0.500 0.500 0.500
2 0.250 0.250 0.500
3 0.125 0.125 0.500
...

...
...

...

Newton’s Method does converge to the root r = 0. The error formula is ei+1 =
ei/2, so the convergence is linear with convergence proportionality constant S = 1/2. "

A similar result exists for xm for any positive integer m, as the next example shows.

! EXAMPLE 1.13 Use Newton’s Method to find a root of f (x) = xm.

The Newton formula is

xi+1 = xi − xm
i

mxm−1
i

= m − 1
m

xi.
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Convergence Equations (1.28) and (1.29) express the two different rates of conver-

gence to the root r possible in Newton’s Method. At a simple root, f ′(r) ̸= 0, and the conver-

gence is quadratic, or fast convergence, which obeys (1.28). At a multiple root, f ′(r) = 0, and

the convergence is linear and obeys (1.29). In the latter case of linear convergence, the slower

rate puts Newton’s Method in the same category as bisection and FPI.

Again, the only root is r = 0, so defining ei = |xi − r| = xi yields

ei+1 = Sei,

where S = (m − 1)/m. "

This is an example of the general behavior of Newton’s Method at multiple roots.
Note that Definition 1.9 of multiple root is equivalent to f (r) = f ′(r) = 0, exactly the case
where we could not make our derivation of the Newton’s Method error formula work. There
is a separate error formula for multiple roots. The pattern that we saw for multiple roots of
monomials is representative of the general case, as summarized in Theorem 1.12.

THEOREM 1.12 Assume that the (m + 1)-times continuously differentiable function f on [a,b] has a mul-
tiplicity m root at r . Then Newton’s Method is locally convergent to r , and the error ei at
step i satisfies

lim
i→∞

ei+1

ei
= S, (1.29)

where S = (m − 1)/m. #

! EXAMPLE 1.14 Find the multiplicity of the root r = 0 of f (x) = sin x + x2 cosx − x2 − x, and estimate
the number of steps of Newton’s Method required to converge within six correct places (use
x0 = 1).

It is easy to check that

f (x) = sin x + x2 cosx − x2 − x

f ′(x) = cosx + 2x cosx − x2 sin x − 2x − 1

f ′′(x) = −sin x + 2cosx − 4x sin x − x2 cosx − 2

and that each evaluates to 0 at r = 0. The third derivative,

f ′′′(x) = −cosx − 6sin x − 6x cosx + x2 sin x, (1.30)

satisfies f ′′′(0) = −1, so the root r = 0 is a triple root, meaning that the multiplicity is
m = 3. By Theorem 1.12, Newton should converge linearly with ei+1 ≈ 2ei/3.

Using starting guess x0 = 1, we have e0 = 1. Near convergence, the error will
decrease by 2/3 on each step. Therefore, a rough approximation to the number of steps
needed to get the error within six decimal places, or smaller than 0.5 × 10−6, can be found
by solving

(
2
3

)n

< 0.5 × 10−6

n >
log10(.5) − 6

log10(2/3)
≈ 35.78. (1.31)
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Approximately 36 steps will be needed. The first 20 steps are shown in the table.

i xi ei = |xi − r| ei/ei−1
1 1.00000000000000 1.00000000000000
2 0.72159023986075 0.72159023986075 0.72159023986075
3 0.52137095182040 0.52137095182040 0.72253049309677
4 0.37530830859076 0.37530830859076 0.71984890466250
5 0.26836349052713 0.26836349052713 0.71504809348561
6 0.19026161369924 0.19026161369924 0.70896981301561
7 0.13361250532619 0.13361250532619 0.70225676492686
8 0.09292528672517 0.09292528672517 0.69548345417455
9 0.06403926677734 0.06403926677734 0.68914790617474

10 0.04377806216009 0.04377806216009 0.68361279513559
11 0.02972805552423 0.02972805552423 0.67906284694649
12 0.02008168373777 0.02008168373777 0.67551285759009
13 0.01351212730417 0.01351212730417 0.67285828621786
14 0.00906579564330 0.00906579564330 0.67093770205249
15 0.00607029292263 0.00607029292263 0.66958192766231
16 0.00405885109627 0.00405885109627 0.66864171927113
17 0.00271130367793 0.00271130367793 0.66799781850081
18 0.00180995966250 0.00180995966250 0.66756065624029
19 0.00120772384467 0.00120772384467 0.66726561353325
20 0.00080563307149 0.00080563307149 0.66706728946460

Note the convergence of the error ratio in the right column to the predicted 2/3. "

If the multiplicity of a root is known in advance, convergence of Newton’s Method can
be improved with a small modification.

THEOREM 1.13 If f is (m + 1)-times continuously differentiable on [a,b], which contains a root r of
multiplicity m > 1, then Modified Newton’s Method

xi+1 = xi − mf (xi)

f ′(xi)
(1.32)

converges locally and quadratically to r . #

Returning to Example 1.14, we can apply Modified Newton’s Method to achieve
quadratic convergence. After five steps, convergence to the root r = 0 has taken place
to about eight digits of accuracy:

i xi

0 1.00000000000000
1 0.16477071958224
2 0.01620733771144
3 0.00024654143774
4 0.00000006072272
5 −0.00000000633250

There are several points to note in the table. First, the quadratic convergence to the
approximate root is observable, as the number of correct places in the approximation more
or less doubles at each step, up to Step 4. Steps 6,7, . . . are identical to Step 5. The reason
Newton’s Method lacks convergence to machine precision is familiar to us from Section 1.3.
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We know that 0 is a multiple root. While the backward error is driven near ϵmach by Newton’s
Method, the forward error, equal to xi , is several orders of magnitude larger.

Newton’s Method, like FPI, may not converge to a root. The next example shows just
one of its possible nonconvergent behaviors.

! EXAMPLE 1.15 Apply Newton’s Method to f (x) = 4x4 − 6x2 − 11/4 with starting guess x0 = 1/2.

This function has roots, since it is continuous, negative at x = 0, and goes to
positive infinity for large positive and large negative x. However, no root will be found for
the starting guess x0 = 1/2, as shown in Figure 1.10. The Newton formula is

xi+1 = xi − 4x4
i − 6x2

i − 11
4

16x3
i − 12xi

. (1.33)

Substitution gives x1 = −1/2, and then x2 = 1/2 again. Newton’s Method alternates on
this example between the two nonroots 1/2 and −1/2, and fails to find a root.

–3 –2 –1 1 2 3

–5

–4

–3

–2

–1

1

x0x1

Figure 1.10 Failure of Newton’s Method in Example 1.15. The iteration alternates

between 1/2 and −1/2, and does not converge to a root. "

Newton’s Method can fail in other ways. Obviously, if f ′(xi) = 0 at any iteration
step, the method cannot continue. There are other examples where the iteration diverges to
infinity (see Exercise 6) or mimics a random number generator (see Computer Problem 13).
Although not every initial guess leads to convergence to a root, Theorems 1.11 and 1.12
guarantee a neighborhood of initial guesses surrounding each root for which convergence
to that root is assured.

1.4 Exercises

1. Apply two steps of Newton’s Method with initial guess x0 = 0. (a) x3 + x − 2 = 0
(b) x4 − x2 + x − 1 = 0 (c) x2 − x − 1 = 0

2. Apply two steps of Newton’s Method with initial guess x0 = 1. (a) x3 + x2 − 1 = 0
(b) x2 + 1/(x + 1) − 3x = 0 (c) 5x − 10 = 0

3. Use Theorem 1.11 or 1.12 to estimate the error ei+1 in terms of the previous error ei as
Newton’s Method converges to the given roots. Is the convergence linear or quadratic?
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(a) x5 − 2x4 + 2x2 − x = 0; r = −1, r = 0, r = 1 (b) 2x4 − 5x3 + 3x2 + x − 1 = 0;
r = −1/2, r = 1

4. Estimate ei+1 as in Exercise 3. (a) 32x3 − 32x2 − 6x + 9 = 0; r = −1/2, r = 3/4
(b) x3 − x2 − 5x − 3 = 0; r = −1, r = 3

5. Consider the equation 8x4 − 12x3 + 6x2 − x = 0. For each of the two solutions x = 0 and
x = 1/2, decide which will converge faster (say, to eight-place accuracy), the Bisection
Method or Newton’s Method, without running the calculation.

6. Sketch a function f and initial guess for which Newton’s Method diverges.

7. Let f (x) = x4 − 7x3 + 18x2 − 20x + 8. Does Newton’s Method converge quadratically to
the root r = 2? Find lim

i→∞
ei+1/ei , where ei denotes the error at step i.

8. Prove that Newton’s Method applied to f (x) = ax + b converges in one step.

9. Show that applying Newton’s Method to f (x) = x2 − A produces the iteration of
Example 1.6.

10. Find the Fixed-Point Iteration produced by applying Newton’s Method to f (x) = x3 − A. See
Exercise 1.2.10.

11. Use Newton’s Method to produce a quadratically convergent method for calculating the nth
root of a positive number A, where n is a positive integer. Prove quadratic convergence.

12. Suppose Newton’s Method is applied to the function f (x) = 1/x. If the initial guess is x0 = 1,
find x50.

13. (a) The function f (x) = x3 − 4x has a root at r = 2. If the error ei = xi − r after four steps of
Newton’s Method is e4 = 10−6, estimate e5. (b) Apply the same question as (a) to the root
r = 0. (Caution: The usual formula is not useful.)

14. Let g(x) = x − f (x)/f ′(x) denote the Newton’s Method iteration for the function f . Define
h(x) = g(g(x)) to be the result of two successive steps of Newton’s Method. Then
h′(x) = g′(g(x))g′(x) according to the Chain Rule of calculus. (a) Assume that c is a fixed
point of h, but not of g, as in Example 1.15. Show that if c is an inflection point of f (x), that
is, f ′′(x) = 0, then the fixed point iteration h is locally convergent to c. It follows that for
initial guesses near c, Newton’s Method itself does not converge to a root of f , but tends
toward the oscillating sequence {c,g(c)} (b) Verify that the stable oscillation described in
(a) actually occurs in Example 1.15. Computer Problem 14 elaborates on this example.

1.4 Computer Problems

1. Each equation has one root. Use Newton’s Method to approximate the root to eight correct
decimal places. (a) x3 = 2x + 2 (b) ex + x = 7 (c) ex + sin x = 4

2. Each equation has one real root. Use Newton’s Method to approximate the root to eight correct
decimal places. (a) x5 + x = 1 (b) sin x = 6x + 5 (c) ln x + x2 = 3

3. Apply Newton’s Method to find the only root to as much accuracy as possible, and find the
root’s multiplicity. Then use Modified Newton’s Method to converge to the root quadratically.
Report the forward and backward errors of the best approximation obtained from each method.
(a) f (x) = 27x3 + 54x2 + 36x + 8 (b) f (x) = 36x4 − 12x3 + 37x2 − 12x + 1
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4. Carry out the steps of Computer Problem 3 for (a) f (x) = 2ex−1 − x2 − 1
(b) f (x) = ln(3 − x) + x − 2.

5. A silo composed of a right circular cylinder of height 10 m surmounted by a hemispherical
dome contains 400 m3 of volume. Find the base radius of the silo to four correct decimal
places.

6. A 10-cm-high cone contains 60 cm3 of ice cream, including a hemispherical scoop on top. Find
the radius of the scoop to four correct decimal places.

7. Consider the function f (x) = esin3 x + x6 − 2x4 − x3 − 1 on the interval [−2,2]. Plot the
function on the interval, and find all three roots to six correct decimal places. Determine which
roots converge quadratically, and find the multiplicity of the roots that converge linearly.

8. Carry out the steps of Computer Problem 7 for the function
f (x) = 94cos3 x − 24cosx + 177sin2 x − 108sin4 x − 72cos3 x sin2 x − 65 on the interval
[0,3].

9. Apply Newton’s Method to find both roots of the function f (x) = 14xex−2 − 12ex−2 −
7x3 + 20x2 − 26x + 12 on the interval [0,3]. For each root, print out the sequence of iterates,
the errors ei , and the relevant error ratio ei+1/e2

i or ei+1/ei that converges to a nonzero limit.
Match the limit with the expected value M from Theorem 1.11 or S from Theorem 1.12.

10. Set f (x) = 54x6 + 45x5 − 102x4 − 69x3 + 35x2 + 16x − 4. Plot the function on the
interval [−2,2], and use Newton’s Method to find all five roots in the interval. Determine for
which roots Newton converges linearly and for which the convergence is quadratic.

11. The ideal gas law for a gas at low temperature and pressure is P V = nRT , where P is
pressure (in atm), V is volume (in L), T is temperature (in K), n is the number of moles of the
gas, and R = 0.0820578 is the molar gas constant. The van der Waals equation

(
P + n2a

V 2

)
(V − nb) = nRT

covers the nonideal case where these assumptions do not hold. Use the ideal gas law to
compute an initial guess, followed by Newton’s Method applied to the van der Waals equation
to find the volume of one mole of oxygen at 320 K and a pressure of 15 atm. For oxygen,
a = 1.36 L2-atm/mole2 and b = 0.003183 L/mole. State your initial guess and solution with
three significant digits.

12. Use the data from Computer Problem 11 to find the volume of 1 mole of benzene vapor at 700
K under a pressure of 20 atm. For benzene, a = 18.0 L2-atm/mole2 and b = 0.1154 L/mole.

13. (a) Find the root of the function f (x) = (1 − 3/(4x))1/3. (b) Apply Newton’s Method using an
initial guess near the root, and plot the first 50 iterates. This is another way Newton’s Method
can fail, by producing a chaotic trajectory. (c) Why are Theorems 1.11 and 1.12 not applicable?

14. (a) Fix real numbers a,b > 0 and plot the graph of f (x) = a2x4 − 6abx2 − 11b2 for your
chosen values. Do not use a = 2,b = 1/2, since that case already appears in Example 1.15.
(b) Apply Newton’s method to find both the negative root and the positive root of f (x). Then
find intervals of positive initial guesses [d1,d2], where d2 > d1, for which Newton’s Method:
(c) converges to the positive root, (d) converges to the negative root, (e) is defined, but does
not converge to any root. Your intervals should not contain any initial guess where f ′(x) = 0,
at which Newton’s Method is not defined.
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1.5 ROOT-FINDING WITHOUT DERIVATIVES

Apart from multiple roots, Newton’s Method converges at a faster rate than the bisection
and FPI methods. It achieves this faster rate because it uses more information—in partic-
ular, information about the tangent line of the function, which comes from the function’s
derivative. In some circumstances, the derivative may not be available.

The Secant Method is a good substitute for Newton’s Method in this case. It replaces the
tangent line with an approximation called the secant line, and converges almost as quickly.
Variants of the Secant Method replace the line with an approximating parabola, whose
axis is either vertical (Muller’s Method) or horizontal (inverse quadratic interpolation). The
section ends with the description of Brent’s Method, a hybrid method which combines the
best features of iterative and bracketing methods.

1.5.1 Secant Method and variants

The Secant Method is similar to the Newton’s Method, but replaces the derivative by a
difference quotient. Geometrically, the tangent line is replaced with a line through the two
last known guesses. The intersection point of the “secant line’’ is the new guess.

An approximation for the derivative at the current guess xi is the difference quotient

f (xi) − f (xi−1)

xi − xi−1
.

A straight replacement of this approximation for f ′(xi) in Newton’s Method yields the
Secant Method.

Secant Method

x0,x1 = initial guesses

xi+1 = xi − f (xi)(xi − xi−1)

f (xi) − f (xi−1)
for i = 1,2,3, . . . .

Unlike Fixed-Point Iteration and Newton’s Method, two starting guesses are needed to
begin the Secant Method.

It can be shown that under the assumption that the Secant Method converges to r and
f ′(r) ̸= 0, the approximate error relationship

ei+1 ≈
∣∣∣∣

f ′′(r)

2f ′(r)

∣∣∣∣eiei−1

holds and that this implies that

ei+1 ≈
∣∣∣∣

f ′′(r)

2f ′(r)

∣∣∣∣
α−1

eα
i ,

where α = (1 +
√

5)/2 ≈ 1.62. (See Exercise 6.) The convergence of the Secant Method
to simple roots is called superlinear, meaning that it lies between linearly and quadratically
convergent methods.
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Figure 1.11 Two steps of the Secant Method. Illustration of Example 1.16. Starting

with x0 = 0 and x1 = 1, the Secant Method iterates are plotted along with the secant

lines.

! EXAMPLE 1.16 Apply the Secant Method with starting guesses x0 = 0,x1 = 1 to find the root of f (x) =
x3 + x − 1.

The formula gives

xi+1 = xi − (x3
i + xi − 1)(xi − xi−1)

x3
i + xi − (x3

i−1 + xi−1)
. (1.34)

Starting with x0 = 0 and x1 = 1, we compute

x2 = 1 − (1)(1 − 0)

1 + 1 − 0
= 1

2

x3 = 1
2

− − 3
8 (1/2 − 1)

− 3
8 − 1

= 7
11

,

as shown in Figure 1.11. Further iterates form the following table:

i xi

0 0.00000000000000
1 1.00000000000000
2 0.50000000000000
3 0.63636363636364
4 0.69005235602094
5 0.68202041964819
6 0.68232578140989
7 0.68232780435903
8 0.68232780382802
9 0.68232780382802 "

There are three generalizations of the Secant Method that are also important. The
Method of False Position, or Regula Falsi, is similar to the Bisection Method, but where
the midpoint is replaced by a Secant Method–like approximation. Given an interval [a,b]
that brackets a root (assume that f (a)f (b) < 0), define the next point

c = a − f (a)(a − b)

f (a) − f (b)
= bf (a) − af (b)

f (a) − f (b)

as in the Secant Method, but unlike the Secant Method, the new point is guaranteed to
lie in [a,b], since the points (a,f (a)) and (b,f (b)) lie on separate sides of the x-axis.
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The new interval, either [a,c] or [c,b], is chosen according to whether f (a)f (c) < 0 or
f (c)f (b) < 0, respectively, and still brackets a root.

Method of False Position

Given interval [a,b] such that f (a)f (b) < 0
for i = 1,2,3, . . .

c = bf (a) − af (b)

f (a) − f (b)
if f (c) = 0, stop, end
if f (a)f (c) < 0

b = c

else
a = c

end
end

The Method of False Position at first appears to be an improvement on both the Bisection
Method and the Secant Method, taking the best properties of each. However, while the
Bisection Method guarantees cutting the uncertainty by 1/2 on each step, False Position
makes no such promise, and for some examples can converge very slowly.

! EXAMPLE 1.17 Apply the Method of False Position on initial interval [−1,1] to find the root r = 0 of
f (x) = x3 − 2x2 + 3

2 x.

Given x0 = −1,x1 = 1 as the initial bracketing interval, we compute the new point

x2 = x1f (x0) − x0f (x1)

f (x0) − f (x1)
= 1(−9/2) − (−1)1/2

−9/2 − 1/2
= 4

5
.

Since f (−1)f (4/5) < 0, the new bracketing interval is [x0,x2] = [−1,0.8]. This completes
the first step. Note that the uncertainty in the solution has decreased by far less than a factor
of 1/2. As Figure 1.12(b) shows, further steps continue to make slow progress toward the
root at x = 0.
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Figure 1.12 Slow convergence in Example 1.17. Both the (a) Secant Method and (b)

Method of False Position converge slowly to the root r = 0. "

Muller’s Method is a generalization of the Secant Method in a different direction.
Instead of intersecting the line through two previous points with the x-axis, we use three pre-
vious points x0,x1,x2, draw the parabola y = p(x) through them, and intersect the parabola
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with the x-axis. The parabola will generally intersect in 0 or 2 points. If there are two inter-
section points, the one nearest to the last point x2 is chosen to be x3. It is a simple matter of
the quadratic formula to determine the two possibilities. If the parabola misses the x-axis,
there are complex number solutions. This enables software that can handle complex arith-
metic to locate complex roots. We will not pursue this idea further, although there are several
sources in the literature that follow this direction.

Inverse Quadratic Interpolation (IQI) is a similar generalization of the Secant
Method to parabolas. However, the parabola is of form x = p(y) instead of y = p(x),
as in Muller’s Method. One problem is solved immediately: This parabola will intersect the
x-axis in a single point, so there is no ambiguity in finding xi+3 from the three previous
guesses, xi,xi+1, and xi+2.

The second-degree polynomial x = P (y) that passes through the three points (a,A),
(b,B),(c,C) is

P (y) = a
(y − B)(y − C)

(A − B)(A − C)
+ b

(y − A)(y − C)

(B − A)(B − C)
+ c

(y − A)(y − B)

(C − A)(C − B)
. (1.35)

This is an example of Lagrange interpolation, one of the topics of Chapter 3. For now, it
is enough to notice that P (A) = a,P (B) = b, and P (C) = c. Substituting y = 0 gives a
formula for the intersection point of the parabola with the x-axis. After some rearrangement
and substitution, we have

P (0) = c − r(r − q)(c − b) + (1 − r)s(c − a)

(q − 1)(r − 1)(s − 1)
, (1.36)

where q = f (a)/f (b),r = f (c)/f (b), and s = f (c)/f (a).
For IQI, after setting a = xi,b = xi+1,c = xi+2, and A = f (xi),B = f (xi+1),

C = f (xi+2), the next guess xi+3 = P (0) is

xi+3 = xi+2 − r(r − q)(xi+2 − xi+1) + (1 − r)s(xi+2 − xi)

(q − 1)(r − 1)(s − 1)
, (1.37)

where q = f (xi)/f (xi+1),r = f (xi+2)/f (xi+1), and s = f (xi+2)/f (xi). Given three ini-
tial guesses, the IQI method proceeds by iterating (1.37), using the new guess xi+3 to replace
the oldest guess xi . An alternative implementation of IQI uses the new guess to replace one
of the previous three guesses with largest backward error.

Figure 1.13 compares the geometry of Muller’s Method with Inverse Quadratic Inter-
polation. Both methods converge faster than the Secant Method due to the higher-order
interpolation. We will study interpolation in more detail in Chapter 3. The concepts of the
Secant Method and its generalizations, along with the Bisection Method, are key ingredients
of Brent’s Method, the subject of the next section.

1.5.2 Brent’s Method

Brent’s Method [Brent, 1973] is a hybrid method—it uses parts of solving techniques
introduced earlier to develop a new approach that retains the most useful properties of each.
It is most desirable to combine the property of guaranteed convergence, from the Bisection
Method, with the property of fast convergence from the more sophisticated methods. It was
originally proposed by Dekker and Van Wijngaarden in the 1960s.

The method is applied to a continuous function f and an interval bounded by a and b,
where f (a)f (b) < 0. Brent’s Method keeps track of a current point xi that is best in the
sense of backward error, and a bracket [ai,bi] of the root. Roughly speaking, the Inverse
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Quadratic Interpolation method is attempted, and the result is used to replace one of xi,ai,bi

if (1) the backward error improves and (2) the bracketing interval is cut at least in half. If not,
the Secant Method is attempted with the same goal. If it fails as well, a Bisection Method
step is taken, guaranteeing that the uncertainty is cut at least in half.

x0 x2 xM

xIQI

x1

y

x

Figure 1.13 Comparison of Muller’s Method step with Inverse Quadratic Iteration

step. The former is determined by an interpolating parabola y = p(x); the latter, by an

interpolating parabola x = p(y).

Matlab’s command fzero implements a version of Brent’s Method, along with a
preprocessing step, to discover a good initial bracketing interval if one is not provided by
the user. The stopping criterion is of a mixed forward/backward error type. The algorithm
terminates when the change from xi to the new point xi+1 is less than 2ϵmach max(1,xi), or
when the backward error |f (xi)| achieves machine zero.

The preprocessing step is not triggered if the user provides an initial bracketing
interval. The following use of the command enters the function f (x) = x3 + x − 1 and
the initial bracketing interval [0,1] and asks Matlab to display partial results on each
iteration:

>> f=@(x) xˆ3+x-1;
>> fzero(f,[0 1],optimset(’Display’,’iter’))

Func-count x f(x) Procedure
1 0 -1 initial
2 1 1 initial
3 0.5 -0.375 bisection
4 0.636364 -0.105935 interpolation
5 0.684910 0.00620153 interpolation
6 0.682225 -0.000246683 interpolation
7 0.682328 -5.43508e-007 interpolation
8 0.682328 1.50102e-013 interpolation
9 0.682328 0 interpolation

Zero found in the interval: [0, 1].

ans=

0.68232780382802

Alternatively, the command

>> fzero(f,1)

looks for a root of f (x) near x = 1 by first locating a bracketing interval and then applying
Brent’s Method.
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1.5 Exercises

1. Apply two steps of the Secant Method to the following equations with initial guesses x0 = 1
and x1 = 2. (a) x3 = 2x + 2 (b) ex + x = 7 (c) ex + sin x = 4

2. Apply two steps of the Method of False Position with initial bracket [1, 2] to the equations of
Exercise 1.

3. Apply two steps of Inverse Quadratic Interpolation to the equations of Exercise 1. Use initial
guesses x0 = 1,x1 = 2, and x2 = 0, and update by retaining the three most recent
iterates.

4. A commercial fisher wants to set the net at a water depth where the temperature is 10 degrees
C. By dropping a line with a thermometer attached, she finds that the temperature is 8 degrees
at a depth of 9 meters, and 15 degrees at a depth of 5 meters. Use the Secant Method to
determine a best estimate for the depth at which the temperature is 10.

5. Derive equation (1.36) by substituting y = 0 into (1.35).

6. If the Secant Method converges to r , f ′(r) ̸= 0, and f ′′(r) ̸= 0, then the approximate error
relationship ei+1 ≈ |f ′′(r)/(2f ′(r))|eiei−1 can be shown to hold. Prove that if in addition
limi→∞ ei+1/eα

i exists and is nonzero for some α > 0, then α = (1 +
√

5)/2 and
ei+1 ≈ |(f ′′(r)/2f ′(r))|α−1eα

i .

7. Consider the following four methods for calculating 21/4, the fourth root of 2. (a) Rank
them for speed of convergence, from fastest to slowest. Be sure to give reasons for your
ranking.
(A) Bisection Method applied to f (x) = x4 − 2

(B) Secant Method applied to f (x) = x4 − 2

(C) Fixed Point Iteration applied to g(x) = x

2
+ 1

x3

(D) Fixed Point Iteration applied to g(x) = x

3
+ 1

3x3

(b) Are there any methods that will converge faster than all above suggestions?

1.5 Computer Problems

1. Use the Secant Method to find the (single) solution of each equation in Exercise 1.

2. Use the Method of False Position to find the solution of each equation in Exercise 1.

3. Use Inverse Quadratic Interpolation to find the solution of each equation in Exercise 1.

4. Set f (x) = 54x6 + 45x5 − 102x4 − 69x3 + 35x2 + 16x − 4. Plot the function on the
interval [−2,2], and use the Secant Method to find all five roots in the interval. To which of the
roots is the convergence linear, and to which is it superlinear?

5. In Exercise 1.1.6, you were asked what the outcome of the Bisection Method would be for
f (x) = 1/x on the interval [−2,1]. Now compare that result with applying fzero to the
problem.

6. What happens if fzero is asked to find the root of f (x) = x2 near 1 (do not use a
bracketing interval)? Explain the result. (b) Apply the same question to f (x) = 1 + cosx

near −1.
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1 Kinematics of the Stewart platform
A Stewart platform consists of six variable length struts, or prismatic joints, supporting a
payload. Prismatic joints operate by changing the length of the strut, usually pneumatically
or hydraulically. As a six-degree-of-freedom robot, the Stewart platform can be placed at
any point and inclination in three-dimensional space that is within its reach.

To simplify matters, the project concerns a two-dimensional version of the Stewart
platform. It will model a manipulator composed of a triangular platform in a fixed plane
controlled by three struts, as shown in Figure 1.14. The inner triangle represents the planar
Stewart platform whose dimensions are defined by the three lengths L1,L2, and L3. Let γ

denote the angle across from side L1. The position of the platform is controlled by the three
numbers p1,p2, and p3, the variable lengths of the three struts.

(x + L3 cos u, y + L3 sin u)

(x + L2 cos(u + g), y + L2 sin(u + g))

(x, y)

(0, 0) (x1, 0)

(x2, y2)

p1

L2

L1

p3

p2

L3
u

g

x

y

Figure 1.14 Schematic of planar Stewart platform. The forward kinematics problem

is to use the lengths p1, p2, p3 to determine the unknowns x, y, θ .

Finding the position of the platform, given the three strut lengths, is called the forward,
or direct, kinematics problem for this manipulator. Namely, the problem is to compute
(x,y) and θ for each given p1,p2,p3. Since there are three degrees of freedom, it is natural
to expect three numbers to specify the position. For motion planning, it is important to solve
this problem as fast as possible, often in real time. Unfortunately, no closed-form solution
of the planar Stewart platform forward kinematics problem is known.

The best current methods involve reducing the geometry of Figure 1.14 to a single
equation and solving it by using one of the solvers explained in this chapter. Your job is to
complete the derivation of this equation and write code to carry out its solution.

Simple trigonometry applied to Figure 1.14 implies the following three equations:

p2
1 = x2 + y2

p2
2 = (x + A2)2 + (y + B2)2

p2
3 = (x + A3)2 + (y + B3)2. (1.38)

In these equations,

A2 = L3 cosθ − x1

B2 = L3 sin θ

A3 = L2 cos(θ + γ ) − x2 = L2[cosθ cosγ − sin θ sin γ ] − x2

B3 = L2 sin(θ + γ ) − y2 = L2[cosθ sin γ + sin θ cosγ ] − y2.

Note that (1.38) solves the inverse kinematics problem of the planar Stewart platform, which
is to find p1,p2,p3, given x,y,θ . Your goal is to solve the forward problem, namely, to
find x,y,θ , given p1,p2,p3.
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Multiplying out the last two equations of (1.38) and using the first yields

p2
2 = x2 + y2 + 2A2x + 2B2y + A2

2 + B2
2 = p2

1 + 2A2x + 2B2y + A2
2 + B2

2

p2
3 = x2 + y2 + 2A3x + 2B3y + A2

3 + B2
3 = p2

1 + 2A3x + 2B3y + A2
3 + B2

3 ,

which can be solved for x and y as

x = N1

D
= B3(p2

2 − p2
1 − A2

2 − B2
2 ) − B2(p2

3 − p2
1 − A2

3 − B2
3 )

2(A2B3 − B2A3)

y = N2

D
= −A3(p2

2 − p2
1 − A2

2 − B2
2 ) + A2(p2

3 − p2
1 − A2

3 − B2
3 )

2(A2B3 − B2A3)
, (1.39)

as long as D = 2(A2B3 − B2A3) ̸= 0.
Substituting these expressions for x and y into the first equation of (1.38), and multi-

plying through by D2, yields one equation, namely,

f = N2
1 + N2

2 − p2
1D2 = 0 (1.40)

in the single unknown θ . (Recall that p1,p2,p3,L1,L2,L3,γ ,x1,x2,y2 are known.) If the
roots of f (θ) can be found, the corresponding x- and y- values follow immediately from
(1.39).

Note that f (θ) is a polynomial in sin θ and cosθ , so, given any root θ , there are other
roots θ + 2πk that are equivalent for the platform. For that reason, we can restrict attention
to θ in [−π,π ]. It can be shown that f (θ) has at most six roots in that interval.

Suggested activities:
1. Write a Matlab function file for f (θ). The parameters L1,L2,L3,γ ,x1,x2,y2 are fixed

constants, and the strut lengths p1,p2,p3 will be known for a given pose. Check Appendix
B.5 if you are new to Matlab function files. Here, for free, are the first and last lines:

function out=f(theta)
:
:

out=N1ˆ2+N2ˆ2-p1ˆ2*Dˆ2;

To test your code, set the parameters L1 = 2,L2 = L3 =
√

2,γ = π/2,p1 = p2 =
p3 =

√
5 from Figure 1.15. Then, substituting θ = −π/4 or θ = π/4, corresponding to

Figures 1.15(a, b), respectively, should make f (θ) = 0.

2. Plot f (θ) on [−π,π ]. You may use the @ symbol as described in Appendix B.5 to assign a
function handle to your function file in the plotting command. You may also need to
precede arithmetic operations with the “.’’ character to vectorize the operations, as
explained in Appendix B.2. As a check of your work, there should be roots at ±π/4.

3. Reproduce Figure 1.15. The Matlab commands

>> plot([u1 u2 u3 u1],[v1 v2 v3 v1],’r’); hold on
>> plot([0 x1 x2],[0 0 y2],’bo’)

will plot a red triangle with vertices (u1,v1),(u2,v2),(u3,v3) and place small
circles at the strut anchor points (0,0),(0,x1),(x2,y2). In addition, draw the
struts.

4. Solve the forward kinematics problem for the planar Stewart platform specified by
x1 = 5, (x2,y2) = (0,6),L1 = L3 = 3,L2 = 3

√
2,γ = π/4,p1 = p2 = 5,p3 = 3. Begin
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Figure 1.15 Two poses of the planar Stewart platform with identical arm lengths.

Each pose corresponds to a solution of (1.38) with strut lengths p1 = p2 = p3 =
√-5. The

shape of the triangle is defined by L1 = 2, L2 = L3 =
√-2, γ =π/2.

by plotting f (θ). Use an equation solver to find all four poses, and plot them. Check your
answers by verifying that p1,p2,p3 are the lengths of the struts in your plot.

5. Change strut length to p2 = 7 and re-solve the problem. For these parameters, there are six
poses.

6. Find a strut length p2, with the rest of the parameters as in Step 4, for which there are only
two poses.

7. Calculate the intervals in p2, with the rest of the parameters as in Step 4, for which there are
0,2,4, and 6 poses, respectively.

8. Derive or look up the equations representing the forward kinematics of the
three-dimensional, six-degrees-of-freedom Stewart platform. Write a Matlab program
and demonstrate its use to solve the forward kinematics. See Merlet [2000] for a good
introduction to prismatic robot arms and platforms.

Software and Further Reading

There are many algorithms for locating solutions of nonlinear equations. The slow, but
always convergent, algorithms like the Bisection Method contrast with routines with faster
convergence, but without guarantees of convergence, including Newton’s Method and vari-
ants. Equation solvers can also be divided into two groups, depending on whether or not
derivative information is needed from the equation. The Bisection Method, the Secant
Method, and Inverse Quadratic Interpolation are examples of methods that need only a
black box providing a function value for a given input, while Newton’s Method requires
derivatives. Brent’s Method is a hybrid that combines the best aspects of slow and fast
algorithms and does not require derivative calculations. For this reason, it is heavily used
as a general-purpose equation solver and is included in many comprehensive software
packages.

Matlab’s fzero command implements Brent’s Method and needs only an initial
interval or one initial guess as input. The ZBREN program of IMSL, the NAG rou-
tine c05adc, and netlib FORTRAN program fzero.f all rely on this basic approach.
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The Matlab roots command finds all roots of a polynomial with an entirely different
approach, computing all eigenvalues of the companion matrix, constructed to have eigen-
values identical to all roots of the polynomial.

Other often-cited algorithms are based on Muller’s Method and Laguerre’s Method,
which, under the right conditions, is cubically convergent. For more details, consult the clas-
sic texts on equation solving by Traub [1964], Ostrowski [1966], and Householder [1970].



C H A P T E R

2
Systems of Equations
Physical laws govern every engineered structure, from
skyscrapers and bridges to diving boards and medi-
cal devices. Static and dynamic loads cause materials
to deform, or bend. Mathematical models of bending
are basic tools in the structural engineer’s workbench.
The degree to which a structure bends under a load
depends on the stiffness of the material, as measured
by itsYoung’s modulus.The competition between stress
and stiffness is modeled by a differential equation,
which, after discretization, is reduced to a system of
linear equations for solution.

To increase accuracy, a fine discretization is used,
making the system of linear equations large and
usually sparse. Gaussian elimination methods are
efficient for moderately sized matrices, but special
iterative algorithms are necessary for large, sparse
systems.

Reality Check 2 on page 102 studies solu-
tion methods applicable to the Euler–Bernoulli model
for pinned and cantilever beams.

In the previous chapter, we studied methods for solving a single equation in a single vari-
able. In this chapter, we consider the problem of solving several simultaneous equations

in several variables. Most of our attention will be paid to the case where the number of
equations and the number of unknown variables are the same.

Gaussian elimination is the workhorse for reasonably sized systems of linear equations.
The chapter begins with the development of efficient and stable versions of this well-known
technique. Later in the chapter our attention shifts to iterative methods, required for very
large systems. Finally, we develop methods for systems of nonlinear equations.

2.1 GAUSSIAN ELIMINATION

Consider the system
x + y = 3

3x − 4y = 2. (2.1)
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Figure 2.1 Geometric solution of a system of equations. Each equation of (2.1)

corresponds to a line in the plane. The intersection point is the solution.

A system of two equations in two unknowns can be considered in terms either of algebra
or of geometry. From the geometric point of view, each linear equation represents a line in
the xy-plane, as shown in Figure 2.1. The point x = 2,y = 1 at which the lines intersect
satisfies both equations and is the solution we are looking for.

The geometric view is very helpful for visualizing solutions of systems, but for com-
puting the solution with a great deal of accuracy we return to algebra. The method known
as Gaussian elimination is an efficient way to solve n equations in n unknowns. In the next
few sections, we will explore implementations of Gaussian elimination that work best for
typical problems.

2.1.1 Naive Gaussian elimination

We begin by describing the simplest form of Gaussian elimination. In fact, it is so simple
that it is not guaranteed to proceed to completion, let alone find an accurate solution.
The modifications that will be needed to improve the “naive’’ method will be introduced
beginning in the next section.

Three useful operations can be applied to a linear system of equations that yield an
equivalent system, meaning one that has the same solutions. These operations are as follows:

(1) Swap one equation for another.
(2) Add or subtract a multiple of one equation from another.
(3) Multiply an equation by a nonzero constant.

For equation (2.1), we can subtract 3 times the first equation from the second equation
to eliminate the x variable from the second equation. Subtracting 3 · [x + y = 3] from the
second equation leaves us with the system

x + y = 3

−7y = −7. (2.2)

Starting with the bottom equation, we can “backsolve’’ our way to a full solution, as in

−7y = −7 −→ y = 1

and

x + y = 3 −→ x + (1) = 3 −→ x = 2.

Therefore, the solution of (2.1) is (x,y) = (2,1).
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The same elimination work can be done in the absence of variables by writing the
system in so-called tableau form:

[
1 1 | 3
3 −4 | 2

]
−→

subtract 3 × row 1
from row 2 −→

[
1 1 | 3
0 −7 | −7

]
. (2.3)

The advantage of the tableau form is that the variables are hidden during elimination. When
the square array on the left of the tableau is “triangular,’’ we can backsolve for the solution,
starting at the bottom.

! EXAMPLE 2.1 Apply Gaussian elimination in tableau form for the system of three equations in three
unknowns:

x + 2y − z = 3

2x + y − 2z = 3

−3x + y + z = −6. (2.4)

This is written in tableau form as
⎡

⎣
1 2 −1 | 3
2 1 −2 | 3

−3 1 1 | −6

⎤

⎦. (2.5)

Two steps are needed to eliminate column 1:

⎡

⎣
1 2 −1 | 3
2 1 −2 | 3

−3 1 1 | −6

⎤

⎦ −→
subtract 2 × row 1

from row 2 −→

⎡

⎣
1 2 −1 | 3
0 −3 0 | −3

−3 1 1 | −6

⎤

⎦

−→
subtract −3 × row 1

from row 3 −→

⎡

⎣
1 2 −1 | 3
0 −3 0 | −3
0 7 −2 | 3

⎤

⎦

and one more step to eliminate column 2:
⎡

⎣
1 2 −1 | 3
0 −3 0 | −3
0 7 −2 | 3

⎤

⎦ −→
subtract − 7

3 × row 2
from row 3 −→

⎡

⎣
1 2 −1 | 3
0 −3 0 | −3
0 0 −2 | −4

⎤

⎦

Returning to the equations

x + 2y − z = 3

−3y = −3

−2z = −4, (2.6)

we can solve for the variables

x = 3 − 2y + z

−3y = −3

−2z = −4 (2.7)

and solve for z,y,x in that order. The latter part is called back substitution, or backsolving
because, after elimination, the equations are readily solved from the bottom up. The solution
is x = 3,y = 1, z = 2. "
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2.1.2 Operation counts

In this section, we do an approximate operation count for the two parts of Gaussian elim-
ination: the elimination step and the back-substitution step. In order to do this, it will help
to write out for the general case the operations that were carried out in the preceding two
examples. To begin, recall two facts about sums of integers.

LEMMA 2.1 For any positive integer n, (a) 1 + 2 + 3 + 4 + ·· · + n = n(n + 1)/2 and (b) 12 + 22

+ 32 + 42 + ·· · + n2 = n(n + 1)(2n + 1)/6. #

The general form of the tableau for n equations in n unknowns is
⎡

⎢⎢⎢⎣

a11 a12 . . . a1n | b1
a21 a22 . . . a2n | b2
...

... . . .
... |

...

an1 an2 . . . ann | bn

⎤

⎥⎥⎥⎦
.

To carry out the elimination step, we need to put zeros in the lower triangle, using the
allowed row operations.

We can write the elimination step as the loop

for j = 1 : n-1
eliminate column j

end

where, by “eliminate column j ,’’we mean “use row operations to put a zero in each location
below the main diagonal, which are the locations aj+1,j ,aj+2,j , . . . ,anj .’’ For example, to
carry out elimination on column 1, we need to put zeros in a21, . . . ,an1. This can be written
as the following loop within the former loop:

for j = 1 : n-1
for i = j+1 : n
eliminate entry a(i,j)

end
end

It remains to fill in the inner step of the double loop, to apply a row operation that sets the
aij entry to zero. For example, the first entry to be eliminated is the a21 entry. To accomplish
this, we subtract a21/a11 times row 1 from row 2, assuming that a11 ̸= 0. That is, the first
two rows change from

a11 a12 . . . a1n | b1
a21 a22 . . . a2n | b2

to

a11 a12 . . . a1n | b1

0 a22 − a21

a11
a12 . . . a2n − a21

a11
a1n | b2 − a21

a11
b1

.

Accounting for the operations, this requires one division (to find the multiplier a21/a11),
plus n multiplications and n additions. The row operation used to eliminate entry ai1 of the
first column, namely,

a11 a12 . . . a1n | b1
...

... . . .
... | ...

0 ai2 − ai1

a11
a12 . . . ain − ai1

a11
a1n | bi − ai1

a11
b1

requires similar operations.
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The procedure just described works as long as the number a11 is nonzero. This number
and the other numbers aii that are eventually divisors in Gaussian elimination are called
pivots. A zero pivot will cause the algorithm to halt, as we have explained it so far. This
issue will be ignored for now and taken up more carefully in Section 2.4.

Returning to the operation count, note that eliminating each entry ai1 in the first column
uses one division, n multiplications, and n addition/subtractions, or 2n + 1 operations when
counted together. Putting zeros into the first column requires a repeat of these 2n + 1
operations a total of n − 1 times.

After the first column is eliminated, the pivot a22 is used to eliminate the second column
in the same way and the remaining columns after that. For example, the row operation used
to eliminate entry aij is

0 0 ajj aj,j+1 . . . ajn | bj

...
...

...
... . . .

... |
...

0 0 0 ai,j+1 − aij

ajj
aj,j+1 . . . ain − aij

ajj
ajn | bi − aij

ajj
bj .

In our notation, a22, for example, refers to the revised number in that position after the
elimination of column 1, which is not the original a22. The row operation to eliminate aij

requires one division, n − j + 1 multiplications, and n − j + 1 addition/subtractions.
Inserting this step into the same double loop results in

for j = 1 : n-1
if abs(a(j,j))<eps; error(’zero pivot encountered’); end
for i = j+1 : n
mult = a(i,j)/a(j,j);
for k = j+1:n
a(i,k) = a(i,k) - mult*a(j,k);

end
b(i) = b(i) - mult*b(j);

end
end

Two comments on this code fragment are called for: First, asking the index k to move from
j to n will put a zero in the aij location; however, moving from j + 1 to n is the most
efficient coding. The latter will not place a zero in the aij entry, which was the entry we
are trying to eliminate! Although this seems to be a mistake, note that we will never return
to this entry in the remainder of the Gaussian elimination or back-substitution process, so
actually putting a zero there represents a wasted step from the point of view of efficiency.
Second, we ask the code to shut down, using Matlab’s error command, if a zero pivot
is encountered. As mentioned, this possibility will be considered more seriously when row
exchanges are discussed in Section 2.4.

We can make a total count of operations for the elimination step of Gaussian elimination.
The elimination of each aij requires the following number of operations, including divisions,
multiplication, and addition/subtractions:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
2n + 1 0
2n + 1 2(n − 1) + 1 0
2n + 1 2(n − 1) + 1 2(n − 2) + 1 0

...
...

...
. . .

. . .
...

...
...

2n + 1 2(n − 1) + 1 2(n − 2) + 1 · · · 2(3) + 1 0
2n + 1 2(n − 1) + 1 2(n − 2) + 1 · · · 2(3) + 1 2(2) + 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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It is convenient to add up the operations in reverse order of how they are applied. Starting
on the right, we total up the operations as

n−1∑

j=1

j∑

i=1

2(j + 1) + 1 =
n−1∑

j=1

2j(j + 1) + j

= 2
n−1∑

j=1

j2 + 3
n−1∑

j=1

j = 2
(n − 1)n(2n − 1)

6
+ 3

(n − 1)n

2

= (n − 1)n

[
2n − 1

3
+ 3

2

]
= n(n − 1)(4n + 7)

6

= 2
3

n3 + 1
2

n2 − 7
6

n,

where Lemma 2.1 has been applied.

Operation count for the elimination step of Gaussian elimination

The elimination step for a system of n equations in n variables can be completed in 2
3 n3

+ 1
2 n2 − 7

6 n operations.

Normally, the exact operation count is less important than order-of-magnitude esti-
mates, since the details of implementation on various computer processors differ. The main
point is that the number of operations is approximately proportional to the execution time
of the algorithm. We will commonly make the approximation of 2

3 n3 operations for elimi-
nation, which is a reasonably accurate approximation when n is large.

After the elimination is completed, the tableau is upper triangular:
⎡

⎢⎢⎢⎣

a11 a12 . . . a1n | b1
0 a22 . . . a2n | b2
...

...
. . .

... | ...

0 0 . . . ann | bn

⎤

⎥⎥⎥⎦
.

In equation form,

a11x1 + a12x2 + ·· · + a1nxn = b1

a22x2 + ·· · + a2nxn = b2
...

annxn = bn, (2.8)

where, again, the aij refer to the revised, not original, entries. To complete the computation
of the solution x, we must carry out the back-substitution step, which is simply a rewriting
of (2.8):

x1 = b1 − a12x2 − · · · − a1nxn

a11

x2 = b2 − a23x3 − · · · − a2nxn

a22
...

xn = bn

ann
. (2.9)
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Complexity The operation count shows that direct solution of n equations in n

unknowns by Gaussian elimination is an O(n3) process.This is a useful fact for estimating time

required for solving large systems. For example, to estimate the time needed to solve a system

of n = 500 equations on a particular computer, we could get a fair guess by solving a system

of n = 50 equations and then scaling the elapsed time by 103 = 1000.

Because of the triangular shape of the nonzero coefficients of the equations, we start at the
bottom and work our way up to the top equation. In this way, the required xi’s are known
when they are needed to compute the next one. Counting operations yields

1 + 3 + 5 + ·· · + (2n − 1) =
n∑

i=1

2i − 1 = 2
n∑

i=1

i −
n∑

i=1

1 = 2
n(n + 1)

2
− n = n2.

In Matlab syntax, the back-substitution step is

for i = n : -1 : 1
for j = i+1 : n
b(i) = b(i) - a(i,j)*x(j);

end
x(i) = b(i)/a(i,i);

end

Operation count for the back-substitution step of Gaussian elimination

The back-substitution step for a triangular system of n equations in n variables can be
completed in n2 operations.

The two operation counts, taken together, show that Gaussian elimination is made up
of two unequal parts: the relatively expensive elimination step and the relatively cheap
back-substitution step. If we ignore the lower order terms in the expressions for the number
of multiplication/divisions, we find that elimination takes on the order of 2n3/3 operations
and that back substitution takes on the order of n2.

We will often use the shorthand terminology of “big-O’’ to mean “on the order of,’’
saying that elimination is an O(n3) algorithm and that back substitution is O(n2).

This usage implies that the emphasis is on large n, where lower powers of n become
negligible by comparison. For example, if n = 100, only about 1 percent or so of the calcu-
lation time of Gaussian elimination goes into the back-substitution step. Overall, Gaussian
elimination takes 2n3/3 + n2 ≈ 2n3/3 operations. In other words, for large n, the lower
order terms in the complexity count will not have a large effect on the estimate for running
time of the algorithm and can be ignored if only an estimated time is required.

! EXAMPLE 2.2 Estimate the time required to carry out back substitution on a system of 500 equations in
500 unknowns, on a computer where elimination takes 1 second.

Since we have just established that elimination is far more time consuming than
back substitution, the answer will be a fraction of a second. Using the approximate number
2(500)3/3 for the number of multiply/divide operations for the elimination step, and (500)2

for the back-substitution step, we estimate the time for back substitution to be

(500)2

2(500)3/3
= 3

2(500)
= .003 sec. "

The example shows two points: (1) Smaller powers of n in operation counts can often
be safely neglected, and (2) the two parts of Gaussian elimination can be very unequal



78 | CHAPTER 2 Systems of Equations

in running time—the total computation time is 1.003 seconds, almost all of which would
be taken by the elimination step. The next example shows a third point. While the back-
substitution time may sometimes be negligible, it may factor into an important calculation.

! EXAMPLE 2.3 On a particular computer, back substitution of a 5000 × 5000 triangular matrix takes 0.1
seconds. Estimate the time needed to solve a general system of 3000 equations in 3000
unknowns by Gaussian elimination.

The computer can carry out (5000)2 operations in 0.1 seconds, or (5000)2(10) =
2.5 × 108 operations/second. Solving a general (nontriangular) system requires about
2(3000)3/3 operations, which can be done in approximately

2(3000)3/3
(5000)2(10)

≈ 72 sec. "

2.1 Exercises

1. Use Gaussian elimination to solve the systems:

(a)
2x − 3y = 2
5x − 6y = 8

(b)
x + 2y = −1

2x + 3y = 1
(c)

−x + y = 2
3x + 4y = 15

2. Use Gaussian elimination to solve the systems:

(a)
2x − 2y − z = −2
4x + y − 2z = 1
−2x + y − z = −3

(b)
x + 2y − z = 2

3y + z = 4
2x − y + z = 2

(c)
2x + y − 4z = −7

x − y + z = −2
−x + 3y − 2z = 6

3. Solve by back substitution:

(a)
3x − 4y + 5z = 2

3y − 4z = −1
5z = 5

(b)
x − 2y + z = 2

4y − 3z = 1
−3z = 3

4. Solve the tableau form

(a)

⎡

⎢⎣
3 −4 −2 | 3
6 −6 1 | 2

−3 8 2 | −1

⎤

⎥⎦ (b)

⎡

⎢⎣
2 1 −1 | 2
6 2 −2 | 8
4 6 −3 | 5

⎤

⎥⎦

5. Use the approximate operation count 2n3/3 for Gaussian elimination to estimate how much
longer it takes to solve n equations in n unknowns if n is tripled.

6. Assume that your computer completes a 5000 equation back substitution in 0.005 seconds. Use
the approximate operation counts n2 for back substitution and 2n3/3 for elimination to
estimate how long it will take to do a complete Gaussian elimination of this size. Round your
answer to the nearest second.

7. Assume that a given computer requires 0.002 seconds to complete back substitution on a
4000 × 4000 upper triangular matrix equation. Estimate the time needed to solve a general
system of 9000 equations in 9000 unknowns. Round your answer to the nearest second.

8. If a system of 3000 equations in 3000 unknowns can be solved by Gaussian elimination in 5
seconds on a given computer, how many back substitutions of the same size can be done per
second?
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2.1 Computer Problems

1. Put together the code fragments in this section to create a Matlab program for “naive’’
Gaussian elimination (meaning no row exchanges allowed). Use it to solve the systems of
Exercise 2.

2. Let H denote the n × n Hilbert matrix, whose (i,j) entry is 1/(i + j − 1). Use the Matlab
program from Computer Problem 1 to solve Hx = b, where b is the vector of all ones, for (a)
n = 2 (b) n = 5 (c) n = 10.

2.2 THE LU FACTORIZATION

Carrying the idea of tableau form one step farther brings us to the matrix form of a system
of equations. Matrix form will save time in the long run by simplifying the algorithms and
their analysis.

2.2.1 Matrix form of Gaussian elimination

The system (2.1) can be written as Ax = b in matrix form, or
[

1 1
3 −4

][
x1
x2

]
=

[
3
2

]
. (2.10)

We will usually denote the coefficient matrix by A and the right-hand-side vector as b.
In the matrix form of the systems of equations, we interpret x as a column vector and Ax

as matrix-vector multiplication. We want to find x such that the vector Ax is equal to the
vector b. Of course, this is equivalent to having Ax and b agree in all components, which
is exactly what is required by the original system (2.1).

The advantage of writing systems of equations in matrix form is that we can use matrix
operations, like matrix multiplication, to keep track of the steps of Gaussian elimination. The
LU factorization is a matrix representation of Gaussian elimination. It consists of writing
the coefficient matrix A as a product of a lower triangular matrix L and an upper triangular
matrix U . The LU factorization is the Gaussian elimination version of a long tradition in
science and engineering—breaking down a complicated object into simpler parts.

DEFINITION 2.2 An m × n matrix L is lower triangular if its entries satisfy lij = 0 for i < j . An m × n

matrix U is upper triangular if its entries satisfy uij = 0 for i > j . ❒

! EXAMPLE 2.4 Find the LU factorization for the matrix A in (2.10).

The elimination steps are the same as for the tableau form seen earlier:
[

1 1
3 −4

]
−→

subtract 3 × row 1
from row 2 −→

[
1 1
0 −7

]
= U. (2.11)

The difference is that now we store the multiplier 3 used in the elimination step. Note
that we have defined U to be the upper triangular matrix showing the result of Gaussian
elimination. Define L to be the 2 × 2 lower triangular matrix with 1’s on the main diagonal
and the multiplier 3 in the (2,1) location:

[
1 0
3 1

]
.
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Then check that

LU =
[

1 0
3 1

][
1 1
0 −7

]
=

[
1 1
3 −4

]
= A. (2.12)

"

We will discuss the reason this works soon, but first we demonstrate the steps with a
3 × 3 example.

! EXAMPLE 2.5 Find the LU factorization of

A =

⎡

⎣
1 2 −1
2 1 −2

−3 1 1

⎤

⎦. (2.13)

This matrix is the matrix of coefficients of system (2.4). The elimination steps
proceed as before:

⎡

⎣
1 2 −1
2 1 −2

−3 1 1

⎤

⎦ −→
subtract 2 × row 1

from row 2 −→

⎡

⎣
1 2 −1
0 −3 0

−3 1 1

⎤

⎦

−→
subtract −3 × row 1

from row 3 −→

⎡

⎣
1 2 −1
0 −3 0
0 7 −2

⎤

⎦

−→
subtract − 7

3 × row 2
from row 3 −→

⎡

⎣
1 2 −1
0 −3 0
0 0 −2

⎤

⎦ = U.

The lower triangular L matrix is formed, as in the previous example, by putting 1’s on the
main diagonal and the multipliers in the lower triangle—in the specific places they were
used for elimination. That is,

L =

⎡

⎣
1 0 0
2 1 0

−3 − 7
3 1

⎤

⎦. (2.14)

Notice that, for example, 2 is the (2,1) entry of L, because it was the multiplier used to
eliminate the (2,1) entry of A. Now check that

⎡

⎣
1 0 0
2 1 0

−3 − 7
3 1

⎤

⎦

⎡

⎣
1 2 −1
0 −3 0
0 0 −2

⎤

⎦ =

⎡

⎣
1 2 −1
2 1 −2

−3 1 1

⎤

⎦ = A. (2.15)

"

The reason that this procedure gives the LU factorization follows from three facts
about lower triangular matrices.

FACT 1 Let Lij (−c) denote the lower triangular matrix whose only nonzero entries are 1’s on the
main diagonal and −c in the (i, j ) position. Then A −→ Lij (−c)A represents the row
operation “subtracting c times row j from row i.’’
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For example, multiplication by L21(−c) yields

A =

⎡

⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤

⎦ −→

⎡

⎣
1 0 0

−c 1 0
0 0 1

⎤

⎦

⎡

⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤

⎦

=

⎡

⎣
a11 a12 a13
a21 − ca11 a22 − ca12 a23 − ca13
a31 a32 a33

⎤

⎦ .
❒

FACT 2 Lij (−c)−1 = Lij (c).
For example,

⎡

⎣
1 0 0

−c 1 0
0 0 1

⎤

⎦
−1

=

⎡

⎣
1 0 0
c 1 0
0 0 1

⎤

⎦ .

Using Facts 1 and 2, we can understand the LU factorization of Example 2.4. Since the
elimination step can be represented by

L21(−3)A =
[

1 0
−3 1

][
1 1
3 −4

]
=

[
1 1
0 −7

]
,

we can multiply both sides on the left by L21(−3)−1 to get

A =
[

1 1
3 −4

]
=

[
1 0
3 1

][
1 1
0 −7

]
,

which is the LU factorization of A. ❒

To handle n × n matrices for n > 2, we need one more fact.

FACT 3 The following matrix product equation holds.
⎡

⎣
1

c1 1
1

⎤

⎦

⎡

⎣
1

1
c2 1

⎤

⎦

⎡

⎣
1

1
c3 1

⎤

⎦ =

⎡

⎣
1

c1 1
c2 c3 1

⎤

⎦ .

This fact allows us to collect the inverse Lij ’s into one matrix, which becomes the L

of the LU factorization. For Example 2.5, this amounts to
⎡

⎣
1

1
7
3 1

⎤

⎦

⎡

⎣
1

1
3 1

⎤

⎦

⎡

⎣
1

−2 1
1

⎤

⎦

⎡

⎣
1 2 −1
2 1 −2

−3 1 1

⎤

⎦ =

⎡

⎣
1 2 −1
0 −3 0
0 0 −2

⎤

⎦ = U

A =

⎡

⎣
1
2 1

1

⎤

⎦

⎡

⎣
1

1
−3 1

⎤

⎦

⎡

⎣
1

1
− 7

3 1

⎤

⎦

⎡

⎣
1 2 −1
0 −3 0
0 0 −2

⎤

⎦

=

⎡

⎣
1
2 1

−3 − 7
3 1

⎤

⎦

⎡

⎣
1 2 −1
0 −3 0
0 0 −2

⎤

⎦ = LU. (2.16)

❒

2.2.2 Back substitution with the LU factorization

Now that we have expressed the elimination step of Gaussian elimination as a matrix product
LU, how do we translate the back-substitution step? More importantly, how do we actually
get the solution x?
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Once L and U are known, the problem Ax = b can be written as LUx = b. Define a
new “auxiliary’’ vector c = Ux. Then back substitution is a two-step procedure:

(a) Solve Lc = b for c.
(b) Solve Ux = c for x.

Both steps are straightforward since L and U are triangular matrices. We demonstrate
with the two examples used earlier.

! EXAMPLE 2.6 Solve system (2.10), using the LU factorization (2.12).

The system has LU factorization
[

1 1
3 −4

]
= LU =

[
1 0
3 1

][
1 1
0 −7

]

from (2.12), and the right-hand side is b = [3,2]. Step (a) is
[

1 0
3 1

][
c1
c2

]
=

[
3
2

]
,

which corresponds to the system

c1 + 0c2 = 3

3c1 + c2 = 2.

Starting at the top, the solutions are c1 = 3,c2 = −7.
Step (b) is

[
1 1
0 −7

][
x1
x2

]
=

[
3

−7

]
,

which corresponds to the system

x1 + x2 = 3

−7x2 = −7.

Starting at the bottom, the solutions are x2 = 1,x1 = 2. This agrees with the “classical’’
Gaussian elimination computation done earlier. "

! EXAMPLE 2.7 Solve system (2.4), using the LU factorization (2.15).

The system has LU factorization
⎡

⎣
1 2 −1
2 1 −2

−3 1 1

⎤

⎦ = LU =

⎡

⎣
1 0 0
2 1 0

−3 − 7
3 1

⎤

⎦

⎡

⎣
1 2 −1
0 −3 0
0 0 −2

⎤

⎦

from (2.15), and b = (3,3,−6). The Lc = b step is
⎡

⎣
1 0 0
2 1 0

−3 − 7
3 1

⎤

⎦

⎡

⎣
c1
c2
c3

⎤

⎦ =

⎡

⎣
3
3

−6

⎤

⎦ ,

which corresponds to the system

c1 = 3

2c1 + c2 = 3

−3c1 − 7
3

c2 + c3 = −6.
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Starting at the top, the solutions are c1 = 3,c2 = −3,c3 = −4.
The Ux = c step is

⎡

⎣
1 2 −1
0 −3 0
0 0 −2

⎤

⎦

⎡

⎣
x1
x2
x3

⎤

⎦ =

⎡

⎣
3

−3
−4

⎤

⎦ ,

which corresponds to the system

x1 + 2x2 − x3 = 3

−3x2 = −3

−2x3 = −4,

and is solved from the bottom up to give x = [3,1,2]. "

2.2.3 Complexity of the LU factorization

Now that we have learned the “how’’ of the LU factorization, here are a few words about
“why.’’ Classical Gaussian elimination involves both A and b in the elimination step of
the computation. This is by far the most expensive part of the process, as we have seen.
Now, suppose that we need to solve a number of different problems with the same A and
different b. That is, we are presented with the set of problems

Ax = b1

Ax = b2
...

Ax = bk

with various right-hand side vectors bi . Classical Gaussian elimination will require approx-
imately 2kn3/3 operations, where A is an n × n matrix, since we must start over at the
beginning for each problem. With the LU approach, on the other hand, the right-hand-side b

doesn’t enter the calculations until the elimination (the A = LU factorization) is finished.
By insulating the calculations involving A from b, we can solve the previous set of equa-
tions with only one elimination, followed by two back substitutions (Lc = b,Ux = c) for
each new b. The approximate number of operations with the LU approach is, therefore,
2n3/3 + 2kn2. When n2 is small compared with n3 (i.e., when n is large), this is a significant
difference.

Even when k = 1, there is no extra computational work done by the A = LU

approach, compared with classical Gaussian elimination. Although there appears to be

Complexity The main reason for the LU factorization approach to Gaussian elimina-

tion is the ubiquity of problems of form Ax = b1,Ax = b2, . . . .Often,A is a so-called structure

matrix, depending only on the design of a mechanical or dynamic system, and b corresponds

to a “loading vector.’’ In structural engineering, the loading vector gives the applied forces

at various points on the structure. The solution x then corresponds to the stresses on the

structure induced by that particular combination of loadings. Repeated solution of Ax = b for

various b’s would be used to test potential structural designs. Reality Check 2 carries out this

analysis for the loading of a beam.
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an extra back substitution that was not part of classical Gaussian elimination, these “extra’’
calculations exactly replace the calculations that were saved during elimination because the
right-hand-side b was absent.

If all bi were available at the outset, we could solve all k problems simultaneously in
the same number of operations. But in typical applications, we are asked to solve some of
the Ax = bi problems before other bi’s are available. The LU approach allows efficient
handling of all present and future problems that involve the same coefficient matrix A.

! EXAMPLE 2.8 Assume that it takes one second to factorize the 300 × 300 matrix A into A = LU . How
many problems Ax = b1, . . . ,Ax = bk can be solved in the next second?

The two back substitutions for each bi require a total of 2n2 operations. Therefore,
the approximate number of bi that can be handled per second is

2n3

3

2n2 = n

3
= 100. "

The LU factorization is a significant step forward in our quest to run Gaussian elimination
efficiently. Unfortunately, not every matrix allows such a factorization.

! EXAMPLE 2.9 Prove that A =
[

0 1
1 1

]
does not have an LU factorization.

The factorization must have the form
[

0 1
1 1

]
=

[
1 0
a 1

][
b c

0 d

]
=

[
b c

ab ac + d

]
.

Equating coefficients yields b = 0 and ab = 1, a contradiction. "

The fact that not all matrices have an LU factorization means that more work is required
before we can declare the LU factorization a general Gaussian elimination algorithm.
The related problem of swamping is described in the next section. In Section 2.4, the
PA= LU factorization is introduced, which will overcome both problems.

2.2 Exercises

1. Find the LU factorization of the given matrices. Check by matrix multiplication.

(a)

[
1 2
3 4

]

(b)

[
1 3
2 2

]

(c)

[
3 −4

−5 2

]

2. Find the LU factorization of the given matrices. Check by matrix multiplication.

(a)

⎡

⎢⎣
3 1 2
6 3 4
3 1 5

⎤

⎥⎦ (b)

⎡

⎢⎣
4 2 0
4 4 2
2 2 3

⎤

⎥⎦ (c)

⎡

⎢⎢⎢⎣

1 −1 1 2
0 2 1 0
1 3 4 4
0 2 1 −1

⎤

⎥⎥⎥⎦

3. Solve the system by finding the LU factorization and then carrying out the two-step back
substitution.

(a)

[
3 7
6 1

][
x1

x2

]

=
[

1
−11

]

(b)

[
2 3
4 7

][
x1

x2

]

=
[

1
3

]
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4. Solve the system by finding the LU factorization and then carrying out the two-step back
substitution.

(a)

⎡

⎢⎣
3 1 2
6 3 4
3 1 5

⎤

⎥⎦

⎡

⎢⎣
x1

x2

x3

⎤

⎥⎦ =

⎡

⎢⎣
0
1
3

⎤

⎥⎦ (b)

⎡

⎢⎣
4 2 0
4 4 2
2 2 3

⎤

⎥⎦

⎡

⎢⎣
x1

x2

x3

⎤

⎥⎦ =

⎡

⎢⎣
2
4
6

⎤

⎥⎦

5. Solve the equation Ax = b, where

A =

⎡

⎢⎢⎢⎣

1 0 0 0
0 1 0 0
1 3 1 0
4 1 2 1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

2 1 0 0
0 1 2 0
0 0 −1 1
0 0 0 1

⎤

⎥⎥⎥⎦
and b =

⎡

⎢⎢⎢⎣

1
1
2
0

⎤

⎥⎥⎥⎦
.

6. Given the 1000 × 1000 matrix A, your computer can solve the 500 problems
Ax = b1, . . . ,Ax = b500 in exactly one minute, using A = LU factorization methods. How
much of the minute was the computer working on the A = LU factorization? Round your
answer to the nearest second.

7. Assume that your computer can solve 1000 problems of type Ux = c, where U is an
upper-triangular 500 × 500 matrix, per second. Estimate how long it will take to solve a full
5000 × 5000 matrix problem Ax = b. Answer in minutes and seconds.

8. Assume that your computer can solve a 2000 × 2000 linear system Ax = b in 0.1 second.
Estimate the time required to solve 100 systems of 8000 equations in 8000 unknowns with the
same coefficient matrix, using the LU factorization method.

9. Let A be an n × n matrix. Assume that your computer can solve 100 problems
Ax = b1, . . . ,Ax = b100 by the LU method in the same amount of time it takes to solve the
first problem Ax = b0. Estimate n.

2.2 Computer Problems

1. Use the code fragments for Gaussian elimination in the previous section to write a Matlab
script to take a matrix A as input and output L and U . No row exchanges are allowed—the
program should be designed to shut down if it encounters a zero pivot. Check your program by
factoring the matrices in Exercise 2.

2. Add two-step back substitution to your script from Computer Problem 1, and use it to solve the
systems in Exercise 4.

2.3 SOURCES OF ERROR

There are two major potential sources of error in Gaussian elimination as we have described
it so far. The concept of ill-conditioning concerns the sensitivity of the solution to the input
data. We will discuss condition number, using the concepts of backward and forward error
from Chapter 1. Very little can be done to avoid errors in computing the solution of ill-
conditioned matrix equations, so it is important to try to recognize and avoid ill-conditioned
matrices when possible. The second source of error is swamping, which can be avoided
in the large majority of problems by a simple fix called partial pivoting, the subject of
Section 2.4.
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The concept of vector and matrix norms are introduced next to measure the size of
errors, which are now vectors. We will give the main emphasis to the so-called infinity
norm.

2.3.1 Error magnification and condition number

In Chapter 1, we found that some equation-solving problems show a great difference
between backward and forward error. The same is true for systems of linear equations.
In order to quantify the errors, we begin with a definition of the infinity norm of a vector.

DEFINITION 2.3 The infinity norm, or maximum norm, of the vector x = (x1, . . . ,xn) is ||x||∞ =
max |xi |, i = 1, . . . ,n, that is, the maximum of the absolute values of the components
of x. ❒

The backward and forward errors are defined in analogy with Definition 1.8. Backward
error represents differences in the input, or problem data side, and forward error represents
differences in the output, solution side of the algorithm.

DEFINITION 2.4 Let xa be an approximate solution of the linear system Ax = b. The residual is the vector
r = b − Axa . The backward error is the norm of the residual ||b − Axa||∞, and the
forward error is ||x − xa||∞. ❒

! EXAMPLE 2.10 Find the backward and forward errors for the approximate solution xa = [1,1] of the system
[

1 1
3 −4

][
x1
x2

]
=

[
3
2

]
.

The correct solution is x = [2,1]. In the infinity norm, the backward error is

||b − Axa||∞ =
∣∣∣∣

∣∣∣∣

[
3
2

]
−

[
1 1
3 −4

][
1
1

]∣∣∣∣

∣∣∣∣
∞

=
∣∣∣∣

∣∣∣∣

[
1
3

]∣∣∣∣

∣∣∣∣
∞

= 3,

and the forward error is

||x − xa||∞ =
∣∣∣∣

∣∣∣∣

[
2
1

]
−

[
1
1

]∣∣∣∣

∣∣∣∣
∞

=
∣∣∣∣

∣∣∣∣

[
1
0

]∣∣∣∣

∣∣∣∣
∞

= 1. "

In other cases, the backward and forward errors can be of different orders of magnitude.

! EXAMPLE 2.11 Find the forward and backward errors for the approximate solution [−1,3.0001] of the
system

x1 + x2 = 2

1.0001x1 + x2 = 2.0001. (2.17)

First, find the exact solution [x1,x2]. Gaussian elimination consists of the steps

[
1 1 | 2
1.0001 1 | 2.0001

]
−→

subtract 1.0001 × row 1
from row 2 −→

[
1 1 | 2
0 −0.0001 | −0.0001

]
.
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Solving the resulting equations

x1 + x2 = 2

−0.0001x2 = −0.0001

yields the solution [x1,x2] = [1,1].
The backward error is the infinity norm of the vector

b − Axa =
[

2
2.0001

]
−

[
1 1
1.0001 1

][ −1
3.0001

]

=
[

2
2.0001

]
−

[
2.0001
2

]
=

[ −0.0001
0.0001

]
,

which is 0.0001. The forward error is the infinity norm of the difference

x − xa =
[

1
1

]
−

[ −1
3.0001

]
=

[
2
−2.0001

]
,

which is 2.0001. "

Figure 2.2 helps to clarify how there can be a small backward error and large forward
error at the same time. Even though the “approximate root’’ (−1,3.0001) is relatively far
from the exact root (1,1), it nearly lies on both lines. This is possible because the two lines
are almost parallel. If the lines are far from parallel, the forward and backward errors will
be closer in magnitude.

y

x

1

2

3

–1 1

2

Figure 2.2 The geometry behind Example 2.11. System (2.17) is represented by

the lines x2 = 2 – x1 and x2 = 2.0001 – 1.0001x1, which intersect at (1,1). The point

( –1, 3.0001) nearly misses lying on both lines and being a solution. The differences

between the lines is exaggerated in the figure—they are actually much closer.

Denote the residual by r = b − Axa . The relative backward error of system Ax = b

is defined to be

||r||∞
||b||∞

,

and the relative forward error is

||x − xa||∞
||x||∞

.
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Conditioning Condition number is a theme that runs throughout numerical analy-

sis. In the discussions of the Wilkinson polynomial in Chapter 1, we found how to compute the

error magnification factor for root-finding, given small perturbations of an equation f (x) = 0.

For matrix equations Ax = b, there is a similar error magnification factor, and the maximum

possible factor is given by cond(A) = ||A|| ||A−1||.

The error magnification factor for Ax = b is the ratio of the two, or

error magnification factor = relative forward error
relative backward error

=

||x − xa||∞
||x||∞
||r||∞
||b||∞

. (2.18)

For system (2.17), the relative backward error is

0.0001
2.0001

≈ 0.00005 = 0.005%,

and the relative forward error is

2.0001
1

= 2.0001 ≈ 200%.

The error magnification factor is 2.0001/(0.0001/2.0001) = 40004.0001.
In Chapter 1, we defined the concept of condition number to be the maximum error

magnification over a prescribed range of input errors. The “prescribed range’’ depends on
the context. Now we will be more precise about it for the current context of systems of
linear equations. For a fixed matrix A, consider solving Ax = b for various vectors b. In
this context, b is the input and the solution x is the output. A small change in input is a
small change in b, which has an error magnification factor. We therefore make the following
definition:

DEFINITION 2.5 The condition number of a square matrix A, cond(A), is the maximum possible error
magnification factor for solving Ax = b, over all right-hand sides b. ❒

Surprisingly, there is a compact formula for the condition number of a square matrix.
Analogous to the norm of a vector, define the matrix norm of an n × n matrix A as

||A||∞ = maximum absolute row sum, (2.19)

that is, total the absolute values of each row, and assign the maximum of these n numbers
to be the norm of A.

THEOREM 2.6 The condition number of the n × n matrix A is

cond(A) = ||A|| · ||A−1||. #

Theorem 2.6, proved below, allows us to calculate the condition number of the coeffi-
cient matrix in Example 2.11. The norm of

A =
[

1 1
1.0001 1

]
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is ||A|| = 2.0001, according to (2.19). The inverse of A is

A−1 =
[ −10000 10000

10001 −10000

]
,

which has norm ||A−1|| = 20001. The condition number of A is

cond(A) = (2.0001)(20001) = 40004.0001.

This is exactly the error magnification we found in Example 2.11, which evidently achieves
the worst case, defining the condition number. The error magnification factor for any other b

in this system will be less than or equal to 40004.0001. Exercise 3 asks for the computation
of some of the other error magnification factors.

The significance of the condition number is the same as in Chapter 1. Error magnifica-
tion factors of the magnitude cond(A) are possible. In floating point arithmetic, the relative
backward error cannot be expected to be less than ϵmach, since storing the entries of b already
causes errors of that size.According to (2.18), relative forward errors of size ϵmach · cond(A)

are possible in solving Ax = b. In other words, if cond(A) ≈ 10k , we should prepare to
lose k digits of accuracy in computing x.

In Example 2.11, cond(A) ≈ 4 × 104, so in double precision we should expect about
16 − 4 = 12 correct digits in the solution x. We can test this by introducing Matlab’s best
general-purpose linear equation solver: \.

In Matlab, the backslash command x = A\b solves the linear system by using an
advanced version of the LU factorization that we will explore in Section 2.4. For now, we
will use it as an example of what we can expect from the best possible algorithm operating in
floating point arithmetic. The following Matlab commands deliver the computer solution
xa of Example 2.10:

>> A = [1 1;1.0001 1]; b=[2;2.0001];
>> xa = A\b
xa =

1.00000000000222
0.99999999999778

Compared with the correct solution x = [1,1], the computed solution has about 11 correct
digits, close to the prediction from the condition number.

The Hilbert matrix H , with entries Hij = 1/(i + j − 1), is notorious for its large
condition number.

! EXAMPLE 2.12 Let H denote the n × n Hilbert matrix. Use Matlab’s \ to compute the solution of Hx = b,
where b = H · [1, . . . ,1]T , for n = 6 and 10.

The right-hand side b is chosen to make the correct solution the vector of n ones,
for ease of checking the forward error. Matlab finds the condition number (in the infinity
norm) and computes the solution:

>> n=6;H=hilb(n);
>> cond(H,inf)
ans =

2.907027900294064e+007
>> b=H*ones(n,1);
>> xa=H\b
xa =

0.99999999999923
1.00000000002184
0.99999999985267
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1.00000000038240
0.99999999957855
1.00000000016588

The condition number of about 107 predicts 16 − 7 = 9 correct digits in the worst case;
there are about 9 correct in the computed solution. Now repeat with n = 10:

>> n=10;H=hilb(n);
>> cond(H,inf)
ans =

3.535371683074594e+013
>> b=H*ones(n,1);
>> xa=H\b
xa =

0.99999999875463
1.00000010746631
0.99999771299818
1.00002077769598
0.99990094548472
1.00027218303745
0.99955359665722
1.00043125589482
0.99977366058043
1.00004976229297

Since the condition number is 1013, only 16 − 13 = 3 correct digits appear in the solution.
For n slightly larger than 10, the condition number of the Hilbert matrix is larger

than 1016, and no correct digits can be guaranteed in the computed xa . "

Even excellent software may have no defense against an ill-conditioned problem.
Increased precision helps; in extended precision, ϵmach = 2−64 ≈ 5.42 × 10−20, and we
start with 20 digits instead of 16. However, the condition number of the Hilbert matrix
grows fast enough with n to eventually disarm any reasonable finite precision.

Fortunately, the large condition numbers of the Hilbert matrix are unusual. Well-
conditioned linear systems of n equations in n unknowns are routinely solved in double
precision for n = 104 and larger. However, it is important to know that ill-conditioned
problems exist, and that the condition number is useful for diagnosing that possibility. See
Computer Problems 1–4 for more examples of error magnification and condition numbers.

The infinity vector norm was used in this section as a simple way to assign a length to
a vector. It is an example of a vector norm ||x||, which satisfies three properties:

(i) ||x|| ≥ 0 with equality if and only if x = [0, . . . ,0]
(ii) for each scalar α and vector x, ||αx|| = |α| · ||x||
(iii) for vectors x,y, ||x + y|| ≤ ||x|| + ||y||.

In addition, ||A||∞ is an example of a matrix norm, which satisfies three similar
properties:

(i) ||A|| ≥ 0 with equality if and only if A = 0
(ii) for each scalar α and matrix A, ||αA|| = |α| · ||A||
(iii) for matrices A,B, ||A + B|| ≤ ||A|| + ||B||.

As a different example, the vector 1-norm of the vector x = [x1, . . . ,xn] is ||x||1 =
|x1| + · · · + |xn|. The matrix 1-norm of the n × n matrix A is ||A||1 = maximum absolute
column sum—that is, the maximum of the 1-norms of the column vectors. See Exercises 9
and 10 for verification that these definitions define norms.



2.3 Sources of Error | 91

The error magnification factor, condition number, and matrix norm just discussed can
be defined for any vector and matrix norm. We will restrict our attention to matrix norms
that are operator norms, meaning that they can be defined in terms of a particular vector
norm as

||A|| = max
||Ax||
||x|| ,

where the maximum is taken over all nonzero vectors x. Then, by definition, the matrix
norm is consistent with the associated vector norm, in the sense that

||Ax|| ≤ ||A|| · ||x|| (2.20)

for any matrix A and vector x. See Exercises 10 and 11 for verification that the norm ||A||∞
defined by (2.20) is not only a matrix norm, but also the operator norm for the infinity vector
norm.

This fact allows us to prove the aforementioned simple expression for cond(A). The
proof works for the infinity norm and any other operator norm.

Proof of Theorem 2.6. We use the equalities A(x − xa) = r and Ax = b. By consis-
tency property (2.20),

||x − xa|| ≤ ||A−1|| · ||r||

and

1
||b|| ≥ 1

||A|| ||x|| .

Putting the two inequalities together yields

||x − xa||
||x|| ≤ ||A||

||b|| ||A−1|| · ||r||,

showing that ||A|| ||A−1|| is an upper bound for all error magnification factors. Second,
we can show that the quantity is always attainable. Choose x such that ||A|| = ||Ax||/||x||
and r such that ||A−1|| = ||A−1r||/||r||, both possible by the definition of operator matrix
norm. Set xa = x − A−1r so that x − xa = A−1r . Then it remains to check the equality

||x − xa||
||x|| = ||A−1r||

||x|| = ||A−1|| ||r|| ||A||
||Ax||

for this particular choice of x and r .

2.3.2 Swamping

A second significant source of error in classical Gaussian elimination is much easier to fix.
We demonstrate swamping with the next example.

! EXAMPLE 2.13 Consider the system of equations

10−20x1 + x2 = 1

x1 + 2x2 = 4.

We will solve the system three times: once with complete accuracy, second where we mimic
a computer following IEEE double precision arithmetic, and once more where we exchange
the order of the equations first.
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1. Exact solution. In tableau form, Gaussian elimination proceeds as

[
10−20 1 | 1

1 2 | 4

]
−→

subtract 1020× row 1
from row 2 −→

[
10−20 1 | 1

0 2 − 1020 | 4 − 1020

]
.

The bottom equation is

(2 − 1020)x2 = 4 − 1020 −→ x2 = 4 − 1020

2 − 1020 ,

and the top equation yields

10−20x1+
4 − 1020

2 − 1020 = 1

x1 = 1020
(

1 − 4 − 1020

2 − 1020

)

x1=
−2 × 1020

2 − 1020 .

The exact solution is

[x1,x2] =
[

2 × 1020

1020 − 2
,

4 − 1020

2 − 1020

]
≈ [2,1].

2. IEEE double precision. The computer version of Gaussian elimination proceeds slightly
differently:

[
10−20 1 | 1

1 2 | 4

]
−→

subtract 1020× row 1
from row 2 −→

[
10−20 1 | 1

0 2 − 1020 | 4 − 1020

]
.

In IEEE double precision, 2 − 1020 is the same as −1020, due to rounding. Similarly, 4 − 1020

is stored as −1020. Now the bottom equation is

−1020x2 = −1020 −→ x2 = 1.

The machine arithmetic version of the top equation becomes

10−20x1 + 1 = 1,

so x1 = 0. The computed solution is exactly

[x1,x2] = [0,1].
This solution has large relative error compared with the exact solution.

3. IEEE double precision, after row exchange. We repeat the computer version of Gaussian
elimination, after changing the order of the two equations:

[
1 2 | 4

10−20 1 | 1

]
−→

subtract 10−20× row 1
from row 2

−→
[

1 2 | 4
0 1 − 2 × 10−20 | 1 − 4 × 10−20

]
.

In IEEE double precision, 1 − 2 × 10−20 is stored as 1 and 1 − 4 × 10−20 is stored as 1. The
equations are now

x1 + 2x2 = 4
x2 = 1,
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which yield the computed solution x1 = 2 and x2 = 1. Of course, this is not the exact answer,
but it is correct up to approximately 16 digits, which is the most we can ask from a
computation that uses 52-bit floating point numbers.

The difference between the last two calculations is significant. Version 3 gave us an
acceptable solution, while version 2 did not. An analysis of what went wrong with version 2
leads to considering the multiplier 1020 that was used for the elimination step. The effect
of subtracting 1020 times the top equation from the bottom equation was to overpower, or
“swamp,’’ the bottom equation. While there were originally two independent equations,
or sources of information, after the elimination step in version 2, there are essentially two
copies of the top equation. Since the bottom equation has disappeared, for all practical
purposes, we cannot expect the computed solution to satisfy the bottom equation; and it
does not.

Version 3, on the other hand, completes elimination without swamping, because
the multiplier is 10−20.After elimination, the original two equations are still largely existent,
slightly changed into triangular form. The result is an approximate solution that is much
more accurate. "

The moral of Example 2.13 is that multipliers in Gaussian elimination should be kept
as small as possible to avoid swamping. Fortunately, there is a simple modification to naive
Gaussian elimination that forces the absolute value of multipliers to be no larger than 1.
This new protocol, which involves judicious row exchanges in the tableau, is called partial
pivoting, the topic of the next section.

2.3 Exercises

1. Find the norm ||A||∞ of each of the following matrices:

(a) A =
[

1 2
3 4

]

(b) A =

⎡

⎢⎣
1 5 1

−1 2 −3
1 −7 0

⎤

⎥⎦ .

2. Find the (infinity norm) condition number of

(a) A =
[

1 2
3 4

]

(b) A =
[

1 2.01
3 6

]

(c) A =
[

6 3
4 2

]

.

3. Find the forward and backward errors, and the error magnification factor (in the infinity norm)
for the following approximate solutions xa of the system in Example 2.11: (a) [−1,3]
(b) [0,2] (c) [2,2] (d) [−2,4] (e) [−2,4.0001].

4. Find the forward and backward errors and error magnification factor for the following
approximate solutions of the system x1 + 2x2 = 1,2x1 + 4.01x2 = 2: (a) [−1,1]
(b) [3,−1] (c) [2,−1/2].

5. Find the relative forward and backward errors and error magnification factor for the following
approximate solutions of the system x1 − 2x2 = 3,3x1 − 4x2 = 7: (a) [−2,−4]
(b) [−2,−3] (c) [0,−2] (d) [−1,−1] (e) What is the condition number of the coefficient
matrix?

6. Find the relative forward and backward errors and error magnification factor for the following
approximate solutions of the system x1 + 2x2 = 3,2x1 + 4.01x2 = 6.01: (a) [−10,6]
(b) [−100,52] (c) [−600,301] (d) [−599,301] (e) What is the condition number of the
coefficient matrix?
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7. Find the norm ||H ||∞ of the 5 × 5 Hilbert matrix.

8. (a) Find the condition number of the coefficient matrix in the system[
1 1
1 + δ 1

][
x1

x2

]

=
[

2
2 + δ

]

as a function of δ > 0. (b) Find the error magnification

factor for the approximate root xa = [−1,3 + δ].
9. (a) Prove that the infinity norm ||x||∞ is a vector norm. (b) Prove that the 1-norm ||x||1 is a

vector norm.

10. (a) Prove that the infinity norm ||A||∞ is a matrix norm. (b) Prove that the 1-norm ||A||1 is a
matrix norm.

11. Prove that the matrix infinity norm is the operator norm of the vector infinity norm.

12. Prove that the matrix 1-norm is the operator norm of the vector 1-norm.

13. For the matrices in Exercise 1, find a vector x satisfying ||A||∞ = ||Ax||∞/||x||∞.

14. For the matrices in Exercise 1, find a vector x satisfying ||A||1 = ||Ax||1/||x||1.

15. Find the LU factorization of

A =

⎡

⎢⎣
10 20 1
1 1.99 6
0 50 1

⎤

⎥⎦ .

What is the largest magnitude multiplier lij needed?

2.3 Computer Problems

1. For the n × n matrix with entries Aij = 5/(i + 2j − 1), set x = [1, . . . ,1]T and b = Ax. Use
the Matlab program from Computer Problem 2.1.1 or Matlab’s backslash command to
compute xc, the double precision computed solution. Find the infinity norm of the forward
error and the error magnification factor of the problem Ax = b, and compare it with the
condition number of A: (a) n = 6 (b) n = 10.

2. Carry out Computer Problem 1 for the matrix with entries Aij = 1/(|i − j | + 1).

3. Let A be the n × n matrix with entries Aij = |i − j | + 1. Define x = [1, . . . ,1]T and b = Ax.
For n = 100,200,300,400, and 500, use the Matlab program from Computer Problem 2.1.1
or Matlab’s backslash command to compute xc, the double precision computed solution.
Calculate the infinity norm of the forward error for each solution. Find the five error
magnification factors of the problems Ax = b, and compare with the corresponding condition
numbers.

4. Carry out the steps of Computer Problem 3 for the matrix with entries
Aij =

√
(i − j)2 + n/10.

5. For what values of n does the solution in Computer Problem 1 have no correct significant
digits?

6. Use the Matlab program from Computer Problem 2.1.1 to carry out double precision
implementations of versions 2 and 3 of Example 2.13, and compare with the theoretical results
found in the text.
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2.4 THE PA = LU FACTORIZATION

The form of Gaussian elimination considered so far is often called “naive,’’ because of two
serious difficulties: encountering a zero pivot and swamping. For a nonsingular matrix, both
can be avoided with an improved algorithm. The key to this improvement is an efficient
protocol for exchanging rows of the coefficient matrix, called partial pivoting.

2.4.1 Partial pivoting

At the start of classical Gaussian elimination of n equations in n unknowns, the first step is to
use the diagonal element a11 as a pivot to eliminate the first column. The partial pivoting
protocol consists of comparing numbers before carrying out each elimination step. The
largest entry of the first column is located, and its row is swapped with the pivot row, in
this case the top row.

In other words, at the start of Gaussian elimination, partial pivoting asks that we select
the pth row, where

|ap1| ≥ |ai1| (2.21)

for all 1 ≤ i ≤ n, and exchange rows 1 and p. Next, elimination of column 1 proceeds as
usual, using the “new’’ version of a11 as the pivot. The multiplier used to eliminate ai1
will be

mi1 = ai1

a11

and |mi1| ≤ 1.
The same check is applied to every choice of pivot during the algorithm. When deciding

on the second pivot, we start with the current a22 and check all entries directly below. We
select the row p such that

|ap2| ≥ |ai2|
for all 2 ≤ i ≤ n, and if p ̸= 2, rows 2 and p are exchanged. Row 1 is never involved in
this step. If |a22| is already the largest, no row exchange is made.

The protocol applies to each column during elimination. Before eliminating column
k, the p with k ≤ p ≤ n and largest |apk| is located, and rows p and k are exchanged if
necessary before continuing with the elimination. Note that using partial pivoting ensures
that all multipliers, or entries of L, will be no greater than 1 in absolute value. With this
minor change in the implementation of Gaussian elimination, the problem of swamping
illustrated in Example 2.13 is completely avoided.

! EXAMPLE 2.14 Apply Gaussian elimination with partial pivoting to solve the system (2.1).

The equations can be written in tableau form as
[

1 1 | 3
3 −4 | 2

]
.

According to partial pivoting, we compare |a11| = 1 with all entries below it, in this case
the single entry a21 = 3. Since |a21| > |a11|, we must exchange rows 1 and 2. The new
tableau is

[
3 −4 | 2
1 1 | 3

]
−→

subtract 1
3× row 1

from row 2 −→
[

3 −4 | 2
0 7

3 | 7
3

]
.
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After back substitution, the solution is x2 = 1 and then x1 = 2, as we found earlier. When
we solved this system the first time, the multiplier was 3, but under partial pivoting this
would never occur. "

! EXAMPLE 2.15 Apply Gaussian elimination with partial pivoting to solve the system

x1 − x2 + 3x3 = −3

−x1 − 2x3 = 1

2x1 + 2x2 + 4x3 = 0.

This example is written in tableau form as
⎡

⎣
1 −1 3 | −3

−1 0 −2 | 1
2 2 4 | 0

⎤

⎦ .

Under partial pivoting we compare |a11| = 1 with |a21| = 1 and |a31| = 2, and choose a31
for the new pivot. This is achieved through an exchange of rows 1 and 3:
⎡

⎣
1 −1 3 | −3

−1 0 −2 | 1
2 2 4 | 0

⎤

⎦ −→
exchange row 1

and row 3 −→

⎡

⎣
2 2 4 | 0

−1 0 −2 | 1
1 −1 3 | −3

⎤

⎦

−→
subtract − 1

2× row 1
from row 2 −→

⎡

⎣
2 2 4 | 0
0 1 0 | 1
1 −1 3 | −3

⎤

⎦

−→
subtract 1

2× row 1
from row 3 −→

⎡

⎣
2 2 4 | 0
0 1 0 | 1
0 −2 1 | −3

⎤

⎦ .

Before eliminating column 2 we must compare the current |a22| with the current |a32|.
Because the latter is larger, we again switch rows:
⎡

⎣
2 2 4 | 0
0 1 0 | 1
0 −2 1 | −3

⎤

⎦ −→
exchange row 2

and row 3 −→

⎡

⎣
2 2 4 | 0
0 −2 1 | −3
0 1 0 | 1

⎤

⎦

−→
subtract − 1

2× row 2
from row 3 −→

⎡

⎣
2 2 4 | 0
0 −2 1 | −3
0 0 1

2 | − 1
2

⎤

⎦ .

Note that all three multipliers are less than 1 in absolute value.
The equations are now simple to solve. From

1
2

x3 = −1
2

−2x2 + x3 = −3

2x1 + 2x2 + 4x3 = 0,

we find that x = [1,1,−1]. "

Notice that partial pivoting also solves the problem of zero pivots. When a potential
zero pivot is encountered, for example, if a11 = 0, it is immediately exchanged for a nonzero
pivot somewhere in its column. If there is no such nonzero entry at or below the diagonal
entry, then the matrix is singular and Gaussian elimination will fail to provide a solution
anyway.
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2.4.2 Permutation matrices

Before showing how row exchanges can be used with the LU factorization approach to
Gaussian elimination, we will discuss the fundamental properties of permutation matrices.

DEFINITION 2.7 A permutation matrix is an n × n matrix consisting of all zeros, except for a single 1 in
every row and column. ❒

Equivalently, a permutation matrix P is created by applying arbitrary row exchanges
to the n × n identity matrix (or arbitrary column exchanges). For example,

[
1 0
0 1

]
,

[
0 1
1 0

]

are the only 2 × 2 permutation matrices, and
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ ,

⎡

⎣
0 1 0
1 0 0
0 0 1

⎤

⎦ ,

⎡

⎣
1 0 0
0 0 1
0 1 0

⎤

⎦ ,

⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦ ,

⎡

⎣
0 0 1
1 0 0
0 1 0

⎤

⎦ ,

⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦

are the six 3 × 3 permutation matrices.
The next theorem tells us at a glance what action a permutation matrix causes when

multiplied on the left of another matrix.

THEOREM 2.8 Fundamental Theorem of Permutation Matrices. Let P be the n × n permutation matrix
formed by a particular set of row exchanges applied to the identity matrix. Then, for
any n × n matrix A, P A is the matrix obtained by applying exactly the same set of row
exchanges to A. #

For example, the permutation matrix
⎡

⎣
1 0 0
0 0 1
0 1 0

⎤

⎦

is formed by exchanging rows 2 and 3 of the identity matrix. Multiplying an arbitrary matrix
on the left with P has the effect of exchanging rows 2 and 3:

⎡

⎣
1 0 0
0 0 1
0 1 0

⎤

⎦

⎡

⎣
a b c

d e f

g h i

⎤

⎦ =

⎡

⎣
a b c

g h i

d e f

⎤

⎦ .

A good way to remember Theorem 2.8 is to imagine multiplying P times the identity
matrix I :

⎡

⎣
1 0 0
0 0 1
0 1 0

⎤

⎦

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ =

⎡

⎣
1 0 0
0 0 1
0 1 0

⎤

⎦ .

There are two different ways to view this equality: first, as multiplication by the iden-
tity matrix (so we get the permutation matrix on the right); second, as the permutation
matrix acting on the rows of the identity matrix. The content of Theorem 2.8 is that
the row exchanges caused by multiplication by P are exactly the ones involved in the
construction of P .
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2.4.3 PA = LU factorization

In this section, we put together everything we know about Gaussian elimination into the
PA= LU factorization. This is the matrix formulation of elimination with partial pivot-
ing. The PA= LU factorization is the established workhorse for solving systems of linear
equations.

As its name implies, the PA= LU factorization is simply the LU factorization of a
row-exchanged version of A. Under partial pivoting, the rows that need exchanging are not
known at the outset, so we must be careful about fitting the row exchange information into
the factorization. In particular, we need to keep track of previous multipliers when a row
exchange is made. We begin with an example.

! EXAMPLE 2.16 Find the PA= LU factorization of the matrix

A =

⎡

⎣
2 1 5
4 4 −4
1 3 1

⎤

⎦ .

First, rows 1 and 2 need to be exchanged, according to partial pivoting:

⎡

⎣
2 1 5
4 4 −4
1 3 1

⎤

⎦ −→

P =

⎡

⎣
0 1 0
1 0 0
0 0 1

⎤

⎦

exchange rows 1 and 2−→

⎡

⎣
4 4 −4
2 1 5
1 3 1

⎤

⎦ .

We will use the permutation matrix P to keep track of the cumulative permutation of rows
that have been done along the way. Now we perform two row operations, namely,

−→
subtract 1

2× row 1
from row 2 −→

⎡

⎢⎣
4 4 −4
1
2 −1 7
1 3 1

⎤

⎥⎦ −→
subtract 1

4× row 1
from row 3 −→

⎡

⎢⎢⎣

4 4 −4
1
2 −1 7

1
4 2 2

⎤

⎥⎥⎦ ,

to eliminate the first column. We have done something new—instead of putting only a zero
in the eliminated position, we have made the zero a storage location. Inside the zero at the
(i,j) position, we store the multiplier mij that we used to eliminate that position. We do
this for a reason. This is the mechanism by which the multipliers will stay with their row,
in case future row exchanges are made.

Next we must make a comparison to choose the second pivot. Since |a22| = 1 <

2 = |a32|, a row exchange is required before eliminating the second column. Notice that
the previous multipliers move along with the row exchange:

−→

P =

⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦

exchange rows 2 and 3−→

⎡

⎢⎢⎣

4 4 −4
1
4 2 2

1
2 −1 7

⎤

⎥⎥⎦

Finally, the elimination ends with one more row operation:

−→
subtract − 1

2× row 2
from row 3 −→

⎡

⎢⎢⎢⎣

4 4 −4
1
4 2 2

1
2 − 1

2 8

⎤

⎥⎥⎥⎦
.
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This is the finished elimination. Now we can read off the PA= LU factorization:
⎡

⎢⎢⎣

0 1 0
0 0 1
1 0 0

⎤

⎥⎥⎦

P

⎡

⎢⎢⎣

2 1 5
4 4 −4
1 3 1

⎤

⎥⎥⎦=

A

⎡

⎢⎢⎣

1 0 0
1
4 1 0
1
2 − 1

2 1

⎤

⎥⎥⎦

L

⎡

⎢⎢⎣

4 4 −4
0 2 2
0 0 8

⎤

⎥⎥⎦

U (2.22)

The entries of L are sitting inside the zeros in the lower triangle of the matrix (below the
main diagonal), and U comes from the upper triangle. The final (cumulative) permutation
matrix serves as P . "

Using the PA= LU factorization to solve a system of equations Ax = b is just a slight
variant of the A = LU version. Multiply through the equation Ax = b by P on the left, and
then proceed as before:

P Ax = P b

LUx = P b.
(2.23)

Solve

1. Lc =P b for c.

2. Ux=c for x.
(2.24)

The important point, as mentioned earlier, is that the expensive part of the calculation,
determining PA= LU, can be done without knowing b. Since the resulting LU factorization
is of P A, a row-permuted version of the equation coefficients, it is necessary to permute
the right-hand-side vector b in precisely the same way before proceeding with the back-
substitution stage. That is achieved by using P b in the first step of back substitution. The
value of the matrix formulation of Gaussian elimination is apparent: All of the bookkeeping
details of elimination and pivoting are automatic and contained in the matrix equations.

! EXAMPLE 2.17 Use the PA= LU factorization to solve the system Ax = b, where

A =

⎡

⎣
2 1 5
4 4 −4
1 3 1

⎤

⎦ , b =

⎡

⎣
5
0
6

⎤

⎦ .

The PA= LU factorization is known from (2.22). It remains to complete the two back
substitutions.

1. Lc = P b:
⎡

⎣
1 0 0
1
4 1 0
1
2 − 1

2 1

⎤

⎦

⎡

⎣
c1
c2
c3

⎤

⎦ =

⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦

⎡

⎣
5
0
6

⎤

⎦ =

⎡

⎣
0
6
5

⎤

⎦ .

Starting at the top, we have

c1 = 0
1
4

(0) + c2 = 6 ⇒ c2 = 6

1
2

(0) − 1
2

(6) + c3 = 5 ⇒ c3 = 8.

2. Ux = c:
⎡

⎣
4 4 −4
0 2 2
0 0 8

⎤

⎦

⎡

⎣
x1
x2
x3

⎤

⎦ =

⎡

⎣
0
6
8

⎤

⎦
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Starting at the bottom,

8x3 = 8 ⇒ x3 = 1

2x2 + 2(1) = 6 ⇒ x2 = 2

4x1 + 4(2) − 4(1) = 0 ⇒ x1 = −1. (2.25)

Therefore, the solution is x = [−1,2,1]. "

! EXAMPLE 2.18 Solve the system 2x1 + 3x2 = 4, 3x1 + 2x2 = 1 using the PA= LU factorization with par-
tial pivoting.

In matrix form, this is the equation
[

2 3
3 2

][
x1
x2

]
=

[
4
1

]
.

We begin by ignoring the right-hand-side b. According to partial pivoting, rows 1 and 2
must be exchanged (because a21 > a11). The elimination step is

A =
[

2 3
3 2

]
−→

P =
[

0 1
1 0

]

exchange rows 1 and 2−→
[

3 2
2 3

]

−→
subtract 2

3× row 1
from row 2 −→

[
3 2
2
3

5
3

]

.

Therefore, the PA= LU factorization is
[

0 1
1 0

]

P

[
2 3
3 2

]

=

A

[
1 0
2
3 1

]

L

[
3 2
0 5

3

]

U

.

The first back substitution Lc = P b is
[

1 0
2
3 1

][
c1
c2

]
=

[
0 1
1 0

][
4
1

]
=

[
1
4

]
.

Starting at the top, we have

c1 = 1
2
3

(1) + c2 = 4 ⇒ c2 = 10
3

.

The second back substitution Ux = c is
[

3 2
0 5

3

][
x1
x2

]
=

[
1

10
3

]
.

Starting at the bottom, we have

5
3

x2 = 10
3

⇒ x2 = 2

3x1 + 2(2) = 1 ⇒ x1 = −1. (2.26)

Therefore, the solution is x = [−1,2]. "
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Every n × n matrix has a PA= LU factorization. We simply follow the partial pivoting
rule, and if the resulting pivot is zero, it means that all entries that need to be eliminated are
already zero, so the column is done.

All of the techniques described so far are implemented in Matlab. The most sophis-
ticated form of Gaussian elimination we have discussed is the PA= LU factorization.
Matlab’s lu command accepts a square coefficient matrix A and returns P ,L, and U . The
following Matlab script defines the matrix of Example 2.16 and computes its factorization:

>> A=[2 1 5; 4 4 -4; 1 3 1];
>> [L,U,P]=lu(A)

L=

1.0000 0 0
0.2500 1.0000 0
0.5000 -0.5000 1.0000

U=

4 4 -4
0 2 2
0 0 8

P=

0 1 0
0 0 1
1 0 0

2.4 Exercises

1. Find the PA= LU factorization (using partial pivoting) of the following matrices:

(a)

[
1 3
2 3

]

(b)

[
2 4
1 3

]

(c)

[
1 5
5 12

]

(d)

[
0 1
1 0

]

2. Find the PA= LU factorization (using partial pivoting) of the following matrices:

(a)

⎡

⎢⎣
1 1 0
2 1 −1

−1 1 −1

⎤

⎥⎦ (b)

⎡

⎢⎣
0 1 3
2 1 1

−1 −1 2

⎤

⎥⎦ (c)

⎡

⎢⎣
1 2 −3
2 4 2

−1 0 3

⎤

⎥⎦ (d)

⎡

⎢⎣
0 1 0
1 0 2

−2 1 0

⎤

⎥⎦

3. Solve the system by finding the PA= LU factorization and then carrying out the two-step back
substitution.

(a)

[
3 7
6 1

][
x1

x2

]

=
[

1
−11

]

(b)

⎡

⎢⎣
3 1 2
6 3 4
3 1 5

⎤

⎥⎦

⎡

⎢⎣
x1

x2

x3

⎤

⎥⎦ =

⎡

⎢⎣
0
1
3

⎤

⎥⎦

4. Solve the system by finding the PA= LU factorization and then carrying out the two-step back
substitution.

(a)

⎡

⎢⎣
4 2 0
4 4 2
2 2 3

⎤

⎥⎦

⎡

⎢⎣
x1

x2

x3

⎤

⎥⎦ =

⎡

⎢⎣
2
4
6

⎤

⎥⎦ (b)

⎡

⎢⎣
−1 0 1

2 1 1
−1 2 0

⎤

⎥⎦

⎡

⎢⎣
x1

x2

x3

⎤

⎥⎦ =

⎡

⎢⎣
−2
17

3

⎤

⎥⎦
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5. Write down a 5 × 5 matrix P such that multiplication of another matrix by P on the left causes
rows 2 and 5 to be exchanged.

6. (a) Write down the 4 × 4 matrix P such that multiplying a matrix on the left by P causes the
second and fourth rows of the matrix to be exchanged. (b) What is the effect of multiplying on
the right by P ? Demonstrate with an example.

7. Change four entries of the leftmost matrix to make the matrix equation correct:
⎡

⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

1 2 3 4
3 4 5 6
5 6 7 8
7 8 9 0

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

5 6 7 8
3 4 5 6
7 8 9 0
1 2 3 4

⎤

⎥⎥⎥⎦
.

8. Find the PA= LU factorization of the matrix A in Exercise 2.3.15. What is the largest
multiplier lij needed?

9. (a) Find the PA= LU factorization of A =

⎡

⎢⎢⎢⎣

1 0 0 1
−1 1 0 1
−1 −1 1 1
−1 −1 −1 1

⎤

⎥⎥⎥⎦
. (b) Let A be the n × n

matrix of the same form as in (a). Describe the entries of each matrix of its PA= LU
factorization.

10. (a) Assume that A is an n × n matrix with entries |aij | ≤ 1 for 1 ≤ i,j ≤ n. Prove that the
matrix U in its PA= LU factorization satisfies |uij | ≤ 2n−1 for all 1 ≤ i,j ≤ n. See
Exercise 9(b). (b) Formulate and prove an analogous fact for an arbitrary n × n

matrix A.

2 The Euler–Bernoulli Beam
The Euler–Bernoulli beam is a fundamental model for a material bending under stress.
Discretization converts the differential equation model into a system of linear equations. The
smaller the discretization size, the larger is the resulting system of equations. This example
will provide us an interesting case study of the roles of system size and ill-conditioning in
scientific computation.

The vertical displacement of the beam is represented by a function y(x), where 0 ≤ x ≤
L along the beam of length L. We will use MKS units in the calculation: meters, kilograms,
seconds. The displacement y(x) satisfies the Euler–Bernoulli equation

EIy′′′′ = f (x) (2.27)

where E, the Young’s modulus of the material, and I , the area moment of inertia, are
constant along the beam. The right-hand-side f (x) is the applied load, including the weight
of the beam, in force per unit length.

Techniques for discretizing derivatives are found in Chapter 5, where it will be shown
that a reasonable approximation for the fourth derivative is

y′′′′(x) ≈ y(x − 2h) − 4y(x − h) + 6y(x) − 4y(x + h) + y(x + 2h)

h4 (2.28)

for a small increment h. The discretization error of this approximation is proportional to
h2 (see Exercise 5.1.21.). Our strategy will be to consider the beam as the union of many
segments of length h, and to apply the discretized version of the differential equation on
each segment.
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For a positive integer n, set h = L/n. Consider the evenly spaced grid 0 = x0 < x1 <

.. . < xn = L, where h = xi − xi−1 for i = 1, . . . ,n. Replacing the differential equation
(2.27) with the difference approximation (2.28) to get the system of linear equations for the
displacements yi = y(xi) yields

yi−2 − 4yi−1 + 6yi − 4yi+1 + yi+2 = h4

EI
f (xi). (2.29)

We will develop n equations in the n unknowns y1, . . . ,yn. The coefficient matrix, or
structure matrix, will have coefficients from the left-hand side of this equation. However,
notice that we must alter the equations near the ends of the beam to take the boundary
conditions into account.

Adiving board is a beam with one end clamped at the support, and the opposite end free.
This is called the clamped-free beam or sometimes the cantilever beam. The boundary
conditions for the clamped (left) end and free (right) end are

y(0) = y′(0) = y′′(L) = y′′′(L) = 0.

In particular, y0 = 0. Note that finding y1, however, presents us with a problem, since
applying the approximation (2.29) to the differential equation (2.27) at x1 results in

y−1 − 4y0 + 6y1 − 4y2 + y3 = h4

EI
f (x1), (2.30)

and y−1 is not defined. Instead, we must use an alternate derivative approximation at the
point x1 near the clamped end. Exercise 5.1.22(a) derives the approximation

y′′′′(x1) ≈ 16y(x1) − 9y(x1 + h) + 8
3 y(x1 + 2h) − 1

4 y(x1 + 3h)

h4 (2.31)

which is valid when y(x0) = y′(x0) = 0.
Calling the approximation “valid,’’ for now, means that the discretization error of the

approximation is proportional to h2, the same as for equation (2.28). In theory, this means
that the error in approximating the derivative in this way will decrease toward zero in
the limit of small h. This concept will be the focal point of the discussion of numerical
differentiation in Chapter 5. The result for us is that we can use approximation (2.31) to
take the endpoint condition into account for i = 1, yielding

16y1 − 9y2 + 8
3

y3 − 1
4

y4 = h4

EI
f (x1).

The free right end of the beam requires a little more work because we must compute
yi all the way to the end of the beam. Again, we need alternative derivative approximations
at the last two points xn−1 and xn. Exercise 5.1.22 gives the approximations

y′′′′(xn−1) ≈ −28yn + 72yn−1 − 60yn−2 + 16yn−3

17h4 (2.32)

y′′′′(xn) ≈ 72yn − 156yn−1 + 96yn−2 − 12yn−3

17h4 (2.33)

which are valid under the assumption y′′(xn) = y′′′(xn) = 0.
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Now we can write down the system of n equations in n unknowns for the diving
board. This matrix equation summarizes our approximate versions of the original differential
equation (2.27) at each point x1, . . . ,xn, accurate within terms of order h2:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

16 −9 8
3 − 1

4
−4 6 −4 1

1 −4 6 −4 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1
1 −4 6 −4 1

16
17 − 60

17
72
17 − 28

17

− 12
17

96
17 − 156

17
72
17

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
...

...

...

yn−1
yn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= h4

EI

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (x1)

f (x2)
...

...

...

f (xn−1)

f (xn)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.34)

The structure matrix A in (2.34) is a banded matrix, meaning that all entries sufficiently
far from the main diagonal are zero. Specifically, the matrix entries aij = 0, except for
|i − j | ≤ 3. The bandwidth of this banded matrix is 7, since i − j takes on 7 values for
nonzero aij .

Finally, we are ready to model the clamped-free beam. Let us consider a solid wood
diving board composed of Douglas fir. Assume that the diving board is L = 2 meters long,
30 cm wide, and 3 cm thick. The density of Douglas fir is approximately 480 kg/m3. One
Newton of force is 1 kg-m/sec2, and the Young’s modulus of this wood is approximately
E = 1.3 × 1010 Pascals, or Newton/m2. The area moment of inertia I around the center of
mass of a beam is wd3/12, where w is the width and d the thickness of the beam.

You will begin by calculating the displacement of the beam with no payload, so that
f (x) represents only the weight of the beam itself, in units of force per meter. Therefore
f (x) is the mass per meter 480wd times the downward acceleration of gravity −g = −9.81
m/sec2, or the constant f (x) = f = −480wdg. The reader should check that the units match
on both sides of (2.27). There is a closed-form solution of (2.27) in the case f is constant,
so that the result of your computation can be checked for accuracy.

Following the check of your code for the unloaded beam, you will model two further
cases. In the first, a sinusoidal load (or “pile’’) will be added to the beam. In this case, there
is again a known closed-form solution, but the derivative approximations are not exact, so
you will be able to monitor the error of your modeling as a function of the grid size h,
and see the effect of conditioning problems for large n. Later, you will put a diver on the
beam.

Suggested activities:

1. Write a Matlab program to define the structure matrix A in (2.34). Then, using the
Matlab \ command or code of your own design, solve the system for the displacements yi

using n = 10 grid steps.

2. Plot the solution from Step 1 against the correct solution
y(x) = (f /24EI)x2(x2 − 4Lx + 6L2), where f = f (x) is the constant defined above.
Check the error at the end of the beam, x = L meters. In this simple case the derivative
approximations are exact, so your error should be near machine roundoff.

3. Rerun the calculation in Step 1 for n = 10 · 2k , where k = 1, . . . ,11. Make a table of the
errors at x = L for each n. For which n is the error smallest? Why does the error begin to
increase with n after a certain point? You may want to make an accompanying table of the
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condition number of A as a function of n to help answer the last question. To carry out this
step for large k, you may need to ask Matlab to store the matrix A as a sparse matrix to
avoid running out of memory. To do this, just initialize A with the command
A=sparse(n,n), and proceed as before. We will discuss sparse matrices in more detail in
the next section.

4. Add a sinusoidal pile to the beam. This means adding a function of form
s(x) = −pg sin π

L x to the force term f (x). Prove that the solution

y(x) = f

24EI
x2(x2 − 4Lx + 6L2) − pgL

EIπ

(
L3

π3 sin
π

L
x − x3

6
+ L

2
x2 − L2

π2 x

)

satisfies the Euler–Bernoulli beam equation and the clamped-free boundary conditions.

5. Rerun the calculation as in Step 3 for the sinusoidal load. (Be sure to include the weight of
the beam itself.) Set p = 100 kg/m and plot your computed solutions against the correct
solution. Answer the questions from Step 3, and in addition the following one: Is the error at
x = L proportional to h2 as claimed above? You may want to plot the error versus h on a
log–log graph to investigate this question. Does the condition number come into
play?

6. Now remove the sinusoidal load and add a 70 kg diver to the beam, balancing on the last 20
cm of the beam. You must add a force per unit length of −g times 70/0.2 kg/m to f (xi) for
all 1.8 ≤ xi ≤ 2, and solve the problem again with the optimal value of n found in Step 5.
Plot the solution and find the deflection of the diving board at the free end.

7. If we also fix the free end of the diving board, we have a “clamped-clamped’’ beam,
obeying identical boundary conditions at each end: y(0) = y′(0) = y(L) = y′(L) = 0. This
version is used to model the sag in a structure, like a bridge. Begin with the slightly
different evenly spaced grid 0 = x0 < x1 < .. . < xn < xn+1 = L, where h = xi − xi−1 for
i = 1, . . . ,n, and find the system of n equations in n unknowns that determine y1, . . . ,yn. (It
should be similar to the clamped-free version, except that the last two rows of the
coefficient matrix A should be the first two rows reversed.) Solve for a sinusoidal load and
answer the questions of Step 5 for the center x = L/2 of the beam. The exact solution for
the clamped-clamped beam under a sinusoidal load is

y(x) = f

24EI
x2(L − x)2 − pgL2

π4EI

(
L2 sin

π

L
x + πx(x − L)

)
.

8. Ideas for further exploration: If the width of the diving board is doubled, how does the
displacement of the diver change? Does it change more or less than if the thickness is
doubled? (Both beams have the same mass.) How does the maximum displacement change
if the cross-section is circular or annular with the same area as the rectangle? (The area
moment of inertia for a circular cross-section of radius r is I = πr4/4, and for an annular
cross-section with inner radius r1 and outer radius r2 is I = π(r4

2 − r4
1 )/4.) Find out the

area moment of inertia for I-beams, for example. The Young’s modulus for different
materials are also tabulated and available. For example, the density of steel is about 7850
kg/m3 and its Young’s modulus is about 2 × 1011 Pascals.

The Euler–Bernoulli beam is a relatively simple, classical model. More recent models, such
as the Timoshenko beam, take into account more exotic bending, where the beam
cross-section may not be perpendicular to the beam’s main axis.
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2.5 ITERATIVE METHODS

Gaussian elimination is a finite sequence of O(n3) floating point operations that result in a
solution. For that reason, Gaussian elimination is called a direct method for solving systems
of linear equations. Direct methods, in theory, give the exact solution within a finite number
of steps. (Of course, when carried out by a computer using limited precision, the resulting
solution will be only approximate. As we saw earlier, the loss of precision is quantified
by the condition number.) Direct methods stand in contrast to the root-finding methods
described in Chapter 1, which are iterative in form.

So-called iterative methods also can be applied to solving systems of linear equations.
Similar to Fixed-Point Iteration, the methods begin with an initial guess and refine the guess
at each step, converging to the solution vector.

2.5.1 Jacobi Method

The Jacobi Method is a form of fixed-point iteration for a system of equations. In FPI
the first step is to rewrite the equations, solving for the unknown. The first step of the
Jacobi Method is to do this in the following standardized way: Solve the ith equation
for the ith unknown. Then, iterate as in Fixed-Point Iteration, starting with an initial
guess.

! EXAMPLE 2.19 Apply the Jacobi Method to the system 3u + v = 5,u + 2v = 5.

Begin by solving the first equation for u and the second equation for v. We will
use the initial guess (u0,v0) = (0,0). We have

u = 5 − v

3

v = 5 − u

2
. (2.35)

The two equations are iterated:
[

u0
v0

]
=

[
0
0

]

[
u1
v1

]
=

[
5−v0

3
5−u0

2

]

=
[

5−0
3

5−0
2

]

=
[

5
3
5
2

]

[
u2
v2

]
=

[ 5−v1
3

5−u1
2

]

=
[

5−5/2
3

5−5/3
2

]

=
[

5
6
5
3

]

[
u3
v3

]
=

[
5−5/3

3
5−5/6

2

]

=
[

10
9

25
12

]

. (2.36)

Further steps of Jacobi show convergence toward the solution, which is [1,2]. "

Now suppose that the equations are given in the reverse order.

! EXAMPLE 2.20 Apply the Jacobi Method to the system u + 2v = 5,3u + v = 5.

Solve the first equation for the first variable u and the second equation for v. We
begin with

u = 5 − 2v

v = 5 − 3u. (2.37)
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The two equations are iterated as before, but the results are quite different:
[

u0
v0

]
=

[
0
0

]

[
u1
v1

]
=

[
5 − 2v0
5 − 3u0

]
=

[
5
5

]

[
u2
v2

]
=

[
5 − 2v1
5 − 3u1

]
=

[ −5
−10

]

[
u3
v3

]
=

[
5 − 2(−10)

5 − 3(−5)

]
=

[
25
20

]
. (2.38)

In this case the Jacobi Method fails, as the iteration diverges. "

Since the Jacobi Method does not always succeed, it is helpful to know conditions
under which it does work. One important condition is given in the following definition:

DEFINITION 2.9 The n × n matrix A = (aij ) is strictly diagonally dominant if, for each 1 ≤ i ≤ n, |aii | >∑
j ̸=i |aij |. In other words, each main diagonal entry dominates its row in the sense that

it is greater in magnitude than the sum of magnitudes of the remainder of the entries in
its row. ❒

THEOREM 2.10 If the n × n matrix A is strictly diagonally dominant, then (1) A is a nonsingular matrix,
and (2) for every vector b and every starting guess, the Jacobi Method applied to Ax = b

converges to the (unique) solution. #

Theorem 2.10 says that, if A is strictly diagonally dominant, then the Jacobi Method
applied to the equation Ax = b converges to a solution for each starting guess. The proof
of this fact is given in Section 2.5.3. In Example 2.19, the coefficient matrix is at first

A =
[

3 1
1 2

]
,

which is strictly diagonally dominant because 3 > 1 and 2 > 1. Convergence is guaranteed
in this case. On the other hand, in Example 2.20, Jacobi is applied to the matrix

A =
[

1 2
3 1

]
,

which is not diagonally dominant, and no such guarantee exists. Note that strict diagonal
dominance is only a sufficient condition. The Jacobi Method may still converge in its
absence.

! EXAMPLE 2.21 Determine whether the matrices

A =

⎡

⎣
3 1 −1
2 −5 2
1 6 8

⎤

⎦ and B =

⎡

⎣
3 2 6
1 8 1
9 2 −2

⎤

⎦

are strictly diagonally dominant.
The matrix A is diagonally dominant because |3| > |1| + | − 1|, | − 5| > |2| +

|2|, and |8| > |1| + |6|. B is not, because, for example, |3| > |2| + |6| is not true. However,
if the first and third rows of B are exchanged, then B is strictly diagonally dominant and
Jacobi is guaranteed to converge. "
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The Jacobi Method is a form of fixed-point iteration. Let D denote the main diagonal
of A, L denote the lower triangle of A (entries below the main diagonal), and U denote the
upper triangle (entries above the main diagonal). Then A = L + D + U , and the equation
to be solved is Lx + Dx + Ux = b. Note that this use of L and U differs from the use
in the LU factorization, since all diagonal entries of this L and U are zero. The system of
equations Ax = b can be rearranged in a fixed-point iteration of form:

Ax = b

(D + L + U)x = b

Dx = b − (L + U)x

x = D−1(b − (L + U)x). (2.39)

Since D is a diagonal matrix, its inverse is the matrix of reciprocals of the diagonal
entries of A. The Jacobi Method is just the fixed-point iteration of (2.39):

Jacobi Method

x0 = initial vector

xk+1 = D−1(b − (L + U)xk) for k = 0,1,2, . . . . (2.40)

For Example 2.19,
[

3 1
1 2

][
u

v

]
=

[
5
5

]
,

the fixed-point iteration (2.40) with xk =
[

uk

vk

]
is

[
uk+1
vk+1

]
= D−1(b − (L + U)xk)

=
[

1/3 0
0 1/2

]([
5
5

]
−

[
0 1
1 0

][
uk

vk

])

=
[

(5 − vk)/3
(5 − uk)/2

]
,

which agrees with our original version.

2.5.2 Gauss–Seidel Method and SOR

Closely related to the Jacobi Method is an iteration called the Gauss–Seidel Method. The
only difference between Gauss–Seidel and Jacobi is that in the former, the most recently
updated values of the unknowns are used at each step, even if the updating occurs in the
current step. Returning to Example 2.19, we see that Gauss–Seidel looks like this:

[
u0
v0

]
=

[
0
0

]

[
u1
v1

]
=

[
5−v0

3
5−u1

2

]

=
[

5−0
3

5−5/3
2

]

=
[

5
3
5
3

]

[
u2
v2

]
=

[
5−v1

3
5−u2

2

]

=
[

5−5/3
3

5−10/9
2

]

=
[

10
9
35
18

]

[
u3
v3

]
=

[
5−v2

3
5−u3

2

]

=
[

5−35/18
3

5−55/54
2

]

=
[

55
54

215
108

]

. (2.41)
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Note the difference between Gauss–Seidel and Jacobi: The definition of v1 uses u1, not
u0. We see the approach to the solution [1,2] as with the Jacobi Method, but somewhat
more accurately at the same number of steps. Gauss–Seidel often converges faster than
Jacobi if the method is convergent. Theorem 2.11 verifies that the Gauss–Seidel Method,
like Jacobi, converges to the solution as long as the coefficient matrix is strictly diagonally
dominant.

Gauss–Seidel can be written in matrix form and identified as a fixed-point iteration
where we isolate the equation (L + D + U)x = b as

(L + D)xk+1 = −Uxk + b.

Note that the usage of newly determined entries of xk+1 is accommodated by including the
lower triangle of A into the left-hand side. Rearranging the equation gives the Gauss–Seidel
Method.

Gauss–Seidel Method

x0 = initial vector

xk+1 = D−1(b − Uxk − Lxk+1) for k = 0,1,2, . . . .

! EXAMPLE 2.22 Apply the Gauss–Seidel Method to the system
⎡

⎣
3 1 −1
2 4 1

−1 2 5

⎤

⎦

⎡

⎣
u

v

w

⎤

⎦ =

⎡

⎣
4
1
1

⎤

⎦ .

The Gauss–Seidel iteration is

uk+1 = 4 − vk + wk

3

vk+1 = 1 − 2uk+1 − wk

4

wk+1 = 1 + uk+1 − 2vk+1

5
.

Starting with x0 = [u0,v0,w0] = [0,0,0], we calculate

⎡

⎣
u1
v1
w1

⎤

⎦ =

⎡

⎢⎣

4−0−0
3 = 4

3
1−8/3−0

4 = − 5
12

1+4/3+5/6
5 = 19

30

⎤

⎥⎦ ≈

⎡

⎣
1.3333

−0.4167
0.6333

⎤

⎦

and

⎡

⎣
u2
v2
w2

⎤

⎦ =

⎡

⎢⎣

101
60

− 3
4

251
300

⎤

⎥⎦ ≈

⎡

⎣
1.6833

−0.7500
0.8367

⎤

⎦ .

The system is strictly diagonally dominant, and therefore the iteration will converge to the
solution [2,−1,1]. "

The method called Successive Over-Relaxation (SOR) takes the Gauss–Seidel direc-
tion toward the solution and “overshoots’’ to try to speed convergence. Let ω be a real
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number, and define each component of the new guess xk+1 as a weighted average of ω

times the Gauss–Seidel formula and 1 − ω times the current guess xk . The number ω is
called the relaxation parameter, and ω > 1 is referred to as over-relaxation.

! EXAMPLE 2.23 Apply SOR with ω = 1.25 to the system of Example 2.22.

Successive Over-Relaxation yields

uk+1 = (1 − ω)uk + ω
4 − vk + wk

3

vk+1 = (1 − ω)vk + ω
1 − 2uk+1 − wk

4

wk+1 = (1 − ω)wk + ω
1 + uk+1 − 2vk+1

5
.

Starting with [u0,v0,w0] = [0,0,0], we calculate
⎡

⎣
u1
v1
w1

⎤

⎦ ≈

⎡

⎣
1.6667

−0.7292
1.0312

⎤

⎦

and
⎡

⎣
u2
v2
w2

⎤

⎦ ≈

⎡

⎣
1.9835

−1.0672
1.0216

⎤

⎦ .

In this example, the SOR iteration converges faster than Jacobi and Gauss–Seidel to the
solution [2,−1,1]. "

Just as with Jacobi and Gauss–Seidel, an alternative derivation of SOR follows
from treating the system as a fixed-point problem. The problem Ax = b can be written
(L + D + U)x = b, and, upon multiplication by ω and rearranging,

(ωL + ωD + ωU)x = ωb

(ωL + D)x = ωb − ωUx + (1 − ω)Dx

x = (ωL + D)−1[(1 − ω)Dx − ωUx] + ω(D + ωL)−1b.

Successive Over-Relaxation (SOR)

x0 = initial vector

xk+1 = (ωL + D)−1[(1 − ω)Dxk − ωUxk] + ω(D + ωL)−1b for k = 0,1,2, . . . .

SOR with ω = 1 is exactly Gauss–Seidel. The parameter ω can also be allowed to be
less than 1, in a method called Successive Under-Relaxation.

! EXAMPLE 2.24 Compare Jacobi, Gauss–Seidel, and SOR on the system of six equations in six unknowns:
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 0 0 0 1
2

−1 3 −1 0 1
2 0

0 −1 3 −1 0 0
0 0 −1 3 −1 0
0 1

2 0 −1 3 −1

1
2 0 0 0 −1 3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

u5

u6

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
2
3
2

1
1
3
2
5
2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.42)
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The solution is x = [1,1,1,1,1,1]. The approximate solution vectors x6, after running
six steps of each of the three methods, are shown in the following table:

Jacobi Gauss–Seidel SOR
0.9879 0.9950 0.9989
0.9846 0.9946 0.9993
0.9674 0.9969 1.0004
0.9674 0.9996 1.0009
0.9846 1.0016 1.0009
0.9879 1.0013 1.0004

The parameter ω for Successive Over-Relaxation was set at 1.1. SOR appears to be
superior for this problem. "

Figure 2.3 compares the infinity norm error in Example 2.24 after six iterations for
various ω. Although there is no general theory describing the best choice of ω, clearly there
is a best choice in this case. See Ortega [1972] for discussion of the optimal ω in some
common special cases.

1 1.05 1.1 1.15 1.2 1.25
0

0.002

0.004

y

x

Figure 2.3 Infinity norm error after six steps of SOR in Example 2.24, as a func-

tion of over-relaxation parameter ω. Gauss–Seidel corresponds to ω = 1. Minimum

error occurs for ω ≈ 1.13

2.5.3 Convergence of iterative methods

In this section we prove that the Jacobi and Gauss–Seidel Methods converge for strictly
diagonally dominant matrices. This is the content of Theorems 2.10 and 2.11.

The Jacobi Method is written as

xk+1 = −D−1(L + U)xk + D−1b. (2.43)

Theorem A.7 of Appendix A governs convergence of such an iteration. According to this
theorem, we need to know that the spectral radius ρ(D−1(L + U)) < 1 in order to guarantee
convergence of the Jacobi Method. This is exactly what strict diagonal dominance implies,
as shown next.

Proof of Theorem 2.10. Let R = L + U denote the nondiagonal part of the matrix. To
check ρ(D−1R) < 1, let λ be an eigenvalue of D−1R with corresponding eigenvector v.
Choose this v so that ||v||∞ = 1, so that for some 1 ≤ m ≤ n, the component vm = 1
and all other components are no larger than 1. (This can be achieved by starting with any
eigenvector and dividing by the largest component. Any constant multiple of an eigenvector
is again an eigenvector with the same eigenvalue.) The definition of eigenvalue means that
D−1Rv = λv, or Rv = λDv.
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Since rmm = 0, taking absolute values of the mth component of this vector equation
implies

|rm1v1 + rm2v2 + ·· · + rm,m−1vm−1 + rm,m+1vm+1 + ·· · + rmnvn|
= |λdmmvm| = |λ||dmm|.

Since all |vi | ≤ 1, the left-hand side is at most
∑

j ̸=m |rmj |, which, according to the strict
diagonal dominance hypothesis, is less than |dmm|. This implies that |λ||dmm| < |dmm|,
which in turn forces |λ| < 1. Since λ was an arbitrary eigenvalue, we have shown
ρ(D−1R) < 1, as desired. Now Theorem A.7 from Appendix A implies that Jacobi
converges to a solution of Ax = b. Finally, since Ax = b has a solution for arbitrary b, A

is a nonsingular matrix.

Putting the Gauss–Seidel Method into the form of (2.43) yields

xk+1 = −(L + D)−1Uxk + (L + D)−1b.

It then becomes clear that convergence of Gauss–Seidel follows if the spectral radius of the
matrix

(L + D)−1U (2.44)

is less than one. The next theorem shows that strict diagonal dominance implies that this
requirement is imposed on the eigenvalues.

THEOREM 2.11 If the n × n matrix A is strictly diagonally dominant, then (1) A is a nonsingular matrix,
and (2) for every vector b and every starting guess, the Gauss–Seidel Method applied to
Ax = b converges to a solution. #

Proof. Let λ be an eigenvalue of (2.44), with corresponding eigenvector v. Choose
the eigenvector so that vm = 1 and all other components are smaller in magnitude, as in the
preceding proof. Note that the entries of L are the aij for i > j , and the entries of U are the
aij for i < j . Then viewing row m of the eigenvalue equation of (2.44),

λ(D + L)v = Uv,

yields a string of inequalities similar to the previous proof:

|λ|
(

∑

i>m

|ami |
)

< |λ|
(

|amm| −
∑

i<m

|ami |
)

≤ |λ|
(

|amm| −
∣∣∣
∑

i<m

amivi

∣∣∣

)

≤ |λ|
∣∣∣amm +

∑

i<m

amivi

∣∣∣

=
∣∣∣
∑

i>m

amivi

∣∣∣

≤
∑

i>m

|ami |.

It follows that |λ| < 1, which finishes the proof. ❒
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2.5.4 Sparse matrix computations

Direct methods based on Gaussian elimination provide the user a finite number of steps that
terminate in the solution. What is the reason for pursuing iterative methods, which are only
approximate and may require several steps for convergence?

There are two major reasons for using iterative methods like Gauss–Seidel. Both reasons
stem from the fact that one step of an iterative method requires only a fraction of the floating
point operations of a full LU factorization.As we established earlier in the chapter, Gaussian
elimination for an n × n matrix costs on the order of n3 operations. A single step of Jacobi’s
Method, for example, requires about n2 multiplications (one for each matrix entry) and
about the same number of additions. The question is how many steps will be needed for
convergence within the user’s tolerance.

One particular circumstance that argues for an iterative technique is when a good
approximation to the solution is already known. For example, suppose that a solution to
Ax = b is known, after which A and/or b change by a small amount. We could imagine a
dynamic problem where A and b are remeasured constantly as they change, and an accurate
updated solution x is constantly required. If the solution to the previous problem is used as a
starting guess for the new but similar problem, fast convergence of Jacobi or Gauss–Seidel
can be expected.

Suppose the b in problem (2.42) is changed slightly from the original b =
[2.5,1.5,1,1,1.5,2.5] to a new b = [2.2,1.6,0.9,1.3,1.4,2.45]. We can check that the
true solution of the system is changed from [1,1,1,1,1,1] to [0.9,1,1,1.1,1,1]. Assume
that we have in memory the sixth step of the Gauss–Seidel iteration x6 from the preceding
table, to use as a starting guess. Continuing Gauss–Seidel with the new b and with the
helpful starting guess x6 yields a good approximation in only one additional step. The next
two steps are as follows:

x7 x8
0.8980 0.8994
0.9980 0.9889
0.9659 0.9927
1.0892 1.0966
0.9971 1.0005
0.9993 1.0003

This technique is often called polishing, because the method begins with an approx-
imate solution, which could be the solution from a previous, related problem, and
then merely refines the approximate solution to make it more accurate. Polishing is
common in real-time applications where the same problem needs to be re-solved repeat-
edly with data that is updated as time passes. If the system is large and time is short,
it may be impossible to run an entire Gaussian elimination or even a back substitu-
tion in the allotted time. If the solution hasn’t changed too much, a few steps of a
relatively cheap iterative method might keep sufficient accuracy as the solution moves
through time.

The second major reason to use iterative methods is to solve sparse systems of equa-
tions.Acoefficient matrix is called sparse if many of the matrix entries are known to be zero.
Often, of the n2 eligible entries in a sparse matrix, only O(n) of them are nonzero. A full
matrix is the opposite, where few entries may be assumed to be zero. Gaussian elimination
applied to a sparse matrix usually causes fill-in, where the coefficient matrix changes from
sparse to full due to the necessary row operations. For this reason, the efficiency of Gaus-
sian elimination and its PA= LU implementation become questionable for sparse matrices,
leaving iterative methods as a feasible alternative.
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Example 2.24 can be extended to a sparse matrix as follows:
! EXAMPLE 2.25 Use the Jacobi Method to solve the 100,000-equation version of Example 2.24.

Let n be an even integer, and consider the n × n matrix A with 3 on the main
diagonal, −1 on the super- and subdiagonal, and 1/2 in the (i,n + 1 − i) position for all
i = 1, . . . ,n, except for i = n/2 and n/2 + 1. For n = 12,

A=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 0 0 0 0 0 0 0 0 0 1
2

−1 3 −1 0 0 0 0 0 0 0 1
2 0

0 −1 3 −1 0 0 0 0 0 1
2 0 0

0 0 −1 3 −1 0 0 0 1
2 0 0 0

0 0 0 −1 3 −1 0 1
2 0 0 0 0

0 0 0 0 −1 3 −1 0 0 0 0 0
0 0 0 0 0 −1 3 −1 0 0 0 0
0 0 0 0 1

2 0 −1 3 −1 0 0 0
0 0 0 1

2 0 0 0 −1 3 −1 0 0
0 0 1

2 0 0 0 0 0 −1 3 −1 0
0 1

2 0 0 0 0 0 0 0 −1 3 −1
1
2 0 0 0 0 0 0 0 0 0 −1 3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.45)

Define the vector b = (2.5,1.5, . . . ,1.5,1.0,1.0,1.5, . . . ,1.5,2.5), where there are n − 4
repetitions of 1.5 and 2 repetitions of 1.0. Note that if n = 6, A and b define the system of
Example 2.24. The solution of the system for general n is [1, . . . ,1]. No row of A has more
than 4 nonzero entries. Since fewer than 4n of the n2 potential entries are nonzero, we may
call the matrix A sparse.

If we want to solve this system of equations for n = 100,000 or more, what are the
options? Treating the coefficient matrix A as a full matrix means storing n2 = 1010 entries,
each as a floating point double precision number requiring 8 bytes of storage. Note that
8 × 1010 bytes is approximately 80 gigabytes. Depending on your computational setup, it
may be impossible to fit the entire n2 entries into RAM.

Not only is size an enemy, but so is time. The number of operations required by
Gaussian elimination will be on the order of n3 ≈ 1015. If your machine runs on the order
of a few GHz (109 cycles per second), an upper bound on the number of floating point
operations per second is around 108. Therefore, 1015/108 = 107 is a reasonable guess at
the number of seconds required for Gaussian elimination. There are 3 × 107 seconds in a
year. Although this is back-of-the-envelope accounting, it is clear that Gaussian elimination
for this problem is not an overnight computation.

On the other hand, one step of an iterative method will require approximately
2 × 4n = 800,000 operations, two for each nonzero matrix entry. We could do 100 steps of
Jacobi iteration and still finish with fewer than 108 operations, which should take roughly a
second or less on a modern PC. For the system just defined, with n = 100,000, the following
Jacobi code jacobi.m needs only 50 steps to converge from a starting guess of (0, . . . ,0)
to the solution (1, . . . ,1) within six correct decimal places. The 50 steps require less than 1
second on a typical PC.
% Program 2.1 Sparse matrix setup
% Input: n = size of system
% Outputs: sparse matrix a, r.h.s. b
function [a,b] = sparsesetup(n)
e = ones(n,1); n2=n/2;
a = spdiags([-e 3*e -e],-1:1,n,n); % Entries of a
c=spdiags([e/2],0,n,n);c=fliplr(c);a=a+c;
a(n2+1,n2) = -1; a(n2,n2+1) = -1; % Fix up 2 entries
b=zeros(n,1); % Entries of r.h.s. b
b(1)=2.5;b(n)=2.5;b(2:n-1)=1.5;b(n2:n2+1)=1;
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% Program 2.2 Jacobi Method
% Inputs: full or sparse matrix a, r.h.s. b,
% number of Jacobi iterations, k
% Output: solution x
function x = jacobi(a,b,k)
n=length(b); % find n
d=diag(a); % extract diagonal of a
r=a-diag(d); % r is the remainder
x=zeros(n,1); % initialize vector x
for j=1:k % loop for Jacobi iteration
x = (b-r*x)./d;

end % End of Jacobi iteration loop

Note a few interesting aspects of the preceding code. The program
sparsesetup.m uses Matlab’s spdiags command, which defines the matrix A as a
sparse data structure. Essentially, this means that the matrix is represented by a set of triples
(i,j ,d), where d is the real number entry in position (i,j) of the matrix. Memory is not
reserved for the entire n2 potential entries, but only on an as-needed basis. The spdiags
command takes the columns of a matrix and places them along the main diagonal, or a
specified sub- or super-diagonal below or above the main diagonal.

Matlab’s matrix manipulation commands are designed to work seamlessly with
the sparse matrix data structure. For example, an alternative to the preceding code would be
to use Matlab’slu command to solve the system directly. However, for that example, even
though A is sparse, the upper-triangular matrix U that follows from Gaussian elimination
suffers from fill-in during the process. For example, the upper-triangular U from Gaussian
elimination for size n = 12 of the preceding matrix A is
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −1.0 0 0 0 0 0 0 0 0 0 0.500
0 2.7 −1.0 0 0 0 0 0 0 0 0.500 0.165
0 0 2.6 −1.0 0 0 0 0 0 0.500 0.187 0.062
0 0 0 2.6 −1.000 0 0 0 0.500 0.191 0.071 0.024
0 0 0 0 2.618 −1.000 0 0.500 0.191 0.073 0.027 0.009
0 0 0 0 0 2.618 −1.000 0.191 0.073 0.028 0.010 0.004
0 0 0 0 0 0 2.618 −0.927 0.028 0.011 0.004 0.001
0 0 0 0 0 0 0 2.562 −1.032 −0.012 −0.005 −0.001
0 0 0 0 0 0 0 0 2.473 −1.047 −0.018 −0.006
0 0 0 0 0 0 0 0 0 2.445 −1.049 −0.016
0 0 0 0 0 0 0 0 0 0 2.440 −1.044
0 0 0 0 0 0 0 0 0 0 0 2.458

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since U turns out to be a relatively full matrix, the memory restrictions previously
mentioned again become a limitation. A significant fraction of the n2 memory locations will
be necessary to store U on the way to completing the solution process. It is more efficient,
by several orders of magnitude in execution time and storage, to solve this large sparse
system by an iterative method. "

2.5 Exercises

1. Compute the first two steps of the Jacobi and the Gauss–Seidel Methods with starting vector
[0, . . . ,0].

(a)

[
3 −1

−1 2

][
u

v

]

=
[

5
4

]

(b)

⎡

⎢⎣
2 −1 0

−1 2 −1
0 −1 2

⎤

⎥⎦

⎡

⎢⎣
u

v

w

⎤

⎥⎦ =

⎡

⎢⎣
0
2
0

⎤

⎥⎦

(c)

⎡

⎢⎣
3 1 1
1 3 1
1 1 3

⎤

⎥⎦

⎡

⎢⎣
u

v

w

⎤

⎥⎦ =

⎡

⎢⎣
6
3
5

⎤

⎥⎦
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2. Rearrange the equations to form a strictly diagonally dominant system. Apply two steps of the
Jacobi and Gauss–Seidel Methods from starting vector [0, . . . ,0].

(a)
u + 3v = −1

5u + 4v = 6
(b)

u − 8v − 2w = 1
u + v + 5w = 4
3u − v + w = −2

(c)
u + 4v = 5
v + 2w = 2

4u + 3w = 0

3. Apply two steps of SOR to the systems in Exercise 1. Use starting vector [0, . . . ,0] and
ω = 1.5.

4. Apply two steps of SOR to the systems in Exercise 2 after rearranging. Use starting vector
[0, . . . ,0] and ω = 1 and 1.2.

5. Let λ be an eigenvalue of an n × n matrix A. (a) Prove the Gershgorin Circle Theorem: There
is a diagonal entry Amm such that |Amm − λ| ≤ ∑

j ̸=m |Amj |. (Hint: Begin with an
eigenvector v such that ||v||∞ = 1, as in the proof of Theorem 2.10.) (b) Prove that a strictly
diagonally dominant matrix cannot have a zero eigenvalue. This is an alternative proof of
part (1) of Theorem 2.10.

2.5 Computer Problems

1. Use the Jacobi Method to solve the sparse system within six correct decimal places (forward
error in the infinity norm) for n = 100 and n = 100000. The correct solution is [1, . . . ,1].
Report the number of steps needed and the backward error. The system is

⎡

⎢⎢⎢⎢⎢⎢⎣

3 −1
−1 3 −1

. . .
. . .

. . .

−1 3 −1
−1 3

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

x1

...

xn

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

2
1
...

1
2

⎤

⎥⎥⎥⎥⎥⎥⎦
.

2. Use the Jacobi Method to solve the sparse system within three correct decimal places (forward
error in the infinity norm) for n = 100. The correct solution is [1,−1,1,−1, . . . ,1,−1]. Report
the number of steps needed and the backward error. The system is

⎡

⎢⎢⎢⎢⎢⎢⎣

2 1
1 2 1

. . .
. . .

. . .

1 2 1
1 2

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

x1

...

xn

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

1
0
...

0
−1

⎤

⎥⎥⎥⎥⎥⎥⎦
.

3. Rewrite Program 2.2 to carry out Gauss–Seidel iteration. Solve the problem in Example 2.24
to check your work.

4. Rewrite Program 2.2 to carry out SOR. Use ω = 1.1 to recheck Example 2.24.

5. Carry out the steps of Computer Problem 1 with n = 100 for (a) Gauss–Seidel Method and
(b) SOR with ω = 1.2.

6. Carry out the steps of Computer Problem 2 for (a) Gauss–Seidel Method and (b) SOR with
ω = 1.5.
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7. Using your program from Computer Problem 3, decide how large a system of type (2.38) you
can solve accurately by the Gauss–Seidel Method in one second of computation. Report the
time required and forward error for various values of n.

2.6 METHODS FOR SYMMETRIC POSITIVE-DEFINITE MATRICES

Symmetric matrices hold a favored position in linear systems analysis because of their spe-
cial structure, and because they have only about half as many independent entries as general
matrices. That raises the question whether a factorization like the LU can be realized for half
the computational complexity, and using only half the memory locations. For symmetric
positive-definite matrices, this goal can be achieved with the Cholesky factorization.

Symmetric positive-definite matrices also allow a quite different approach to solving
Ax = b, one that does not depend on a matrix factorization. This new approach, called the
conjugate gradient method, is especially useful for large, sparse matrices, where it falls into
the family of iterative methods.

To begin the section, we define the concept of positive-definiteness for symmetric
matrices. Then we show that every symmetric positive-definite matrix A can be factored
as A = RT R for an upper-triangular matrix R, the Cholesky factorization. As a result, the
problem Ax = b can be solved using two back substitutions, just as with the LU factoriza-
tion in the nonsymmetric case. We close the section with the conjugate gradient algorithm
and an introduction to preconditioning.

2.6.1 Symmetric positive-definite matrices

DEFINITION 2.12 The n × n matrix A is symmetric if AT = A. The matrix A is positive-definite if xT Ax > 0
for all vectors x ̸= 0. ❒

! EXAMPLE 2.26 Show that the matrix A =
[

2 2
2 5

]
is symmetric positive-definite.

Clearly A is symmetric. To show it is positive-definite, one applies the definition:

xT Ax =
[

x1 x2
][

2 2
2 5

][
x1
x2

]

= 2x2
1 + 4x1x2 + 5x2

2

= 2(x1 + x2)2 + 3x2
2

This expression is always non-negative, and cannot be zero unless both x2 = 0 and
x1 + x2 = 0, which together imply x = 0. "

! EXAMPLE 2.27 Show that the symmetric matrix A =
[

2 4
4 5

]
is not positive-definite.

Compute xT Ax by completing the square:

xT Ax =
[

x1 x2
][

2 4
4 5

][
x1
x2

]

= 2x2
1 + 8x1x2 + 5x2

2

= 2(x2
1 + 4x1x2) + 5x2

2

= 2(x1 + 2x2)2 − 8x2
2 + 5x2

2

= 2(x1 + 2x2)2 − 3x2
2



118 | CHAPTER 2 Systems of Equations

Setting x1 = −2 and x2 = 1, for example, causes the result to be less than zero, contradicting
the definition of positive-definite. "

Note that a symmetric positive-definite matrix must be nonsingular, since it is impos-
sible for a nonzero vector x to satisfy Ax = 0. There are three additional important facts
about this class of matrices.

Property 1 If the n × n matrix A is symmetric, then A is positive-definite if and only if all of its
eigenvalues are positive.

Proof. Theorem A.5 says that, the set of unit eigenvectors is orthonormal and spans
Rn. If A is positive-definite and Av = λv for a nonzero vector v, then 0 < vT Av =
vT (λv) = λ||v||22, so λ > 0. On the other hand, if all eigenvalues of A are positive,
then write any nonzero x = c1v1 + . . . + cnvn where the vi are orthonormal unit vectors
and not all ci are zero. Then xT Ax = (c1v1 + . . . + cnvn)T (λ1c1v1 + . . . + λncnvn) =
λ1c2

1 + . . . + λnc2
n > 0, so A is positive-definite. ❒

The eigenvalues of A in Example 2.26 are 6 and 1. The eigenvalues of A in Example
2.27 are approximately 7.77 and −0.77.

Property 2 If A is n × n symmetric positive-definite and X is an n × m matrix of full rank with n ≥ m,
then XT AX is m × m symmetric positive-definite.

Proof. The matrix is symmetric since (XT AX)T = XT AX. To prove positive-definite,
consider a nonzero m-vector v. Note that vT (XT AX)v = (Xv)T A(Xv) ≥ 0, with equality
only if Xv = 0, due to the positive-definiteness of A. Since X has full rank, its columns are
linearly independent, so that Xv = 0 implies v = 0. ❒

DEFINITION 2.13 A principal submatrix of a square matrix A is a square submatrix whose diagonal entries
are diagonal entries of A. ❒

Property 3 Any principal submatrix of a symmetric positive-definite matrix is symmetric positive-
definite.

Proof. Exercise 12. ❒

For example, if
⎡

⎢⎢⎣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤

⎥⎥⎦

is symmetric positive-definite, then so is
[

a22 a23
a32 a33

]
.
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2.6.2 Cholesky factorization

To demonstrate the main idea, we start with a 2 × 2 case. All of the important issues arise
there; the extension to the general size is only some extra bookkeeping.

Consider the symmetric positive-definite matrix
[

a b

b c

]

.

By Property 3 of symmetric positive-definite matrices, we know that a > 0. In addition, we
know that the determinant ac − b2 of A is positive, since the determinant is the product of
the eigenvalues, all positive by Property 1. Writing A = RT R with an upper triangular R

implies the form
[

a b

b c

]

=
[ √

a 0
u v

][ √
a u

0 v

]

=

⎡

⎣ a u
√

a

u
√

a u2 + v2

⎤

⎦ ,

and we want to check whether this is possible. Comparing left and right sides yields the
identities u = b/

√
a and v2 = c − u2. Note that v2 = c − (b/

√
a)2 = c − b2/a > 0 from

our knowledge of the determinant. This verifies that v can be defined as a real number and
so the Cholesky factorization

A =
[

a b

b c

]

=

⎡

⎣
√

a 0
b√
a

√
c − b2/a

⎤

⎦

⎡

⎣
√

a b√
a

0
√

c − b2/a

⎤

⎦ = RT R

exists for 2 × 2 symmetric positive-definite matrices. The Cholesky factorization is not
unique; clearly we could just as well have chosen v to be the negative square root of
c − b2/a.

The next result guarantees that the same idea works for the n × n case.

THEOREM 2.14 (Cholesky Factorization Theorem) If A is a symmetric positive-definite n × n matrix, then
there exists an upper triangular n × n matrix R such that A = RT R. #

Proof. We construct R by induction on the size n. The case n = 2 was done above.
Consider A partitioned as

A =

⎡

⎢⎢⎢⎢⎣

a bT

b C

⎤

⎥⎥⎥⎥⎦

where b is an (n − 1)-vector and C is an (n − 1) × (n − 1) submatrix. We will use block
multiplication (see the Appendix section A.2) to simplify the argument. Set u = b/

√
a as

in the 2 × 2 case. Setting A1 = C − uuT and defining the invertible matrix

S =

⎡

⎢⎢⎢⎢⎢⎣

√
a uT

0

... I

0

⎤

⎥⎥⎥⎥⎥⎦
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yields

ST

⎡

⎢⎢⎢⎢⎢⎣

1 0 · · · 0
0

... A1

0

⎤

⎥⎥⎥⎥⎥⎦
S =

⎡

⎢⎢⎢⎢⎣

√
a 0 · · · 0

u I

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

1 0 · · · 0
0

... A1

0

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

√
a uT

0

... I

0

⎤

⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎣

a bT

b uuT + A1

⎤

⎥⎥⎥⎥⎦
= A

Notice that A1 is symmetric positive-definite. This follows from the facts that
⎡

⎢⎢⎢⎢⎢⎣

1 0 · · · 0
0

... A1

0

⎤

⎥⎥⎥⎥⎥⎦
= (ST )−1AS−1

is symmetric positive-definite by Property 2, and therefore so is the (n − 1) × (n − 1)

principal submatrix A1 by Property 3. By the induction hypothesis, A1 = V T V where V is
upper triangular. Finally, define the upper triangular matrix

R =

⎡

⎢⎢⎢⎢⎢⎣

√
a uT

0

... V

0

⎤

⎥⎥⎥⎥⎥⎦

and check that

RT R =

⎡

⎢⎢⎢⎢⎣

√
a 0 · · · 0

u V T

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

√
a uT

0

... V

0

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

a bT

b uuT + V T V

⎤

⎥⎥⎥⎥⎦
= A,

which completes the proof. ❒

The construction of the proof can be carried out explicitly, in what has become the
standard algorithm for the Cholesky factorization. The matrix R is built from the outside
in. First we find r11 = √

a11 and set the rest of the top row of R to uT = bT /r11. Then
uuT is subtracted from the lower principal (n − 1) × (n − 1) submatrix, and the same
steps are repeated on it to fill in the second row of R. These steps are continued until
all rows of R are determined. According to the theorem, the new principal submatrix is
positive-definite at every stage of the construction, so by Property 3, the top left corner
entry is positive, and the square root operation succeeds. This approach can be put directly
into the following algorithm. We use the “colon notation" where convenient to denote
submatrices.
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Cholesky factorization

for k = 1,2, . . . ,n

if Akk < 0, stop, end
Rkk = √

Akk

uT = 1
Rkk

Ak,k+1:n
Rk,k+1:n = uT

Ak+1:n,k+1:n = Ak+1:n,k+1:n − uuT

end

The resulting R is upper triangular and satisfies A = RT R.

! EXAMPLE 2.28 Find the Cholesky factorization of

⎡

⎣
4 −2 2

−2 2 −4
2 −4 11

⎤

⎦.

The top row of R is R11 = √
a11 = 2, followed by R1,2:3 = [−2,2]/R11 = [−1,1]:

R =

⎡

⎢⎣
2 −1 1

⎤

⎥⎦ .

Subtracting the outer product uuT =
[ −1

1

][ −1 1
]

from the lower principal 2 × 2

submatrix A2:3,2:3 of A leaves
⎡

⎢⎣ 2 −4
−4 11

⎤

⎥⎦ −

⎡

⎢⎣ 1 −1
−1 1

⎤

⎥⎦ =

⎡

⎢⎣ 1 −3
−3 10

⎤

⎥⎦ .

Now we repeat the same steps on the 2 × 2 submatrix to find R22 = 1 and R23 =
−3/1 = −3:

R =

⎡

⎢⎣
2 −1 1

1 −3

⎤

⎥⎦ .

The lower 1 × 1 principal submatrix of A is 10 − (−3)(−3) = 1, so R33 =
√

1. The
Cholesky factor of A is

R =

⎡

⎣
2 −1 1
0 1 −3
0 0 1

⎤

⎦ .
"

Solving Ax = b for symmetric positive-definite A follows the same idea as the LU

factorization. Now that A = RT R is a product of two triangular matrices, we need to solve
the lower triangular system RT c = b and the upper triangular system Rx = c to determine
the solution x.

2.6.3 Conjugate Gradient Method

The introduction of the Conjugate Gradient Method (Hestenes and Steifel, 1952) ushered
in a new era for iterative methods to solve sparse matrix problems. Although the method
was slow to catch on, once effective preconditioners were developed, huge problems that
could not be attacked any other way became feasible. The achievement led shortly to much
further progress and a new generation of iterative solvers.
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Orthogonality Our first real application of orthogonality in this book uses it in a

roundabout way, to solve a problem that has no obvious link to orthogonality. The Conju-

gate Gradient Method tracks down the solution of a positive-definite n × n linear system

by successively locating and eliminating the n orthogonal components of the error, one by

one. The complexity of the algorithm is minimized by using the directions established by

pairwise orthogonal residual vectors. We will develop this point of view further in Chapter 4,

culminating in the GMRES method, a nonsymmetric counterpart to conjugate gradients.

The ideas behind conjugate gradients rely on the generalization of the usual idea
of inner product. The Euclidean inner product (v,w) = vT w is symmetric and linear
in the inputs v and w, since (v,w) = (w,v) and (αv + βw,u) = α(v,u) + β(w,u) for
scalars α and β. The Euclidean inner product is also positive-definite, in that (v,v) > 0 if
v ̸= 0.

DEFINITION 2.15 Let A be a symmetric positive-definite n × n matrix. For two n-vectors v and w, define the
A-inner product

(v,w)A = vT Aw.

The vectors v and w are A-conjugate if (v,w)A = 0. ❒

Note that the new inner product inherits the properties of symmetry, linearity, and
positive-definiteness from the matrix A. Because A is symmetric, so is the A-inner product:
(v,w)A = vT Aw = (vT Aw)T = wT Av = (w,v)A. The A-inner product is also linear, and
positive-definiteness follows from the fact that if A is positive-definite, then

(v,v)A = vT Av > 0

if v ̸= 0.
Strictly speaking, the Conjugate Gradient Method is a direct method, and arrives at the

solution x of the symmetric positive-definite system Ax = b with the following finite loop:

Conjugate Gradient Method

x0 = initial guess
d0 = r0 = b − Ax0
for k = 0,1,2, . . . ,n − 1

if rk = 0, stop, end

αk = rT
k rk

dT
k Adk

xk+1 = xk + αkdk

rk+1 = rk − αkAdk

βk = rT
k+1rk+1

rT
k rk

dk+1 = rk+1 + βkdk

end

An informal description of the iteration is next, to be followed by proof of the necessary
facts in Theorem 2.16. The conjugate gradient iteration updates three different vectors on
each step. The vector xk is the approximate solution at step k. The vector rk represents the
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residual of the approximate solution xk . This is clear for r0 by definition, and during the
iteration, notice that

Axk+1 + rk+1 = A(xk + αkdk) + rk − αkAdk

= Axk + rk,

and so by induction rk = b − Axk for all k. Finally, the vector dk represents the new search
direction used to update the approximation xk to the improved version xk+1.

The method succeeds because each residual is arranged to be orthogonal to all previous
residuals. If this can be done, the method runs out of orthogonal directions in which to
look, and must reach a zero residual and a correct solution in at most n steps. The key
to accomplishing the orthogonality among residuals turns out to be choosing the search
directions dk pairwise conjugate. The concept of conjugacy generalizes orthogonality and
gives its name to the algorithm.

Now we explain the choices of αk and βk . The directions dk are chosen from the
vector space span of the previous residuals, as seen inductively from the last line of the
pseudocode. In order to ensure that the next residual is orthogonal to all past residuals, αk

in chosen precisely so that the new residual rk+1 is orthogonal to the direction dk:

xk+1 = xk + αkdk

b − Axk+1 = b − Axk − αkAdk

rk+1 = rk − αkAdk

0 = dT
k rk+1 = dT

k rk − αkdT
k Adk

αk = dT
k rk

dT
k Adk

.

This is not exactly how αk is written in the algorithm, but note that since dk−1 is
orthogonal to rk , we have

dk − rk = βk−1dk−1

rT
k dk − rT

k rk = 0,

which justifies the rewriting rT
k dk = rT

k rk . Secondly, the coefficient βk is chosen to ensure
the pairwise A-conjugacy of the dk:

dk+1 = rk+1 + βkdk

0 = dT
k Adk+1 = dT

k Ark+1 + βkdT
k Adk

βk = −dT
k Ark+1

dT
k Adk

.

The expression for βk can be rewritten in the simpler form seen in the algorithm, as shown
in (2.47) below.

Theorem 2.16 below verifies that all rk produced by the conjugate gradient iteration are
orthogonal to one another. Since they are n-dimensional vectors, at most n of the rk can be
pairwise orthogonal, so either rn or a previous rk must be zero, solving Ax = b. Therefore
after at most n steps, conjugate gradient arrives at a solution. In theory, the method is a
direct, not an iterative, method.

Before turning to the theorem that guarantees the success of the Conjugate Gradient
Method, it is instructive to carry out an example in exact arithmetic.

! EXAMPLE 2.29 Solve
[

2 2
2 5

][
u

v

]
=

[
6
3

]
using the Conjugate Gradient Method.
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Following the above algorithm we have

x0 =
[

0
0

]
, r0 = d0 =

[
6
3

]

α0 =

[
6
3

]T [
6
3

]

[
6
3

]T [
2 2
2 5

][
6
3

] = 45
6 · 18 + 3 · 27

= 5
21

x1 =
[

0
0

]
+ 5

21

[
6
3

]
=

[
10/7
5/7

]

r1 =
[

6
3

]
− 5

21

[
18
27

]
= 12

[
1/7

−2/7

]

β0 = rT
1 r1

rT
0 r0

= 144 · 5/49
36 + 9

= 16
49

d1 = 12
[

1/7
−2/7

]
+ 16

49

[
6
3

]
=

[
180/49

−120/49

]

α1 =

[
12/7

−24/7

]T [
12/7

−24/7

]

[
180/49

−120/49

]T [
2 2
2 5

][
180/49

−120/49

] = 7
10

x2 =
[

10/7
5/7

]
+ 7

10

[
180/49

−120/49

]
=

[
4

−1

]

r2 = 12
[

1/7
−2/7

]
− 7

10

[
2 2
2 5

][
180/49

−120/49

]
=

[
0
0

]

Since r2 = b − Ax2 = 0, the solution is x2 = [4,−1]. "

THEOREM 2.16 Let A be a symmetric positive-definite n × n matrix and let b ̸= 0 be a vector. In the
Conjugate Gradient Method, assume that rk ̸= 0 for k < n (if rk = 0 the equation is solved).
Then for each 1 ≤ k ≤ n,

(a) The following three subspaces of Rn are equal:

⟨x1, . . . ,xk⟩ = ⟨r0, . . . , rk−1⟩ = ⟨d0, . . . ,dk−1⟩,
(b) the residuals rk are pairwise orthogonal: rT

k rj = 0 for j < k,
(c) the directions dk are pairwise A-conjugate: dT

k Adj = 0 for j < k. #

Proof. (a) For k = 1, note that ⟨x1⟩ = ⟨d0⟩ = ⟨r0⟩, since x0 = 0. By definition xk =
xk−1 + αk−1dk−1. This implies by induction that ⟨x1, . . . ,xk⟩ = ⟨d0, . . . ,dk−1⟩. A similar
argument using dk = rk + βk−1dk−1 shows that ⟨r0, . . . , rk−1⟩ is equal to ⟨d0, . . . ,dk−1⟩.

For (b) and (c), proceed by induction. When k = 0 there is nothing to prove. Assume
(b) and (c) hold for k, and we will prove (b) and (c) for k + 1. Multiply the definition of
rk+1 by rT

j on the left:

rT
j rk+1 = rT

j rk − rT
k rk

dT
k Adk

rT
j Adk. (2.46)

If j ≤ k − 1, then rT
j rk = 0 by the induction hypothesis (b). Since rj can be expressed

as a combination of d0, . . . ,dj , the term rT
j Adk = 0 from the induction hypothesis (c),
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and (b) holds. On the other hand, if j = k, then rT
k rk+1 = 0 again follows from (2.46)

because dT
k Adk = rT

k Adk + βk−1dT
k−1Adk = rT

k Adk , using the induction hypothesis (c).
This proves (b).

Now that rT
k rk+1 = 0, (2.46) with j = k + 1 says

rT
k+1rk+1

rT
k rk

= −
rT
k+1Adk

dT
k Adk

. (2.47)

This together with multiplying the definition of dk+1 on the left by dT
j A yields

dT
j Adk+1 = dT

j Ark+1 −
rT
k+1Adk

dT
k Adk

dT
j Adk. (2.48)

If j = k, then dT
k Adk+1 = 0 from (2.48), using the symmetry of A. If j ≤ k − 1, then

Adj = (rj − rj+1)/αj (from the definition of rk+1) is orthogonal to rk+1, showing the first
term on the right-hand side of (2.48) is zero, and the second term is zero by the induction
hypothesis, which completes the argument for (c). ❒

In Example 2.29, notice that r1 is orthogonal to r0, as guaranteed by Theorem 2.16.
This fact is the key to success for the Conjugate Gradient Method: Each new residual ri is
orthogonal to all previous ri’s. If one of the ri turns out to be zero, then Axi = b and xi is
the solution. If not, after n steps through the loop, rn is orthogonal to a space spanned by
the n pairwise orthogonal vectors r0, . . . , rn−1, which must be all of Rn. So rn must be the
zero vector, and Axn = b.

The Conjugate Gradient Method is in some ways simpler than Gaussian elimination.
For example, writing the code appears to be more foolproof—there are no row operations to
worry about, and there is no triple loop as in Gaussian elimination. Both are direct methods,
and they both arrive at the theoretically correct solution in a finite number of steps. So two
questions remain: Why shouldn’t conjugate gradient be preferred to Gaussian elimination,
and why is Conjugate Gradient often treated as an iterative method?

The answer to both questions begins with an operation count. Moving through the loop
requires one matrix-vector product Adn−1 and several additional dot products. The matrix-
vector product alone requires n2 multiplications for each step (along with about the same
number of additions), for a total of n3 multiplications after n steps. Compared to the count
of n3/3 for Gaussian elimination, this is three times too expensive.

The picture changes if A is sparse. Assume that n is too large for the n3/3 operations
of Gaussian elimination to be feasible. Although Gaussian elimination must be run to
completion to give a solution x, Conjugate Gradient gives an approximation xi on each step.

The backward error, the Euclidean length of the residual, decreases on each step, and
so at least by that measure, Axi is getting nearer to b on each step. Therefore by monitoring
the ri , a good enough solution xi may be found to avoid completing all n steps. In this
context, Conjugate Gradient becomes indistinguishable from an iterative method.

The method fell out of favor shortly after its discovery because of its susceptibility
to accumulation of round-off errors when A is an ill-conditioned matrix. In fact, its per-
formance on ill-conditioned matrices is inferior to Gaussian elimination with partial piv-
oting. In modern days, this obstruction is relieved by preconditioning, which essentially
changes the problem to a better-conditioned matrix system, after which Conjugate Gradient
is applied. We will investigate the preconditioned Conjugate Gradient Method in the next
section.

The title of the method comes from what the Conjugate Gradient Method is really doing:
sliding down the slopes of a quadratic paraboloid in n dimensions. The “gradient’’ part of
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the title means it is finding the direction of fastest decline using calculus, and “conjugate’’
means not quite that its individual steps are orthogonal to one another, but that at least the
residuals ri are. The geometric details of the method and its motivation are interesting. The
original article Hestenes and Steifel [1952] gives a complete description.

! EXAMPLE 2.30 Apply the Conjugate Gradient Method to system (2.45) with n = 100,000.

After 20 steps of the Conjugate Gradient Method, the difference between the computed
solution x and the true solution (1, . . . ,1) is less than 10−9 in the vector infinity norm. The
total time of execution was less than one second on a PC. "

2.6.4 Preconditioning

Convergence of iterative methods like the Conjugate Gradient Method can be acceler-
ated by the use of a technique called preconditioning. The convergence rates of iterative
methods often depend, directly or indirectly, on the condition number of the coefficient
matrix A. The idea of preconditioning is to reduce the effective condition number of the
problem.

The preconditioned form of the n × n linear system Ax = b is

M−1Ax = M−1b,

where M is an invertible n × n matrix called the preconditioner. All we have done is to
left-multiply the equation by a matrix. An effective preconditioner reduces the condition
number of the problem by attempting to invert A. Conceptually, it tries to do two things at
once: the matrix M should be (1) as close to A as possible and (2) simple to invert. These
two goals usually stand in opposition to one another.

The matrix closest to A is A itself. Using M = A would bring the condition num-
ber of the problem to 1, but presumably A is not trivial to invert or we would not
be using a sophisticated solution method. The easiest matrix to invert is the identity
matrix M = I , but this does not reduce the condition number. The perfect preconditioner
would be a matrix in the middle of the two extremes that combines the best properties
of both.

A particularly simple choice is the Jacobi preconditioner M = D, where D is the
diagonal of A. The inverse of D is the diagonal matrix of reciprocals of the entries of D.
In a strictly diagonally dominant matrix, for example, the Jacobi preconditioner holds a
close resemblance to A while being simple to invert. Note that each diagonal entry of a
symmetric positive-definite matrix is strictly positive by Property 3 of section 2.6.1, so
finding reciprocals is not a problem.

When A is a symmetric positive-definite n × n matrix, we will choose a symmetric
positive-definite matrix M for use as a preconditioner. Recall the M-inner product
(v,w)M = vT Mw as defined in Section 2.6.3. The Preconditioned Conjugate Gradi-
ent Method is now easy to describe: Replace Ax = b with the preconditioned equation
M−1Ax = M−1b, and replace the Euclidean inner product with (v,w)M . The reasoning
used for the original conjugate gradient method still applies because the matrix M−1A

remains symmetric positive-definite in the new inner product.
For example,

(M−1Av,w)M = vT AM−1Mw = vT Aw = vT MM−1Aw = (v,M−1Aw)M.

To convert the algorithm from Section 2.6.3 to the preconditioned version, let
zk = M−1b − M−1Axk = M−1rk be the residual of the preconditioned system. Then
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αk = (zk,zk)M

(dk,M−1Adk)M

xk+1 = xk + αdk

zk+1 = zk − αM−1Adk

βk = (zk+1, zk+1)M

(zk,zk)M

dk+1 = zk+1 + βkdk.

Multiplications by M can be reduced by noting that

(zk,zk)M = zT
k Mzk = zT

k rk

(dk,M−1Adk)M = dT
k Adk

(zk+1, zk+1)M = zT
k+1Mzk+1 = zT

k+1rk+1.

With these simplifications, the pseudocode for the preconditioned version goes as fol-
lows.

Preconditioned Conjugate Gradient Method

x0 = initial guess
r0 = b − Ax0
d0 = z0 = M−1r0
for k = 0,1,2, . . . ,n − 1

if rk = 0, stop, end
αk = rT

k zk/dT
k Adk

xk+1 = xk + αkdk

rk+1 = rk − αkAdk

zk+1 = M−1rk+1
βk = rT

k+1zk+1/rT
k zk

dk+1 = zk+1 + βkdk

end

The approximation to the solution of Ax = b after k steps is xk . Note that no explicit
multiplications by M−1 should be carried out. They should be replaced with appropriate
back substitutions due to the relative simplicity of M .

The Jacobi preconditioner is the simplest of an extensive and growing library of possible
choices. We will describe one further family of examples, and direct the reader to the
literature for more sophisticated alternatives.

The symmetric successive over-relaxation (SSOR) preconditioner is defined by

M = (D + ωL)D−1(D + ωU)

where A = L + D + U is divided into its lower triangular part, diagonal, and upper trian-
gular part. As in the SOR method, ω is a constant between 0 and 2. The special case ω = 1
is called the Gauss–Seidel preconditioner.

A preconditioner is of little use if it is difficult to invert. Notice that the SSOR pre-
conditioner is defined as a product M = (I + ωLD−1)(D + ωU) of a lower triangular
and an upper triangular matrix, so that the equation z = M−1v can be solved by two back
substitutions:

(I + ωLD−1)c = v

(D + ωU)z = c
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For a sparse matrix, the two back substitutions can be done in time proportional to the
number of nonzero entries. In other words, multiplication by M−1 is not significantly
higher in complexity than multiplication by M .

! EXAMPLE 2.31 Let A denote the matrix with diagonal entries Aii =
√

i for i = 1, . . . ,n and Ai,i+10 =
Ai+10,i = cos i for i = 1, . . . ,n − 10, with all other entries zero. Set x to be the vector
of n ones, and define b = Ax. For n = 500, solve Ax = b with the Conjugate Gradient
Method in three ways: using no preconditioner, using the Jacobi preconditioner, and using
the Gauss–Seidel preconditioner.

The matrix can be defined in Matlab by
A=diag(sqrt(1:n))+ diag(cos(1:(n-10)),10)

+ diag(cos(1:(n-10)),-10).
Figure 2.4 shows the three different results. Even with this simply defined matrix, the
Conjugate Gradient Method is fairly slow to converge without preconditioning. The Jacobi
preconditioner, which is quite easy to apply, makes a significant improvement, while the
Gauss–Seidel preconditioner requires only about 10 steps to reach machine accuracy. "
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Figure 2.4 Efficiency of Preconditioned Conjugate Gradient Method for the solu-

tion of Example 2.31. Error is plotted by step number. Circles: no preconditioner.

Squares: Jacobi preconditioner. Diamonds: Gauss–Seidel preconditioner.

2.6 Exercises

1. Show that the following matrices are symmetric positive-definite by expressing xT Ax as a
sum of squares.

(a)

[
1 0
0 3

]

(b)

[
1 3
3 10

]

(c)

⎡

⎢⎣
1 0 0
0 2 0
0 0 3

⎤

⎥⎦

2. Show that the following symmetric matrices are not positive-definite by finding a vector x ̸= 0
such that xT Ax < 0.

(a)

[
1 0
0 −3

]

(b)

[
1 2
2 2

]

(c)

[
1 −1

−1 0

]

(d)

⎡

⎢⎣
1 0 0
0 −2 0
0 0 3

⎤

⎥⎦
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3. Use the Cholesky factorization procedure to express the matrices in Exercise 1 in the form
A = RT R.

4. Show that the Cholesky factorization procedure fails for the matrices in Exercise 2.

5. Find the Cholesky factorization A = RT R of each matrix.

(a)

[
1 2
2 8

]

(b)

[
4 −2

−2 5/4

]

(c)

[
25 5

5 26

]

(d)

[
1 −2

−2 5

]

6. Find the Cholesky factorization A = RT R of each matrix.

(a)

⎡

⎢⎣
4 −2 0

−2 2 −3
0 −3 10

⎤

⎥⎦(b)

⎡

⎢⎣
1 2 0
2 5 2
0 2 5

⎤

⎥⎦(c)

⎡

⎢⎣
1 1 1
1 2 2
1 2 3

⎤

⎥⎦(d)

⎡

⎢⎣
1 −1 −1

−1 2 1
−1 1 2

⎤

⎥⎦

7. Solve the system of equations by finding the Cholesky factorization of A followed by two back
substitutions.

(a)

[
1 −1

−1 5

][
x1

x2

]

=
[

3
−7

]

(b)

[
4 −2

−2 10

][
x1

x2

]

=
[

10
4

]

8. Solve the system of equations by finding the Cholesky factorization of A followed by two back
substitutions.

(a)

⎡

⎢⎣
4 0 −2
0 1 1

−2 1 3

⎤

⎥⎦

⎡

⎢⎣
x1

x2

x3

⎤

⎥⎦ =

⎡

⎢⎣
4
2
0

⎤

⎥⎦ (b)

⎡

⎢⎣
4 −2 0

−2 2 −1
0 −1 5

⎤

⎥⎦

⎡

⎢⎣
x1

x2

x3

⎤

⎥⎦ =

⎡

⎢⎣
0
3

−7

⎤

⎥⎦

9. Prove that if d > 4, the matrix A =
[

1 2
2 d

]

is positive-definite.

10. Find all numbers d such that A =
[

1 −2
−2 d

]

is positive-definite.

11. Find all numbers d such that A =

⎡

⎢⎣
1 −1 0

−1 2 1
0 1 d

⎤

⎥⎦ is positive-definite.

12. Prove that a principal submatrix of a symmetric positive-definite matrix is symmetric
positive-definite. (Hint: Consider an appropriate X and use Property 2.)

13. Solve the problems by carrying out the Conjugate Gradient Method by hand.

(a)

[
1 2
2 5

][
u

v

]

=
[

1
1

]

(b)

[
1 2
2 5

][
u

v

]

=
[

1
3

]

14. Solve the problems by carrying out the Conjugate Gradient Method by hand.

(a)

[
1 −1

−1 2

][
u

v

]

=
[

0
1

]

(b)

[
4 1
1 4

][
u

v

]

=
[

−3
3

]

15. Carry out the conjugate gradient iteration in the general scalar case Ax = b where A is a 1 × 1
matrix. Find α1,x1, and confirm that r1 = 0 and Ax1 = b.
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2.6 Computer Problems

1. Write a Matlab version of the Conjugate Gradient Method and use it to solve the systems

(a)

[
1 0
0 2

][
u

v

]

=
[

2
4

]

(b)

[
1 2
2 5

][
u

v

]

=
[

1
1

]

2. Use a Matlab version of conjugate gradient to solve the following problems:

(a)

⎡

⎢⎣
1 −1 0

−1 2 1
0 1 2

⎤

⎥⎦

⎡

⎢⎣
u

v

w

⎤

⎥⎦ =

⎡

⎢⎣
0
2
3

⎤

⎥⎦ (b)

⎡

⎢⎣
1 −1 0

−1 2 1
0 1 5

⎤

⎥⎦

⎡

⎢⎣
u

v

w

⎤

⎥⎦ =

⎡

⎢⎣
3

−3
4

⎤

⎥⎦

3. Solve the system Hx = b by the Conjugate Gradient Method, where H is the n × n Hilbert
matrix and b is the vector of all ones, for (a) n = 4 (b) n = 8.

4. Solve the sparse problem of (2.45) by the Conjugate Gradient Method for (a) n = 6 (b) n = 12.

5. Use the Conjugate Gradient Method to solve (2.45) for n = 100,1000, and 10,000. Report the
size of the final residual, and the number of steps required.

6. Let A be the n × n matrix with n = 1000 and entries
A(i, i) = i,A(i, i + 1) = A(i + 1, i) = 1/2,A(i, i + 2) = A(i + 2, i) = 1/2 for all i that fit
within the matrix. (a) Print the nonzero structure spy(A). (b) Let xe be the vector of n ones.
Set b = Axe, and apply the Conjugate Gradient Method, without preconditioner, with the
Jacobi preconditioner, and with the Gauss–Seidel preconditioner. Compare errors of the three
runs in a plot versus step number.

7. Let n = 1000. Start with the n × n matrix A from Computer Problem 6, and add the nonzero
entries A(i,2i) = A(2i, i) = 1/2 for 1 ≤ i ≤ n/2. Carry out steps (a) and (b) as in that
problem.

8. Let n = 500, and let A be the n × n matrix with entries
A(i, i) = 2,A(i, i + 2) = A(i + 2, i) = 1/2,A(i, i + 4) = A(i + 4, i) = 1/2 for all i, and
A(500, i) = A(i,500) = −0.1 for 1 ≤ i ≤ 495. Carry out steps (a) and (b) as in Computer
Problem 6.

9. Let A be the matrix from Computer Problem 8, but with the diagonal elements replaced by
A(i, i) = 3√

i. Carry out parts (a) and (b) as in that problem.

10. Let C be the 195 × 195 matrix block with C(i, i) = 2,C(i, i + 3) = C(i + 3, i) = 0.1,

C(i, i + 39) = C(i + 39, i) = 1/2,C(i, i + 42) = C(i + 42, i) = 1/2 for all i. Define A to
be the n × n matrix with n = 780 formed by four diagonally arranged blocks C, and with
blocks 1

2 C on the super- and subdiagonal. Carry out steps (a) and (b) as in Computer
Problem 6 to solve Ax = b.

2.7 NONLINEAR SYSTEMS OF EQUATIONS

Chapter 1 contains methods for solving one equation in one unknown, usually nonlinear. In
this Chapter, we have studied solution methods for systems of equations, but required the
equations to be linear. The combination of nonlinear and “more than one equation’’ raises
the degree of difficulty considerably. This section describes Newton’s Method and variants
for the solution of systems of nonlinear equations.
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2.7.1 Multivariate Newton’s Method

The one-variable Newton’s Method

xk+1 = xk − f (xk)

f ′(xk)

provides the main outline of the multivariate Newton’s Method. Both are derived from the
linear approximation afforded by the Taylor expansion. For example, let

f1(u,v,w) = 0

f2(u,v,w) = 0 (2.49)

f3(u,v,w) = 0

be three nonlinear equations in three unknowns u,v,w. Define the vector-valued function
F(u,v,w) = (f1,f2,f3), and denote the problem (2.49) by F(x) = 0, where x = (u,v,w).

The analogue of the derivative f ′ in the one-variable case is the Jacobian matrix
defined by

DF(x) =

⎡

⎢⎢⎢⎢⎢⎢⎣

∂f1

∂u

∂f1

∂v

∂f1

∂w

∂f2

∂u

∂f2

∂v

∂f2

∂w

∂f3

∂u

∂f3

∂v

∂f3

∂w

⎤

⎥⎥⎥⎥⎥⎥⎦
.

The Taylor expansion for vector-valued functions around x0 is

F (x) = F(x0) + DF(x0) · (x − x0) + O(x − x0)2.

For example, the linear expansion of F(u,v) = (eu+v,sin u) around x0 = (0,0) is

F (x) =
[

1
0

]
+

[
e0 e0

cos0 0

][
u

v

]
+ O(x2)

=
[

1
0

]
+

[
u + v

u

]
+ O(x2).

Newton’s Method is based on a linear approximation, ignoring the O(x2) terms. As in the
one-dimensional case, let x = r be the root, and let x0 be the current guess. Then

0 = F(r) ≈ F(x0) + DF(x0) · (r − x0),

or

−DF(x0)−1F(x0) ≈ r − x0. (2.50)

Therefore, a better approximation for the root is derived by solving (2.50) for r .

Multivariate Newton’s Method

x0 = initial vector

xk+1 = xk − (DF(xk))−1F(xk) for k = 0,1,2, . . . .
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Since computing inverses is computationally burdensome, we use a trick to avoid it. On
each step, instead of following the preceding definition literally, set xk+1 = xk − s, where s

is the solution of DF(xk)s = F(xk). Now, only Gaussian elimination (n3/3 multiplications)
is needed to carry out a step, instead of computing an inverse (about three times as many).
Therefore, the iteration step for multivariate Newton’s Method is

{
DF(xk)s = −F(xk)

xk+1 = xk + s.
(2.51)

! EXAMPLE 2.32 Use Newton’s Method with starting guess (1,2) to find a solution of the system

v − u3 = 0

u2 + v2 − 1 = 0.

Figure 2.5 shows the sets on which f1(u,v) = v − u3 and f2(u,v) = u2 + v2 − 1 are
zero and their two intersection points, which are the solutions to the system of equations.
The Jacobian matrix is

DF(u,v) =
[

−3u2 1
2u 2v

]
.

Using starting point x0 = (1,2), on the first step we must solve the matrix
equation (2.51):

[ −3 1
2 4

][
s1
s2

]
= −

[
1
4

]
.

The solution is s = (0,−1), so the first iteration produces x1 = x0 + s = (1,1). The second
step requires solving

[ −3 1
2 2

][
s1
s2

]
= −

[
0
1

]
.

y

x
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x1
x2
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2

Figure 2.5 Newton’s Method for Example 2.32. The two roots are the dots on the

circle. Newton’s Method produces the dots that are converging to the solution at

approximately (0.8260, 0.5636).

The solution is s = (−1/8,−3/8) and x2 = x1 + s = (7/8,5/8). Both iterates are
shown in Figure 2.5. Further steps yield the following table:
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step u v

0 1.00000000000000 2.00000000000000
1 1.00000000000000 1.00000000000000
2 0.87500000000000 0.62500000000000
3 0.82903634826712 0.56434911242604
4 0.82604010817065 0.56361977350284
5 0.82603135773241 0.56362416213163
6 0.82603135765419 0.56362416216126
7 0.82603135765419 0.56362416216126

The familiar doubling of correct decimal places characteristic of quadratic convergence is
evident in the output sequence. The symmetry of the equations shows that if (u,v) is a
solution, then so is (−u,−v), as is visible in Figure 2.5. The second solution can also be
found by applying Newton’s Method with a nearby starting guess. "

! EXAMPLE 2.33 Use Newton’s Method to find the solutions of the system

f1(u,v) = 6u3 + uv − 3v3 − 4 = 0

f2(u,v) = u2 − 18uv2 + 16v3 + 1 = 0.

Notice that (u,v) = (1,1) is one solution. It turns out that there are two others. The
Jacobian matrix is

DF(u,v) =
[

18u2 + v u − 9v2

2u − 18v2 −36uv + 48v2

]
.

Which solution is found by Newton’s Method depends on the starting guess, just as in the
one-dimensional case. Using starting point (u0,v0) = (2,2), iterating the preceding formula
yields the following table:

step u v

0 2.00000000000000 2.00000000000000
1 1.37258064516129 1.34032258064516
2 1.07838681200443 1.05380123264984
3 1.00534968896520 1.00269261871539
4 1.00003367866506 1.00002243772010
5 1.00000000111957 1.00000000057894
6 1.00000000000000 1.00000000000000
7 1.00000000000000 1.00000000000000

Other initial vectors lead to the other two roots, which are approximately
(0.865939,0.462168) and (0.886809,−0.294007). See Computer Problem 2. "

Newton’s Method is a good choice if the Jacobian can be calculated. If not, the best
alternative is Broyden’s Method, the subject of the next section.

2.7.2 Broyden’s Method

Newton’s Method for solving one equation in one unknown requires knowledge of the
derivative. The development of this method in Chapter 1 was followed by the discussion
of the Secant Method, for use when the derivative is not available or is too expensive to
evaluate.

Now that we have a version of Newton’s Method for systems of nonlinear equations
F(x) = 0, we are faced with the same question: What if the Jacobian matrix DF is not
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available? Although there is no simple extension of Newton’s Method to a Secant Method
for systems, Broyden [1965] suggested a method that is generally considered the next
best thing.

Suppose Ai is the best approximation available at step i to the Jacobian matrix, and
that it has been used to create

xi+1 = xi − A−1
i F (xi). (2.52)

To update Ai to Ai+1 for the next step, we would like to respect the derivative aspect of the
Jacobian DF, and satisfy

Ai+1δi+1 = $i+1, (2.53)

where δi+1 = xi+1 − xi and $i+1 = F(xi+1) − F(xi). On the other hand, for the orthog-
onal complement of δi+1, we have no new information. Therefore, we ask that

Ai+1w = Aiw (2.54)

for every w satisfying δT
i+1w = 0. One checks that a matrix that satisfies both (2.53) and

(2.54) is

Ai+1 = Ai +
($i+1 − Aiδi )δ

T
i+1

δT
i+1δi+1

. (2.55)

Broyden’s Method uses the Newton’s Method step (2.52) to advance the current guess,
while updating the approximate Jacobian by (2.55). Summarizing, the algorithm starts with
an initial guess x0 and an initial approximate Jacobian A0, which can be chosen to be the
identity matrix if there is no better choice.

Broyden’s Method I

x0 = initial vector
A0 = initial matrix
for i = 0,1,2, . . .

xi+1 = xi − A−1
i F (xi)

Ai+1 = Ai +
($i+1 − Aiδi+1)δT

i+1

δT
i+1δi+1

end

where δi+1 = xi+1 − xi and $i+1 = F(xi+1) − F(xi).

Note that the Newton-type step is carried out by solving Aiδi+1 = F(xi), just as for
Newton’s Method. Also like Newton’s Method, Broyden’s Method is not guaranteed to
converge to a solution.

A second approach to Broyden’s Method avoids the relatively expensive matrix solver
step Aiδi+1 = F(xi). Since we are at best only approximating the derivative DF during
the iteration, we may as well be approximating the inverse of DF instead, which is what is
needed in the Newton step.

We redo the derivation of Broyden from the point of view of Bi = A−1
i . We would like

to have

δi+1 = Bi+1$i+1, (2.56)

where δi+1 = xi+1 − xi and $i+1 = F(xi+1) − F(xi), and for every w satisfying
δT

i+1w = 0, still satisfy Ai+1w = Aiw, or

Bi+1Aiw = w. (2.57)
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A matrix that satisfies both (2.56) and (2.57) is

Bi+1 = Bi +
(δi+1 − Bi$i+1)δT

i+1Bi

δT
i+1Bi$i+1

. (2.58)

The new version of the iteration, which needs no matrix solve, is

xi+1 = xi − BiF (xi). (2.59)

The resulting algorithm is called Broyden’s Method II.

Broyden’s Method II

x0 = initial vector
B0 = initial matrix
for i = 0,1,2, . . .

xi+1 = xi − BiF (xi)

Bi+1 = Bi +
(δi+1 − Bi$i+1)δT

i+1Bi

δT
i+1Bi$i+1

end

where δi = xi − xi−1 and $i = F(xi) − F(xi−1).

To begin, an initial vector x0 and an initial guess for B0 are needed. If it is impossible
to compute derivatives, the choice B0 = I can be used.

A perceived disadvantage of Broyden II is that estimates for the Jacobian, needed for
some applications, are not easily available. The matrix Bi is an estimate for the matrix
inverse of the Jacobian. Broyden I, on the other hand, keeps track of Ai , which estimates
the Jacobian. For this reason, in some circles Broyden I and II are referred to as “Good
Broyden’’ and “Bad Broyden,’’ respectively.

Both versions of Broyden’s Method converge superlinearly (to simple roots), slightly
slower than the quadratic convergence of Newton’s Method. If a formula for the Jacobian
is available, it usually speeds convergence to use the inverse of DF(x0) for the initial
matrix B0.

Matlab code for Broyden’s Method II is as follows:

% Program 2.3 Broyden’s Method II
% Input: initial vector x0, max steps k
% Output: solution x
% Example usage: broyden2(f,[1;1],10)
function x=broyden2(f,x0,k)
[n,m]=size(x0);
b=eye(n,n); % initial b
for i=1:k
x=x0-b*f(x0);
del=x-x0;delta=f(x)-f(x0);
b=b+(del-b*delta)*del’*b/(del’*b*delta);
x0=x;

end

For example, a solution of the system in Example 2.32 is found by defining a function

>> f=@(x) [x(2)-x(1)ˆ3;x(1)ˆ2+x(2)ˆ2-1];

and calling Broyden’s Method II as

>> x=broyden2(f,[1;1],10)
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Broyden’s Method, in either implementation, is very useful in cases where the Jacobian
is unavailable. A typical instance of this situation is illustrated in the model of pipe buckling
in Reality Check 7.

2.7 Exercises

1. Find the Jacobian of the functions (a) F(u,v) = (u3,uv3)

(b) F(u,v) = (sin uv,euv) (c) F(u,v) = (u2 + v2 − 1, (u − 1)2 + v2 − 1)

(d) F(u,v,w) = (u2 + v − w2,sin uvw,uvw4).

2. Use the Taylor expansion to find the linear approximation L(x) to F(x) near x0.
(a) F(u,v) = (1 + eu+2v,sin(u + v)),x0 = (0,0)

(b) F(u,v) = (u + eu−v,2u + v),x0 = (1,1)

3. Sketch the two curves in the uv-plane, and find all solutions exactly by simple algebra.

(a)

{
u2 + v2 = 1
(u − 1)2 + v2 = 1

(b)

{
u2 + 4v2 = 4
4u2 + v2 = 4

(c)

{
u2 − 4v2 = 4
(u − 1)2 + v2 = 4

4. Apply two steps of Newton’s Method to the systems in Exercise 3, with starting point (1,1).

5. Apply two steps of Broyden I to the systems in Exercise 3, with starting point (1,1), using
A0 = I .

6. Apply two steps of Broyden II to the systems in Exercise 3, with starting point (1,1), using
B0 = I .

7. Prove that (2.55) satisfies (2.53) and (2.54).

8. Prove that (2.58) satisfies (2.56) and (2.57).

2.7 Computer Problems

1. Implement Newton’s Method with appropriate starting points to find all solutions. Check with
Exercise 3 to make sure your answers are correct.

(a)

{
u2 + v2 = 1
(u − 1)2 + v2 = 1

(b)

{
u2 + 4v2 = 4
4u2 + v2 = 4

(c)

{
u2 − 4v2 = 4
(u − 1)2 + v2 = 4

2. Use Newton’s Method to find the three solutions of Example 2.31.

3. Use Newton’s Method to find the two solutions of the system u3 − v3 + u = 0 and
u2 + v2 = 1.

4. (a) Apply Newton’s Method to find both solutions of the system of three equations.

2u2 − 4u + v2 + 3w2 + 6w + 2 = 0

u2 + v2 − 2v + 2w2 − 5 = 0

3u2 − 12u + v2 + 3w2 + 8 = 0

5. Use Multivariate Newton’s Method to find the two points in common of the three given
spheres in three-dimensional space. (a) Each sphere has radius 1, with centers
(1,1,0), (1,0,1), and (0,1,1). (Ans. (1,1,1) and (1/3,1/3,1/3)) (b) Each sphere has radius
5, with centers (1,−2,0), (−2,2,−1), and (4,−2,3).
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6. Although a generic intersection of three spheres in three-dimensional space is two points, it can
be a single point. Apply Multivariate Newton’s Method to find the single point of intersection
of the spheres with center (1,0,1) and radius

√
8, center (0,2,2) and radius

√
2, and center

(0,3,3) and radius
√

2. Does the iteration still converge quadratically? Explain.

7. Apply Broyden I with starting guesses x0 = (1,1) and A0 = I to the systems in Exercise 3.
Report the solutions to as much accuracy as possible and the number of steps required.

8. Apply Broyden II with starting guesses (1,1) and B0 = I to the systems in Exercise 3. Report
the solutions to as much accuracy as possible and the number of steps required.

9. Apply Broyden I to find the sets of two intersection points in Computer Problem 5.

10. Apply Broyden I to find the intersection point in Computer Problem 6. What can you observe
about the convergence rate?

11. Apply Broyden II to find the sets of two intersection points in Computer Problem 5.

12. Apply Broyden II to find the intersection point in Computer Problem 6. What can you observe
about the convergence rate?

Software and Further Reading

Many excellent texts have appeared on numerical linear algebra, including Stewart [1973]
and the comprehensive reference Golub and Van Loan [1996]. Two excellent books with a
modern approach to numerical linear algebra are Demmel [1997] and Trefethen and Bau
[1997]. Books to consult on iterative methods include Axelsson [1994], Hackbush [1994],
Kelley [1995], Saad [1996], Traub [1964], Varga [2000], Young [1971], and Dennis and
Schnabel [1983].

LAPACK is a comprehensive, public domain software package containing high-quality
routines for matrix algebra computations, including methods for solving Ax = b, matrix
factorizations, and condition number estimation. It is carefully written to be portable to
modern computer architectures, including shared memory vector and parallel processors.
See Anderson et al. [1990].

The portability of LAPACK depends on the fact that its algorithms are written in
such a way as to maximize use of the Basic Linear Algebra Subprograms (BLAS), a set
of primitive matrix/vector computations that can be tuned to optimize performance on
particular machines and architectures. BLAS is divided roughly into three parts: Level 1,
requiring O(n) operations like dot products; Level 2, operations such as matrix/vector
multiplication, that are O(n2); and Level 3, including full matrix/matrix multiplication,
which has complexity O(n3).

The general dense matrix routine in LAPACK for solving Ax = b in double precision,
using the PA= LU factorization, is called DGESV, and there are other versions for sparse and
banded matrices. See www.netlib.org/lapack for more details. Implementations of
LAPACK routines also form the basis for Matlab’s matrix algebra computations, and those
of the IMSL and NAG packages.

www.netlib.org/lapack
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3
Interpolation
Polynomial interpolation is an ancient practice, but the
heavy industrial use of interpolation began with cubic
splines in the 20th century. Motivated by practices in
the shipbuilding and aircraft industries, engineers Paul
de Casteljau and Pierre Bézier at rival European car
manufacturers Citroen and Renault, followed by oth-
ers at General Motors in the United States, spurred the
development of what are now called cubic splines and
Bézier splines.

Although developed for aerodynamic studies of
automobiles, splines have been used for many appli-
cations, including computer typesetting. A revolution
in printing was caused by two Xerox engineers who
formed a company named Adobe and released the

PostScript™ language in 1984. It came to the atten-
tion of Steve Jobs at Apple Corporation, who was look-
ing for a way to control a newly invented laser printer.
Bézier splines were a simple way to adapt the same
mathematical curves to fonts with multiple printer res-
olutions. Later, Adobe used many of the fundamen-
tal ideas of PostScript as the basis of a more flexible
format called PDF (Portable Document Format), which
became a ubiquitous document file type by the early
21st century.

Reality Check 3 on page 183 explores
how PDF files use Bézier splines to represent printed
characters in arbitrary fonts.

Efficient ways of representing data are fundamental to advancing the understanding of
scientific problems. At its most fundamental, approximating data by a polynomial is

an act of data compression. Suppose that points (x,y) are taken from a given function
y = f (x), or perhaps from an experiment where x denotes temperature and y denotes
reaction rate. A function on the real numbers represents an infinite amount of information.
Finding a polynomial through the set of data means replacing the information with a rule
that can be evaluated in a finite number of steps. Although it is unrealistic to expect the
polynomial to represent the function exactly at new inputs x, it may be close enough to
solve practical problems.

This chapter introduces polynomial interpolation and spline interpolation as convenient
tools for finding functions that pass through given data points.
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3.1 DATA AND INTERPOLATING FUNCTIONS

A function is said to interpolate a set of data points if it passes through those points. Suppose
that a set of (x,y) data points has been collected, such as (0,1), (2,2), and (3,4). There is
a parabola that passes through the three points, shown in Figure 3.1. This parabola is called
the degree 2 interpolating polynomial passing through the three points.

–1 1 2 3 4

y

x

–1

1

2

3

4

Figure 3.1 Interpolation by parabola. The points (0,1), (2,2), and (3,4) are interpolated by the

function P(x) = 1
2 x2 − 1

2 x + 1.

DEFINITION 3.1 The function y = P (x) interpolates the data points (x1,y1), . . . , (xn,yn) if P (xi) = yi for
each 1 ≤ i ≤ n. ❒

Note that P is required to be a function; that is, each value x corresponds to a single y.
This puts a restriction on the set of data points {(xi,yi)} that can be interpolated—the xi’s
must be all distinct in order for a function to pass through them. There is no such restriction
on the yi’s.

To begin, we will look for an interpolating polynomial. Does such a polynomial always
exist? Assuming that the x-coordinates of the points are distinct, the answer is yes. No
matter how many points are given, there is some polynomial y = P (x) that runs through
all the points. This and several other facts about interpolating polynomials are proved in
this section.

Interpolation is the reverse of evaluation. In polynomial evaluation (such as the nested
multiplication of Chapter 0), we are given a polynomial and asked to evaluate a y-value for
a given x-value—that is, compute points lying on the curve. Polynomial interpolation asks
for the opposite process: Given these points, compute a polynomial that can generate them.

Complexity Why do we use polynomials? Polynomials are very often used for inter-

polation because of their straightforward mathematical properties. There is a simple theory

about when an interpolating polynomial of a given degree exists for a given set of points.

More important, in a real sense, polynomials are the most fundamental of functions for digital

computers. Central processing units usually have fast methods in hardware for adding and

multiplying floating point numbers, which are the only operations needed to evaluate a poly-

nomial. Complicated functions can be approximated by interpolating polynomials in order to

make them computable with these two hardware operations.
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3.1.1 Lagrange interpolation

Assume that n data points (x1,y1), . . . , (xn,yn) are given, and that we would like to find
an interpolating polynomial. There is an explicit formula, called the Lagrange interpolating
formula, for writing down a polynomial of degree d = n − 1 that interpolates the points.
For example, suppose that we are given three points (x1,y1), (x2,y2), (x3,y3). Then the
polynomial

P2(x) = y1
(x − x2)(x − x3)

(x1 − x2)(x1 − x3)
+ y2

(x − x1)(x − x3)

(x2 − x1)(x2 − x3)
+ y3

(x − x1)(x − x2)

(x3 − x1)(x3 − x2)

(3.1)

is the Lagrange interpolating polynomial for these points. First notice why the points
each lie on the polynomial curve. When x1 is substituted for x, the terms evaluate to
y1 + 0 + 0 = y1. The second and third numerators are chosen to disappear when x1 is
substituted, and the first denominator is chosen just so to balance the first denominator
so that y1 pops out. It is similar when x2 and x3 are substituted. When any other number
is substituted for x, we have little control over the result. But then, the job was only to
interpolate at the three points—that is the extent of our concern. Second, notice that the
polynomial (3.1) is of degree 2 in the variable x.

! EXAMPLE 3.1 Find an interpolating polynomial for the data points (0,1), (2,2), and (3,4) in Figure 3.1.

Substituting into Lagrange’s formula (3.1) yields

P2(x) = 1
(x − 2)(x − 3)

(0 − 2)(0 − 3)
+ 2

(x − 0)(x − 3)

(2 − 0)(2 − 3)
+ 4

(x − 0)(x − 2)

(3 − 0)(3 − 2)

= 1
6

(x2 − 5x + 6) + 2
(

−1
2

)
(x2 − 3x) + 4

(
1
3

)
(x2 − 2x)

= 1
2

x2 − 1
2

x + 1.

Check that P2(0) = 1,P2(2) = 2, and P2(3) = 4. "

In general, suppose that we are presented with n points (x1,y1), . . . , (xn,yn). For each k

between 1 and n, define the degree n − 1 polynomial

Lk(x) = (x − x1) · · ·(x − xk−1)(x − xk+1) · · ·(x − xn)

(xk − x1) · · ·(xk − xk−1)(xk − xk+1) · · ·(xk − xn)
.

The interesting property of Lk is that Lk(xk) = 1, while Lk(xj ) = 0, where xj is any of the
other data points. Then define the degree n − 1 polynomial

Pn−1(x) = y1L1(x) + ·· · + ynLn(x).

This is a straightforward generalization of the polynomial in (3.1) and works the same way.
Substituting xk for x yields

Pn−1(xk) = y1L1(xk) + ·· · + ynLn(xk) = 0 + ·· · + 0 + ykLk(xk) + 0 + ·· · + 0 = yk,

so it works as designed.
We have constructed a polynomial of degree at most n − 1 that passes through any set

of n points with distinct xi’s. Interestingly, it is the only one.
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THEOREM 3.2 Main Theorem of Polynomial Interpolation. Let (x1,y1), . . . , (xn,yn) be n points in the
plane with distinct xi . Then there exists one and only one polynomial P of degree n − 1 or
less that satisfies P (xi) = yi for i = 1, . . . ,n. #

Proof. The existence is proved by the explicit formula for Lagrange interpolation. To
show there is only one, assume for the sake of argument that there are two, say, P (x) and
Q(x), that have degree at most n − 1 and that both interpolate all n points. That is, we are
assuming that P (x1) = Q(x1) = y1,P (x2) = Q(x2) = y2, . . . ,P (xn) = Q(xn) = yn. Now
define the new polynomial H(x) = P (x) − Q(x). Clearly, the degree of H is also at most
n − 1, and note that 0 = H(x1) = H(x2) = ·· · = H(xn); that is, H has n distinct zeros.
According to the Fundamental Theorem of Algebra, a degree d polynomial can have at most
d zeros, unless it is the identically zero polynomial. Therefore, H is the identically zero
polynomial, and P (x) ≡ Q(x). We conclude that there is a unique P (x) of degree ≤ n − 1
interpolating the n points (xi,yi). ❒

! EXAMPLE 3.2 Find the polynomial of degree 3 or less that interpolates the points (0,2), (1,1), (2,0), and
(3,−1).

The Lagrange form is as follows:

P (x) = 2
(x − 1)(x − 2)(x − 3)

(0 − 1)(0 − 2)(0 − 3)
+ 1

(x − 0)(x − 2)(x − 3)

(1 − 0)(1 − 2)(1 − 3)

+ 0
(x − 0)(x − 1)(x − 3)

(2 − 0)(2 − 1)(2 − 3)
− 1

(x − 0)(x − 1)(x − 2)

(3 − 0)(3 − 1)(3 − 2)

= −1
3

(x3 − 6x2 + 11x − 6) + 1
2

(x3 − 5x2 + 6x) − 1
6

(x3 − 3x2 + 2x)

= −x + 2.

Theorem 3.2 says that there exists exactly one interpolating polynomial of degree 3 or
less, but it may or may not be exactly degree 3. In Example 3.2, the data points are
collinear, so the interpolating polynomial has degree 1. Theorem 3.2 implies that there
are no interpolating polynomials of degree 2 or 3. It may be already intuitively obvious to
you that no parabola or cubic curve can pass through four collinear points, but here is the
reason. "

3.1.2 Newton’s divided differences

The Lagrange interpolation method, as described in the previous section, is a constructive
way to write the unique polynomial promised by Theorem 3.2. It is also intuitive; one glance
explains why it works. However, it is seldom used for calculation because alternative meth-
ods result in more manageable and less computationally complex forms.

Newton’s divided differences give a particularly simple way to write the interpolating
polynomial. Given n data points, the result will be a polynomial of degree at most n − 1,
just as Lagrange form does. Theorem 3.2 says that it can be none other than the same as the
Lagrange interpolating polynomial, written in a disguised form.

The idea of divided differences is fairly simple, but some notation needs to be mastered
first.Assume that the data points come from a function f (x), so that our goal is to interpolate
(x1,f (x1)), . . . , (xn,f (xn)).

DEFINITION 3.3 Denote by f [x1 . . .xn] the coefficient of the xn−1 term in the (unique) polynomial that
interpolates (x1,f (x1)), . . . , (xn,f (xn)). ❒
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Example 3.1 shows that f [0 2 3] = 1/2, where we assume f (0) = 1,f (2) = 2, and
f (3) = 4. Of course, by uniqueness, all permutations of 0,2,3 give the same value:
1/2 = f [0 3 2] = f [3 0 2] etc. Using this definition, the following somewhat remarkable
alternative formula for the interpolating polynomial holds, called the Newton’s divided
difference formula

P (x) = f [x1] +f [x1 x2](x − x1)

+f [x1 x2 x3](x − x1)(x − x2)

+f [x1 x2 x3 x4](x − x1)(x − x2)(x − x3)

+·· ·
+f [x1 · · · xn](x − x1) · · ·(x − xn−1). (3.2)

Moreover, the coefficients f [x1 . . .xk] from the above definition can be recursively calcu-
lated as follows. List the data points in a table:

x1 f (x1)

x2 f (x2)
...

...

xn f (xn).

Now define the divided differences, which are the real numbers

f [xk] = f (xk)

f [xk xk+1] = f [xk+1] − f [xk]
xk+1 − xk

f [xk xk+1 xk+2] = f [xk+1 xk+2] − f [xk xk+1]
xk+2 − xk

f [xk xk+1 xk+2 xk+3] = f [xk+1 xk+2 xk+3] − f [xk xk+1 xk+2]
xk+3 − xk

, (3.3)

and so on. Both important facts, that (1) the unique polynomial interpolating
(x1,f (x1)), . . . , (xn,f (xn)) is given by (3.2) and (2) the coefficients can be calculated as
(3.3), are not immediately obvious, and proofs will be provided in Section 3.2.2. Notice that
the divided difference formula gives the interpolating polynomial as a nested polynomial.
It is automatically ready to be evaluated in an efficient way.

Newton’s divided differences

Given x = [x1, . . . ,xn],y = [y1, . . . ,yn]

for j = 1, . . . ,n

f [xj ] = yj

end

for i = 2, . . . ,n

for j = 1, . . . ,n + 1 − i

f [xj . . . xj+i−1] = (f [xj+1 . . . xj+i−1] − f [xj . . . xj+i−2])/(xj+i−1 − xj )

end
end
The interpolating polynomial is

P (x) =
n∑

i=1

f [x1 . . . xi](x − x1) · · ·(x − xi−1)
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The recursive definition of the Newton’s divided differences allows arrangement into
a convenient table. For three points the table has the form

x1 f [x1]
f [x1 x2]

x2 f [x2] f [x1 x2 x3]
f [x2 x3]

x3 f [x3]
The coefficients of the polynomial (3.2) can be read from the top edge of the triangle.

! EXAMPLE 3.3 Use divided differences to find the interpolating polynomial passing through the points
(0,1), (2,2), (3,4).

Applying the definitions of divided differences leads to the following table:

0 1
1
2

2 2 1
2

2
3 4

This table is computed as follows: After writing down the x and y coordinates in separate
columns, calculate the next columns, left to right, as divided differences, as in (3.3). For
example,

2 − 1
2 − 0

= 1
2
2 − 1

2

3 − 0
= 1

2
4 − 2
3 − 2

= 2.

After completing the divided difference triangle, the coefficients of the polynomial 1, 1/2, 1/2
can be read from the top edge of the table. The interpolating polynomial can be written as

P (x) = 1 + 1
2

(x − 0) + 1
2

(x − 0)(x − 2),

or, in nested form,

P (x) = 1 + (x − 0)

(
1
2

+ (x − 2) · 1
2

)
.

The base points for the nested form (see Chapter 0) are r1 = 0 and r2 = 2. Alternatively,
we could do more algebra and write the interpolating polynomial as

P (x) = 1 + 1
2

x + 1
2

x(x − 2) = 1
2

x2 − 1
2

x + 1,

matching the Lagrange interpolation version shown previously. "

Using the divided difference approach, new data points that arrive after computing the
original interpolating polynomial can be easily added.

! EXAMPLE 3.4 Add the fourth data point (1,0) to the list in Example 3.3.

We can keep the calculations that were already done and just add a new bottom
row to the triangle:
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0 1
1
2

2 2 1
2

2 − 1
2

3 4 0
2

1 0

The result is one new term to add to the original polynomial P2(x). Reading from the top
edge of the triangle, we see that the new degree 3 interpolating polynomial is

P3(x) = 1 + 1
2

(x − 0) + 1
2

(x − 0)(x − 2) − 1
2

(x − 0)(x − 2)(x − 3).

Note that P3(x) = P2(x) − 1
2 (x − 0)(x − 2)(x − 3), so the previous polynomial can be

reused as part of the new one. "

It is interesting to compare the extra work necessary to add a new point to the Lagrange
formulation versus the divided difference formulation. The Lagrange polynomial must be
restarted from the beginning when a new point is added; none of the previous calculation
can be used. On the other hand, in divided difference form, we keep the earlier work and add
one new term to the polynomial. Therefore, the divided difference approach has a “real-time
updating’’ property that the Lagrange form lacks.

! EXAMPLE 3.5 Use Newton’s divided differences to find the interpolating polynomial passing through
(0,2), (1,1), (2,0), (3,−1).

The divided difference triangle is

0 2
−1

1 1 0
−1 0

2 0 0
−1

3 −1

Reading off the coefficients, we find that the interpolating polynomial of degree 3 or less is

P (x) = 2 + (−1)(x − 0) = 2 − x,

agreeing with Example 3.2, but arrived at with much less work. "

3.1.3 How many degree d polynomials pass through n points?

Theorem 3.2, the Main Theorem of Polynomial Interpolation, answers this question if
0 ≤ d ≤ n − 1. Given n = 3 points (0,1), (2,2), (3,4), there is one interpolating polyno-
mial of degree 2 or less. Example 3.1 shows that it is degree 2, so there are no degree 0 or
1 interpolating polynomials through the three data points.

How many degree 3 polynomials interpolate the same three points? One way to con-
struct such a polynomial is clear from the previous discussion:Add a fourth point. Extending
the Newton’s divided difference triangle gives a new top coefficient. In Example 3.4, the
point (1,0) was added. The resulting polynomial,

P3(x) = P2(x) − 1
2

(x − 0)(x − 2)(x − 3), (3.4)
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passes through the three points in question, in addition to the new point (1,0). So there
is at least one degree 3 polynomial passing through our three original points (0,1),

(2,2), (3,4).
Of course, there are many different ways we could have chosen the fourth point. For

example, if we keep the same x4 = 1 and simply change y4 from 0, we must get a differ-
ent degree 3 interpolating polynomial, since a function can only go through one y-value
at x4. Now we know there are infinitely many polynomials that interpolate the three points
(x1,y1), (x2,y2), (x3,y3), since for any fixed x4 there are infinitely many ways y4 can be
chosen, each giving a different polynomial. This line of thinking shows that given n data
points (xi,yi) with distinct xi , there are infinitely many degree n polynomials passing
through them.

A second look at (3.4) suggests a more direct way to produce interpolating polynomials
of degree 3 through three points. Instead of adding a fourth point to generate a new degree
3 coefficient, why not just pencil in an arbitrary degree 3 coefficient? Does the result
interpolate the original three points? Yes, because P2(x) does, and the new term evaluates
to zero at x1,x2, and x3. So there is really no need to construct the extra Newton’s divided
differences for this purpose. Any degree 3 polynomial of the form

P3(x) = P2(x) + cx(x − 2)(x − 3)

with c ̸= 0 will pass through (0,1), (2,2), and (3,4). This technique will also easily con-
struct (infinitely many) polynomials of degree ≥ n for n given data points, as illustrated in
the next example.

! EXAMPLE 3.6 How many polynomials of each degree 0 ≤ d ≤ 5 pass through the points (−1,−5),
(0,−1), (2,1), and (3,11)?

The Newton’s divided difference triangle is

−1 −5
4

0 −1 −1
1 1

2 1 3
10

3 11

So there are no interpolating polynomials of degree 0,1, or 2, and the single degree 3 is

P3(x) = −5 + 4(x + 1) − (x + 1)x + (x + 1)x(x − 2).

There are infinitely many degree 4 interpolating polynomials

P4(x) = P3(x) + c1(x + 1)x(x − 2)(x − 3)

for arbitrary c1 ̸= 0, and infinitely many degree 5 interpolating polynomials

P5(x) = P3(x) + c2(x + 1)x2(x − 2)(x − 3)

for arbitrary c2 ̸= 0. "

3.1.4 Code for interpolation

The Matlab program newtdd.m for computing the coefficients follows:
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%Program 3.1 Newton Divided Difference Interpolation Method
%Computes coefficients of interpolating polynomial
%Input: x and y are vectors containing the x and y coordinates
% of the n data points
%Output: coefficients c of interpolating polynomial in nested form
%Use with nest.m to evaluate interpolating polynomial
function c=newtdd(x,y,n)
for j=1:n
v(j,1)=y(j); % Fill in y column of Newton triangle

end
for i=2:n % For column i,
for j=1:n+1-i % fill in column from top to bottom
v(j,i)=(v(j+1,i-1)-v(j,i-1))/(x(j+i-1)-x(j));

end
end
for i=1:n
c(i)=v(1,i); % Read along top of triangle

end % for output coefficients

This program can be applied to the data points of Example 3.3 to return the coefficients
1,1/2,1/2 found above. These coefficients can be used in the nested multiplication program
to evaluate the interpolating polynomial at various x-values.

For example, the Matlab code segment

x0=[0 2 3];
y0=[1 2 4];
c=newtdd(x0,y0,3);
x=0:.01:4;
y=nest(2,c,x,x0);
plot(x0,y0,’o’,x,y)

will result in the plot of the polynomial shown in Figure 3.1.

Compression This is our first encounter with the concept of compression in numer-

ical analysis. At first, interpolation may not seem like compression. After all, we take n points

as input and deliver n coefficients (of the interpolating polynomial) as output. What has been

compressed?

Think of the data points as coming from somewhere, say as representatives chosen from

the multitude of points on a curve y = f (x).The degree n − 1 polynomial, characterized by n

coefficients, is a“compressed version’’of f (x), and may in some cases be used as a fairly simple

representative of f (x) for computational purposes.

For example, what happens when the sin key is pushed on a calculator? The calculator

has hardware to add and multiply, but how does it compute the sin of a number? Somehow

the operation must reduce to the evaluation of a polynomial, which requires exactly those

operations. By choosing data points lying on the sine curve, an interpolating polynomial can

be calculated and stored in the calculator as a compressed version of the sine function.

This type of compression is “lossy compression,’’ meaning that there will be error

involved, since the sine function is not actually a polynomial. How much error is made when a

function f (x) is replaced by an interpolating polynomial is the subject of the next section.
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Figure 3.2 Interpolation program 3.2 using mouse input. Screenshot of MATLAB

code clickinterp.m with four input data points.

Now that we have Matlab code for finding the coefficients of the interpolating poly-
nomial (newtdd.m) and for evaluating the polynomial (nest.m), we can put them
together to build a polynomial interpolation routine. The program clickinterp.m uses
Matlab’s graphics capability to plot the interpolation polynomial as it is being created.
See Figure 3.2. Matlab’s mouse input command ginput is used to facilitate data entry.

%Program 3.2. Polynomial Interpolation Program
%Click in MATLAB figure window to locate data point.
% Continue, to add more points.
% Press return to terminate program.
function clickinterp
xl=-3;xr=3;yb=-3;yt=3;
plot([xl xr],[0 0],’k’,[0 0],[yb yt],’k’);grid on;
xlist=[];ylist=[];
k=0; % initialize counter k
while(0==0)
[xnew,ynew] = ginput(1); % get mouse click
if length (xnew) <1
break % if return pressed, terminate

end
k=k+1; % k counts clicks
xlist(k)=xnew; ylist(k)=ynew; % add new point to the list
c=newtdd(xlist,ylist,k); % get interpolation coeffs
x=xl:.01:xr; % define x coordinates of curve
y=nest(k-1,c,x,xlist); % get y coordinates of curve
plot(xlist,ylist,’o’,x,y,[xl xr],[0,0],’k’,[0 0],[yb yt],’k’);
axis([xl xr yb yt]);grid on;

end

3.1.5 Representing functions by approximating polynomials

A major use of polynomial interpolation is to replace evaluation of a complicated function
by evaluation of a polynomial, which involves only elementary computer operations like
addition, subtraction, and multiplication. Think of this as a form of compression: Something
complex is replaced with something simpler and computable, with perhaps some loss in
accuracy that we will have to analyze. We begin with an example from trigonometry.

! EXAMPLE 3.7 Interpolate the function f (x) = sin x at 4 equally spaced points on [0,π/2].
Let’s compress the sine function on the interval [0,π/2]. Take four data points at

equally spaced points and form the divided difference triangle. We list the values to four
correct places:
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0 0.0000
0.9549

π/6 0.5000 −0.2443
0.6990 −0.1139

2π/6 0.8660 −0.4232
0.2559

3π/6 1.0000

The degree 3 interpolating polynomial is therefore

P3(x) = 0 + 0.9549x − 0.2443x(x − π/6) − 0.1139x(x − π/6)(x − π/3)

= 0 + x(0.9549 + (x − π/6)(−0.2443 + (x − π/3)(−0.1139))). (3.5)

This polynomial is graphed together with the sine function in Figure 3.3. At this level of
resolution, P3(x) and sin x are virtually indistinguishable on the interval [0,π/2]. We have
compressed the infinite amount of information held by the sine curve into a few stored
coefficients and the ability to perform the 3 adds and 3 multiplies in (3.5). "

How close are we to designing thesin key on a calculator? Certainly we need to handle
inputs from the entire real line. But due to the symmetries of the sine function, we have done
the hard part. The interval [0,π/2] is a so-called fundamental domain for sine, meaning
that an input from any other interval can be referred back to it. Given an input x from
[π/2,π ], say, we can compute sin x as sin(π − x), since sin is symmetric about x = π/2.
Given an input x from [π,2π ], sin x = −sin(2π − x) due to antisymmetry about x = π .
Finally, because sin repeats its behavior on the interval [0,2π] across the entire real line,
we can calculate for any input by first reducing modulo 2π . This leads to a straightforward
design for the sin key:

%Program 3.3 Building a sin calculator key, attempt #1
%Approximates sin curve with degree 3 polynomial
% (Caution: do not use to build bridges,
% at least until we have discussed accuracy.)
%Input: x
%Output: approximation for sin(x)
function y=sin1(x)
%First calculate the interpolating polynomial and
% store coefficients
b=pi*(0:3)/6;yb=sin(b); % b holds base points
c=newtdd(b,yb,4);
%For each input x, move x to the fundamental domain and evaluate
% the interpolating polynomial
s=1; % Correct the sign of sin
x1=mod(x,2*pi);
if x1>pi
x1 = 2*pi-x1;
s = -1;

end
if x1 > pi/2
x1 = pi-x1;

end
y = s*nest(3,c,x1,b);

Most of the work in Program 3.3 is to place x into the fundamental domain. Then we
evaluate the degree 3 polynomial by nested multiplication. Here is some typical output from
Program 3.3:
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1

y

x

Figure 3.3 Degree 3 interpolation of sin x. The interpolation polynomial (solid curve)

is plotted along with y = sin x . Equally spaced interpolation nodes are at 0,π/6,2π/6,

and 3π/6. The approximation is very close between 0 and π/2.

x sin x sin1(x) error
1 0.8415 0.8411 0.0004
2 0.9093 0.9102 0.0009
3 0.1411 0.1428 0.0017
4 −0.7568 −0.7557 0.0011

14 0.9906 0.9928 0.0022
1000 0.8269 0.8263 0.0006

This is not bad for the first try. The error is usually under 1 percent. In order to get enough cor-
rect digits to fill the calculator readout, we’ll need to know a little more about interpolation
error, the topic of the next section.

3.1 Exercises

1. Use Lagrange interpolation to find a polynomial that passes through the points.

(a) (0,1), (2,3), (3,0)

(b) (−1,0), (2,1), (3,1), (5,2)

(c) (0,−2), (2,1), (4,4)

2. Use Newton’s divided differences to find the interpolating polynomials of the points in
Exercise 1, and verify agreement with the Lagrange interpolating polynomial.

3. How many degree d polynomials pass through the four points (−1,3), (1,1), (2,3), (3,7)?
Write one down if possible. (a) d = 2 (b) d = 3 (c) d = 6.

4. (a) Find a polynomial P (x) of degree 3 or less whose graph passes through the points
(0,0), (1,1), (2,2), (3,7). (b) Find two other polynomials (of any degree) that pass through
these four points. (c) Decide whether there exists a polynomial P (x) of degree 3 or less whose
graph passes through the points (0,0), (1,1), (2,2), (3,7), and (4,2).

5. (a) Find a polynomial P (x) of degree 3 or less whose graph passes through the four data points
(−2,8), (0,4), (1,2), (3,−2). (b) Describe any other polynomials of degree 4 or less which
pass through the four points in part (a).

6. Write down a polynomial of degree exactly 5 that interpolates the four points
(1,1), (2,3), (3,3), (4,4).
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7. Find P (0), where P (x) is the degree 10 polynomial that is zero at x = 1, . . . ,10 and satisfies
P (12) = 44.

8. Let P (x) be the degree 9 polynomial that takes the value 112 at x = 1, takes the value 2 at
x = 10, and equals zero for x = 2, . . . ,9. Calculate P (0).

9. Give an example of the following, or explain why no such example exists. (a) A degree 6
polynomial L(x) that is zero at x = 1,2,3,4,5,6 and equal to 10 at x = 7. (b) A degree 6
polynomial L(x) that is zero at x = 1,2,3,4,5,6, equal to 10 at x = 7, and equal to 70 at
x = 8.

10. Let P (x) be the degree 5 polynomial that takes the value 10 at x = 1,2,3,4,5 and the value 15
at x = 6. Find P (7).

11. Let P1, P2, P3, and P4 be four different points lying on a parabola y = ax2 + bx + c.
How many cubic (degree 3) polynomials pass through those four points? Explain your
answer.

12. Can a degree 3 polynomial intersect a degree 4 polynomial in exactly five points? Explain.

13. Let P (x) be the degree 10 polynomial through the 11 points
(−5,5), (−4,5), (−3,5), (−2,5), (−1,5), (0,5), (1,5), (2,5), (3,5), (4,5), (5,42).
Calculate P (6).

14. Write down 4 noncollinear points (1,y1), (2,y2), (3,y3), (4,y4) that do not lie on any
polynomial y = P3(x) of degree exactly three.

15. Write down the degree 25 polynomial that passes through the points
(1,−1), (2,−2), . . . , (25,−25) and has constant term equal to 25.

16. List all degree 42 polynomials that pass through the eleven points
(−5,5), (−4,4), . . . , (4,−4), (5,−5) and have constant term equal to 42.

17. The estimated mean atmospheric concentration of carbon dioxide in earth’s atmosphere is
given in the table that follows, in parts per million by volume. Find the degree 3 interpolating
polynomial of the data and use it to estimate the CO2 concentration in (a) 1950 and (b) 2050.
(The actual concentration in 1950 was 310 ppm.)

year CO2 (ppm)
1800 280
1850 283
1900 291
2000 370

18. The expected lifetime of an industrial fan when operated at the listed temperature is shown in
the table that follows. Estimate the lifetime at 70◦C by using (a) the parabola from the last
three data points (b) the degree 3 curve using all four points.

temp (◦C) hrs (×1000)
25 95
40 75
50 63
60 54
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3.1 Computer Problems

1. Apply the following world population figures to estimate the 1980 population, using (a) the
straight line through the 1970 and 1990 estimates; (b) the parabola through the 1960, 1970, and
1990 estimates; and (c) the cubic curve through all four data points. Compare with the 1980
estimate of 4452584592.

year population
1960 3039585530
1970 3707475887
1990 5281653820
2000 6079603571

2. Write a version of Program 3.2 that is a Matlab function, whose inputs x and y are equal
length vectors of data points, and whose output is a plot of the interpolating polynomial. In this
way, the points can be entered more accurately than by mouse input. Check your program by
replicating Figure 3.2.

3. Write a Matlab function polyinterp.m that takes as input a set of (x,y) interpolating
points and another x0, and outputs y0, the value of the interpolating polynomial at x0. The first
line of the file should be function y0 = polyinterp(x,y,x0), where x and y are
input vectors of data points. Your function may call newtdd from Program 3.1 and nest
from Chapter 0, and may be structured similarly to Program 3.2, but without the graphics.
Demonstrate that your function works.

4. Remodel the sin1 calculator key in Program 3.3 to build cos1, a cosine key that follows the
same principles. First decide on the fundamental domain for cosine.

5. (a) Use the addition formulas for sin and cos to prove that tan(π/2 − x) = 1/ tan x. (b) Show
that [0,π/4] can be used as a fundamental domain for tan x. (c) Design a tangent key, following
the principles of Program 3.3, using degree 3 polynomial interpolation on this fundamental
domain. (d) Empirically calculate the maximum error of the tangent key in [0,π/4].

3.2 INTERPOLATION ERROR

The accuracy of our sin calculator key depends on the approximation in Figure 3.3. How
close is it? We presented a table indicating that, for a few examples, the first two digits are
fairly reliable, but after that the digits are not always correct. In this section, we investigate
ways to measure this error and determine how to make it smaller.

3.2.1 Interpolation error formula

Assume that we start with a function y = f (x) and take data points from it to build an inter-
polating polynomial P (x), as we did with f (x) = sin x in Example 3.7. The interpolation
error at x is f (x) − P (x), the difference between the original function that provided the
data points and the interpolating polynomial, evaluated at x. The interpolation error is the
vertical distance between the curves in Figure 3.3. The next theorem gives a formula for
the interpolation error that is usually impossible to evaluate exactly, but often can at least
lead to an error bound.
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THEOREM 3.4 Assume that P (x) is the (degree n − 1 or less) interpolating polynomial fitting the n points
(x1,y1), . . . , (xn,yn). The interpolation error is

f (x) − P (x) = (x − x1)(x − x2) · · ·(x − xn)

n! f (n)(c), (3.6)

where c lies between the smallest and largest of the numbers x,x1, . . . ,xn. #

See Section 3.2.2 for a proof of Theorem 3.3. We can use the theorem to assess the
accuracy of the sin key we built in Example 3.7. Equation (3.6) yields

sin x − P (x) = (x − 0)
(
x − π

6

)(
x − π

3

)(
x − π

2

)

4! f ′′′′(c),

where 0 < c < π/2. The fourth derivative f ′′′′(c) = sin c varies from 0 to 1 in this range.
At worst, |sin c| is no more than 1, so we can be assured of an upper bound on interpolation
error:

|sin x − P (x)| ≤
∣∣(x − 0)

(
x − π

6

)(
x − π

3

)(
x − π

2

)∣∣

24
|1|.

At x = 1, the worst-case error is

|sin 1 − P (1)| ≤
∣∣(1 − 0)

(
1 − π

6

)(
1 − π

3

)(
1 − π

2

)∣∣

24
|1| ≈ 0.0005348. (3.7)

This is an upper bound for the error, since we used a “worst case’’ bound for the fourth
derivative. Note that the actual error at x = 1 was .0004, which is within the error bound
given by (3.7). We can make some conclusions on the basis of the form of the interpolation
error formula. We expect smaller errors when x is closer to the middle of the interval of xi’s
than when it is near one of the ends, because there will be more small terms in the product.
For example, we compare the preceding error bound to the case x = 0.2, which is near the
left end of the range of data points. In this case, the error formula is

|sin 0.2 − P (0.2)| ≤
∣∣(.2 − 0)

(
.2 − π

6

)(
.2 − π

3

)(
.2 − π

2

)∣∣

24
|1| ≈ 0.00313,

about six times larger. Correspondingly, the actual error is larger, specifically,

|sin 0.2 − P (0.2)| = |0.19867 − 0.20056| = 0.00189.

! EXAMPLE 3.8 Find an upper bound for the difference at x = 0.25 and x = 0.75 between f (x) = ex and
the polynomial that interpolates it at the points −1,−0.5,0,0.5,1.

Construction of the interpolating polynomial, shown in Figure 3.4, is not necessary
to find the bound. The interpolation error formula (3.6) gives

f (x) − P4(x) =
(x + 1)

(
x + 1

2

)
x

(
x − 1

2

)
(x − 1)

5! f (5)(c),
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Figure 3.4 Interpolating Polynomial for Approximating f (x) = ex . Equally spaced

base points −1,−0.5,0,0.5,1. The solid curve is the interpolating polynomial.

where −1 < c < 1. The fifth derivative is f (5)(c) = ec. Since ex is increasing with x, its
maximum is at the right-hand end of the interval, so |f (5)| ≤ e1 on [−1,1]. For −1 ≤ x ≤ 1,
the error formula becomes

|ex − P4(x)| ≤
(x + 1)

(
x + 1

2

)
x

(
x − 1

2

)
(x − 1)

5! e.

At x = 0.25, the interpolation error has the upper bound

|e0.25 − P4(0.25)| ≤ (1.25)(0.75)(0.25)(−0.25)(−0.75)

120
e

≈ .000995.

At x = 0.75, the interpolation error is potentially larger:

|e0.75 − P4(0.75)| ≤ (1.75)(1.25)(0.75)(0.25)(0.25)

120
e

≈ .002323.

Note again that the interpolation error will tend to be smaller close to the center of the
interpolation interval. "

3.2.2 Proof of Newton form and error formula

In this section, we explain the reasoning behind two important facts used earlier. First we
establish the Newton’s divided difference form of the interpolating polynomial, and then
we prove the interpolation error formula.

Recall what we know so far. If x1, . . . ,xn are n distinct points on the real line and
y1, . . . ,yn are arbitrary, we know by Theorem 3.2 that there is exactly one (degree at most
n − 1) interpolating polynomial Pn−1(x) for these points. We also know that the Lagrange
interpolating formula gives such a polynomial.

We are missing the proof that the Newton’s divided difference formula also gives an
interpolating polynomial. Once we prove that it does in Theorem 3.5, we will know it must
agree with the Lagrange version.

Let P (x) denote the (unique) polynomial that interpolates (x1,f (x1)), . . . , (xn,f (xn)),
and as in Definition 3.3, denote by f [x1 . . .xn] the degree n − 1 coefficient of P (x). Thus
P (x) = a0 + a1x + a2x2 + . . . + an−1xn−1, where an−1 = f [x1 . . .xn], and two facts are
readily apparent.
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FACT 1 f [x1 . . .xn] = f [σ (x1) . . .σ (xn)] for any permutation σ of the xi . ❒

Proof. Clear by uniqueness of the interpolating polynomial, proved in
Theorem 3.2. ❒

FACT 2 P (x) can be written in the form

P (x) = c0 + c1(x − x1) + c2(x − x1)(x − x2) + . . . + cn−1(x − x1) · · ·(x − xn−1).

❒

Proof. Clearly we should choose cn−1 = an−1. The remaining cn−2,cn−3, . . . ,c0 are
defined recursively by setting ck to be the degree k coefficient of the (degree at most k)
polynomial

P (x) − cn−1(x − x1) · · ·(x − xn−1) − cn−2(x − x1) · · ·(x − xn−2)

− . . . − ck+1(x − x1) · · ·(x − xk+1).

(This is a degree at most k polynomial due to the choice of ck+1.) ❒

THEOREM 3.5 Let P (x) be the interpolating polynomial of (x1,f (x1)), . . . , (xn,f (xn)) where the xi are
distinct. Then

(a)P (x) = f [x1] + f [x1x2](x − x1) + f [x1x2x3](x − x1)(x − x2) + . . .

+f [x1x2 . . .xn](x − x1)(x − x2) · · ·(x − xn−1),and

(b) for k > 1, f [x1 . . .xk] = f [x2 . . .xk] − f [x1 . . .xk−1]
xk − x1

. #

Proof. (a) We must prove that ck−1 = f [x1 . . .xk] for k = 1, . . . ,n. It is already clear
for k = n by definition. In general, successively substitute x1, . . . ,xk into the form of P (x)

in Fact 2. Only the first k terms are nonzero. We conclude that the polynomial consisting
of the first k terms of P (x) suffice to interpolate x1, . . . ,xk , and so by Definition 3.2 and
the uniqueness of interpolating polynomial, ck−1 = f [x1 . . .xk]. (b) According to (a), the
interpolating polynomial of x2,x3, . . . ,xk−1,x1,xk is

P1(x) = f [x2] + f [x2 x3](x − x2) + . . . + f [x2 x3 . . .xk−1x1](x − x2) · · ·(x − xk−1)

+f [x2 x3 . . .xk−1x1xk](x − x2) · · ·(x − xk−1)(x − x1)

and the interpolating polynomial of x2,x3, . . . ,xk−1,xk,x1 is

P2(x) = f [x2] + f [x2 x3](x − x2) + . . . + f [x2 x3 . . .xk−1xk](x − x2) · · ·(x − xk−1)

+f [x2 x3 . . .xk−1xkx1](x − x2) · · ·(x − xk−1)(x − xk).

By uniqueness, P1 = P2. Setting P1(xk) = P2(xk) and canceling terms yields

f [x2 . . .xk−1x1](xk − x2) · · ·(xk − xk−1) + f [x2 . . .xk−1x1xk](xk − x2)

· · ·(xk − xk−1)(xk − x1) = f [x2 . . .xk](xk − x2) · · ·(xk − xk−1)

or

f [x2 . . .xk−1x1] + f [x2 . . .xk−1x1xk](xk − x1) = f [x2 . . .xk].
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Using Fact 1, this can be rearranged to

f [x1 . . .xk] = f [x2 . . .xk] − f [x1 . . .xk−1]
xk − x1

.
❒

Next we prove the Interpolation Error Theorem 3.4. Consider adding one more point
x to the set of interpolation points. The new interpolation polynomial would be

Pn(t) = Pn−1(t) + f [x1 . . . xnx](t − x1) · · ·(t − xn).

Evaluated at the extra point x, Pn(x) = f (x), so

f (x) = Pn−1(x) + f [x1 . . . xnx](x − x1) · · ·(x − xn). (3.8)

This formula is true for all x. Now define

h(t) = f (t) − Pn−1(t) − f [x1 . . . xnx](t − x1) · · ·(t − xn).

Note that h(x) = 0 by (3.8) and 0 = h(x1) = ·· · = h(xn) because Pn−1 interpolates f at
these points. Between each neighboring pair of the n + 1 points x,x1, . . . ,xn, there must be
a new point where h′ = 0, by Rolle’s Theorem (see Chapter 0). There are n of these points.
Between each pair of these, there must be a new point where h′′ = 0; there are n − 1 of
these. Continuing in this way, there must be one point c for which h(n)(c) = 0, where c lies
between the smallest and largest of x,x1, . . . ,xn. Note that

h(n)(t) = f (n)(t) − n!f [x1 . . .xnx],

because the nth derivative of the polynomial Pn−1(t) is zero. Substituting c gives

f [x1 . . .xnx] = f (n)(c)

n! ,

which leads to

f (x) = Pn−1(x) + f (n)(c)

n! (x − x1) · · ·(x − xn),

using (3.8).

3.2.3 Runge phenomenon

Polynomials can fit any set of data points, as Theorem 3.2 shows. However, there are some
shapes that polynomials prefer over others. You can achieve a better understanding of this
point by playing with Program 3.2. Try data points that cause the function to be zero at
equally spaced points x = −3,−2.5,−2,−1.5, . . . ,2.5,3, except for x = 0, where we set
a value of 1. The data points are flat along the x-axis, except for a triangular “bump’’ at
x = 0, as shown in Figure 3.5.

The polynomial that goes through points situated like this refuses to stay between 0
and 1, unlike the data points. This is an illustration of the so-called Runge phenomenon.
It is usually used to describe extreme “polynomial wiggle’’ associated with high-degree
polynomial interpolation at evenly spaced points.

! EXAMPLE 3.9 Interpolate f (x) = 1/(1 + 12x2) at evenly spaced points in [−1,1].
This is called the Runge example. The function has the same general shape as the

triangular bump in Figure 3.5. Figure 3.6 shows the result of the interpolation, behavior



156 | CHAPTER 3 Interpolation

y

x

–3

–2

–1

1

2

3

–3 –2 –1 1 2 3

Figure 3.5 Interpolation of Triangular Bump Function. The interpolating polynomial

wiggles much more than the input data points.

that is characteristic of the Runge phenomenon: polynomial wiggle near the ends of the
interpolation interval. "

As we have seen, examples with the Runge phenomenon characteristically have large
error near the outside of the interval of data points. The cure for this problem is intuitive:
Move some of the interpolation points toward the outside of the interval, where the function
producing the data can be better fit. We will see how to accomplish this in the next section
on Chebyshev interpolation.

3.2 Exercises

1. (a) Find the degree 2 interpolating polynomial P2(x) through the points (0,0), (π/2,1), and
(π,0). (b) Calculate P2(π/4), an approximation for sin(π/4). (c) Use Theorem 3.3 to give an
error bound for the approximation in part (b). (d) Using a calculator or Matlab, compare the
actual error to your error bound.

2. (a) Given the data points (1,0), (2, ln 2), (4, ln 4), find the degree 2 interpolating polynomial.
(b) Use the result of (a) to approximate ln 3. (c) Use Theorem 3.3 to give an error bound for the
approximation in part (b). (d) Compare the actual error to your error bound.

3. Assume that the polynomial P9(x) interpolates the function f (x) = e−2x at the 10 evenly
spaced points x = 0,1/9,2/9,3/9, . . . ,8/9,1. (a) Find an upper bound for the error
|f (1/2) − P9(1/2)|. (b) How many decimal places can you guarantee to be correct if P9(1/2)

is used to approximate e?

4. Consider the interpolating polynomial for f (x) = 1/(x + 5) with interpolation nodes
x = 0,2,4,6,8,10. Find an upper bound for the interpolation error at (a) x = 1 and
(b) x = 5.

5. Assume that a function f (x) has been approximated by the degree 5 interpolating polynomial
P (x), using the data points (xi,f (xi)), where x1 = .1, x2 = .2, x3 = .3, x4 = .4, x5 = .5,
x6 = .6. Do you expect the interpolation error |f (x) − P (x)| to be smaller for x = .35 or for
x = .55? Quantify your answer.

6. Assume that the polynomial P5(x) interpolates a function f (x) at the six data points (xi , f (xi))
with x-coordinates x1 = 0,x2 = .2,x3 = .4,x4 = .6,x5 = .8, and x6 = 1. Assume that the
interpolation error at x = .3 is |f (.3) − P5(.3)| = .01. Estimate the new interpolation error
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(a) (b)

Figure 3.6 Runge Example. Polynomial interpolation of the Runge function of Exam-

ple 3.9 at evenly spaced base points causes extreme variation near the ends of the

interval, similar to Figure 3.5 (a) 15 base points (b) 25 base points.

|f (.3) − P7(.3)| that would result if two additional interpolation points (x6,y6) = (.1,f (.1))

and (x7,y7) = (.5,f (.5)) are added. What assumptions have you made to produce this
estimate?

3.2 Computer Problems

1. (a) Use the method of divided differences to find the degree 4 interpolating polynomial P4(x)

for the data (0.6,1.433329), (0.7,1.632316), (0.8,1.896481), (0.9,2.247908), and
(1.0,2.718282). (b) Calculate P4(0.82) and P4(0.98). (c) The preceding data come from the
function f (x) = ex2

. Use the interpolation error formula to find upper bounds for the error at
x = 0.82 and x = 0.98, and compare the bounds with the actual error. (d) Plot the actual
interpolation error P (x) − ex2

on the intervals [.5,1] and [0,2].

2. Plot the interpolation error of the sin1 key from Program 3.3 on the interval [−2π,2π ].
3. The total world oil production in millions of barrels per day is shown in the table that follows.

Determine and plot the degree 9 polynomial through the data. Use it to estimate 2010 oil
production. Does the Runge phenomenon occur in this example? In your opinion, is the
interpolating polynomial a good model of the data? Explain.

year bbl/day (×106)
1994 67.052
1995 68.008
1996 69.803
1997 72.024
1998 73.400
1999 72.063
2000 74.669
2001 74.487
2002 74.065
2003 76.777

4. Use the degree 3 polynomial through the first four data points in Computer Problem 3 to
estimate the 1998 world oil production. Is the Runge phenomenon present?
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3.3 CHEBYSHEV INTERPOLATION

It is common to choose the base points xi for interpolation to be evenly spaced. In many
cases, the data to be interpolated are available only in that form—for example, when the
data consist of instrument readings separated by a constant time interval. In other cases—
for instance, the sine key—we are free to choose the base points as we see fit. It turns out
that the choice of base point spacing can have a significant effect on the interpolation error.
Chebyshev interpolation refers to a particular optimal way of spacing the points.

3.3.1 Chebyshev’s theorem

The motivation for Chebyshev interpolation is to improve control of the maximum value
of the interpolation error

(x − x1)(x − x2) · · ·(x − xn)

n! f (n)(c)

on the interpolation interval. Let’s fix the interval to be [−1,1] for now.
The numerator

(x − x1)(x − x2) · · ·(x − xn) (3.9)

of the interpolation error formula is itself a degree n polynomial in x and has some maximum
value on [−1,1]. Is it possible to find particular x1, . . . ,xn in [−1,1] that cause the maximum
value of (3.9) to be as small as possible? This is called the minimax problem of interpolation.

For example, Figure 3.7(a) shows a plot of the degree 9 polynomial (3.9) when
x1, . . . ,x9 are evenly spaced. The tendency for this polynomial to be large near the ends
of the interval [−1,1] is a manifestation of the Runge phenomenon. Figure 3.7(b) shows
the same polynomial (3.9), but where the points x1, . . . ,x9 have been chosen in a way
that equalizes the size of the polynomial throughout [−1,1]. The points have been chosen
according to Theorem 3.8, presented shortly.

Figure 3.7 Part of the Interpolation Error Formula. Plots of (x – x1) · · · (x – x9) for (a)

nine evenly spaced base points xi (b) nine Chebyshev roots xi .

In fact, this precise positioning, in which the base points xi are chosen to be
cos π

18 ,cos 3π
18 , . . . ,cos 17π

18 , makes the maximum absolute value of (3.9) equal to 1/256,
the minimum possible for nine points on the interval [−1,1]. Such positioning, due to
Chebyshev, is summarized in the following theorem:
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THEOREM 3.6 The choice of real numbers −1 ≤ x1, . . . ,xn ≤ 1 that makes the value of

max
−1≤x≤1

|(x − x1) · · ·(x − xn)|

as small as possible is

xi = cos
(2i − 1)π

2n
for i = 1, . . . ,n,

and the minimum value is 1/2n−1. In fact, the minimum is achieved by

(x − x1) · · ·(x − xn) = 1
2n−1 Tn(x),

where Tn(x) denotes the degree n Chebyshev polynomial. #

The proof of this theorem is given later, after we establish a few properties of Chebyshev
polynomials. We conclude from the theorem that interpolation error can be minimized if the
n interpolation base points in [−1,1] are chosen to be the roots of the degree n Chebyshev
interpolating polynomial Tn(x). These roots are

xi = cos
odd π

2n
(3.10)

where “odd’’ stands for the odd numbers from 1 to 2n − 1. Then we are guaranteed that the
absolute value of (3.9) is less than 1/2n−1 for all x in [−1,1].

Choosing the Chebyshev roots as the base points for interpolation distributes the inter-
polation error as evenly as possible across the interval [−1,1]. We will call the interpolat-
ing polynomial that uses the Chebyshev roots as base points the Chebyshev interpolating
polynomial.

! EXAMPLE 3.10 Find a worst-case error bound for the difference on [−1,1] between f (x) = ex and the
degree 4 Chebyshev interpolating polynomial.

The interpolation error formula (3.6) gives

f (x) − P4(x) = (x − x1)(x − x2)(x − x3)(x − x4)(x − x5)

5! f (5)(c),

where

x1 = cos
π

10
, x2 = cos

3π

10
, x3 = cos

5π

10
, x4 = cos

7π

10
, x5 = cos

9π

10

are the Chebyshev roots and where −1 < c < 1. According to the Chebyshev Theorem 3.6,
for −1 ≤ x ≤ 1,

|(x − x1) · · ·(x − x5)| ≤ 1
24 .

In addition, |f (5)| ≤ e1 on [−1,1]. The interpolation error is

|ex − P4(x)| ≤ e

245! ≈ 0.00142

for all x in the interval [−1,1].
Compare this result with Example 3.8. The error bound for Chebyshev interpolation

for the entire interval is only slightly larger than the bound for a point near the center of
the interval, when evenly spaced interpolation is used. Near the ends of the interval, the
Chebyshev error is much smaller. "

Returning to the Runge Example 3.9, we can eliminate the Runge phenomenon by
choosing the interpolation points according to Chebyshev’s idea. Figure 3.8 shows that the
interpolation error is made small throughout the interval [−1,1].
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Figure 3.8 Interpolation of Runge Example with Chebyshev nodes. The Runge

function f (x) = 1/(1 + 12x2) is graphed along with its Chebyshev interpolation polynomial

for (a) 15 points (b) 25 points. The error on [–1, 1] is negligible at this resolution. The

polynomial wiggle of Figure 3.6 has vanished, at least between –1 and 1.

3.3.2 Chebyshev polynomials

Define the nth Chebyshev polynomial by Tn(x) = cos(narccosx). Despite its appearance,
it is a polynomial in the variable x for each n. For example, for n = 0 it gives the degree 0
polynomial 1, and for n = 1 we get T1(x) = cos(arccosx) = x. For n = 2, recall the cosine
addition formula cos(a + b) = cosa cosb − sin a sin b. Set y = arccosx, so that cosy = x.
Then T2(x) = cos2y = cos2 y − sin2 y = 2cos2 y − 1 = 2x2 − 1, a degree 2 polynomial.
In general, note that

Tn+1(x) = cos(n + 1)y = cos(ny + y) = cosny cosy − sin ny sin y

Tn−1(x) = cos(n − 1)y = cos(ny − y) = cosny cosy − sin ny sin(−y). (3.11)

Because sin(−y) = −sin y, we can add the preceding equations to get

Tn+1(x) + Tn−1(x) = 2cosny cosy = 2xTn(x). (3.12)

The resulting relation,

Tn+1(x) = 2xTn(x) − Tn−1(x), (3.13)

is called the recursion relation for the Chebyshev polynomials. Several facts follow
from (3.13):

FACT 1 The Tn’s are polynomials. We showed this explicitly for T0,T1, and T2. Since T3 is a
polynomial combination of T1 and T2, T3 is also a polynomial. The same argument goes
for all Tn. The first few Chebyshev polynomials (see Figure 3.9) are

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x. ❒

FACT 2 deg(Tn) = n, and the leading coefficient is 2n−1. This is clear for n = 1 and 2, and the
recursion relation extends the fact to all n. ❒
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Figure 3.9 Plot of the Degree 1 through 5 Chebyshev Polynomials. Note that

Tn(1) = 1 and the maximum absolute value taken on by Tn(x) inside [−1,1] is 1.

FACT 3 Tn(1) = 1 and Tn(−1) = (−1)n. Both are clear for n = 1 and 2. In general,

Tn+1(1) = 2(1)Tn(1) − Tn−1(1) = 2(1) − 1 = 1

and

Tn+1(−1) = 2(−1)Tn(−1) − Tn−1(−1)

= −2(−1)n − (−1)n−1

= (−1)n−1(2 − 1) = (−1)n−1 = (−1)n+1. ❒

FACT 4 The maximum absolute value of Tn(x) for −1 ≤ x ≤ 1 is 1. This follows immediately from
the fact that Tn(x) = cosy for some y. ❒

FACT 5 All zeros of Tn(x) are located between −1 and 1. See Figure 3.10. In fact, the zeros are the
solution of 0 = cos(narccosx). Since cosy = 0 if and only if y = odd integer · (π/2), we
find that

narccosx = odd · π/2

x = cos
odd · π

2n
. ❒

Figure 3.10 Location of Zeros of the Chebyshev Polynomial. The roots are the

x-coordinates of evenly spaced points around the circle (a) degree 5 (b) degree 15

(c) degree 25.

FACT 6 Tn(x) alternates between −1 and 1 a total of n + 1 times. In fact, this happens at
cos0,cosπ/n, . . . ,cos(n − 1)π/n,cosπ . ❒

It follows from Fact 2 that the polynomial Tn(x)/2n−1 is monic (has leading coeffi-
cient 1). Since, according to Fact 5, all roots of Tn(x) are real, we can write Tn(x)/2n−1 in
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factored form as (x − x1) · · ·(x − xn) where the xi are the Chebyshev nodes as described
in Theorem 3.8.

Chebyshev’s theorem follows directly from these facts.

Proof of Theorem 3.6. Let Pn(x) be a monic polynomial with an even smaller absolute
maximum on [−1,1]; in other words, |Pn(x)| < 1/2n−1 for −1 ≤ x ≤ 1. This assumption
leads to a contradiction. Since Tn(x) alternates between −1 and 1 a total of n + 1 times
(Fact 6), at these n + 1 points the difference Pn − Tn/2n−1 is alternately positive and
negative. Therefore, Pn − Tn/2n−1 must cross zero at least n times; that is, it must have
at least n roots. This contradicts the fact that, because Pn and Tn/2n−1 are monic, their
difference is of degree ≤ n − 1.

3.3.3 Change of interval

So far our discussion of Chebyshev interpolation has been restricted to the interval [−1,1],
because Theorem 3.6 is most easily stated for this interval. Next, we will move the whole
methodology to a general interval [a,b].

The base points are moved so that they have the same relative positions in [a,b] that
they had in [−1,1]. It is best to think of doing this in two steps: (1) Stretch the points by the
factor (b − a)/2 (the ratio of the two interval lengths), and (2) Translate the points by
(b + a)/2 to move the center of mass from 0 to the midpoint of [a,b]. In other words,
move from the original points

cos
odd π

2n

to

b − a

2
cos

odd π

2n
+ b + a

2
.

With the new Chebyshev base points x1, . . . ,xn in [a,b], the corresponding upper
bound on the numerator of the interpolation error formula is changed due to the stretch by
(b − a)/2 on each factor x − xi . As a result, the minimax value 1/2n−1 must be replaced
by [(b − a)/2]n/2n−1.

Chebyshev interpolation nodes

On the interval [a,b],

xi = b + a

2
+ b − a

2
cos

(2i − 1)π

2n

for i = 1, . . . ,n. The inequality

|(x − x1) · · ·(x − xn)| ≤
(

b−a
2

)n

2n−1 (3.14)

holds on [a,b].

The next example illustrates the use of Chebyshev interpolation in a general interval.

! EXAMPLE 3.11 Find the four Chebyshev base points for interpolation on the interval [0,π/2], and find an
upper bound for the Chebyshev interpolation error for f (x) = sin x on the interval.
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Compression As shown in this section, Chebyshev interpolation is a good way to

turn general functions into a small number of floating point operations, for ease of computa-

tion. An upper bound for the error made is easily available, is usually smaller than for evenly

spaced interpolation, and can be made as small as desired.

Although we have used the sine function to demonstrate this process, a different

approach is taken to construct the actual “sine key’’ on most calculators and canned software.

Special properties of the sine function allow it to be approximated by a simple Taylor expan-

sion, slightly altered to take rounding effects into account. Because sine is an odd function, the

even-numbered terms in its Taylor series around zero are missing,making it especially efficient

to calculate.

This is a second attempt. We used evenly spaced base points in Example 3.7. The
Chebyshev base points are

π
2 − 0

2
cos

(
odd π

2(4)

)
+

π
2 + 0

2
,

or

x1 = π

4
+ π

4
cos

π

8
,x2 = π

4
+ π

4
cos

3π

8
,x3 = π

4
+ π

4
cos

5π

8
,x4 = π

4
+ π

4
cos

7π

8
.

From (3.14), the worst-case interpolation error for 0 ≤ x ≤ π/2 is

|sin x − P3(x)| = |(x − x1)(x − x2)(x − x3)(x − x4)|
4! |f ′′′′(c)|

≤

( π
2 −0

2

)4

4!23 1 ≈ 0.00198.

The Chebyshev interpolating polynomial for this example is evaluated at several
points in the following table:

x sin x P3(x) error
1 0.8415 0.8408 0.0007
2 0.9093 0.9097 0.0004
3 0.1411 0.1420 0.0009
4 −0.7568 −0.7555 0.0013

14 0.9906 0.9917 0.0011
1000 0.8269 0.8261 0.0008

The interpolation errors are well below the worst-case estimate. Figure 3.11 plots the inter-
polation error as a function of x on the interval [0,π/2], compared with the same for evenly
spaced interpolation. The Chebyshev error (dashed curve) is a bit smaller and is distributed
more evenly throughout the interpolation interval. "

! EXAMPLE 3.12 Design a sine key that will give output correct to 10 decimal places.

Thanks to our work earlier on setting up a fundamental domain for the sine function,
we can continue to concentrate on the interval [0,π/2]. Repeat the previous calculation,
but leave n, the number of base points, as an unknown to be determined. The maximum
interpolation error for the polynomial Pn−1(x) on the interval [0,π/2] is
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(a) (b)

Figure 3.11 Interpolation error for approximating f (x) = sin x . (a) Interpolation error

for degree 3 interpolating polynomial with evenly spaced base points (solid curve) and

Chebyshev base points (dashed curve). (b) Same as (a), but degree 9.

|sin x − Pn−1(x)| = |(x − x1) · · ·(x − xn)|
n! |f (n)(c)|

≤

( π
2 −0

2

)n

n!2n−1 1.

This equation is not simple to solve for n, but a little trial and error finds that for n = 9 the
error bound is ≈ 0.1224 × 10−8, and for n = 10 it is ≈ 0.4807 × 10−10. The latter meets
our criterion for 10 correct decimal places. Figure 3.11(b) compares the actual error of
the Chebyshev interpolation polynomial with the error of the evenly spaced interpolation
polynomial.

The 10 Chebyshev base points on [0,π/2] are π/4 + (π/4)cos(odd π/20). The
key can be designed by storing the 10 y-values for sine at the base points and doing a nested
multiplication evaluation for each key press. "

The following Matlab code sin2.m carries out the preceding task. The code is a bit
awkward as written: We have to do 10 sin evaluations, at the 10 Chebyshev nodes, in order
to set up the interpolating polynomial to approximate sin at one point. Of course, in a real
implementation, these numbers would be computed once and stored.

%Program 3.4 Building a sin calculator key, attempt #2
%Approximates sin curve with degree 9 polynomial
%Input: x
%Output: approximation for sin(x), correct to 10 decimal places
function y=sin2(x)
%First calculate the interpolating polynomial and
% store coefficients
n=10;
b=pi/4+(pi/4)*cos((1:2:2*n-1)*pi/(2*n));
yb=sin(b); % b holds Chebyshev base points
c=newtdd(b,yb,n);
%For each input x, move x to the fundamental domain and evaluate
% the interpolating polynomial
s=1; % Correct the sign of sin
x1=mod(x,2*pi);
if x1>pi
x1 = 2*pi-x1;
s = -1;
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end
if x1 > pi/2
x1 = pi-x1;

end
y = s*nest(n-1,c,x1,b);

In this chapter, we have often illustrated polynomial interpolation, either evenly spaced
or using Chebyshev nodes, for the purpose of approximating the trigonometric functions.
Although polynomial interpolation can be used to approximate sine and cosine to arbitrarily
high accuracy, most calculators use a slightly more efficient approach called the CORDIC
(Coordinate Rotation Digital Computer) algorithm (Volder [1959]). CORDIC is an elegant
iterative method, based on complex arithmetic, that can be applied to several special func-
tions. Polynomial interpolation remains a simple and useful technique for approximating
general functions and for representing and compressing data.

3.3 Exercises

1. List the Chebyshev interpolation nodes x1, . . . ,xn in the given interval. (a) [−1,1],n = 6
(b) [−2,2],n = 4 (c) [4,12],n = 6 (d) [−0.3,0.7],n = 5

2. Find the upper bound for |(x − x1) . . . (x − xn)| on the intervals and Chebyshev nodes in
Exercise 1.

3. Assume that Chebyshev interpolation is used to find a fifth degree interpolating polynomial
Q5(x) on the interval [−1,1] for the function f (x) = ex . Use the interpolation error formula
to find a worst-case estimate for the error |ex − Q5(x)| that is valid for x throughout the
interval [−1,1]. How many digits after the decimal point will be correct when Q5(x) is used to
approximate ex?

4. Answer the same questions as in Exercise 3, but for the interval [0.6,1.0].

5. Find an upper bound for the error on [0,2] when the degree 3 Chebyshev interpolating
polynomial is used to approximate f (x) = sin x.

6. Assume that you are to use Chebyshev interpolation to find a degree 3 interpolating
polynomial Q3(x) that approximates the function f (x) = x−3 on the interval [3,4]. (a) Write
down the (x,y) points that will serve as interpolation nodes for Q3. (b) Find a worst-case
estimate for the error |x−3 − Q3(x)| that is valid for all x in the interval [3,4]. How many
digits after the decimal point will be correct when Q3(x) is used to approximate x−3?

7. Suppose you are designing the ln key for a calculator whose display shows six digits to the
right of the decimal point. Find the least degree d for which Chebyshev interpolation on the
interval [1,e] will approximate within this accuracy.

8. Let Tn(x) denote the degree n Chebyshev polynomial. Find a formula for Tn(0).

9. Determine the following values: (a) T999(−1) (b) T1000(−1) (c) T999(0) (d) T1000(0)

(e) T999(−1/2) (f ) T1000(−1/2).

3.3 Computer Problems

1. Rebuild Program 3.3 to implement the Chebyshev interpolating polynomial with four nodes on
the interval [0,π/2]. (Only one line of code needs to be changed.) Then plot the polynomial
and the sine function on the interval [−2,2].
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2. Build a Matlab program to evaluate the cosine function correct to 10 decimal places using
Chebyshev interpolation. Start by interpolating on a fundamental domain [0,π/2], and extend
your answer to inputs between −104 and 104. You may want to use some of the Matlab code
written in this chapter.

3. Carry out the steps of Computer Problem 2 for ln x, for inputs x between 10−4 and 104. Use
[1,e] as the fundamental domain. What is the degree of the interpolation polynomial that
guarantees 10 correct digits? Your program should begin by finding the integer k such that
ek ≤ x < ek+1. Then xe−k lies in the fundamental domain. Demonstrate the accuracy of your
program by comparing it with Matlab’s log command.

4. Let f (x) = e|x|. Compare evenly spaced interpolation with Chebyshev interpolation by
plotting degree n polynomials of both types on the interval [−1,1], for n = 10 and 20. For
evenly spaced interpolation, the left and right interpolation base points should be −1 and 1. By
sampling at a 0.01 step size, create the empirical interpolation errors for each type, and plot a
comparison. Can the Runge phenomenon be observed in this problem?

5. Carry out the steps of Computer Problem 4 for f (x) = e−x2
.

3.4 CUBIC SPLINES

Splines represent an alternative approach to data interpolation. In polynomial interpola-
tion, a single formula, given by a polynomial, is used to meet all data points. The idea of
splines is to use several formulas, each a low-degree polynomial, to pass through the data
points.

The simplest example of a spline is a linear spline, in which one “connects the dots’’with
straight-line segments. Assume that we are given a set of data points (x1,y1), . . . , (xn,yn)

with x1 < · · · < xn. A linear spline consists of the n − 1 line segments that are drawn
between neighboring pairs of points. Figure 3.12(a) shows a linear spline where, between
each neighboring pair of points (xi,yi), (xi+1,yi+1), the linear function y = ai + bix is
drawn through the two points. The given data points in the figure are (1,2), (2,1), (4,4),
and (5,3), and the linear spline is given by
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Figure 3.12 Splines through four data points. (a) Linear spline through (1,2), (2,1),

(4,4), and (5,3) consists of three linear polynomials given by (3.15). (b) Cubic spline

through the same points, given by (3.16).
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S1(x) = 2 − (x − 1) on [1,2]
S2(x) = 1 + 3

2
(x − 2) on [2,4]

S3(x) = 4 − (x − 4) on [4,5]. (3.15)

The linear spline successfully interpolates an arbitrary set of n data points. However,
linear splines lack smoothness. Cubic splines are meant to address this shortcoming of linear
splines. A cubic spline replaces linear functions between the data points by degree 3 (cubic)
polynomials.

An example of a cubic spline that interpolates the same points (1,2), (2,1), (4,4), and
(5,3) is shown in Figure 3.12(b). The equations defining the spline are

S1(x) = 2 − 13
8

(x − 1) + 0(x − 1)2 + 5
8

(x − 1)3 on [1,2]

S2(x) = 1 + 1
4

(x − 2) + 15
8

(x − 2)2 − 5
8

(x − 2)3 on [2,4]

S3(x) = 4 + 1
4

(x − 4) − 15
8

(x − 4)2 + 5
8

(x − 4)3 on [4,5]. (3.16)

Note in particular the smooth transition from one Si to the next at the base points, or “knots,’’
x = 2 and x = 4. This is achieved by arranging for the neighboring pieces Si and Si+1 of
the spline to have the same zeroth, first, and second derivatives when evaluated at the knots.
Just how to do this is the topic of the next section.

Given n points (x1,y1), . . . , (xn,yn), there is obviously one and only one linear spline
through the data points. This will not be true for cubic splines. We will find that there are
infinitely many through any set of data points. Extra conditions will be added when it is
necessary to nail down a particular spline of interest.

3.4.1 Properties of splines

To be a little more precise about the properties of a cubic spline, we make the follow-
ing definition: Assume that we are given the n data points (x1,y1), . . . , (xn,yn), where
the xi are distinct and in increasing order. A cubic spline S(x) through the data points
(x1,y1), . . . , (xn,yn) is a set of cubic polynomials

S1(x) = y1 + b1(x − x1) + c1(x − x1)2 + d1(x − x1)3 on [x1,x2]
S2(x) = y2 + b2(x − x2) + c2(x − x2)2 + d2(x − x2)3 on [x2,x3] (3.17)

...

Sn−1(x) = yn−1 + bn−1(x − xn−1) + cn−1(x − xn−1)2 + dn−1(x − xn−1)3on [xn−1,xn]
with the following properties:

Property 1 Si(xi) = yi and Si(xi+1) = yi+1 for i = 1, . . . ,n − 1.

Property 2 S′
i−1(xi) = S′

i (xi) for i = 2, . . . ,n − 1.

Property 3 S′′
i−1(xi) = S′′

i (xi) for i = 2, . . . ,n − 1.

Property 1 guarantees that the spline S(x) interpolates the data points. Property 2 forces
the slopes of neighboring parts of the spline to agree where they meet, and Property 3 does
the same for the curvature, represented by the second derivative.
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! EXAMPLE 3.13 Check that {S1,S2,S3} in (3.16) satisfies all cubic spline properties for the data points (1,2),
(2,1), (4,4), and (5,3).

We will check all three properties.

Property 1. There are n = 4 data points. We must check

S1(1) = 2 and S1(2) = 1

S2(2) = 1 and S2(4) = 4

S3(4) = 4 and S3(5) = 3.

These follow easily from the defining equations (3.16).

Property 2. The first derivatives of the spline functions are

S′
1(x) = −13

8
+ 15

8
(x − 1)2

S′
2(x) = 1

4
+ 15

4
(x − 2) − 15

8
(x − 2)2

S′
3(x) = 1

4
− 15

4
(x − 4) + 15

8
(x − 4)2.

We must check S′
1(2) = S′

2(2) and S′
2(4) = S′

3(4). The first is

−13
8

+ 15
8

= 1
4

,

and the second is

1
4

+ 15
4

(4 − 2) − 15
8

(4 − 2)2 = 1
4

,

both of which check out.

Property 3. The second derivatives are

S′′
1 (x) = 15

4
(x − 1)

S′′
2 (x) = 15

4
− 15

4
(x − 2) (3.18)

S′′
3 (x) = −15

4
+ 15

4
(x − 4).

We must check S′′
1 (2) = S′′

2 (2) and S′′
2 (4) = S′′

3 (4), both of which are true. Therefore, (3.16)
is a cubic spline. "

Constructing a spline from a set of data points means finding the coefficients bi,ci,di

that make Properties 1–3 hold. Before we discuss how to determine the unknown coefficients
bi,ci,di of the spline, let us count the number of conditions imposed by the definition. The
first half of Property 1 is already reflected in the form (3.17); it says that the constant
term of the cubic Si must be yi . The second half of Property 1 consists of n − 1 separate
equations that must be satisfied by the coefficients, which we consider as unknowns. Each of
Properties 2 and 3 add n − 2 additional equations, for a total of n − 1 + 2(n − 2) = 3n − 5
independent equations to be satisfied.



3.4 Cubic Splines | 169

How many unknown coefficients are there? For each part Si of the spline, three
coefficients bi,ci,di are needed, for a total of 3(n − 1) = 3n − 3. Therefore, solving for
the coefficients is a problem of solving 3n − 5 linear equations in 3n − 3 unknowns. Unless
there are inconsistent equations in the system (and there are not), the system of equations
is underdetermined and so has infinitely many solutions. In other words, there are infinitely
many cubic splines passing through the arbitrary set of data points (x1,y1), . . . , (xn,yn).

Users of splines normally exploit the shortage of equations by adding two extra to the
3n − 5 equations to arrive at a system of m equations in m unknowns, where m = 3n − 3.
Aside from allowing the user to constrain the spline to given specifications, narrowing the
field to a single solution simplifies computing and describing the result.

The simplest way of adding two more constraints is to require, in addition to the previous
3n − 5 constraints, that the spline S(x) have an inflection point at each end of the defining
interval [x1,xn]. The constraints added to Properties 1–3 are

Property 4a Natural spline. S′′
1 (x1) = 0 and S′′

n−1(xn) = 0.

A cubic spline that satifies these two additional conditions is called a natural cubic
spline. Note that (3.16) is a natural cubic spline, since it is easily verified from (3.18) that
S′′

1 (1) = 0 and S′′
3 (5) = 0.

There are several other ways to add two more conditions. Usually, as in the case of the
natural spline, they determine extra properties of the left and right ends of the spline, so
they are called end conditions. We will take up this topic in the next section, but for now
we concentrate on natural cubic splines.

Now that we have the right number of equations, 3n − 3 equations in 3n − 3 unknowns,
we can write a Matlab function to solve them for the spline coefficients. First we write
out the equations in the unknowns bi,ci,di . Part 2 of Property 1 then implies the n − 1
equations:

y2 = S1(x2) = y1 + b1(x2 − x1) + c1(x2 − x1)2 + d1(x2 − x1)3

...

yn = Sn−1(xn) = yn−1 + bn−1(xn − xn−1) + cn−1(xn − xn−1)2

+dn−1(xn − xn−1)3. (3.19)

Property 2 generates the n − 2 equations,

0 = S′
1(x2) − S′

2(x2) = b1 + 2c1(x2 − x1) + 3d1(x2 − x1)2 − b2

...

0 = S′
n−2(xn−1) − S′

n−1(xn−1) = bn−2 + 2cn−2(xn−1 − xn−2)

+3dn−2(xn−1 − xn−2)2 − bn−1, (3.20)

and Property 3 implies the n − 2 equations:

0 = S′′
1 (x2) − S′′

2 (x2) = 2c1 + 6d1(x2 − x1) − 2c2

...

0 = S′′
n−2(xn−1) − S′′

n−1(xn−1) = 2cn−2 + 6dn−2(xn−1 − xn−2) − 2cn−1. (3.21)

Instead of solving the equations in this form, the system can be simplified drastically by
decoupling the equations. With a little algebra, a much smaller system of equations in the ci

can be solved first, followed by explicit formulas for the bi and di in terms of the known ci .
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It is conceptually simpler if an extra unknown cn =S′′
n−1(xn)/2 is introduced. In addi-

tion, we introduce the shorthand notation δi =xi+1 − xi and $i =yi+1 − yi . Then (3.21)
can be solved for the coefficients

di = ci+1 − ci

3δi
for i = 1, . . . ,n − 1. (3.22)

Solving (3.19) for bi yields

bi = $i

δi
− ciδi − diδ

2
i

= $i

δi
− ciδi − δi

3
(ci+1 − ci)

= $i

δi
− δi

3
(2ci + ci+1) (3.23)

for i = 1, . . . ,n − 1.
Substituting (3.22) and (3.23) into (3.20) results in the following n − 2 equations in

c1, . . . ,cn:

δ1c1 + 2(δ1 + δ2)c2 + δ2c3 = 3
(

$2

δ2
− $1

δ1

)

...

δn−2cn−2 + 2(δn−2 + δn−1)cn−1 + δn−1cn = 3
(

$n−1

δn−1
− $n−2

δn−2

)
.

Two more equations are given by the natural spline conditions (Property 4a):

S′′
1 (x1) = 0 → 2c1 = 0

S′′
n−1(xn) = 0 → 2cn = 0.

This gives a total of n equations in n unknowns ci , which can be written in the matrix form
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

δ1 2δ1 + 2δ2 δ2
. . .

0 δ2 2δ2 + 2δ3 δ3

. . .
. . .

. . .
. . .

δn−2 2δn−2 + 2δn−1 δn−1

0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1

...

cn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

3
(

$2
δ2

− $1
δ1

)

...

3
(

$n−1
δn−1

− $n−2
δn−2

)

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.24)
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After c1, . . . ,cn are obtained from (3.24), b1, . . . ,bn−1 and d1, . . . ,dn−1 are found
from (3.22) and (3.23).

Note that (3.24) is always solvable for the ci . The coefficient matrix is strictly diagonally
dominant, so by Theorem 2.10, there is a unique solution for the ci and therefore also for
the bi and di . We have thus proved the following theorem:

THEOREM 3.7 Let n ≥ 2. For a set of data points (x1,y1), . . . , (xn,yn) with distinct xi , there is a unique
natural cubic spline fitting the points. #

Natural cubic spline

Given x = [x1, . . . ,xn] where x1 < · · · < xn,y = [y1, . . . ,yn]

for i = 1, . . . ,n − 1
ai = yi

δi = xi+1 − xi

$i = yi+1 − yi

end
Solve (3.24) for c1, . . . ,cn

for i = 1, . . . ,n − 1

di = ci+1 − ci

3δi

bi = $i

δi
− δi

3
(2ci + ci+1)

end
The natural cubic spline is
Si(x) = ai + bi(x − xi) + ci(x − xi)

2 + di(x − xi)
3 on [xi,xi+1] for i = 1, . . . ,n − 1.

! EXAMPLE 3.14 Find the natural cubic spline through (0,3), (1,−2), and (2,1).

The x-coordinates are x1 = 0, x2 = 1, and x3 = 2. The y-coordinates are a1 =
y1 = 3,a2 = y2 = −2, and a3 = y3 = 1, and the differences are δ1 = δ2 = 1, $1 = −5,
and $2 = 3. The tridiagonal matrix equation (3.24) is

⎡

⎣
1 0 0
1 4 1
0 0 1

⎤

⎦

⎡

⎣
c1
c2
c3

⎤

⎦ =

⎡

⎣
0
24
0

⎤

⎦ .

The solution is [c1,c2,c3] = [0,6,0]. Now, (3.22) and (3.23) yield

d1 = c2 − c1

3δ1
= 6

3
= 2

d2 = c3 − c2

3δ2
= −6

3
= −2

b1 = $1

δ1
− δ1

3
(2c1 + c2) = −5 − 1

3
(6) = −7

b2 = $2

δ2
− δ2

3
(2c2 + c3) = 3 − 1

3
(12) = −1.

Therefore, the cubic spline is

S1(x) = 3 − 7x + 0x2 + 2x3 on [0,1]
S2(x) = −2 − 1(x − 1) + 6(x − 1)2 − 2(x − 1)3 on [1,2].

"
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Matlab code for this calculation follows. For different (not natural) endpoint condi-
tions, discussed in the next section, the top and bottom rows of (3.24) are replaced by other
appropriate rows.

%Program 3.5 Calculation of spline coefficients
%Calculates coefficients of cubic spline
%Input: x,y vectors of data points
% plus two optional extra data v1, vn
%Output: matrix of coefficients b1,c1,d1;b2,c2,d2;...
function coeff=splinecoeff(x,y)
n=length(x);v1=0;vn=0;
A=zeros(n,n); % matrix A is nxn
r=zeros(n,1);
for i=1:n-1 % define the deltas

dx(i)= x(i+1)-x(i); dy(i)=y(i+1)-y(i);
end
for i=2:n-1 % load the A matrix

A(i,i-1:i+1)=[dx(i-1) 2*(dx(i-1)+dx(i)) dx(i)];
r(i)=3*(dy(i)/dx(i)-dy(i-1)/dx(i-1)); % right-hand side

end
% Set endpoint conditions
% Use only one of following 5 pairs:
A(1,1) = 1; % natural spline conditions
A(n,n) = 1;
%A(1,1)=2;r(1)=v1; % curvature-adj conditions
%A(n,n)=2;r(n)=vn;
%A(1,1:2)=[2*dx(1) dx(1)];r(1)=3*(dy(1)/dx(1)-v1); %clamped
%A(n,n-1:n)=[dx(n-1) 2*dx(n-1)];r(n)=3*(vn-dy(n-1)/dx(n-1));
%A(1,1:2)=[1 -1]; % parabol-term conditions, for n>=3
%A(n,n-1:n)=[1 -1];
%A(1,1:3)=[dx(2) -(dx(1)+dx(2)) dx(1)]; % not-a-knot, for n>=4
%A(n,n-2:n)=[dx(n-1) -(dx(n-2)+dx(n-1)) dx(n-2)];
coeff=zeros(n,3);
coeff(:,2)=A\r; % solve for c coefficients
for i=1:n-1 % solve for b and d

coeff(i,3)=(coeff(i+1,2)-coeff(i,2))/(3*dx(i));
coeff(i,1)=dy(i)/dx(i)-dx(i)*(2*coeff(i,2)+coeff(i+1,2))/3;

end
coeff=coeff(1:n-1,1:3);

We have taken the liberty of listing other choices for end conditions, although they are
commented out for now. The alternative conditions will be discussed in the next section.
Another Matlab function, titled splineplot.m, calls splinecoeff.m to get the coefficients
and then plots the cubic spline:

%Program 3.6 Cubic spline plot
%Computes and plots spline from data points
%Input: x,y vectors of data points, number k of plotted points
% per segment
%Output: x1, y1 spline values at plotted points
function [x1,y1]=splineplot(x,y,k)
n=length(x);
coeff=splinecoeff(x,y);
x1=[]; y1=[];
for i=1:n-1

xs=linspace(x(i),x(i+1),k+1);
dx=xs-x(i);
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ys=coeff(i,3)*dx; % evaluate using nested multiplication
ys=(ys+coeff(i,2)).*dx;
ys=(ys+coeff(i,1)).*dx+y(i);
x1=[x1; xs(l:k)’]; y1=[y1;ys(1:k)’];

end
x1=[x1; x(end)];y1=[y1;y(end)];
plot(x,y,‘o’,x1,y1)

Figure 3.13(a) shows a natural cubic spline generated by splineplot.m.
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Figure 3.13 Cubic splines through six points. The plots are generated by

splineplot(x,y,10) with input vectors x=[0 1 2 3 4 5] and y=[3 1 4 1

2 0]. (a) Natural cubic spline (notice inflection points at ends) (b) Not-a-knot cubic

spline (single cubic equation on [0,2] and on [3,5]) (c) Parabolically terminated spline

(d) Clamped cubic spline (clamped at slope 0 at both ends).

3.4.2 Endpoint conditions

The two extra conditions specified in Property 4a are called the “endpoint conditions’’ for a
natural spline. Requiring that these be satisfied along with Properties 1 through 3 narrows the
field to exactly one cubic spline, according to Theorem 3.9. It turns out that there are many
different versions of Property 4, meaning many other pairs of endpoint conditions, for which
an analogous theorem holds. In this section, we present a few of the more popular ones.

Property 4b Curvature-adjusted cubic spline. The first alternative to a natural cubic spline requires
setting S′′

1 (x1) and S′′
n−1(xn) to arbitrary values, chosen by the user, instead of zero. This
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choice corresponds to setting the desired curvatures at the left and right endpoints of the
spline. In terms of (3.23), it translates to the two extra conditions

2c1 = v1

2cn = vn,

where v1,vn denote the desired values. The equations turn into the two tableau rows
[

2 0 0 0 0 · · · · · · 0 0 | v1
0 0 0 0 0 · · · · · · 0 2 | vn

]

to replace the top and bottom rows of (3.24), which were added for the natural spline. Notice
that the new coefficient matrix is again strictly diagonally dominant, so that a generalized
form of Theorem 3.9 holds for curvature-adjusted splines. (See Theorem 3.10, presented
shortly.) In splinecoeff.m, the two lines

A(1,1)=2;r(1)=v1; % curvature-adj conditions
A(n,n)=2;r(n)=vn;

must be substituted in place of the two existing lines for the natural spline.

The next alternative set of end conditions is

Property 4c Clamped cubic spline. This alternative is similar to the preceding one, but it is the first
derivatives S′

1(x1) and S′
n−1(xn) that are set to user-specified values v1 and vn, respectively.

Thus, the slope at the beginning and end of the spline are under the user’s control.
Using (3.22) and (3.23), we can write the extra condition S′

1(x1) = v1 as

2δ1c1 + δ1c2 = 3
(

$1

δ1
− v1

)

and S′
n−1(xn) = vn as

δn−1cn−1 + 2δn−1cn = 3
(

vn − $n−1

δn−1

)
.

The two corresponding tableau rows are
[

2δ1 δ1 0 0 · · · · · · 0 0 0 | 3($1/δ1 − v1)

0 0 0 0 · · · · · · 0 δn−1 2δn−1 | 3(vn − $n−1/δn−1)

]
.

Note that strict diagonal dominance holds also for the revised coefficient matrix in (3.24),
so Theorem 3.9 also holds with the natural spline replaced with the clamped spline. In
splinecoeff.m, the two lines

A(1,1:2)=[2*dx(1) dx(1)];r(1)=3*(dy(1)/dx(1)-v1);
A(n,n-1:n)=[dx(n-1) 2*dx(n-1)];r(n)=3*(vn-dy(n-1)/dx(n-1));

must be substituted. See Figure 3.13 for a clamped spline with v1 = vn = 0.

Property 4d Parabolically terminated cubic spline. The first and last parts of the spline, S1 and Sn−1,
are forced to be at most degree 2, by specifying that d1 = 0 = dn−1. Equivalently, according
to (3.22), we can require that c1 =c2 and cn−1 =cn. The equations form the two tableau
rows

[
1 −1 0 0 0 · · · · · · 0 0 0 | 0
0 0 0 0 0 · · · · · · 0 1 −1 | 0

]
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to be used as the top and bottom rows of (3.24). Assume that the number n of data points
satisfies n ≥ 3. (See Exercise 19 for the case n = 2.) In this case, upon replacing c1 by c2
and cn by cn−1, we find that the matrix equation reduces to a strictly diagonally dominant
n − 2 × n − 2 matrix equation in c2, . . . ,cn−1. Therefore, a version of Theorem 3.9 holds
for parabolically terminated splines, assuming that n ≥ 3.

In splinecoeff.m, the two lines

A(1,1:2)=[1 -1]; % parabol-term conditions
A(n,n-1:n)=[1 -1];

must be substituted.

Property 4e Not-a-knot cubic spline. The two added equations are d1 = d2 and dn−2 = dn−1, or equiv-
alently, S′′′

1 (x2) = S′′′
2 (x2) and S′′′

n−2(xn−1) = S′′′
n−1(xn−1). Since S1 and S2 are polynomials

of degree 3 or less, requiring their third derivatives to agree at x2, while their zeroth, first,
and second derivatives already agree there, causes S1 and S2 to be identical cubic polyno-
mials. (Cubics are defined by four coefficients, and four conditions are specified.) Thus,
x2 is not needed as a base point: The spline is given by the same formula S1 = S2 on the
entire interval [x1,x3]. The same reasoning shows that Sn−2 = Sn−1, so not only x2, but
also xn−1, is “no longer a knot.’’

Note that d1 = d2 implies that (c2 − c1)/δ1 = (c3 − c2)/δ2, or

δ2c1 − (δ1 + δ2)c2 + δ1c3 = 0,

and similarly, dn−2 = dn−1 implies that

δn−1cn−2 − (δn−2 + δn−1)cn−1 + δn−2cn = 0.

It follows that the two tableau rows are
(

δ2 −(δ1 + δ2) δ1 0 · · · · · · 0 0 0 0 | 0
0 0 0 0 · · · · · · 0 δn−1 −(δn−2 + δn−1) δn−2 | 0

)
.

In splinecoeff.m, the two lines

A(1,1:3)=[dx(2) -(dx(1)+dx(2)) dx(1)]; % not-a-knot conditions
A(n,n-2:n)=[dx(n-1) -(dx(n-2)+dx(n-1)) dx(n-2)];

are used. Figure 3.13(b) shows an example of a not-a-knot cubic spline, compared with the
natural spline through the same data points in part (a) of the figure.

As mentioned earlier, a theorem analogous to Theorem 3.7 exists for each of the pre-
ceding choices of end conditions:

THEOREM 3.8 Assume that n ≥ 2. Then, for a set of data points (x1,y1), . . . , (xn,yn) and for any one of
the end conditions given by Properties 4a–4c, there is a unique cubic spline satisfying the
end conditions and fitting the points. The same is true assuming that n ≥ 3 for Property 4d
and n ≥ 4 for Property 4e. #

Matlab’s default spline command constructs a not-a-knot spline when given four
or more points. Let x and y be vectors containing the xi and yi data values, respectively.
Then the y-coordinate of the not-a-knot spline at another input x0 is calculated by the
Matlab command

>> y0 = spline(x,y,x0);
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If x0 is a vector of x-coordinates, then the output y0 will be a corresponding vector of
y-coordinates, suitable for plotting, etc. Alternatively, if the vector input y has exactly two
more inputs than x, the clamped cubic spline is calculated, with clamps v1 and vn equal to
the first and last entries of y.

3.4 Exercises

1. Decide whether the equations form a cubic spline.

(a) S(x) =
{

x3 + x − 1 on [0,1]

−(x − 1)3 + 3(x − 1)2 + 3(x − 1) + 1 on [1,2]

(b) S(x) =
{

2x3 + x2 + 4x + 5 on [0,1]

(x − 1)3 + 7(x − 1)2 + 12(x − 1) + 12 on [1,2]

2. (a) Check the spline conditions for
{

S1(x) = 1 + 2x + 3x2 + 4x3 on [0,1]
S2(x) = 10 + 20(x − 1) + 15(x − 1)2 + 4(x − 1)3 on [1,2] .

(b) Regardless of your answer to (a), decide whether any of the following extra conditions are
satisfied for this example: natural, parabolically terminated, not-a-knot.

3. Find c in the following cubic splines. Which of the three end conditions—natural,
parabolically terminated, or not-a-knot—if any, are satisfied?

(a) S(x) =
{

4 − 11
4 x + 3

4 x3 on [0,1]

2 − 1
2 (x − 1) + c(x − 1)2 − 3

4 (x − 1)3 on [1,2]

(b) S(x) =
{

3 − 9x + 4x2 on [0,1]

−2 − (x − 1) + c(x − 1)2 on [1,2]

(c) S(x) =

⎧
⎪⎪⎨

⎪⎪⎩

−2 − 3
2 x + 7

2 x2 − x3 on [0,1]

−1 + c(x − 1) + 1
2 (x − 1)2 − (x − 1)3 on [1,2]

1 + 1
2 (x − 2) − 5

2 (x − 2)2 − (x − 2)3 on [2,3]

4. Find k1,k2,k3 in the following cubic spline. Which of the three end conditions—natural,
parabolically terminated, or not-a-knot—if any, are satisfied?

S(x) =

⎧
⎪⎨

⎪⎩

4 + k1x + 2x2 − 1
6 x3 on [0,1]

1 − 4
3 (x − 1) + k2(x − 1)2 − 1

6 (x − 1)3 on [1,2].
1 + k3(x − 2) + (x − 2)2 − 1

6 (x − 2)3 on [2,3]

5. How many natural cubic splines on [0,2] are there for the given data (0,0), (1,1), (2,2)?
Exhibit one such spline.

6. Find the parabolically terminated cubic spline through the data points (0,1), (1,1), (2,1), (3,1),
(4,1). Is this spline also not-a-knot? natural?

7. Solve equations (3.24) to find the natural cubic spline through the three points (a) (0,0), (1,1),
(2,4) (b) (−1,1), (1,1), (2,4).

8. Solve equations (3.24) to find the natural cubic spline through the three points (a) (0,1), (2,3),
(3,2) (b) (0,0), (1,1), (2,6).
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9. Find S′(0) and S′(3) for the cubic spline
{

S1(x) = 3 + b1x + x3 on [0,1]
S2(x) = 1 + b2(x − 1) + 3(x − 1)2 − 2(x − 1)3 on [1,3] .

10. True or false: Given n = 3 data points, the parabolically terminated cubic spline through the
points must be not-a-knot.

11. (a) How many parabolically terminated cubic splines on [0,2] are there for the given data
(0,2), (1,0), (2,2)? Exhibit one such spline. (b) Answer the same question for not-a-knot.

12. How many not-a-knot cubic splines are there for the given data (1,3), (3,3), (4,2), (5,0)?
Exhibit one such spline.

13. (a) Find b1 and c3 in the cubic spline

S(x) =

⎧
⎪⎨

⎪⎩

−1 + b1x − 5
9 x2 + 5

9 x3 on [0,1]
14
9 (x − 1) + 10

9 (x − 1)2 − 2
3 (x − 1)3 on [1,2]

2 + 16
9 (x − 2) + c3(x − 2)2 − 1

9 (x − 2)3 on [2,3]

(b) Is this spline natural? (c) This spline satisfies “clamped’’ endpoint conditions. What are the
values of the two clamps?

14. Consider the cubic spline
{

S1(x) = 6 − 2x + 1
2 x3 on [0,2]

S2(x) = 6 + 4(x − 2) + c(x − 2)2 + d(x − 2)3 on [2,3]

(a) Find c. (b) Does there exist a number d such that the spline is natural? If so, find d .

15. Can a cubic spline be both natural and parabolically terminated? If so, what else can you say
about such a spline?

16. Does there exist a (simultaneously) natural, parabolically terminated, not-a-knot cubic spline
through each set of data points (x1,y1), . . . , (x100,y100) with distinct xi? If so, give a reason. If
not, explain what conditions must hold on the 100 points in order for such a spline to
exist.

17. Assume that the leftmost piece of a given natural cubic spline is the constant function
S1(x) = 1 on the interval [−1,0]. Find three different possibilities for the neighboring piece
S2(x) of the spline on [0,1].

18. Assume that a car travels along a straight road from one point to another from a standing start
at time t = 0 to a standing stop at time t = 1. The distance along the road is sampled at certain
times between 0 and 1. Which cubic spline (in terms of end conditions) will be most
appropriate for describing distance versus time?

19. The case n = 2 for parabolically terminated cubic splines is not covered by Theorem 3.8.
Discuss existence and uniqueness for the cubic spline in this case.

20. Discuss the existence and uniqueness of a not-a-knot cubic spline when n = 2 and n = 3.

21. Theorem 3.8 says that there is exactly one not-a-knot spline through any given four points with
distinct xi . (a) How many not-a-knot splines go through any given 3 points with distinct xi?
(b) Find a not-a-knot spline through (0,0), (1,1), (2,4) that is not parabolically
terminated.
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3.4 Computer Problems

1. Find the equations and plot the natural cubic spline that interpolates the data points (a) (0,3),
(1,5), (2,4), (3,1) (b) (−1,3), (0,5), (3,1), (4,1), (5,1).

2. Find and plot the not-a-knot cubic spline that interpolates the data points (a) (0,3), (1,5),
(2,4), (3,1) (b) (−1,3), (0,5), (3,1), (4,1), (5,1).

3. Find and plot the cubic spline S satisfying S(0) = 1,S(1) = 3,S(2) = 3,S(3) = 4,S(4) = 2
and with S′′(0) = S′′(4) = 0.

4. Find and plot the cubic spline S satisfying S(0) = 1,S(1) = 3,S(2) = 3,S(3) = 4,S(4) = 2
and with S′′(0) = 3 and S′′(4) = 2.

5. Find and plot the cubic spline S satisfying S(0) = 1,S(1) = 3,S(2) = 3,S(3) = 4,S(4) = 2
and with S′(0) = 0 and S′(4) = 1.

6. Find and plot the cubic spline S satisfying S(0) = 1,S(1) = 3,S(2) = 3,S(3) = 4,S(4) = 2
and with S′(0) = −2 and S′(4) = 1.

7. Find the clamped cubic spline that interpolates f (x) = cosx at five evenly spaced points in
[0,π/2], including the endpoints. What is the best choice for S′(0) and S′(π/2) to minimize
interpolation error? Plot the spline and cosx on [0,2].

8. Carry out the steps of Computer Problem 7 for the function f (x) = sin x.

9. Find the clamped cubic spline that interpolates f (x) = ln x at five evenly spaced points in
[1,3], including the endpoints. Empirically find the maximum interpolation error on [1,3].

10. Find the number of interpolation nodes in Computer Problem 9 required to make the maximum
interpolation error at most 0.5 × 10−7.

11. (a) Consider the natural cubic spline through the world population data points in Computer
Problem 3.1.1. Evaluate the year 1980 and compare with the correct population. (b) Using a
linear spline, estimate the slopes at 1960 and 2000, and use these slopes to find the clamped
cubic spline through the data. Plot the spline and estimate the 1980 population. Which
estimates better, natural or clamped?

12. Recall the carbon dioxide data of Exercise 3.1.17. (a) Find and plot the natural cubic spline
through the data, and compute the spline estimate for the CO2 concentration in 1950. (b) Carry
out the same analysis for the parabolically terminated spline. (c) How does the not-a-knot
spline differ from the solution to Exercise 3.1.17?

13. In a single plot, show the natural, not-a-knot, and parabolically terminated cubic splines
through the world oil production data from Computer Problem 3.2.3.

14. Compile a list of 101 consecutive daily close prices of an exchange-traded stock from a
financial data website. (a) Plot the interpolating polynomial through every fifth point. That is,
let x0=0:5:100 and y0 denote the stock prices on days 0,5,10, . . . ,100. Plot the degree 20
interpolating polynomial at points x=0:1:100 and compare with the daily price data. What is
the maximum interpolation error? Is the Runge phenomenon evident in your plot? (b) Plot the
natural cubic spline with interpolating nodes 0:5:100 instead of the interpolating
polynomial, along with the daily data. Answer the same two questions. (c) Compare the two
approaches of representing the data.
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15. Compile a list of 121 hourly temperatures over five consecutive days from a weather data
website. Let x0=0:6:120 denote hours, and y0 denote the temperatures at hours
0,6,12, . . . ,120. Carry out steps (a)–(c) of Computer Problem 14, suitably adapted.

3.5 BÉZIER CURVES

Bézier curves are splines that allow the user to control the slopes at the knots. In return for
the extra freedom, the smoothness of the first and second derivatives across the knot, which
are automatic features of the cubic splines of the previous section, are no longer guaranteed.
Bézier splines are appropriate for cases where corners (discontinuous first derivatives) and
abrupt changes in curvature (discontinuous second derivatives) are occasionally needed.

Pierre Bézier developed the idea during his work for the Renault automobile com-
pany. The same idea was discovered independently by Paul de Casteljau, working for
Citroen, a rival automobile company. It was considered an industrial secret by both com-
panies, and the fact that both had developed the idea came to light only after Bézier pub-
lished his research. Today the Bézier curve is a cornerstone of computer-aided design and
manufacturing.

Each piece of a planar Bézier spline is determined by four points (x1,y1),
(x2,y2), (x3,y3), (x4,y4). The first and last of the points are endpoints of the spline
curve, and the middle two are control points, as shown in Figure 3.14. The curve leaves
(x1,y1) along the tangent direction (x2 − x1,y2 − y1) and ends at (x4,y4) along the tangent
direction (x4 − x3,y4 − y3). The equations that accomplish this are expressed as a para-
metric curve (x(t),y(t)) for 0 ≤ t ≤ 1.

1 2 3

1

2

3

y

x

(x1, y1)

(x4, y4)

(x2, y2) (x3, y3)

Figure 3.14 Bézier curve of Example 3.15. The points (x1,y1) and (x4,y4) are spline

points, while (x2,y2) and (x3,y3) are control points.

Bézier curve

Given endpoints (x1,y1), (x4,y4)

control points (x2,y2), (x3,y3)

Set

bx = 3(x2 − x1)

cx = 3(x3 − x2) − bx

dx = x4 − x1 − bx − cx

by = 3(y2 − y1)

cy = 3(y3 − y2) − by

dy = y4 − y1 − by − cy.
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The Bézier curve is defined for 0 ≤ t ≤ 1 by

x(t) = x1 + bxt + cxt2 + dxt3

y(t) = y1 + byt + cyt2 + dyt3.

It is easy to check the claims of the previous paragraph from the equations. In fact,
according to Exercise 11,

x(0) = x1

x′(0) = 3(x2 − x1)

x(1) = x4

x′(1) = 3(x4 − x3), (3.25)

and the analogous facts hold for y(t).

! EXAMPLE 3.15 Find the Bézier curve (x(t),y(t)) through the points (x,y) = (1,1) and (2,2) with control
points (1,3) and (3,3).

The four points are (x1,y1) = (1,1), (x2,y2) = (1,3), (x3,y3) = (3,3), and
(x4,y4) = (2,2). The Bézier formulas yield bx = 0,cx = 6,dx = −5 and by = 6,cy =
−6,dy = 1. The Bézier spline

x(t) = 1 + 6t2 − 5t3

y(t) = 1 + 6t − 6t2 + t3

is shown in Figure 3.14 along with the control points. "

Bézier curves are building blocks that can be stacked to fit arbitrary function values
and slopes. They are an improvement over cubic splines, in the sense that the slopes at the
nodes can be specified as the user wants them. However, this freedom comes at the expense
of smoothness: The second derivatives from the two different directions generally disagree
at the nodes. In some applications, this disagreement is an advantage.

As a special case, when the control points equal the endpoints, the spline is a simple
line segment, as shown next.

! EXAMPLE 3.16 Prove that the Bézier spline with (x1,y1) = (x2,y2) and (x3,y3) = (x4,y4) is a line segment.

The Bézier formulas show that the equations are

x(t) = x1 + 3(x4 − x1)t2 − 2(x4 − x1)t3 = x1 + (x4 − x1)t2(3 − 2t)

y(t) = y1 + 3(y4 − y1)t2 − 2(y4 − y1)t3 = y1 + (y4 − y1)t2(3 − 2t)

for 0 ≤ t ≤ 1. Every point in the spline has the form

(x(t),y(t)) = (x1 + r(x4 − x1),y1 + r(y4 − y1))

= ((1 − r)x1 + rx4, (1 − r)y1 + ry4),

where r = t2(3 − 2t). Since 0 ≤ r ≤ 1, each point lies on the line segment connecting
(x1,y1) and (x4,y4). "

Bézier curves are simple to program and are often used in drawing software.Afreehand
curve in the plane can be viewed as a parametric curve (x(t),y(t)) and represented by a
Bézier spline. The equations are implemented in the following Matlab freehand drawing
program. The user clicks the mouse once to fix a starting point (x0,y0) in the plane, and
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three more clicks to mark the first control point, second control point, and endpoint. A
Bézier spline is drawn between the start and end points. Each subsequent triple of mouse
clicks extends the curve further, using the previous endpoint as the starting point for the
next piece. The Matlab command ginput is used to read the mouse location. Figure 3.15
shows a screenshot of bezierdraw.m.

Figure 3.15 Program 3.7 built from Bézier curves. Screenshot of MATLAB code

bezierdraw.m, including direction vectors drawn at each control point.

%Program 3.7 Freehand Draw Program Using Bezier Splines
%Click in Matlab figure window to locate first point, and click
% three more times to specify 2 control points and the next
% spline point. Continue with groups of 3 points to add more
% to the curve. Press return to terminate program.
function bezierdraw
plot([-1 1],[0,0],’k’,[0 0],[-1 1],’k’);hold on
t=0:.02:1;
[x,y]=ginput(1); % get one mouse click
while(0 == 0)
[xnew,ynew] = ginput(3); % get three mouse clicks
if length(xnew) < 3
break % if return pressed, terminate

end
x=[x;xnew];y=[y;ynew]; % plot spline points and control pts
plot([x(1) x(2)],[y(1) y(2)],’r:’,x(2),y(2),’rs’);
plot([x(3) x(4)],[y(3) y(4)],’r:’,x(3),y(3),’rs’);
plot(x(1),y(1),’bo’,x(4),y(4),’bo’);
bx=3*(x(2)-x(1)); by=3*(y(2)-y(1)); % spline equations ...
cx=3*(x(3)-x(2))-bx;cy=3*(y(3)-y(2))-by;
dx=x(4)-x(1)-bx-cx;dy=y(4)-y(1)-by-cy;
xp=x(1)+t.*(bx+t.*(cx+t*dx)); % Horner’s method
yp=y(1)+t.*(by+t.*(cy+t*dy));
plot(xp,yp) % plot spline curve
x=x(4);y=y(4); % promote last to first and repeat

end
hold off

Although our discussion has been restricted to two-dimensional Bézier curves, the
defining equations are easily extended to three dimensions, in which they are called Bézier
space curves. Each piece of the spline requires four (x,y,z) points—two endpoints and two
control points—just as in the two-dimensional case. Examples of Bézier space curves are
explored in the exercises.
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3.5 Exercises

1. Find the one-piece Bézier curve (x(t),y(t)) defined by the given four points.
(a) (0,0), (0,2), (2,0), (1,0) (b) (1,1), (0,0), (–2,0), (–2,1) (c) (1,2), (1,3), (2,3), (2,2)

2. Find the first endpoint, two control points, and last endpoint for the following one-piece Bézier
curves.

(a)

{
x(t) = 1 + 6t2 + 2t3

y(t) = 1 − t + t3 (b)

{
x(t) = 3 + 4t − t2 + 2t3

y(t) = 2 − t + t2 + 3t3

(c)

{
x(t) = 2 + t2 − t3

y(t) = 1 − t + 2t3

3. Find the three-piece Bézier curve forming the triangle with vertices (1,2), (3,4), and (5,1).

4. Build a four-piece Bézier spline that forms a square with sides of length 5.

5. Describe the character drawn by the following two-piece Bezier curve:
(0,2) (1,2) (1,1) (0,1)
(0,1) (1,1) (1,0) (0,0)

6. Describe the character drawn by the following three-piece Bezier curve:
(0,1) (0,1) (0,0) (0,0)
(0,0) (0,1) (1,1) (1,0)
(1,0) (1,1) (2,1) (2,0)

7. Find a one-piece Bézier spline that has vertical tangents at its endpoints (−1,0) and (1,0) and
that passes through (0,1).

8. Find a one-piece Bézier spline that has a horizontal tangent at endpoint (0,1) and a vertical
tangent at endpoint (1,0) and that passes through (1/3,2/3) at t = 1/3.

9. Find the one-piece Bézier space curve (x(t),y(t),z(t)) defined by the four points.
(a) (1,0,0), (2,0,0), (0,2,1), (0,1,0) (b) (1,1,2), (1,2,3), (−1,0,0), (1,1,1)

(c) (2,1,1), (3,1,1), (0,1,3), (3,1,3)

10. Find the knots and control points for the following Bézier space curves.

(a)

⎧
⎪⎨

⎪⎩

x(t) =1 + 6t2 + 2t3

y(t) =1 − t + t3

z(t) = 1 + t + 6t2
(b)

⎧
⎪⎨

⎪⎩

x(t) =3 + 4t − t2 + 2t3

y(t) =2 − t + t2 + 3t3

z(t) = 3 + t + t2 − t3

(c)

⎧
⎪⎨

⎪⎩

x(t) =2 + t2 − t3

y(t) =1 − t + 2t3

z(t) = 2t3

11. Prove the facts in (3.25), and explain how they justify the Bézier formulas.

12. Given (x1,y1), (x2,y2), (x3,y3), and (x4,y4), show that the equations

x(t) = x1(1 − t)3 + 3x2(1 − t)2t + 3x3(1 − t)t2 + x4t3

y(t) = y1(1 − t)3 + 3y2(1 − t)2t + 3y3(1 − t)t2 + y4t3

give the Bézier curve with endpoints (x1,y1), (x4,y4) and control points (x2,y2), (x3,y3).
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3.5 Computer Problems

1. Plot the curve in Exercise 7.

2. Plot the curve in Exercise 8.

3. Plot the letter from Bézier curves. (a) W (b) B (c) C (d) D.

3 Fonts from Bézier curves
In this project, we explain how to draw letters and numerals by using two-dimensional
Bézier curves. They can be implemented by modifying the Matlab code in Program 3.7
or by writing a PDF file.

Modern fonts are built directly from Bézier curves, in order to be independent of the
printer or imaging device. Bézier curves were a fundamental part of the PostScript language
from its start in the 1980s, and the PostScript commands for drawing curves have migrated
in slightly altered form to the PDF format. Here is a complete PDF file that illustrates the
curve we discussed in Example 3.15.

%PDF-1.7
1 0 obj
<<
/Length 2 0 R
>>
stream
100 100 m
100 300 300 300 200 200 c
S
endstream
endobj
2 0 obj
1000
endobj
4 0 obj
<<
/Type /Page
/Parent 5 0 R
/Contents 1 0 R
>>
endobj
5 0 obj
<<
/Kids [4 0 R]
/Count 1
/Type /Pages
/MediaBox [0 0 612 792]
>>
endobj
3 0 obj
<<
/Pages 5 0 R
/Type /Catalog
>>
endobj
xref
0 6
0000000000 65535 f
0000000100 00000 n
0000000200 00000 n
0000000500 00000 n
0000000300 00000 n
0000000400 00000 n
trailer
<<
/Size 6
/Root 3 0 R
>>
startxref
1000
%%EOF
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Figure 3.16 Times-Roman T made with Bézier splines. Blue circles are spline endpoints, and black

circles are control points.

Most of the lines in this template file do various housekeeping chores. For example,
the first line identifies the file as a PDF. We will focus on the lines between stream and
endstream, which are the ones that identify the Bézier curve. The move command (m) sets
the current plot point to be the (x,y) point specified by the two preceding numbers—in this
case, the point (100,100). The curve command (c) accepts three (x,y) points and constructs
the Bézier spline starting at the current plot point, treating the three (x,y) pairs as the two
control points and the endpoint, respectively. The stroke command (S) draws the curve.

This text file sample.pdf can be downloaded from the textbook website. If it is
opened with a PDF viewer, the Bézier curve of Figure 3.14 will be displayed. The coordinates
have been multiplied by 100 to match the default conventions of PDF, which are 72 units
to the inch. A sheet of letter-sized paper is 612 units wide and 792 high.

At present, characters from hundreds of fonts are drawn on computer screens and
printers using Bézier curves. Of course, since PDF files often contain many characters,
there are shortcuts for predefined fonts. The Bézier curve information for common fonts is
usually stored in the PDF reader rather than the PDF file. We will choose to ignore this fact
for now in order to see what we can do on our own.

Let’s begin with a typical example. The upper case T character in the Times Roman
font is constructed out of the following 16 Bézier curves. Each line consists of the numbers
x1 y1 x2 y2 x3 y3 x4 y4 that define one piece of the Bézier spline.

237 620 237 620 237 120 237 120;
237 120 237 35 226 24 143 19;
143 19 143 19 143 0 143 0;
143 0 143 0 435 0 435 0;
435 0 435 0 435 19 435 19;
435 19 353 23 339 36 339 109;
339 109 339 108 339 620 339 620;
339 620 339 620 393 620 393 620;
393 620 507 620 529 602 552 492;
552 492 552 492 576 492 576 492;
576 492 576 492 570 662 570 662;
570 662 570 662 6 662 6 662;
6 662 6 662 0 492 0 492;
0 492 0 492 24 492 24 492;

24 492 48 602 71 620 183 620;
183 620 183 620 237 620 237 620;

To create a PDF file that writes the letter T, one needs to add commands within
the stream/endstream area of the above template file. First, move to the initial endpoint
(237,620)

237 620 m
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Figure 3.17 Times-Roman 5 made with Bézier splines. Blue circles are spline endpoints, and black

circles are control points.

after which the first curve is drawn by the command

237 620 237 120 237 120 c

followed by fifteen more c commands, and the stroke command (S) to finish the letter T,
shown in Figure 3.16. Note that the move command is necessary only at the first step; after
that the next curve command takes the current plot point as the first point in the next Bézier
curve, and needs only three more points to complete the curve command. The next curve
command is completed in the same way, and so on. As an alternative to the stroke command
S, the f command will fill in the outline if the figure is closed. The command b will both
stroke and fill.

The number 5 is drawn by the following 21-piece Bézier curve and is shown in
Figure 3.17:

149 597 149 597 149 597 345 597;
345 597 361 597 365 599 368 606;
368 606 406 695 368 606 406 695;
406 695 397 702 406 695 397 702;
397 702 382 681 372 676 351 676;
351 676 351 676 351 676 142 676;
142 676 33 439 142 676 33 439;
33 439 32 438 32 436 32 434;
32 434 32 428 35 426 44 426;
44 426 74 426 109 420 149 408;
149 408 269 372 324 310 324 208;
324 208 324 112 264 37 185 37;
185 37 165 37 149 44 119 66;
119 66 86 90 65 99 42 99;
42 99 14 99 0 87 0 62;
0 62 0 24 46 0 121 0;

121 0 205 0 282 27 333 78;
333 78 378 123 399 180 399 256;
399 256 399 327 381 372 333 422;
333 422 288 468 232 491 112 512;
112 512 112 512 149 597 149 597;

Suggested activities:

1. Use the bezierdraw.m program of Section 3.5 to sketch the upper case initial of your
first name.

2. Revise the draw program to accept an n × 8 matrix of numbers, each row representing a
piece of a Bézier spline. Have the program draw the lower case letter f in the Times-Roman
font, using the following 21-piece Bézier curve:
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289 452 289 452 166 452 166 452;
166 452 166 452 166 568 166 568;
166 568 166 627 185 657 223 657;
223 657 245 657 258 647 276 618;
276 618 292 589 304 580 321 580;
321 580 345 580 363 598 363 621;
363 621 363 657 319 683 259 683;
259 683 196 683 144 656 118 611;
118 611 92 566 84 530 83 450;
83 450 83 450 1 450 1 450;
1 450 1 450 1 418 1 418;
1 418 1 418 83 418 83 418;

83 418 83 418 83 104 83 104;
83 104 83 31 72 19 0 15;
0 15 0 15 0 0 0 0;
0 0 0 0 260 0 260 0;

260 0 260 0 260 15 260 15;
260 15 178 18 167 29 167 104;
167 104 167 104 167 418 167 418;
167 418 167 418 289 418 289 418;
289 418 289 418 289 452 289 452;

3. Using the template above and your favorite text editor, write a PDF file that draws the lower
case letter f. The program should begin with an m command to move to the first point,
followed by 21 c commands and a stroke or fill command. These commands should lie
between the stream and endstream commands. Test your file by opening it in a PDF
viewer.

4. Here are some other PDF commands:

1.0 0.0 0.0 RG % set stroke color to red
0.0 1.0 0.0 rg % set fill color to green
2 w % set stroke width to 2
b % both stroke and fill (S is stroke, f is fill,

b both)

Colors are represented according to the RGB convention, by three numbers between 0 and
1 embodying the relative contributions of red, green, and blue. Linear transformations may
be used to change the size of the Bézier curves, and rotate and skew the results. Such
coordinate changes are accomplished with the cm command. Preceding the curve
commands with

a b c d e f cm

for real numbers a,b,c,d,e,f will transform the underlying planar coordinate system by

x′ = ax + by + e

y′ = cx + dy + f .

For example, using the cm command with a = d = 0.5, b = c = e = f = 0 reduces the
size by a factor of 2, and a = d = −0.5,b = c = 0, and e = f = 400 turns the result upside
down and translates by 400 units in the x and y directions. Other choices can perform
rotations, reflections, or skews of the original Bézier curves. Coordinate changes are
cumulative. In this step, use the coordinate system commands to present a resized, colored,
and skewed version of the lower case f or other characters.
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5. Although font information was a closely guarded secret for many years, much of it is now
freely available on the Web. Search for other fonts, and find Bézier curve data that will
draw letters of your choice in PDF or with bezierdraw.m.

6. Design your own letter or numeral. You should begin by drawing the figure on graph paper,
respecting any symmetries that might be present. Estimate control points, and be prepared
to revise them later as needed.

Software and Further Reading

Interpolation software usually consists of separate codes for determining and evaluating
the interpolating polynomial. Matlab provides the polyfit and polyval commands
for this purpose. The Matlab spline command calculates not-a-knot splines by default,
but has options for several other common end conditions. The command interp1 com-
bines several one-dimensional interpolation options. The NAG library contains subroutines
e01aef and e01baf for polynomial and spline interpolation, and the IMSL has a number
of spline routines based on various end conditions.

A classical reference for basic interpolation facts is Davis [1975], and the references
Rivlin [1981] and Rivlin [1990] cover function approximation and Chebyshev interpola-
tion. DeBoor [2001] on splines is also a classic; see also Schultz [1973] and Schumaker
[1981]. Applications to computer-aided modelling and design are treated in Farin [1990]
and Yamaguchi [1988]. The CORDIC Method for approximation of special functions was
introduced in Volder [1959]. For more information on PDF files, see the PDF Reference,
6th Ed., published by Adobe Systems Inc. [2006].
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4
Least Squares
The global positioning system (GPS) is a satellite-based
location technology that provides accurate position-
ing at any time, from any point on earth. In just a few
years, GPS has gone from a special-purpose navigation
technology used by pilots, ship captains, and hikers to
everyday use in automobiles, cellphones, and PDAs.

The system consists of 24 satellites following pre-
cisely regulated orbits, emitting synchronized signals.

An earth-based receiver picks up the satellite signals,
finds its distance from all visible satellites, and uses the
data to triangulate its position.

Reality Check 4 on page 238 shows the
use of equation solvers and least squares calculations
to do the location estimation.

The concept of least squares dates from the pioneering work of Gauss and Legendre in
the early 19th century. Its use permeates modern statistics and mathematical modeling.

The key techniques of regression and parameter estimation have become fundamental tools
in the sciences and engineering.

In this chapter, the normal equations are introduced and applied to a variety of data-
fitting problems. Later, a more sophisticated approach, using the QR factorization, is
explored, followed by a discussion of nonlinear least squares problems.

4.1 LEAST SQUARES AND THE NORMAL EQUATIONS

The need for least squares methods comes from two different directions, one each from
our studies of Chapters 2 and 3. In Chapter 2, we learned how to find the solution of
Ax = b when a solution exists. In this chapter, we find out what to do when there is no
solution. When the equations are inconsistent, which is likely if the number of equations
exceeds the number of unknowns, the answer is to find the next best thing: the least squares
approximation.
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Chapter 3 addressed finding polynomials that exactly fit data points. However, if the
data points are numerous, or the data points are collected only within some margin of error,
fitting a high-degree polynomial exactly is rarely the best approach. In such cases, it is more
reasonable to fit a simpler model that may only approximate the data points. Both problems,
solving inconsistent systems of equations and fitting data approximately, are driving forces
behind least squares.

4.1.1 Inconsistent systems of equations

It is not hard to write down a system of equations that has no solutions. Consider the
following three equations in two unknowns:

x1 + x2 = 2

x1 − x2 = 1

x1 + x2 = 3. (4.1)

Any solution must satisfy the first and third equations, which cannot both be true. A system
of equations with no solution is called inconsistent.

What is the meaning of a system with no solutions? Perhaps the coefficients are slightly
inaccurate. In many cases, the number of equations is greater than the number of unknown
variables, making it unlikely that a solution can satisfy all the equations. In fact, m equations
in n unknowns typically have no solution when m > n. Even though Gaussian elimination
will not give us a solution to an inconsistent system Ax = b, we should not completely give
up. An alternative in this situation is to find a vector x that comes the closest to being a
solution.

If we choose this “closeness’’ to mean close in Euclidean distance, there is a straight-
forward algorithm for finding the closest x. This special x will be called the least squares
solution.

We can get a better picture of the failure of system (4.1) to have a solution by writing
it in a different way. The matrix form of the system is Ax = b, or

⎡

⎣
1 1
1 −1
1 1

⎤

⎦
[

x1
x2

]
=

⎡

⎣
2
1
3

⎤

⎦ . (4.2)

The alternative view of matrix/vector multiplication is to write the equivalent equation

x1

⎡

⎣
1
1
1

⎤

⎦ + x2

⎡

⎣
1

−1
1

⎤

⎦ =

⎡

⎣
2
1
3

⎤

⎦ . (4.3)

In fact, any m × n system Ax = b can be viewed as a vector equation

x1v1 + x2v2 + ·· · + xnvn = b, (4.4)

which expresses b as a linear combination of the columns vi of A, with coefficients
x1, . . . ,xn. In our case, we are trying to hit the target vector b as a linear combination
of two other three-dimensional vectors. Since the combinations of two three-dimensional
vectors form a plane inside R3, equation (4.3) has a solution only if the vector b lies in
that plane. This will always be the situation when we are trying to solve m equations in
n unknowns, with m > n. Too many equations make the problem overspecified and the
equations inconsistent.

Figure 4.1(b) shows a direction for us to go when a solution does not exist. There is no
pair x1,x2 that solves (4.1), but there is a point in the plane Ax of all possible candidates that
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(a)

b = x1v1 + x2v2

v2

v1

v2

b

v1
0

(b)

Figure 4.1 Geometric solution of a system of three equations in two unknowns.

(a) Equation (4.3) requires that the vector b, the right-hand side of the equation, is a

linear combination of the columns vectors v1 and v2. (b) If b lies outside of the plane

defined by v1 and v2, there will be no solution. The least squares solution x makes the

combination vector Ax the one in the plane Ax that is nearest to b in the sense of

Euclidean distance.

is closest to b. This special vector Ax is distinguished by the following fact: The residual
vector b − Ax is perpendicular to the plane {Ax|x ∈ Rn}. We will exploit this fact to find
a formula for x, the least squares “solution.’’

First we establish some notation. Recall the concept of the transpose AT of the m × n

matrix A, which is the n × m matrix whose rows are the columns of A and whose columns
are the rows of A, in the same order. The transpose of the sum of two matrices is the sum of
the transposes, (A + B)T = AT + BT . The transpose of a product of two matrices is the
product of the transposes in the reverse order—that is, (AB)T = BT AT .

To work with perpendicularity, recall that two vectors are at right angles to one another
if their dot product is zero. For two m-dimensional column vectors u and v, we can write
the dot product solely in terms of matrix multiplication by

uT v = [u1, . . . ,um]

⎡

⎢⎣
v1
...

vm

⎤

⎥⎦ . (4.5)

The vectors u and v are perpendicular, or orthogonal, if uT · v = 0, using ordinary matrix
multiplication.

Now we return to our search for a formula for x. We have established that

(b − Ax) ⊥ {Ax|x ∈ Rn}.

Expressing the perpendicularity in terms of matrix multiplication, we find that

(Ax)T (b − Ax) = 0 for all x in Rn.

Using the preceding fact about transposes, we can rewrite this expression as

xT AT (b − Ax) = 0 for all x in Rn,

Orthogonality Least squares is based on orthogonality.The shortest distance from

a point to a plane is carried by a line segment orthogonal to the plane. The normal equations

are a computational way to locate the line segment, which represents the least squares error.
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meaning that the n-dimensional vector AT (b − Ax) is perpendicular to every vector x in
Rn, including itself. There is only one way for that to happen:

AT (b − Ax) = 0.

This gives a system of equations that defines the least squares solution,

AT Ax = AT b. (4.6)

The system of equations (4.6) is known as the normal equations. Its solution x is the
so-called least squares solution of the system Ax = b.

Normal equations for least squares

Given the inconsistent system

Ax = b,

solve

AT Ax = AT b

for the least squares solution x that minimizes the Euclidean length of the residual r =
b − Ax.

! EXAMPLE 4.1 Use the normal equations to find the least squares solution of the inconsistent system (4.1).

The problem in matrix form Ax = b has

A =

⎡

⎣
1 1
1 −1
1 1

⎤

⎦ , b =

⎡

⎣
2
1
3

⎤

⎦ .

The components of the normal equations are

AT A =
[

1 1 1
1 −1 1

]⎡

⎣
1 1
1 −1
1 1

⎤

⎦ =
[

3 1
1 3

]

and

AT b =
[

1 1 1
1 −1 1

]⎡

⎣
2
1
3

⎤

⎦ =
[

6
4

]
.

The normal equations
[

3 1
1 3

][
x1
x2

]
=

[
6
4

]

can now be solved by Gaussian elimination. The tableau form is
[

3 1 | 6
1 3 | 4

]
−→

[
3 1 | 6
0 8/3 | 2

]
,

which can be solved to get x = (x1,x2) = (7/4,3/4). "
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Substituting the least squares solution into the original problem yields
⎡

⎣
1 1
1 −1
1 1

⎤

⎦
[

7
4
3
4

]

=

⎡

⎣
2.5
1
2.5

⎤

⎦ ̸=

⎡

⎣
2
1
3

⎤

⎦ .

To measure our success at fitting the data, we calculate the residual of the least squares
solution x as

r = b − Ax =

⎡

⎣
2
1
3

⎤

⎦ −

⎡

⎣
2.5
1
2.5

⎤

⎦ =

⎡

⎣
−0.5

0.0
0.5

⎤

⎦ .

If the residual is the zero vector, then we have solved the original system Ax = b exactly.
If not, the Euclidean length of the residual vector is a backward error measure of how far
x is from being a solution.

There are at least three ways to express the size of the residual. The Euclidean length
of a vector,

||r||2 =
√

r2
1 + ·· · + r2

m, (4.7)

is a norm in the sense of Chapter 2, called the 2-norm. The squared error

SE = r2
1 + ·· · + r2

m,

and the root mean squared error (the root of the mean of the squared error)

RMSE =
√

SE/m =
√(

r2
1 + ·· · + r2

m

)
/m, (4.8)

are also used to measure the error of the least squares solution. The three expressions are
closely related; namely

RMSE =
√

SE√
m

= ||r||2√
m

,

so finding the x that minimizes one, minimizes all. For Example 4.1, the SE = (.5)2 +
02 + (−.5)2 = 0.5, the 2-norm of the error is ||r||2 =

√
0.5 ≈ 0.707, and the RMSE =√

0.5/3 = 1/
√

6 ≈ 0.408.

! EXAMPLE 4.2 Solve the least squares problem

⎡

⎣
1 −4
2 3
2 2

⎤

⎦
[

x1
x2

]
=

⎡

⎣
−3
15

9

⎤

⎦ .

The normal equations AT Ax = AT b are
[

9 6
6 29

][
x1
x2

]
=

[
45
75

]
.

The solution of the normal equations are x1 = 3.8 and x2 = 1.8. The residual vector is

r = b − Ax =

⎡

⎣
−3
15

9

⎤

⎦ −

⎡

⎣
1 −4
2 3
2 2

⎤

⎦
[

3.8
1.8

]

=

⎡

⎣
−3
15

9

⎤

⎦ −

⎡

⎣
−3.4

13
11.2

⎤

⎦ =

⎡

⎣
0.4

2
−2.2

⎤

⎦ ,

which has Euclidean norm ||e||2 =
√

(0.4)2 + 22 + (−2.2)2 = 3. This problem is solved
in an alternative way in Example 4.14. "
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4.1.2 Fitting models to data

Let (t1,y1), . . . , (tm,ym) be a set of points in the plane, which we will often refer to as the
“data points.’’ Given a fixed class of models, such as all lines y = c1 + c2t , we can seek
to locate the specific instance of the model that best fits the data points in the 2-norm. The
core of the least squares idea consists of measuring the residual of the fit by the squared
errors of the model at the data points and finding the model parameters that minimize this
quantity. This criterion is displayed in Figure 4.2.

e1
e2

e3 e4
e5

(t1, y1)

(t2, y2)

(t3, y3)

(t4, y4) (t5, y5)

y

t

Figure 4.2 Least squares fitting of a line to data. The best line is the one for which

the squared error e2
1 + e2

2 + · · · + e2
5 is as small as possible among all lines y = c1 + c2t.

! EXAMPLE 4.3 Find the line that best fits the three data points (t,y) = (1,2), (−1,1), and (1,3) in
Figure 4.3.

–2 –1 1 2

1

2

3

y

x

y = t+7
4

3
4

Figure 4.3 Best line in Example 4.3. One each of the data points lies above, on, and below the

best line.

The model is y = c1 + c2t , and the goal is to find the best c1 and c2. Substitution
of the data points into the model yields

c1 + c2(1) = 2

c1 + c2(−1) = 1

c1 + c2(1) = 3,

or, in matrix form,
⎡

⎣
1 1
1 −1
1 1

⎤

⎦
[

c1
c2

]
=

⎡

⎣
2
1
3

⎤

⎦ .
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We know this system has no solution (c1,c2) for two separate reasons. First, if there is a
solution, then the y = c1 + c2t would be a line containing the three data points. However,
it is easily seen that the points are not collinear. Second, this is the system of equation (4.2)
that we discussed at the beginning of this chapter. We noticed then that the first and third
equations are inconsistent, and we found that the best solution in terms of least squares is
(c1,c2) = (7/4,3/4). Therefore, the best line is y = 7/4 + 3/4t . "

We can evaluate the fit by using the statistics defined earlier. The residuals at the data
points are

t y line error

1 2 2.5 −0.5
−1 1 1.0 0.0

1 3 2.5 0.5

and the RMSE is 1/
√

6, as seen earlier.
The previous example suggests a three-step program for solving least squares data-

fitting problems.

Fitting data by least squares

Given a set of m data points (t1,y1), . . . , (tm,ym).

STEP 1. Choose a model. Identify a parameterized model, such as y = c1 + c2t , which
will be used to fit the data.

STEP 2. Force the model to fit the data. Substitute the data points into the model. Each
data point creates an equation whose unknowns are the parameters, such as c1 and c2 in the
line model. This results in a system Ax = b, where the unknown x represents the unknown
parameters.

STEP 3. Solve the normal equations. The least squares solution for the parameters will
be found as the solution to the system of normal equations AT Ax = AT b.

These steps are demonstrated in the following example:

! EXAMPLE 4.4 Find the best line and best parabola for the four data points (−1,1), (0,0), (1,0), (2,−2)

in Figure 4.4.

In accordance with the preceding program, we will follow three steps:
(1) Choose the model y = c1 + c2t as before. (2) Forcing the model to fit the data yields

Compression Least squares is a classic example of data compression. The input

consists of a set of data points, and the output is a model that, with a relatively few parameters,

fits the data as well as possible. Usually, the reason for using least squares is to replace noisy

data with a plausible underlying model. The model is then often used for signal prediction or

classification purposes.

In Section 4.2, various models are used to fit data, including polynomials, exponentials,

and trigonometric functions. The trigonometric approach will be pursued further in Chap-

ters 10 and 11, where elementary Fourier analysis is discussed as an introduction to signal

processing.
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Figure 4.4 Least Squares Fits to Data Points in Example 4.4. (a) Best line

y = 0.2 – 0.9t. RMSE is 0.418. (b) Best parabola y = 0.45 – 0.65t – 0.25t2. RMSE is

0.335.

c1 + c2(−1) = 1

c1 + c2(0) = 0

c1 + c2(1) = 0

c1 + c2(2) = −2,

or, in matrix form,
⎡

⎢⎢⎣

1 −1
1 0
1 1
1 2

⎤

⎥⎥⎦

[
c1
c2

]
=

⎡

⎢⎢⎣

1
0
0

−2

⎤

⎥⎥⎦ .

(3) The normal equations are

[
4 2
2 6

][
c1
c2

]
=

[ −1
−5

]
.

Solving for the coefficients c1 and c2 results in the best line y = c1 + c2t = 0.2 − 0.9t .
The residuals are

t y line error

−1 1 1.1 −0.1
0 0 0.2 −0.2
1 0 −0.7 0.7
2 −2 −1.6 −0.4

The error statistics are squared error SE = (−.1)2 + (−.2)2 + (.7)2 + (−.4)2 = 0.7 and
RMSE =

√
.7

/√
4 = 0.418.

Next, we extend this example by keeping the same four data points, but changing
the model. Set y = c1 + c2t + c3t2 and substitute the data points to yield

c1 + c2(−1) + c3(−1)2 = 1

c1 + c2(0) + c3(0)2 = 0

c1 + c2(1) + c3(1)2 = 0

c1 + c2(2) + c3(2)2 = −2,
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Conditioning Since input data is assumed to be subject to errors in least squares

problems, it is especially important to reduce error magnification. We have presented the

normal equations as the most straightforward approach to solving the least squares problem,

and it is fine for small problems. However, the condition number cond(AT A) is approximately

the square of the original cond(A), which will greatly increase the possibility that the problem

is ill-conditioned. More sophisticated methods allow computing the least squares solution

directly from A without forming AT A. These methods are based on the QR-factorization,

introduced in Section 4.3, and the singular value decomposition of Chapter 12.

or, in matrix form,
⎡

⎢⎢⎣

1 −1 1
1 0 0
1 1 1
1 2 4

⎤

⎥⎥⎦

⎡

⎣
c1
c2
c3

⎤

⎦ =

⎡

⎢⎢⎣

1
0
0

−2

⎤

⎥⎥⎦ .

This time, the normal equations are three equations in three unknowns:
⎡

⎣
4 2 6
2 6 8
6 8 18

⎤

⎦

⎡

⎣
c1
c2
c3

⎤

⎦ =

⎡

⎣
−1
−5
−7

⎤

⎦ .

Solving for the coefficients results in the best parabola y = c1 + c2t + c3t2 = 0.45 − 0.65t

− 0.25t2. The residual errors are given in the following table:

t y parabola error

−1 1 0.85 0.15
0 0 0.45 −0.45
1 0 −0.45 0.45
2 −2 −1.85 −0.15

The error statistics are squared error SE = (.15)2 + (−.45)2 + (.45)2 + (−.15)2 = 0.45
and RMSE =

√
.45

/√
4 ≈ 0.335. "

The Matlab commandspolyfit andpolyval are designed not only to interpolate
data, but also to fit data with polynomial models. For n input data points, polyfit used
with input degree n − 1 returns the coefficients of the interpolating polynomial of degree
n − 1. If the input degree is less than n − 1, polyfit will instead find the best least
squares polynomial of that degree. For example, the commands

>> x0=[-1 0 1 2];
>> y0=[1 0 0 -2];
>> c=polyfit(x0,y0,2);
>> x=-1:.01:2;
>> y=polyval(c,x);
>> plot(x0,y0,’o’,x,y)

find the coefficients of the least squares degree-two polynomial and plot it along with the
given data from Example 4.4.

Example 4.4 shows that least squares modeling need not be restricted to finding best
lines. By expanding the definition of the model, we can fit coefficients for any model as
long as the coefficients enter the model in a linear way.
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4.1.3 Conditioning of least squares

We have seen that the least squares problem reduces to solving the normal equations
AT Ax = AT b. How accurately can the least squares solution x be determined? This is
a question about the forward error of the normal equations. We carry out a double precision
numerical experiment to test this question, by solving the normal equations in a case where
the correct answer is known.

! EXAMPLE 4.5 Let x1 = 2.0,x2 = 2.2,x3 = 2.4, . . . ,x11 = 4.0 be equally spaced points in [2,4], and
set yi = 1 + xi + x2

i + x3
i + x4

i + x5
i + x6

i + x7
i for 1 ≤ i ≤ 11. Use the normal equa-

tions to find the least squares polynomial P (x) = c1 + c2x + ·· · + c8x7 fitting the
(xi,yi).

A degree 7 polynomial is being fit to 11 data points lying on the degree 7 polyno-
mial P (x) = 1 + x + x2 + x3 + x4 + x5 + x6 + x7. Obviously, the correct least squares
solution is c1 = c2 = ·· · = c8 = 1. Substituting the data points into the model P (x) yields
the system Ac = b:

⎡

⎢⎢⎢⎢⎢⎢⎣

1 x1 x2
1 · · · x7

1

1 x2 x2
2 · · · x7

2

...
...

...
...

1 x11 x2
11 · · · x7

11

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

c1

c2

...

c8

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

y1

y2

...

y11

⎤

⎥⎥⎥⎥⎥⎥⎦
.

The coefficient matrix A is a Van der Monde matrix, a matrix whose j th column consists
of the elements of the second column raised to the (j − 1)st power. We use Matlab to
solve the normal equations:

>> x = (2+(0:10)/5)’;
>> y = 1+x+x.ˆ2+x.ˆ3+x.ˆ4+x.ˆ5+x.ˆ6+x.ˆ7;
>> A = [x.ˆ0 x x.ˆ2 x.ˆ3 x.ˆ4 x.ˆ5 x.ˆ6 x.ˆ7];
>> c = (A’*A)\(A’*y)

c=
1.5134

-0.2644
2.3211
0.2408
1.2592
0.9474
1.0059
0.9997

>> cond(A’*A)

ans=
1.4359e+019

Solving the normal equations in double precision cannot deliver an accurate value for
the least squares solution. The condition number of AT A is too large to deal with in double
precision arithmetic, and the normal equations are ill-conditioned, even though the original
least squares problem is moderately conditioned. There is clearly room for improvement in
the normal equations approach to least squares. In Example 4.15, we revisit this problem
after developing an alternative that avoids forming AT A. "
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4.1 Exercises

1. Solve the normal equations to find the least squares solution and 2-norm error for the following
inconsistent systems:

(a)

⎡

⎢⎣
1 2
0 1
2 1

⎤

⎥⎦

[
x1

x2

]

=

⎡

⎢⎣
3
1
1

⎤

⎥⎦ (b)

⎡

⎢⎣
1 1
2 1
3 1

⎤

⎥⎦

[
x1

x2

]

=

⎡

⎢⎣
1
2
0

⎤

⎥⎦ (c)

⎡

⎢⎢⎢⎣

1 2
1 1
2 1
2 2

⎤

⎥⎥⎥⎦

[
x1

x2

]

=

⎡

⎢⎢⎢⎣

3
3
3
2

⎤

⎥⎥⎥⎦

2. Find the least squares solutions and RMSE of the following systems:

(a)

⎡

⎢⎢⎢⎣

1 1 0
0 1 1
1 2 1
1 0 1

⎤

⎥⎥⎥⎦

⎡

⎢⎣
x1

x2

x3

⎤

⎥⎦ =

⎡

⎢⎢⎢⎣

2
2
3
4

⎤

⎥⎥⎥⎦
(b)

⎡

⎢⎢⎢⎣

1 0 1
1 0 2
1 1 1
2 1 1

⎤

⎥⎥⎥⎦

⎡

⎢⎣
x1

x2

x3

⎤

⎥⎦ =

⎡

⎢⎢⎢⎣

2
3
1
2

⎤

⎥⎥⎥⎦

3. Find the least squares solution of the inconsistent system

⎡

⎢⎣
1 0
1 0
1 0

⎤

⎥⎦

[
x1

x2

]

=

⎡

⎢⎣
1
5
6

⎤

⎥⎦ .

4. Let m ≥ n, let A be the m × n identity matrix (the principal submatrix of the m × m identity
matrix), and let b = [b1, . . . ,bm] be a vector. Find the least squares solution of Ax = b and the
2-norm error.

5. Prove that the 2-norm is a vector norm. You will need to use the Cauchy–Schwarz inequality
|u · v| ≤ ||u||2||v||2.

6. Let A be an n × n nonsingular matrix. (a) Prove that (AT )−1 = (A−1)T . (b) Let b be an
n-vector; then Ax = b has exactly one solution. Prove that this solution satisfies the normal
equations.

7. Find the best line through the set of data points, and find the RMSE:
(a) (−3,3), (−1,2), (0,1), (1,−1), (3,−4) (b) (1,1), (1,2), (2,2), (2,3), (4,3).

8. Find the best line through each set of data points, and find the RMSE:
(a) (0,0), (1,3), (2,3), (5,6) (b) (1,2), (3,2), (4,1), (6,3) (c) (0,5), (1,3), (2,3), (3,1).

9. Find the best parabola through each data point set in Exercise 8, and compare the RMSE with
the best-line fit.

10. Find the best degree 3 polynomial through each set in Exercise 8. Also, find the degree 3
interpolating polynomial, and compare.

11. Assume that the height of a model rocket is measured at four times, and the measured times
and heights are (t,h) = (1,135), (2,265), (3,385), (4,485), in seconds and meters. Fit the
model h = a + bt − 4.905t2 to estimate the eventual maximum height of the object and when
it will return to earth.

12. Given data points (x,y,z) = (0,0,3), (0,1,2), (1,0,3), (1,1,5), (1,2,6), find the plane in
three dimensions (model z = c0 + c1x + c2y) that best fits the data.
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4.1 Computer Problems

1. Form the normal equations, and compute the least squares solution and 2-norm error for the
following inconsistent systems:

(a)

⎡

⎢⎢⎢⎢⎢⎣

3 −1 2
4 1 0

−3 2 1
1 1 5

−2 0 3

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎣
x1

x2

x3

⎤

⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎣

10
10
−5
15

0

⎤

⎥⎥⎥⎥⎥⎦
(b)

⎡

⎢⎢⎢⎢⎢⎣

4 2 3 0
−2 3 −1 1

1 3 −4 2
1 0 1 −1
3 1 3 −2

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x1

x2

x3

x4

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

10
0
2
0
5

⎤

⎥⎥⎥⎥⎥⎦

2. Consider the world oil production data of Computer Problem 3.2.3. Find the best least squares
(a) line, (b) parabola, and (c) cubic curve through the 10 data points and the RMSE of the fits.
Use each to estimate the 2010 production level. Which fit best represents the data in terms of
RMSE?

3. Consider the world population data of Computer Problem 3.1.1. Find the best least squares
(a) line, (b) parabola through the data points, and the RMSE of the fit. In each case, estimate
the 1980 population. Which fit gives the best estimate?

4. Consider the carbon dioxide concentration data of Exercise 3.1.13. Find the best least squares
(a) line, (b) parabola, and (c) cubic curve through the data points and the RMSE of the fit. In
each case, estimate the 1950 CO2 concentration.

5. A company test-markets a new soft drink in 22 cities of approximately equal size. The selling
price (in dollars) and the number sold per week in the cities are listed as follows:

city price sales/week
1 0.59 3980
2 0.80 2200
3 0.95 1850
4 0.45 6100
5 0.79 2100
6 0.99 1700
7 0.90 2000
8 0.65 4200
9 0.79 2440

10 0.69 3300
11 0.79 2300

city price sales/week
12 0.49 6000
13 1.09 1190
14 0.95 1960
15 0.79 2760
16 0.65 4330
17 0.45 6960
18 0.60 4160
19 0.89 1990
20 0.79 2860
21 0.99 1920
22 0.85 2160

(a) First, the company wants to find the “demand curve’’: how many it will sell at each potential
price. Let P denote price and S denote sales per week. Find the line S = c1 + c2P that best
fits the data from the table in the sense of least squares. Find the normal equations and the
coefficients c1 and c2 of the least squares line. Plot the least squares line along with the data,
and calculate the root mean square error.

(b) After studying the results of the test marketing, the company will set a single selling price P

throughout the country. Given a manufacturing cost of $0.23 per unit, the total profit (per city,
per week) is S(P − 0.23) dollars. Use the results of the preceding least squares approximation
to find the selling price for which the company’s profit will be maximized.

6. What is the “slope’’ of the parabola y = x2 on [0,1]? Find the best least squares line that fits
the parabola at n evenly spaced points in the interval for (a) n = 10 and (b) n = 20. Plot the
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parabola and the lines. What do you expect the result to be as n → ∞? (c) Find the minimum
of the function F(c1,c2) =

∫ 1
0 (x2 − c1 − c2x)2 dx, and explain its relation to the

problem.

7. Find the least squares (a) line (b) parabola through the 13 data points of Figure 3.5 and the
RMSE of each fit.

8. Let A be the 10 × n matrix formed by the first n columns of the 10 × 10 Hilbert matrix.
Let c be the n-vector [1, . . . ,1], and set b = Ac. Use the normal equations to solve the least
squares problem Ax = b for (a) n = 6 (b) n = 8, and compare with the correct least squares
solution x = c. How many correct decimal places can be computed? Use condition number to
explain the results. (This least squares problem is revisited in Computer
Problem 4.3.7.)

9. Let x1, . . . ,x11 be 11 evenly spaced points in [2,4] and yi = 1 + xi + x2
i + ·· · + xd

i . Use the
normal equations to compute the best degree d polynomial, where (a) d = 5 (b) d = 6
(c) d = 8. Compare with Example 4.5. How many correct decimal places of the coefficients
can be computed? Use condition number to explain the results. (This least squares problem is
revisited in Computer Problem 4.3.8.)

10. The following data, collected by US Bureau of Economic Analysis, lists the year-over-year
percent change in mean disposable personal income in the United States during 15 election
years. Also, the proportion of the U.S. electorate that voted for the incumbent party’s
presidential candidate is listed. The first line of the table says that income increased by 1.49%
from 1951 to 1952, and that 44.6% of the electorate voted for Adlai Stevenson, the incumbent
Democratic party’s candidate for president. Find the best least squares linear model for
incumbent party vote as a function of income change. Plot this line along with the 15 data
points. How many percentage points of vote can the incumbent party expect for each
additional percent of change in personal income?

year % income change % incumbent vote
1952 1.49 44.6
1956 3.03 57.8
1960 0.57 49.9
1964 5.74 61.3
1968 3.51 49.6
1972 3.73 61.8
1976 2.98 49.0
1980 −0.18 44.7
1984 6.23 59.2
1988 3.38 53.9
1992 2.15 46.5
1996 2.10 54.7
2000 3.93 50.3
2004 2.47 51.2
2008 −0.41 45.7
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4.2 A SURVEY OF MODELS

The previous linear and polynomial models illustrate the use of least squares to fit data.
The art of data modeling includes a wide variety of models, some derived from physical
principles underlying the source of the data and others based on empirical factors.

4.2.1 Periodic data

Periodic data calls for periodic models. Outside air temperatures, for example, obey cycles
on numerous timescales, including daily and yearly cycles governed by the rotation of the
earth and the revolution of the earth around the sun. As a first example, hourly temperature
data are fit to sines and cosines.

! EXAMPLE 4.6 Fit the recorded temperatures in Washington, D.C., on January 1, 2001, as listed in the
following table, to a periodic model:

time of day t temp (C)

12 mid. 0 −2.2

3 am 1
8 −2.8

6 am 1
4 −6.1

9 am 3
8 −3.9

12 noon 1
2 0.0

3 pm 5
8 1.1

6 pm 3
4 −0.6

9 pm 7
8 −1.1

We choose the model y = c1 + c2 cos2π t + c3 sin 2π t to match the fact that tem-
perature is roughly periodic with a period of 24 hours, at least in the absence of longer-term
temperature movements. The model uses this information by fixing the period to be exactly
one day, where we are using days for the t units. The variable t is listed in these units in the
table.

Substituting the data into the model results in the following overdetermined system
of linear equations:

c1 + c2 cos2π(0) + c3 sin 2π(0) = −2.2

c1 + c2 cos2π

(
1
8

)
+ c3 sin 2π

(
1
8

)
= −2.8

c1 + c2 cos2π

(
1
4

)
+ c3 sin 2π

(
1
4

)
= −6.1

c1 + c2 cos2π

(
3
8

)
+ c3 sin 2π

(
3
8

)
= −3.9

c1 + c2 cos2π

(
1
2

)
+ c3 sin 2π

(
1
2

)
= 0.0

c1 + c2 cos2π

(
5
8

)
+ c3 sin 2π

(
5
8

)
= 1.1

c1 + c2 cos2π

(
3
4

)
+ c3 sin 2π

(
3
4

)
= −0.6

c1 + c2 cos2π

(
7
8

)
+ c3 sin 2π

(
7
8

)
= −1.1
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Orthogonality The least squares problem can be simplified considerably by special

choices of basis functions. The choices in Examples 4.6 and 4.7, for instance, yield normal

equations already in diagonal form.This property of orthogonal basis functions is explored in

detail in Chapter 10. Model (4.9) is a Fourier expansion.

The corresponding inconsistent matrix equation is Ax = b, where

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 cos0 sin 0

1 cos π
4 sin π

4

1 cos π
2 sin π

2

1 cos 3π
4 sin 3π

4

1 cosπ sin π

1 cos 5π
4 sin 5π

4

1 cos 3π
2 sin 3π

2

1 cos 7π
4 sin 7π

4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0

1
√

2/2
√

2/2

1 0 1

1 −
√

2/2
√

2/2

1 −1 0

1 −
√

2/2 −
√

2/2

1 0 −1

1
√

2/2 −
√

2/2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and b =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2.2

−2.8

−6.1

−3.9

0.0

1.1

−0.6

−1.1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The normal equations AT Ac = AT b are
⎡

⎣
8 0 0
0 4 0
0 0 4

⎤

⎦

⎡

⎣
c1
c2
c3

⎤

⎦ =

⎡

⎣
−15.6

−2.9778
−10.2376

⎤

⎦ ,

which are easily solved as c1 = −1.95,c2 = −0.7445, and c3 = −2.5594. The best ver-
sion of the model, in the sense of least squares, is y = −1.9500 − 0.7445cos2π t −
2.5594sin 2π t , with RMSE ≈ 1.063. Figure 4.5(a) compares the least squares fit model
with the actual hourly recorded temperatures. "

! EXAMPLE 4.7 Fit the temperature data to the improved model

y = c1 + c2 cos2π t + c3 sin 2π t + c4 cos4π t . (4.9)

Figure 4.5 Least Squares Fits to Periodic Data in Example 4.6. (a) Sinusoid model

y = – 1.95 – 0.7445 cos 2π t – 2.5594 sin 2π t shown in bold, along with recorded

temperature trace on Jan 1, 2001. (b) Improved sinusoid y = – 1.95 – 0.7445 cos 2π t

– 2.5594 sin 2π t + 1.125 cos 4π t fits the data more closely.
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The system of equations is now

c1 + c2 cos2π(0) + c3 sin 2π(0) + c4 cos4π(0) = −2.2

c1 + c2 cos2π

(
1
8

)
+ c3 sin 2π

(
1
8

)
+ c4 cos4π

(
1
8

)
= −2.8

c1 + c2 cos2π

(
1
4

)
+ c3 sin 2π

(
1
4

)
+ c4 cos4π

(
1
4

)
= −6.1

c1 + c2 cos2π

(
3
8

)
+ c3 sin 2π

(
3
8

)
+ c4 cos4π

(
3
8

)
= −3.9

c1 + c2 cos2π

(
1
2

)
+ c3 sin 2π

(
1
2

)
+ c4 cos4π

(
1
2

)
= 0.0

c1 + c2 cos2π

(
5
8

)
+ c3 sin 2π

(
5
8

)
+ c4 cos4π

(
5
8

)
= 1.1

c1 + c2 cos2π

(
3
4

)
+ c3 sin 2π

(
3
4

)
+ c4 cos4π

(
3
4

)
= −0.6

c1 + c2 cos2π

(
7
8

)
+ c3 sin 2π

(
7
8

)
+ c4 cos4π

(
7
8

)
= −1.1,

leading to the following normal equations:

⎡

⎢⎢⎣

8 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4

⎤

⎥⎥⎦

⎡

⎢⎢⎣

c1
c2
c3
c4

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

−15.6
−2.9778

−10.2376
4.5

⎤

⎥⎥⎦ .

The solutions are c1 = −1.95, c2 = −0.7445,c3 = −2.5594, and c4 = 1.125, with
RMSE ≈ 0.705. Figure 4.5(b) shows that the extended model y = −1.95 −
0.7445cos2π t − 2.5594sin 2π t + 1.125cos4π t substantially improves the fit. "

4.2.2 Data linearization

Exponential growth of a population is implied when its rate of change is proportional to
its size. Under perfect conditions, when the growth environment is unchanging and when
the population is well below the carrying capacity of the environment, the model is a good
representation.

The exponential model

y = c1ec2t (4.10)

cannot be directly fit by least squares because c2 does not appear linearly in the model
equation. Once the data points are substituted into the model, the difficulty is clear: The set
of equations to solve for the coefficients are nonlinear and cannot be expressed as a linear
system Ax = b. Therefore, our derivation of the normal equations is irrelevant.

There are two ways to deal with the problem of nonlinear coefficients. The more
difficult way is to directly minimize the least square error, that is, solve the nonlinear least
squares problem. We return to this problem in Section 4.5. The simpler way is to change
the problem. Instead of solving the original least squares problem, we can solve a different
problem, which is related to the original, by “linearizing’’ the model.
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In the case of the exponential model (4.10), the model is linearized by applying the
natural logarithm:

ln y = ln(c1ec2t ) = ln c1 + c2t . (4.11)

Note that for an exponential model, the graph of ln y is a linear plot in t . At first glance, it
appears that we have only traded one problem for another. The c2 coefficient is now linear
in the model, but c1 no longer is. However, by renaming k = ln c1, we can write

ln y = k + c2t . (4.12)

Now both coefficients k and c2 are linear in the model. After solving the normal equations
for the best k and c2, we can find the corresponding c1 = ek if we wish.

It should be noted that our way out of the difficulty of nonlinear coefficients was
to change the problem. The original least squares problem we posed was to fit the data
to (4.10)—that is, to find c1,c2 that minimize

(c1ec2t1 − y1)2 + ·· · + (c1ec2tm − ym)2, (4.13)

the sum of squares of the residuals of the equations c1ec2ti = yi for i = 1, . . . ,m. For now,
we solve the revised problem minimizing least squares error in “log space’’—that is, by
finding c1,c2 that minimizes

(ln c1 + c2t1 − ln y1)2 + ·· · + (ln c1 + c2tm − ln ym)2, (4.14)

the sum of squares of the residuals of the equations ln c1 + c2ti = ln yi for i = 1, . . . ,m.
These are two different minimizations and have different solutions, meaning that they
generally result in different values of the coefficients c1,c2.

Which method is correct for this problem, the nonlinear least squares of (4.13) or the
model-linearized version (4.14)? The former is least squares, as we have defined it. The
latter is not. However, depending on the context of the data, either may be the more natural
choice. To answer the question, the user needs to decide which errors are most important to
minimize, the errors in the original sense or the errors in “log space.’’ In fact, the log model
is linear, and it may be argued that only after log-transforming the data to a linear relation
is it natural to evaluate the fitness of the model.

! EXAMPLE 4.8 Use model linearization to find the best least squares exponential fit y = c1ec2t to the
following world automobile supply data:

year cars (×106)

1950 53.05
1955 73.04
1960 98.31
1965 139.78
1970 193.48
1975 260.20
1980 320.39

The data describe the number of automobiles operating throughout the world in the given
year. Define the time variable t in terms of years since 1950. Solving the linear least squares
problem yields k1 ≈ 3.9896,c2 ≈ 0.06152. Since c1 ≈ e3.9896 ≈ 54.03, the model
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Figure 4.6 Exponential fit of world automobile supply data, using linearization.

The best least squares fit is y = 54.03e0.06152t . Compare with Figure 4.14.

is y = 54.03e0.06152t . The RMSE of the log-linearized model in log space is ≈ 0.0357,
while RMSE of the original exponential model is ≈ 9.56. The best model and data are
plotted in Figure 4.6. "

! EXAMPLE 4.9 The number of transistors on Intel central processing units since the early 1970s is given in
the table that follows. Fit the model y = c1ec2t to the data.

CPU year transistors

4004 1971 2,250
8008 1972 2,500
8080 1974 5,000
8086 1978 29,000
286 1982 120,000
386 1985 275,000
486 1989 1,180,000
Pentium 1993 3,100,000
Pentium II 1997 7,500,000
Pentium III 1999 24,000,000
Pentium 4 2000 42,000,000
Itanium 2002 220,000,000
Itanium 2 2003 410,000,000

Parameters will be fit by using model linearization (4.11). Linearizing the model
gives

ln y = k + c2t .

We will let t = 0 correspond to the year 1970. Substituting the data into the linearized model
yields

k + c2(1) = ln 2250

k + c2(2) = ln 2500

k + c2(4) = ln 5000

k + c2(8) = ln 29000, (4.15)

and so forth. The matrix equation is Ax = b, where x = (k,c2),



206 | CHAPTER 4 Least Squares

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 2
1 4
1 8
...

...

1 33

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, and b =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

ln 2250
ln 2500
ln 5000
ln 29000

...

ln 410000000

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (4.16)

The normal equations AT Ax = AT b are
[

13 235
235 5927

][
k

c2

]
=

[
176.90

3793.23

]
,

which has solution k ≈ 7.197 and c2 ≈ 0.3546, leading to c1 = ek ≈ 1335.3. The exponen-
tial curve y = 1335.3e0.3546t is shown in Figure 4.7 along with the data. The doubling time
for the law is ln 2/c2 ≈ 1.95 years. Gordon C. Moore, cofounder of Intel, predicted in 1965
that over the ensuing decade, computing power would double every 2 years. Astoundingly,
that exponential rate has continued for 40 years. There is some evidence in Figure 4.7 that
this rate has accelerated since 2000.

1970 1980 1990 2000 2010

104

106

108

y

x

Figure 4.7 Semilog Plot of Moore’s Law. Number of transistors on CPU chip versus year.

"

Another important example with nonlinear coefficients is the power law model
y = c1tc2 . This model also can be simplified with linearization by taking logs of both
sides:

ln y = ln c1 + c2 ln t

= k + c2 ln t . (4.17)

Substitution of data into the model will give

k + c2 ln t1 = ln y1 (4.18)
...

k + c2 ln tn = ln yn, (4.19)

resulting in the matrix form

A =

⎡

⎢⎣
1 ln t1
...

...

1 ln tn

⎤

⎥⎦ and b =

⎡

⎢⎣
ln y1

...

ln yn

⎤

⎥⎦ . (4.20)

The normal equations allow determination of k and c2, and c1 = ek .
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! EXAMPLE 4.10 Use linearization to fit the given height–weight data with a power law model.

The mean height and weight of boys ages 2–11 were collected in the U.S. National
Health and Nutrition Examination Survey by the Centers for Disease Control (CDC) in
2002, resulting in the following table:

age (yrs.) height (m) weight (kg)

2 0.9120 13.7
3 0.9860 15.9
4 1.0600 18.5
5 1.1300 21.3
6 1.1900 23.5
7 1.2600 27.2
8 1.3200 32.7
9 1.3800 36.0

10 1.4100 38.6
11 1.4900 43.7

Following the preceding strategy, the resulting power law for weight versus height is
W = 16.3H 2.42. The relationship is graphed in Figure 4.8. Since weight is a proxy for
volume, the coefficient c2 ≈ 2.42 can be viewed as the “effective dimension’’ of the human
body.

0 0.5 1 1.5
0

10

20

30

40

y

x

Figure 4.8 Power law of weight versus height for 2–11-year-olds. The best fit formula is

W = 16.3H2.42.

"

The time course of drug concentration y in the bloodstream is well described by

y = c1tec2t , (4.21)

where t denotes time after the drug was administered. The characteristics of the model are
a quick rise as the drug enters the bloodstream, followed by slow exponential decay. The
half-life of the drug is the time from the peak concentration to the time it drops to half
that level. The model can be linearized by applying the natural logarithm to both sides,
producing

ln y = ln c1 + ln t + c2t

k + c2t = ln y − ln t,
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where we have set k = ln c1. This leads to the matrix equation Ax = b, where

A =

⎡

⎢⎣
1 t1
...

...

1 tm

⎤

⎥⎦ and b =

⎡

⎢⎣
ln y1 − ln t1

...

ln ym − ln tm

⎤

⎥⎦ . (4.22)

The normal equations are solved for k and c2, and c1 = ek .

! EXAMPLE 4.11 Fit the model (4.21) with the measured level of the drug norfluoxetine in a patient’s blood-
stream, given in the following table:

hour concentration (ng/ml)

1 8.0
2 12.3
3 15.5
4 16.8
5 17.1
6 15.8
7 15.2
8 14.0

Solving the normal equations yields k ≈ 2.28 and c2 ≈ −0.215, and c1 ≈ e2.28 ≈ 9.77.
The best version of the model is y = 9.77te−0.215t , plotted in Figure 4.9. From the model,
the timing of the peak concentration and the half-life can be estimated. (See Computer
Problem 5.)

0 4 8 12 160

10

20

y

x

Figure 4.9 Plot of drug concentration in blood. Model (4.21) shows exponential decay after initial

peak.
"

It is important to realize that model linearization changes the least squares problem.
The solution obtained will minimize the RMSE with respect to the linearized problem,
not necessarily the original problem, which in general will have a different set of optimal
parameters. If they enter the model nonlinearly, they cannot be computed from the normal
equations, and we need nonlinear techniques to solve the original least squares problem.
This is done in the Gauss–Newton Method in Section 4.5, where we revisit the automobile
supply data and compare fitting the exponential model in linearized and nonlinearized
forms.
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4.2 Exercises

1. Fit data to the periodic model y = F3(t) = c1 + c2 cos2π t + c3 sin 2π t . Find the 2-norm error
and the RMSE.

(a)

t y

0 1
1/4 3
1/2 2
3/4 0

(b)

t y

0 1
1/4 3
1/2 2
3/4 1

(c)

t y

0 3
1/2 1
1 3

3/2 2

2. Fit the data to the periodic models F3(t) = c1 + c2 cos2π t + c3 sin 2π t and
F4(t) = c1 + c2 cos2π t + c3 sin 2π t + c4 cos4π t . Find the 2-norm errors ||e||2 and compare
the fits of F3 and F4.

(a)

t y

0 0
1/6 2
1/3 0
1/2 −1
2/3 1
5/6 1

(b)

t y

0 4
1/6 2
1/3 0
1/2 −5
2/3 −1
5/6 3

3. Fit data to the exponential model by using linearization. Find the 2-norm of the difference
between the data points yi and the best model c1ec2ti .

(a)

t y

−2 1
0 2
1 2
2 5

(b)

t y

0 1
1 1
1 2
2 4

4. Fit data to the exponential model by using linearization. Find the 2-norm of the difference
between the data points yi and the best model c1ec2ti .

(a)

t y

−2 4
−1 2

1 1
2 1/2

(b)

t y

0 10
1 5
2 2
3 1

5. Fit data to the power law model by using linearization. Find the RMSE of the fit.

(a)

t y

1 6
2 2
3 1
4 1

(b)

t y

1 2
1 4
2 5
3 6
5 10
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6. Fit data to the drug concentration model (4.21). Find the RMSE of the fit.

(a)

t y

1 3
2 4
3 5
4 5

(b)

t y

1 2
2 4
3 3
4 2

4.2 Computer Problems

1. Fit the monthly data for Japan 2003 oil consumption, shown in the following table, with the
periodic model (4.9), and calculate the RMSE:

month oil use (106 bbl/day)

Jan 6.224
Feb 6.665
Mar 6.241
Apr 5.302
May 5.073
Jun 5.127
Jul 4.994

Aug 5.012
Sep 5.108
Oct 5.377
Nov 5.510
Dec 6.372

2. The temperature data in Example 4.6 was taken from the Weather Underground website
www.wunderground.com. Find a similar selection of hourly temperature data from a
location and date of your choice, and fit it with the two sinusoidal models of the
example.

3. Consider the world population data of Computer Problem 3.1.1. Find the best exponential fit of
the data points by using linearization. Estimate the 1980 population, and find the estimation
error.

4. Consider the carbon dioxide concentration data of Exercise 3.1.17. Find the best exponential fit
of the difference between the CO2 level and the background (279 ppm) by using linearization.
Estimate the 1950 CO2 concentration, and find the estimation error.

5. (a) Find the time at which the maximum concentration is reached in model (4.21). (b) Use an
equation solver to estimate the half-life from the model in Example 4.11.

6. The bloodstream concentration of a drug, measured hourly after administration, is given in the
accompanying table. Fit the model (4.21). Find the estimated maximum and the half-life.
Suppose that the therapeutic range for the drug is 4–15 ng/ml. Use the equation solver of your
choice to estimate the time the drug concentration stays within therapeutic
levels.

www.wunderground.com
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hour concentration (ng/ml)

1 6.2
2 9.5
3 12.3
4 13.9
5 14.6
6 13.5
7 13.3
8 12.7
9 12.4

10 11.9

7. The file windmill.txt, available from the textbook website, is a list of 60 numbers which
represent the monthly megawatt-hours generated from Jan. 2005 to Dec. 2009 by a wind
turbine owned by the Minnkota Power Cooperative near Valley City, ND. The data is currently
available at http://www.minnkota.com. For reference, a typical home uses around 1 MWh per
month.
(a) Find a rough model of power output as a yearly periodic function. Fit the data to
equation (4.9),

f (t) = c1 + c2 cos2π t + c3 sin 2π t + c4 cos4π t

where the units of t are years, that is 0 ≤ t ≤ 5, and write down the resulting function.

(b) Plot the data and the model function for years 0 ≤ t ≤ 5. What features of the data are
captured by the model?

8. The file scrippsy.txt, available from the textbook website, is a list of 50 numbers which
represent the concentration of atmospheric carbon dioxide, in parts per million by volume
(ppv), recorded at Mauna Loa, Hawaii, each May 15 of the years 1961 to 2010. The data is part
of a data collection effort initiated by Charles Keeling of the Scripps Oceanographic Institute
(Keeling et al. [2001]). Subtract the background level 279 ppm as in Computer Problem 4, and
fit the data to an exponential model. Plot the data along with the best fit exponential function,
and report the RMSE.

9. The file scrippsm.txt, available from the textbook website, is a list of 180 numbers which
represent the concentration of atmospheric carbon dioxide, in parts per million by volume
(ppv), recorded monthly at Mauna Loa from Jan. 1996 to Dec. 2010, taken from the same
Scripps study as Computer Problem 8.
(a) Carry out a least squares fit of the CO2 data using the model

f (t) = c1 + c2t + c3 cos2π t + c4 sin 2π t

where t is measured in months. Report the best fit coefficients ci and the RMSE of the fit. Plot
the continuous curve from Jan. 1989 to the end of this year, including the 180 data points in the
plot.

(b) Use your model to predict the CO2 concentration in May 2004, Sept. 2004, May 2005, and
Sept. 2005. These months tend to contain the yearly maxima and minima of the CO2 cycle.
The actual recorded values are 380.63, 374.06, 382.45, and 376.73 ppv, respectively. Report
the model error at these four points.

(c) Add the extra term c5 cos4π t and redo parts (a) and (b). Compare the new RMSE and four
model errors.

http://www.minnkota.com
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(d) Repeat part (c) using the extra term c5t2. Which term leads to more improvement in the
model, part (c) or (d)?

(e) Add both terms from (c) and (d) and redo parts (a) and (b). Prepare a table summarizing
your results from all parts of the problem, and try to provide an explanation for the results.

See the website http://scrippsco2.ucsd.edu for much more data and analysis of the
Scripps carbon dioxide study.

4.3 QR FACTORIZATION

In Chapter 2, the LU factorization was used to solve matrix equations. The factorization is
useful because it encodes the steps of Gaussian elimination. In this section, we develop the
QR factorization as a way to solve least squares calculations that is superior to the normal
equations.

After introducing the factorization by way of Gram–Schmidt orthogonalization, we
return to Example 4.5, for which the normal equations turned out to be inadequate. Later in
this section, Householder reflections are introduced as a more efficient method of computing
Q and R.

4.3.1 Gram–Schmidt orthogonalization and least squares

The Gram–Schmidt method orthogonalizes a set of vectors. Given an input set of
m-dimensional vectors, the goal is to find an orthogonal coordinate system for the sub-
space spanned by the set. More precisely, given n linearly independent input vectors, it
computes n mutually perpendicular unit vectors spanning the same subspace as the input
vectors. The unit length is with respect to the Euclidean or 2-norm (4.7), which is used
throughout Chapter 4.

Let A1, . . . ,An be linearly independent vectors from Rm. Thus n ≤ m. The Gram–
Schmidt method begins by dividing A1 by its length to make it a unit vector. Define

y1 = A1 and q1 = y1

||y1||2
. (4.23)

To find the second unit vector, subtract away the projection of A2 in the direction of
q1, and normalize the result:

y2 = A2 − q1(qT
1 A2), and q2 = y2

||y2||2
. (4.24)

Then qT
1 y2 = qT

1 (A2 − q1(qT
1 A2)) = qT

1 A2 − qT
1 A2 = 0, so q1 and q2 are pairwise orthog-

onal, as shown in Figure 4.10.
At the j th step, define

yj = Aj − q1(qT
1 Aj ) − q2(qT

2 Aj ) − . . . − qj−1(qT
j−1Aj ) and qj = yj

||yj ||2
. (4.25)

It is clear that qj is orthogonal to each of the previously produced qi for i = 1, . . . , j − 1,
since (4.25) implies

qT
i yj = qT

i Aj − qT
i q1qT

1 Aj − . . . − qT
i qj−1qT

j−1Aj

= qT
i Aj − qT

i qiq
T
i Aj = 0,

http://scrippsco2.ucsd.edu
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A2

A1

q1

y2

q2

0

Figure 4.10 Gram–Schmidt orthogonalization. The input vectors are A1 and A2, and

the output is the orthonormal set consisting of q1 and q2. The second orthogonal

vector q2 is formed by subtracting the projection of A2 in the direction of q1 from A2,

followed by normalizing.

where by induction hypothesis, the qi are pairwise orthogonal for i < j . Geometri-
cally, (4.25) corresponds to subtracting from Aj the projections of Aj onto the previously
determined orthogonal vectors qi, i = 1, . . . , j − 1. What remains is orthogonal to the qi

and, after dividing by its length to become a unit vector, is used as qj . Therefore, the set
{q1, . . . ,qn} consists of mutually orthogonal vectors spanning the same subspace of Rm as
{A1, . . . ,An}.

The result of Gram–Schmidt orthogonalization can be put into matrix form by intro-
ducing new notation for the dot products in the above calculation. Define rjj = ||yj ||2 and
rij = qT

i Aj . Then (4.23) and (4.24) can be written

A1 = r11q1

A2 = r12q1 + r22q2,

and the general case (4.25) translates to

Aj = r1j q1 + ·· · + rj−1,j qj−1 + rjj qj .

Therefore, the result of Gram–Schmidt orthogonalization can be written in matrix form as

(A1| · · · |An) = (q1| · · · |qn)

⎡

⎢⎢⎢⎣

r11 r12 · · · r1n

r22 · · · r2n

. . .
...

rnn

⎤

⎥⎥⎥⎦
, (4.26)

or A = QR, where we consider A to be the matrix consisting of the columns Aj . We call
this the reduced QR factorization; the full version is just ahead. The assumption that the
vectors Aj are linearly independent guarantees that the main diagonal coefficients rjj are
nonzero. Conversely, if Aj lies in the span of A1, . . . ,Aj−1, then the projections onto the
latter vectors make up the entire vector, and rjj = ||yj ||2 = 0.

! EXAMPLE 4.12 Find the reduced QR factorization by applying Gram–Schmidt orthogonalization to the

columns of A =

⎡

⎣
1 −4
2 3
2 2

⎤

⎦.
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Set y1 = A1 =

⎡

⎣
1
2
2

⎤

⎦. Then r11 = ||y1||2 =
√

12 + 22 + 22 = 3, and the first unit

vector is

q1 = y1

||y1||2
=

⎡

⎢⎢⎢⎣

1
3
2
3
2
3

⎤

⎥⎥⎥⎦
.

To find the second unit vector, set

y2 = A2 − q1qT
1 A2 =

⎡

⎣
−4

3
2

⎤

⎦ −

⎡

⎢⎢⎢⎣

1
3
2
3
2
3

⎤

⎥⎥⎥⎦
2 =

⎡

⎢⎢⎢⎣

− 14
3
5
3
2
3

⎤

⎥⎥⎥⎦

and

q2 = y2

||y2||2
= 1

5

⎡

⎢⎢⎢⎣

− 14
3
5
3
2
3

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

− 14
15
1
3
2

15

⎤

⎥⎥⎥⎦
.

Since r12 = qT
1 A2 = 2 and r22 = ||y2||2 = 5, the result written in matrix form (4.26) is

A =

⎡

⎣
1 −4
2 3
2 2

⎤

⎦ =

⎡

⎣
1/3 −14/15
2/3 1/3
2/3 2/15

⎤

⎦
[

3 2
0 5

]
= QR.

"

We use the term “classical’’ for this version of Gram–Schmidt, since we will provide
an upgraded, or “modified,’’ version at the end of this section.

Classical Gram–Schmidt orthogonalization

Let Aj ,j = 1, . . . ,n be linearly independent vectors.
for j = 1,2, . . . ,n

y = Aj

for i = 1,2, . . . , j − 1
rij = qT

i Aj

y = y − rij qi

end
rjj = ||y||2
qj = y/rjj

end

When the method is successful, it is customary to fill out the matrix of orthogonal unit
vectors to a complete basis of Rm, to achieve the “full’’ QR factorization. This can be done,
for example, by adding m − n extra vectors to the Aj , so that the m vectors span Rm, and
carrying out the Gram–Schmidt method. In terms of the basis of Rm formed by q1, . . . ,qm,
the original vectors can be expressed as
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(A1| · · · |An) = (q1| · · · |qm)

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 · · · r1n

r22 · · · r2n

. . .
...

rnn

0 · · · · · · 0
...

...

0 · · · · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.27)

This matrix equation is the full QR factorization of the matrix A = (A1| · · · |An), formed
by the original input vectors. Note the matrix sizes in the full QR factorization: A is m × n,
Q is a square m × m matrix, and the upper triangular matrix R is m × n, the same size
as A. The matrix Q in the full QR factorization has a special place in numerical analysis
and is given a special definition.

DEFINITION 4.1 A square matrix Q is orthogonal if QT = Q−1. ❒

Note that a square matrix is orthogonal if and only if its columns are pairwise orthog-
onal unit vectors (Exercise 9). Therefore, a full QR factorization is the equation A = QR,
where Q is an orthogonal square matrix and R is an upper triangular matrix the same
size as A.

The key property of an orthogonal matrix is that it preserves the Euclidean norm of a
vector.

LEMMA 4.2 If Q is an orthogonal m × m matrix and x is an m-dimensional vector, then
||Qx||2 = ||x||2. #

Proof. ||Qx||22 = (Qx)T Qx = xT QT Qx = xT x = ||x||22. ❒

The product of two orthogonal m × m matrices is again orthogonal (Exercise 10). The
QR factorization of an m × m matrix by the Gram–Schmidt method requires approximately
m3 multiplication/divisions, three times more than the LU factorization, plus about the same
number of additions (Exercise 11).

! EXAMPLE 4.13 Find the full QR factorization of A =

⎡

⎣
1 −4
2 3
2 2

⎤

⎦.

Orthogonality In Chapter 2,we found that the LU factorization is an efficient means

of encoding the information of Gaussian elimination. In the same way, the QR factorization

records the orthogonalization of a matrix, namely, the construction of an orthogonal set that

spans the space of column vectors of A. Doing calculations with orthogonal matrices is prefer-

able because (1) they are easy to invert by definition,and (2) by Lemma 4.2,they do not magnify

errors.
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In Example 4.12, we found the orthogonal unit vectors q1 =

⎡

⎢⎢⎢⎣

1
3
2
3
2
3

⎤

⎥⎥⎥⎦
and

q2 =

⎡

⎢⎢⎢⎣

− 14
15
1
3
2

15

⎤

⎥⎥⎥⎦
. Adding a third vector A3 =

⎡

⎣
1
0
0

⎤

⎦ leads to

y3 = A3 − q1qT
1 A3 − q2qT

2 A3

=

⎡

⎣
1
0
0

⎤

⎦ −

⎡

⎢⎢⎢⎣

1
3
2
3
2
3

⎤

⎥⎥⎥⎦
1
3

−

⎡

⎢⎢⎢⎣

− 14
15
1
3

− 2
15

⎤

⎥⎥⎥⎦

(
−14

15

)
= 2

225

⎡

⎣
2

10
−11

⎤

⎦

and q3 = y3/||y3|| =

⎡

⎢⎢⎣

2
15
10
15

− 11
15

⎤

⎥⎥⎦ . Putting the parts together, we obtain the full QR factorization

A =

⎡

⎣
1 −4
2 3
2 2

⎤

⎦ =

⎡

⎣
1/3 −14/15 2/15
2/3 1/3 2/3
2/3 2/15 −11/15

⎤

⎦

⎡

⎣
3 2
0 5
0 0

⎤

⎦ = QR.

Note that the choice of A3 was arbitrary. Any third column vector linearly independent of
the first two columns could be used. Compare this result with the reduced QR factorization
in Example 4.12. "

The Matlab command qr carries out the QR factorization on an m × n matrix. It
does not use Gram–Schmidt orthogonalization, but uses more efficient and stable methods
that will be introduced in a later subsection. The command

>> [Q,R]=qr(A,0)

returns the reduced QR factorization, and

>> [Q,R]=qr(A)

returns the full QR factorization.
There are three major applications of the QR factorization. We will describe two of them

here; the third is the QR algorithm for eigenvalue calculations, introduced in Chapter 12.
First, the QR factorization can be used to solve a system of n equations in n unknowns

Ax = b. Just factor A = QR, and the equation Ax = b becomes QRx = b and Rx = QT b.
Assuming that A is nonsingular, the diagonal entries of the upper triangular matrix R are
nonzero, so that R is nonsingular. A triangular back substitution yields the solution x. As
mentioned before, this approach is about three times more expensive in terms of complexity
when compared with the LU approach.

The second application is to least squares. Let A be an m × n matrix with m ≥ n.
To minimize ||Ax − b||2, rewrite as ||QRx − b||2 = ||Rx − QT b||2 by Lemma 4.2.
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The vector inside the Euclidean norm is

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1

...

en

en+1

...

em

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 · · · r1n

r22 · · · r2n

. . .
...

rnn

0 · · · · · · 0

...
...

0 · · · · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎣
x1
...

xn

⎤

⎥⎦ −

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

...

dn

dn+1

...

dm

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.28)

where d = QT b. Assume that rii ̸= 0. Then the upper part (e1, . . . ,en) of the error vector e

can be made zero by back substitution. The choice of the xi makes no difference for the
lower part of the error vector; clearly, (en+1, . . . ,em) = (−dn+1, . . . ,−dm). Therefore, the
least squares solution is minimized by using the x from back-solving the upper part, and
the least squares error is ||e||22 = d2

n+1 + ·· · + d2
m.

Least squares by QR factorization

Given the m × n inconsistent system

Ax = b,

find the full QR factorization A = QR and set

R̂ = upper n × n submatrix of R

d̂ = upper n entries of d = QT b

Solve R̂x = d̂ for least squares solution x.

! EXAMPLE 4.14 Use the full QR factorization to solve the least squares problem

⎡

⎣
1 −4
2 3
2 2

⎤

⎦
[
x1
x2

]
=

⎡

⎣
−3
15

9

⎤

⎦.

We need to solve Rx = QT b, or
⎡

⎢⎣
3 2
0 5
0 0

⎤

⎥⎦

[
x1

x2

]

= 1
15

⎡

⎢⎣
5 10 10

−14 5 2
2 10 −11

⎤

⎥⎦

⎡

⎢⎣
−3
15
9

⎤

⎥⎦ =

⎡

⎢⎣
15
9
3

⎤

⎥⎦ .

The least squares error will be ||e||2 = ||(0,0,3)||2 = 3. Equating the upper parts yields
[

3 2
0 5

][
x1
x2

]
=

[
15

9

]
,

whose solution is x1 = 3.8,x2 = 1.8. This least squares problem was solved by the normal
equations in Example 4.2. "

Finally, we return to the problem in Example 4.5 that led to an ill-conditioned system
of normal equations.

Conditioning In Chapter 2, we found that the best way to handle ill-conditioned

problems is to avoid them. Example 4.15 is a classic case of that advice. While the normal

equations of Example 4.5 are ill-conditioned, the QR approach solves least squares without

constructing AT A.
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! EXAMPLE 4.15 Use the full QR factorization to solve the least squares problem of Example 4.5.

The normal equations were notably unsuccessful in solving this least squares prob-
lem of 11 equations in 8 variables. We use the Matlab qr command to carry out an
alternative approach:

>> x=(2+(0:10)/5)’;
>> y=1+x+x.ˆ2+x.ˆ3+x.ˆ4+x.ˆ5+x.ˆ6+x.ˆ7;
>> A=[x.ˆ0 x x.ˆ2 x.ˆ3 x.ˆ4 x.ˆ5 x.ˆ6 x.ˆ7];
>> [Q,R]=qr(A);
>> b=Q’*y;
>> c=R(1:8,1:8)\b(1:8)

c=
0.99999991014308
1.00000021004107
0.99999979186557
1.00000011342980
0.99999996325039
1.00000000708455
0.99999999924685
1.00000000003409

Six decimal places of the correct solution c = [1, . . . ,1] are found by using QR factor-
ization. This approach finds the least squares solution without forming the normal equations,
which have a condition number of about 1019. "

4.3.2 Modified Gram–Schmidt orthogonalization

A slight modification to Gram–Schmidt turns out to enhance its accuracy in machine cal-
culations. The new algorithm called modified Gram–Schmidt is mathematically equivalent
to the original, or “classical’’ Gram–Schmidt algorithm.

Modified Gram–Schmidt orthogonalization

Let Aj ,j = 1, . . . ,n be linearly independent vectors.

for j = 1,2, . . . ,n

y = Aj

for i = 1,2, . . . , j − 1
rij = qT

i y

y = y − rij qi

end
rjj = ||y||2
qj = y/rjj

end

The only difference from classical Gram–Schmidt is that Aj is replaced by y in the
innermost loop. Geometrically speaking, when projecting away the part of vector Aj in
the direction of q2, for example, one should subtract away the projection of the remain-
der y of Aj with the q1 part already removed, instead of the projection of Aj itself on
q2. Modified Gram–Schmidt is the version that will be used in the GMRES algorithm in
Section 4.4.
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! EXAMPLE 4.16 Compare the results of classical Gram–Schmidt and modified Gram–Schmidt, computed in
double precision, on the matrix of almost-parallel vectors

⎡

⎢⎢⎣

1 1 1
δ 0 0
0 δ 0
0 0 δ

⎤

⎥⎥⎦

where δ = 10−10.

First, we apply classical Gram–Schmidt.

y1 = A1 =

⎡

⎢⎢⎣

1
δ

0
0

⎤

⎥⎥⎦ and q1 = 1√
1 + δ2

⎡

⎢⎢⎣

1
δ

0
0

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1
δ

0
0

⎤

⎥⎥⎦ .

Note that δ2 = 10−20 is a perfectly acceptable double precision number, but 1 + δ2 = 1
after rounding. Then

y2 =

⎡

⎢⎢⎣

1
0
δ

0

⎤

⎥⎥⎦ −

⎡

⎢⎢⎣

1
δ

0
0

⎤

⎥⎥⎦qT
1 A2 =

⎡

⎢⎢⎣

1
0
δ

0

⎤

⎥⎥⎦ −

⎡

⎢⎢⎣

1
δ

0
0

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0
−δ

δ

0

⎤

⎥⎥⎦ and q2 =

⎡

⎢⎢⎢⎣

0
− 1√

2
1√
2

0

⎤

⎥⎥⎥⎦

after dividing by ||y2||2 =
√

δ2 + δ2 =
√

2δ. Completing classical Gram–Schmidt,

y3 =

⎡

⎢⎢⎣

1
0
0
δ

⎤

⎥⎥⎦ −

⎡

⎢⎢⎣

1
δ

0
0

⎤

⎥⎥⎦qT
1 A3 −

⎡

⎢⎢⎢⎣

0
− 1√

2
1√
2

0

⎤

⎥⎥⎥⎦
qT

2 A3 =

⎡

⎢⎢⎣

1
0
0
δ

⎤

⎥⎥⎦ −

⎡

⎢⎢⎣

1
δ

0
0

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0
−δ

0
δ

⎤

⎥⎥⎦ and q3 =

⎡

⎢⎢⎢⎣

0
− 1√

2
0
1√
2

⎤

⎥⎥⎥⎦
.

Unfortunately, due to the double precision rounding done in the first step, q2 and q3 turn
out to be not orthogonal:

qT
2 q3 =

⎡

⎢⎢⎢⎣

0
− 1√

2
1√
2

0

⎤

⎥⎥⎥⎦

T ⎡

⎢⎢⎢⎣

0
− 1√

2
0
1√
2

⎤

⎥⎥⎥⎦
= 1

2
.

On the other hand, modified Gram–Schmidt does much better. While q1 and q2 are
calculated the same way, q3 is found as

y1
3 =

⎡

⎢⎢⎣

1
0
0
δ

⎤

⎥⎥⎦ −

⎡

⎢⎢⎣

1
δ

0
0

⎤

⎥⎥⎦qT
1 A3 =

⎡

⎢⎢⎣

0
−δ

0
δ

⎤

⎥⎥⎦ ,

y3 = y1
3 −

⎡

⎢⎢⎢⎣

0
− 1√

2
1√
2

0

⎤

⎥⎥⎥⎦
qT

2 y1
3 =

⎡

⎢⎢⎣

0
−δ

0
δ

⎤

⎥⎥⎦ −

⎡

⎢⎢⎢⎣

0
− 1√

2
1√
2

0

⎤

⎥⎥⎥⎦
δ√
2

=

⎡

⎢⎢⎣

0
− δ

2
− δ

2
δ

⎤

⎥⎥⎦ and q3 =

⎡

⎢⎢⎢⎣

0
− 1√

6
− 1√

6
2√
6

⎤

⎥⎥⎥⎦
.
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Now qT
2 q3 = 0 as desired. Note that for both classical and modified Gram–Schmidt, qT

1 q2
is on the order of δ, so even modified Gram–Schmidt leaves room for improvement. Orthog-
onalization by Householder reflectors, described in the next section, is widely considered
to be more computationally stable. "

4.3.3 Householder reflectors

Although the modified Gram–Schmidt orthogonalization method is an improved way to
calculate the QR factorization of a matrix, it is not the best way. An alternative method
using Householder reflectors requires fewer operations and is more stable, in the sense of
amplification of rounding errors. In this section, we will define the reflectors and show how
they are used to factorize a matrix.

A Householder reflector is an orthogonal matrix that reflects all m-vectors through an
m − 1 dimensional plane. This means that the length of each vector is unchanged when
multiplied by the matrix, making Householder reflectors ideal for moving vectors. Given
a vector x that we would like to relocate to a vector w of equal length, the recipe for
Householder reflectors gives a matrix H such that Hx = w.

The origin of the recipe is clear in Figure 4.11. Draw the m − 1 dimensional plane
bisecting x and w, and perpendicular to the vector connecting them. Then reflect all vectors
through the plane.

LEMMA 4.3 Assume that x and w are vectors of the same Euclidean length, ||x||2 = ||w||2. Then w − x

and w + x are perpendicular. #

Proof. (w − x)T (w + x) = wT w − xT w + wT x − xT x = ||w||2 − ||x||2 = 0. ❒

Define the vector v = w − x, and consider the projection matrix

P = vvT

vT v
. (4.29)

A projection matrix is a matrix that satisfies P 2 = P . Exercise 13 asks the reader to verify
that P in (4.29) is a symmetric projection matrix and that P v = v. Geometrically, for any
vector u, P u is the projection of u onto v. Figure 4.11 hints that if we subtract twice the
projection P x from x, we should get w. To verify this, set H = I − 2P . Then

Hx = x − 2P x

= w − v − 2vvT x

vT v

= w − v − vvT x

vT v
− vvT (w − v)

vT v

= w − vvT (w + x)

vT v
= w, (4.30)

the latter equality following from Lemma 4.3, since w + x is orthogonal to v = w − x.
The matrix H is called a Householder reflector. Note that H is a symmetric

(Exercise 14) and orthogonal matrix, since

H T H = HH = (I − 2P )(I − 2P )

= I − 4P + 4P 2

= I .
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x

w

v

Figure 4.11 Householder reflector. Given equal length vectors x and w, reflection

through the bisector of the angle between them (dotted line) exchanges them.

These facts are summarized in the following theorem:

THEOREM 4.4 Householder reflectors. Let x and w be vectors with ||x||2 = ||w||2 and define v = w − x.
Then H = I − 2vvT /vT v is a symmetric orthogonal matrix and Hx = w. #

! EXAMPLE 4.17 Let x = [3,4] and w = [5,0]. Find a Householder reflector H that satisfies Hx = w.

Set

v = w − x =
[

5
0

]
−

[
3
4

]
=

[
2

−4

]
,

and define the projection matrix

P = vvT

vT v
= 1

20

[
4 −8

−8 16

]
=

[
0.2 −0.4

−0.4 0.8

]
.

Then

H = I − 2P =
[

1 0
0 1

]
−

[
0.4 −0.8

−0.8 1.6

]
=

[
0.6 0.8
0.8 −0.6

]
.

Check that H moves x to w and vice versa:

Hx =
[

0.6 0.8
0.8 −0.6

][
3
4

]
=

[
5
0

]
= w

and

Hw =
[

0.6 0.8
0.8 −0.6

][
5
0

]
=

[
3
4

]
= x. "

As a first application of Householder reflectors, we will develop a new way to do the
QR factorization. In Chapter 12, we apply Householder to the eigenvalue problem, to put
matrices into upper Hessenberg form. In both applications, we will use reflectors for a single
purpose: to move a column vector x to a coordinate axis as a way of putting zeros into a
matrix.
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We start with a matrix A that we want to write in the form A = QR. Let x1 be the
first column of A. Let w = ±(||x1||2,0, . . . ,0) be a vector along the first coordinate axis of
identical Euclidean length. (Either sign works in theory. For numerical stability, the sign is
often chosen to be the opposite of the sign of the first component of x to avoid the possibility
of subtracting nearly equal numbers when forming v.) Create the Householder reflector H1
such that H1x = w. In the 4 × 3 case, multiplying H1 by A results in

H1A = H1

⎡

⎢⎢⎣

× × ×
× × ×
× × ×
× × ×

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

× × ×
0 × ×
0 × ×
0 × ×

⎤

⎥⎥⎦ .

We have introduced some zeros into A. We want to continue in this way until A becomes
upper triangular; then we will have R of the QR factorization. Find the Householder reflector
Ĥ2 that moves the (m − 1)-vector x2 consisting of the lower m − 1 entries in column 2 of
H1A to ±(||x2||2,0, . . . ,0). Since Ĥ2 is an (m − 1) × (m − 1)-matrix, define H2 to be the
m × m matrix formed by putting Ĥ2 into the lower part of the identity matrix. Then

⎛

⎜⎜⎜⎝

1 0 0 0

0
0
0

Ĥ2

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

× × ×
0 × ×
0 × ×
0 × ×

⎞

⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

× × ×
0 × ×
0 0 ×
0 0 ×

⎞

⎟⎟⎟⎠

The result H2H1A is one step from upper triangularity. One more step gives
⎛

⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0

0 0 Ĥ3

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

× × ×
0 × ×
0 0 ×
0 0 ×

⎞

⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

× × ×
0 × ×
0 0 ×
0 0 0

⎞

⎟⎟⎟⎠

and the result

H3H2H1A = R,

an upper triangular matrix. Multiplying on the left by the inverses of the Householder
reflectors allows us to rewrite the result as

A = H1H2H3R = QR,

where Q = H1H2H3. Note that H−1
i = Hi since Hi is symmetric orthogonal. Computer

Problem 3 asks the reader to write code for the factorization via Householder reflectors.

! EXAMPLE 4.18 Use Householder reflectors to find the QR factorization of

A =
[

3 1
4 3

]
.

We need to find a Householder reflector that moves the first column [3,4] onto the
x-axis. We found such a reflector H1 in Example 4.17, and

H1A =
[

0.6 0.8
0.8 −0.6

][
3 1
4 3

]
=

[
5 3
0 −1

]
.

Multiplying both sides on the left by H−1
1 = H1 yields

A =
[

3 1
4 3

]
=

[
0.6 0.8
0.8 −0.6

][
5 3
0 −1

]
= QR,

where Q = H T
1 = H1. "
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! EXAMPLE 4.19 Use Householder reflectors to find the QR factorization of A =

⎡

⎣
1 −4
2 3
2 2

⎤

⎦.

We need to find a Householder reflector that moves the first column x = [1,2,2] to
the vector w = [||x||2,0,0] . Set v = w − x = [3,0,0] − [1,2,2] = [2,−2,−2]. Referring
to Theorem 4.4, we have

H1 =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ − 2
12

⎡

⎣
4 −4 −4

−4 4 4
−4 4 4

⎤

⎦ =

⎡

⎢⎢⎢⎣

1
3

2
3

2
3

2
3

1
3 − 2

3
2
3 − 2

3
1
3

⎤

⎥⎥⎥⎦

and

H1A =

⎡

⎢⎢⎢⎣

1
3

2
3

2
3

2
3

1
3 − 2

3
2
3 − 2

3
1
3

⎤

⎥⎥⎥⎦

⎡

⎣
1 −4
2 3
2 2

⎤

⎦ =

⎡

⎣
3 2
0 −3
0 −4

⎤

⎦ .

The remaining step is to move the vector x̂ = [−3,−4] to ŵ = [5,0]. Calculating Ĥ2 from
Theorem 4.4 yields

[−0.6 −0.8
−0.8 0.6

][−3
−4

]
=

[
5
0

]
,

leading to

H2H1A =

⎡

⎣
1 0 0
0 −0.6 −0.8
0 −0.8 0.6

⎤

⎦

⎡

⎢⎢⎢⎣

1
3

2
3

2
3

2
3

1
3 − 2

3
2
3 − 2

3
1
3

⎤

⎥⎥⎥⎦

⎡

⎣
1 −4
2 3
2 2

⎤

⎦ =

⎡

⎣
3 2
0 5
0 0

⎤

⎦ = R.

Multiplying both sides on the left by H−1
1 H−1

2 = H1H2 yields the QR factorization:

⎡

⎣
1 −4
2 3
2 2

⎤

⎦ = H1H2R =

⎡

⎢⎢⎢⎣

1
3

2
3

2
3

2
3

1
3 − 2

3
2
3 − 2

3
1
3

⎤

⎥⎥⎥⎦

⎡

⎣
1 0 0
0 −0.6 −0.8
0 −0.8 0.6

⎤

⎦

⎡

⎣
3 2
0 5
0 0

⎤

⎦

=

⎡

⎣
1/3 −14/15 − 2/15
2/3 1/3 −2/3
2/3 2/15 11/15

⎤

⎦

⎡

⎣
3 2
0 5
0 0

⎤

⎦ = QR.

Compare this result with the factorization from Gram–Schmidt orthogonalization in
Example 4.13. "

The QR factorization is not unique for a given m × n matrix A. For example, define
D = diag(d1, . . . ,dm), where each di is either +1 or −1. Then A = QR = QDDR, and we
check that QD is orthogonal and DR is upper triangular.

Exercise 12 asks for an operation count of QR factorization by Householder reflections,
which comes out to (2/3)m3 multiplications and the same number of additions—lower
complexity than Gram–Schmidt orthogonalization. Moreover, the Householder method is
known to deliver better orthogonality in the unit vectors and has lower memory require-
ments. For these reasons, it is the method of choice for factoring typical matrices into QR.
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4.3 Exercises

1. Apply classical Gram–Schmidt orthogonalization to find the full QR factorization of the
following matrices:

(a)

[
4 0
3 1

]

(b)

[
1 2
1 1

]

(c)

⎡

⎢⎣
2 1
1 −1
2 1

⎤

⎥⎦ (d)

⎡

⎢⎣
4 8 1
0 2 −2
3 6 7

⎤

⎥⎦

2. Apply classical Gram–Schmidt orthogonalization to find the full QR factorization of the
following matrices:

(a)

⎡

⎢⎣
2 3

−2 −6
1 0

⎤

⎥⎦ (b)

⎡

⎢⎣
−4 −4
−2 7

4 −5

⎤

⎥⎦

3. Apply modified Gram–Schmidt orthogonalization to find the full QR factorization of the
matrices in Exercise 1.

4. Apply modified Gram–Schmidt orthogonalization to find the full QR factorization of the
matrices in Exercise 2.

5. Apply Householder reflectors to find the full QR factorization of the matrices in Exercise 1.

6. Apply Householder reflectors to find the full QR factorization of the matrices in Exercise 2.

7. Use the QR factorization from Exercise 2, 4, or 6 to solve the least squares problem.

(a)

⎡

⎢⎣
2 3

−2 −6
1 0

⎤

⎥⎦

[
x1

x2

]

=

⎡

⎢⎣
3

−3
6

⎤

⎥⎦ (b)

⎡

⎢⎣
−4 −4
−2 7

4 −5

⎤

⎥⎦

[
x1

x2

]

=

⎡

⎢⎣
3
9
0

⎤

⎥⎦

8. Find the QR factorization and use it to solve the least squares problem.

(a)

⎡

⎢⎢⎢⎣

1 4
−1 1

1 1
1 0

⎤

⎥⎥⎥⎦

[
x1

x2

]

=

⎡

⎢⎢⎢⎣

3
1
1

−3

⎤

⎥⎥⎥⎦
(b)

⎡

⎢⎢⎢⎣

2 4
0 −1
2 −1
1 3

⎤

⎥⎥⎥⎦

[
x1

x2

]

=

⎡

⎢⎢⎢⎣

−1
3
2
1

⎤

⎥⎥⎥⎦

9. Prove that a square matrix is orthogonal if and only if its columns are pairwise orthogonal unit
vectors.

10. Prove that the product of two orthogonal m × m matrices is again orthogonal.

11. Show that the Gram–Schmidt orthogonalization of an m × m matrix requires approximately
m3 multiplications and m3 additions.

12. Show that the Householder reflector method for the QR factorization requires approximately
(2/3)m3 multiplications and (2/3)m3 additions.

13. Let P be the matrix defined in (4.29). Show (a) P 2 = P (b) P is symmetric (c) P v = v.

14. Prove that Householder reflectors are symmetric matrices.

15. Verify that classical and modified Gram–Schmidt are mathematically identical (in exact
arithmetic).
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4.3 Computer Problems

1. Write a Matlab program that implements classical Gram–Schmidt to find the reduced QR
factorization. Check your work by comparing factorizations of the matrices in Exercise 1 with
the Matlab qr(A,0) command or equivalent. The factorization is unique up to signs of the
entries of Q and R.

2. Repeat Computer Problem 1, but implement modified Gram–Schmidt.

3. Repeat Computer Problem 1, but implement Householder reflections.

4. Write a Matlab program that implements (a) classical and (b) modified Gram–Schmidt to find
the full QR factorization. Check your work by comparing factorizations of the matrices in
Exercise 1 with the Matlab qr(A) command or equivalent.

5. Use the Matlab QR factorization to find the least squares solutions and 2-norm error of the
following inconsistent systems:

(a)

⎡

⎢⎢⎢⎣

1 1
2 1
1 2
0 3

⎤

⎥⎥⎥⎦

[
x1

x2

]

=

⎡

⎢⎢⎢⎣

3
5
5
5

⎤

⎥⎥⎥⎦
(b)

⎡

⎢⎢⎢⎣

1 2 2
2 −1 2
3 1 1
1 1 −1

⎤

⎥⎥⎥⎦

⎡

⎢⎣
x1

x2

x3

⎤

⎥⎦ =

⎡

⎢⎢⎢⎣

10
5

10
3

⎤

⎥⎥⎥⎦

6. Use the Matlab QR factorization to find the least squares solutions and 2-norm error of the
following inconsistent systems:

(a)

⎡

⎢⎢⎢⎢⎢⎣

3 −1 2
4 1 0

−3 2 1
1 1 5

−2 0 3

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎣
x1

x2

x3

⎤

⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎣

10
10
−5
15

0

⎤

⎥⎥⎥⎥⎥⎦
(b)

⎡

⎢⎢⎢⎢⎢⎣

4 2 3 0
−2 3 −1 1

1 3 −4 2
1 0 1 −1
3 1 3 −2

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x1

x2

x3

x4

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

10
0
2
0
5

⎤

⎥⎥⎥⎥⎥⎦

7. Let A be the 10 × n matrix formed by the first n columns of the 10 × 10 Hilbert matrix. Let c

be the n-vector [1, . . . ,1], and set b = Ac. Use the QR factorization to solve the least squares
problem Ax = b for (a) n = 6 (b) n = 8, and compare with the correct least squares solution
x = c. How many correct decimal places can be computed? See Computer Problem 4.1.8,
where the normal equations are used.

8. Let x1, . . . ,x11 be 11 evenly spaced points in [2,4] and yi = 1 + xi + x2
i + ·· · + xd

i . Use the
QR factorization to compute the best degree d polynomial, where (a) d = 5 (b) d = 6
(c) d = 8. Compare with Example 4.5 and Computer Problem 4.1.9. How many correct
decimal places of the coefficients can be computed?

4.4 Generalized Minimum Residual (GMRES) Method

In Chapter 2, we saw that the Conjugate Gradient Method can be viewed as an iterative
method specially designed to solve the matrix system Ax = b for a symmetric square
matrix A. If A is not symmetric, the conjugate gradient theory fails. However, there are
several alternatives that work for the nonsymmetric problem. One of the most popular is
the Generalized Minimum Residual Method, or GMRES for short. This method is a good
choice for the solution of large, sparse, nonsymmetric linear systems Ax = b.

At first sight, it might seem strange to be discussing a method for solving linear systems
in the chapter on least squares. Why should orthogonality matter to a problem that has
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no apparent connection with it? The answer lies in the fact, as we found in Chapter 2,
that matrices with almost-parallel column vectors tend to be ill-conditioned, which in turn
causes great magnification of error in solving Ax = b.

In fact, orthogonalization is built into GMRES in two separate ways. First, the backward
error of the system is minimized at each iteration step using a least squares formulation.
Second and more subtle, the basis of the search space is reorthogonalized at each step in
order to avoid inaccuracy from ill-conditioning. GMRES is an interesting example of a
method that exploits ideas of orthogonality in places where they are not obviously present.

4.4.1 Krylov methods

GMRES is a member of the family of Krylov methods. These methods rely on accurate
computation of the Krylov space, which is the vector space spanned by {r,Ar, . . . ,Akr},
where r = b − Ax0 is the residual vector of the initial guess. Since the vectors Akr tend
toward a common direction for large k, a basis for the Krylov space must be calculated care-
fully. Finding an accurate basis for the Krylov space requires the use of orthogonalization
methods like Gram–Schmidt or Householder reflections.

The idea behind GMRES is to look for improvements to the initial guess x0 in a
particular vector space, the Krylov space spanned by the residual r and its products under
the nonsingular matrix A. At step k of the method, we enlarge the Krylov space by adding
Akr , reorthogonalize the basis, and then use least squares to find the best improvement to
add to x0.

Generalized Minimum Residual Method (GMRES)

x0 = initial guess
r = b − Ax0
q1 = r/||r||2
for k = 1,2, . . . ,m

y = Aqk

for j = 1,2, . . . ,k

hjk = qT
j y

y = y − hjkqj

end
hk+1,k = ||y||2 (If hk+1,k = 0, skip next line and terminate at bottom.)
qk+1 = y/hk+1,k

Minimize ||Hck − [||r||2 0 0 . . . 0]T ||2 for ck

xk = Qkck + x0
end

The iterates xk are approximate solutions to the system Ax = b. In the kth step of the
pseudocode, the matrix H is a (k + 1) × k matrix. The minimization step that yields c is a
least squares problem of k + 1 equations in k unknowns that can be solved using techniques

Orthogonality GMRES is our first example of a Krylov method, which depends on

accurate calculation of the Krylov space. We found in Chapter 2 that nearly parallel column

vectors of a matrix cause ill-conditioning.The defining vectors Akr of the Krylov space tend to

become more parallel as k grows, so the use of the orthogonalization techniques of Section

4.3 is essential to build stable, efficient algorithms like GMRES.
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of this chapter. The matrix Qk in the code is n × k, consisting of the k orthonormal columns
q1, . . . ,qk . If hk+1,k = 0, then step k is the final step and the minimization will arrive at the
exact solution of Ax = b.

To approximate the space, the most direct approach is not the best. In Chapter 12,
we will exploit the fact that the vectors Akr asymptotically tend toward the same direc-
tion to compute eigenvalues. In order to generate an efficient basis for the Krylov space
{r,Ar, . . . ,Akr}, we rely on the power of Gram–Schmidt orthogonalization as the simplest
approach.

The application of modified Gram–Schmidt to {r,Ar, . . . ,Akr}, beginning with
q1 = r/||r||2, is carried out in the inner loop of the pseudocode. It results in the matrix
equality AQk = Qk+1Hk , or

A

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1 · · · qk

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1 · · · qk qk+1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

h11 h12 · · · h1k

h21 h22 · · · h2k

h32 · · · h3k

. . .
...

hk+1,k

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

Here A is n × n, Qk is n × k, and Hk is (k + 1) × k. In most cases, k will be much smaller
than n.

The columns of Qk span the k-dimensional Krylov space that will be searched for
additions xadd to the original approximation x0. Vectors in this space are written as xadd =
Qkc. To minimize the residual

b − A(x0 + xadd) = r − Axadd,

of the original problem Ax = b means finding c that minimizes

||Axadd − r||2 = ||AQkc − r||2 = ||Qk+1Hkc − r||2 = ||Hkc − QT
k+1r||2,

where the last equality follows from the norm-preserving property of orthonormal columns.
Note that QT

k+1r = [||r||2 0 0 . . .0]T , since q1 = r/||r||2 as noted above, and all but the first
column of Qk+1 is orthogonal to r . The least squares problem is now

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

h11 h12 · · · h1k

h21 h22 · · · h2k

h32 · · · h3k

. . .
...

hk+1,k

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1

c2

...

ck

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

||r||2
0

...

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Using the least squares solution c gives the kth step approximate solution xk = x0 + xadd =
x0 + Qkc to the original problem Ax = b.

It is important to note the respective sizes of the subproblems in GMRES. The part of
the algorithm with the highest computational complexity is the least squares computation,
which minimizes the error of k + 1 equations in k unknowns. The size k will be small
compared to the total problem size n in most applications. In the special case hk+1,k = 0,
the least squares problem becomes square, and the approximate solution xk is exact.

A convenient feature of GMRES is that the backward error ||b − Axk||2 decreases
monotonically with k. The reason is clear from the fact that the least squares problem in
step k minimizes ||r − Axadd||2 for xadd in the k-dimensional Krylov space. As GMRES
proceeds, the Krylov space is enlarged, so the next approximation cannot do worse.
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Concerning the above GMRES pseudocode, several other implementation details are
worth mentioning. First, note that the least squares minimization step is only warranted when
an approximate solution xk is needed. Therefore it may be done only intermittently, in order
to monitor progress toward the solution, or at the extreme, the least squares computation
can be taken out of the loop and done only at the end, since xadd = Qkc does not depend
on previous least squares calculations. This corresponds to moving the final end statement
above the previous two lines. Second, the Gram–Schmidt orthogonalization step carried out
in the inner loop can be substituted with Householder orthogonalization at slightly increased
computational complexity, if conditioning is a significant issue.

The typical use of GMRES is for a large and sparse n × n matrix A. In theory, the
algorithm terminates after n steps at the correct solution x as long as A is nonsingular. In
most cases, however, the goal is to run the method for k steps, where k is much smaller
than n. Note that the matrix Qk is n × k and not guaranteed to be sparse. Thus memory
considerations may also limit the number k of GMRES steps.

These conditions lead to a variation of the algorithm known as Restarted GMRES. If
not enough progress is made toward the solution after k iterations, and if the n × k matrix
Qk is becoming too large to handle, the idea is simple: Discard Qk and start GMRES from
the beginning, using the current best guess xk as the new x0.

4.4.2 Preconditioned GMRES

The concept behind preconditioning GMRES is very similar to the conjugate gradient case.
Begin with a nonsymmetric linear system Ax = b. We again try to solve M−1Ax = M−1b,
where M is one of the preconditioners discussed in Section 2.

Very few changes need to be made to the GMRES pseudocode of the previous section.
In the preconditioned version, the starting residual is now r = M−1(b − Ax0). The Krylov
space iteration step is changed to w = M−1Aqk . Note that neither of these steps require the
explicit formation of M−1. They should be carried out by back substitution, assuming that
M is in a simple or factored form. With these changes, the resulting algorithm is as follows.

Preconditioned GMRES

x0 = initial guess
r = M−1(b − Ax0)

q1 = r/||r||2
for k = 1,2, . . . ,m

w = M−1Aqk

for j = 1,2, . . . ,k

hjk = wT qj

w = w − hjkqj

end
hk+1,k = ||w||2
qk+1 = w/hk+1,k

Minimize ||Hck − [||r||2 0 0 . . . 0]T ||2 for ck

xk = Qck + x0
end

! EXAMPLE 4.20 Let A denote the matrix with diagonal entries Aii =
√

i for i = 1, . . . ,n and Ai,i+10 =
cos i,Ai+10,i = sin i for i = 1, . . . ,n − 10, with all other entries zero. Set x to be the
vector of n ones, and define b = Ax. For n = 500, solve Ax = b with GMRES in three
ways: using no preconditioner, using the Jacobi preconditioner, and using the Gauss–Seidel
preconditioner.
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The matrix can be defined in Matlab by
A=diag(sqrt(1:n))+diag(cos(1:(n-10)),10)

+diag(sin(1:(n-10)),-10).
Figure 4.12 shows the three different results. GMRES is slow to converge without precon-
ditioning. The Jacobi preconditioner makes a significant improvement, and GMRES with
the Gauss–Seidel preconditioner requires only about 10 steps to reach machine accuracy.

0 10 20 30 40

10–15
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100
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E
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Figure 4.12 Efficiency of preconditioned GMRES Method for the solution of

Example 4.20. Error is plotted by step number. Circles: no preconditioner. Squares:

Jacobi preconditioner. Diamonds: Gauss–Seidel preconditioner.

"

4.4 Exercises

1. Solve Ax = b for the following A and b = [1,0,0]T , using GMRES with x0 = [0,0,0]T .
Report all approximations xk up to and including the correct solution.

(a)

⎡

⎢⎣
1 1 0
0 1 0
1 1 1

⎤

⎥⎦ (b)

⎡

⎢⎣
1 1 0

−1 1 2
0 0 1

⎤

⎥⎦ (c)

⎡

⎢⎣
0 0 1
1 0 0
0 1 0

⎤

⎥⎦

2. Repeat Exercise 1 with b = [0,0,1]T .

3. Let A =

⎡

⎢⎣
1 0 a13

0 1 a23

0 0 1

⎤

⎥⎦. Prove that for any x0 and b, GMRES converges to the exact

solution after two steps.

4. Generalize Exercise 3 by showing that for A =
[

I C

0 I

]

and any x0 and b, GMRES

converges to the exact solution after two steps. Here C is an m1 × m2 submatrix, 0 denotes the
m2 × m1 matrix of zeros, and I denotes the appropriate-sized identity matrix.

4.4 Computer Problems

1. Let A be the n × n matrix with n = 1000 and entries
A(i, i) = i,A(i, i + 1) = A(i + 1, i) = 1/2,A(i, i + 2) = A(i + 2, i) = 1/2 for all i that fit
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within the matrix. (a) Print the nonzero structure spy(A). (b) Let xe be the vector of n ones.
Set b = Axe, and apply the Conjugate Gradient Method, without preconditioner, with the
Jacobi preconditioner, and with the Gauss–Seidel preconditioner. Compare errors of the three
runs in a plot versus step number.

2. Let n = 1000. Start with the n × n matrix A from Computer Problem 1, and add the nonzero
entries A(i,2i) = A(2i, i) = 1/2 for 1 ≤ i ≤ n/2. Carry out steps (a) and (b) as in that
problem.

3. Let n = 500, and let A be the n × n matrix with entries
A(i, i) = 2,A(i, i + 2) = A(i + 2, i) = 1/2,A(i, i + 4) = A(i + 4, i) = 1/2 for all i, and
A(500, i) = A(i,500) = −0.1 for 1 ≤ i ≤ 495. Carry out steps (a) and (b) as in Computer
Problem 1.

4. Let A be the matrix from Computer Problem 3, but with the diagonal elements replaced by
A(i, i) = 3√

i. Carry out parts (a) and (b) as in that problem.

5. Let C be the 195 × 195 matrix block with C(i, i) = 2,C(i, i + 3) = C(i + 3, i) =
0.1,C(i, i + 39) = C(i + 39, i) = 1/2,C(i, i + 42) = C(i + 42, i) = 1/2 for all i. Define A

to be the n × n matrix with n = 780 formed by four diagonally arranged blocks C, and with
blocks 1

2 C on the super- and subdiagonal. Carry out steps (a) and (b) as in Computer Problem
1 to solve Ax = b.

4.5 NONLINEAR LEAST SQUARES

The least squares solution of a linear system of equations Ax = b minimizes the Euclidean
norm of the residual ||Ax − b||2. We have learned two methods to find the solution x, one
based on the normal equations and another on the QR factorization.

Neither method can be applied if the equations are nonlinear. In this section, we develop
the Gauss–Newton Method for solving nonlinear least squares problems. In addition to illus-
trating the use of the method to solve circle intersection problems, we apply Gauss–Newton
to fitting models with nonlinear coefficients to data.

4.5.1 Gauss–Newton Method

Consider the system of m equations in n unknowns

r1(x1, . . . ,xn) = 0
...

rm(x1, . . . ,xn) = 0. (4.31)

The sum of the squares of the errors is represented by the function

E(x1, . . . ,xn) = 1
2

(r2
1 + ·· · + r2

m) = 1
2

rT r,

where r = [r1, . . . , rm]T . The constant 1/2 has been included in the definition to simplify
later formulas. To minimize E, we set the gradient F(x) = ∇E(x) to zero:

0 = F(x) = ∇E(x) = ∇
(

1
2

r(x)T r(x)

)
= r(x)T Dr(x). (4.32)

Observe that we have used the dot product rule for the gradient (see Appendix A).
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We begin by recalling Multivariate Newton’s Method, and apply it to the function
viewed as a column vector F(x)T = (rT Dr)T = (Dr)T r . The matrix/vector product rule
(see Appendix A) can be applied to yield

DF (x)T = D((Dr)T r) = (Dr)T · Dr +
m∑

i=1

riDci,

where ci is the ith column of Dr . Note that Dci = Hri , the matrix of second partial deriva-
tives, or Hessian, of ri :

Hri =

⎡

⎢⎢⎣

∂2ri
∂x1∂x1

· · · ∂2ri
∂x1∂xn

...
...

∂2ri
∂xn∂x1

· · · ∂2ri
∂xn∂xn

⎤

⎥⎥⎦ .

The application of Newton’s Method can be simplified by dropping some of the terms.
Without the above m-term summation, we have the following.

Gauss–Newton Method

To minimize

r1(x)2 + ·· · + rm(x)2.

Set x0 = initial vector,
for k = 0,1,2, . . .

A = Dr(xk) (4.33)

AT Avk = −AT r(xk)

xk+1 = xk + vk (4.34)

end

Notice that each step of the Gauss–Newton Method is reminiscent of the normal equa-
tions, where the coefficient matrix has been replaced by Dr . The Gauss–Newton Method
solves for a root of the gradient of the squared error. Although the gradient must be zero
at the minimum, the converse is not true, so it is possible for the method to converge
to a maximum or a neutral point. Caution must be used in interpreting the algorithm’s
result.

The following three examples illustrate use of the Gauss-Newton Method, as well as
Multivariate Newton’s Method of Chapter 2. Two intersecting circles intersect in one or
two points, unless the circles coincide. Three circles in the plane, however, typically have
no points of common intersection. In such a case, we can ask for the point in the plane that
comes closest to being an intersection point in the sense of least squares. For three circles,
this is a question of three nonlinear equations in the two unknowns x,y.

Example 4.21 shows how the Gauss-Newton Method solves this nonlinear least squares
problem. Example 4.22 defines the best point in a different way: Find the unique point of
intersection of the 3 circles, allowing their radii to be changed by a common amount K .
This is a question of three equations in three unknowns x,y,K , not a least squares problem,
and is solved using Multivariate Newton’s Method.

Finally, Example 4.23 adds a fourth circle. The solution of four equations in the three
unknowns x,y,K is again a least squares problem that requires Gauss-Newton. This last
formulation is relevant to calculations in GPS, as shown in Reality Check 4.
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Figure 4.13 Near-intersection points of three circles. (a) The least squares near-

intersection point, found by the Gauss–Newton Method. (b) Expanding the radii by

a common amount gives a different type of near-intersection point by Multivariate

Newton’s Method. (c) The four circles of Example 4.23 with least squares solution point

found by the Gauss-Newton Method.

! EXAMPLE 4.21 Consider the three circles in the plane with centers (x1,y1) = (−1,0), (x2,y2) = (1,1/2),
(x3,y3) = (1,−1/2) and radii R1 = 1,R2 = 1/2,R3 = 1/2, respectively. Use the Gauss–
Newton Method to find the point for which the sum of the squared distances to the three
circles is minimized.

The circles are shown in Figure 4.13(a). The point (x,y) in question minimizes
the sum of the squares of the residual errors:

r1(x,y) =
√

(x − x1)2 + (y − y1)2 − R1

r2(x,y) =
√

(x − x2)2 + (y − y2)2 − R2

r3(x,y) =
√

(x − x3)2 + (y − y3)2 − R3.

This follows from the fact that the distance from a point (x,y) to a circle with center
(x1,y1) and radius R1 is |

√
(x − x1)2 + (y − y1)2 − R1| (see Exercise 3). The Jacobian

of r(x,y) is

Dr(x,y) =

⎡

⎢⎢⎣

x−x1
S1

y−y1
S1

x−x2
S2

y−y2
S2

x−x3
S3

y−y3
S3

⎤

⎥⎥⎦ ,

where Si =
√

(x − xi)2 + (y − yi)2 for i = 1,2,3. The Gauss–Newton iteration with ini-
tial vector (x0,y0) = (0,0) converges to (x,y) = (0.412891,0) within six correct decimal
places after seven steps. "

A related problem for three circles gives a different type of answer. Instead of looking
for points that most resemble intersection points, we can expand (or contract) the circles’
radii by a common amount until they have a common intersection. This is equivalent to
solving the system
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r1(x,y,K) =
√

(x − x1)2 + (y − y1)2 − (R1 + K) = 0

r2(x,y,K) =
√

(x − x2)2 + (y − y2)2 − (R2 + K) = 0

r3(x,y,K) =
√

(x − x3)2 + (y − y3)2 − (R3 + K) = 0. (4.35)

The point (x,y) identified in this way is in general different from the least squares solution
of Example 4.21.

! EXAMPLE 4.22 Solve the system (4.35) for (x,y,K), using the circles from Example 4.21.

The system consists of three nonlinear equations in three unknowns, calling for
Multivariate Newton’s Method. The Jacobian is

Dr(x,y,K) =

⎡

⎢⎢⎣

x−x1
S1

y−y1
S1

−1
x−x2

S2

y−y2
S2

−1
x−x3

S3

y−y3
S3

−1

⎤

⎥⎥⎦ .

Newton’s Method yields the solution (x,y,K) = (1/3,0,1/3) in three steps. The inter-
section point (1/3,0) and the three circles with radii expanded by K = 1/3 appear in
Figure 4.13(b). "

Examples 4.21 and 4.22 show two different viewpoints on the meaning of the
“near-intersection point’’ of a group of circles. Example 4.23 combines the two different
approaches.

! EXAMPLE 4.23 Consider the four circles with centers (−1,0), (1,1/2), (1,−1/2), (0,1) and radii
1,1/2,1/2,1/2, respectively. Find the point (x,y) and constant K for which the sum of
the squared distances from the point to the four circles with radii increased by K (thus
1 + K,1/2 + K,1/2 + K,1/2 + K , respectively) is minimized.

This is a straightforward combination of the previous two examples. There are
four equations in the three unknowns x,y,K . The least squares residual is similar to (4.35),
but with four terms, and the Jacobian is

Dr(x,y,K) =

⎡

⎢⎢⎢⎢⎢⎣

x−x1
S1

y−y1
S1

−1
x−x2

S2

y−y2
S2

−1
x−x3

S3

y−y3
S3

−1
x−x4

S4

y−y4
S4

−1

⎤

⎥⎥⎥⎥⎥⎦
.

The Gauss–Newton Method provides the solution (x,y) = (0.311385,0.112268) with K =
0.367164, pictured in Figure 4.13(c). "

The analogue of Example 4.23 for spheres in three dimensions forms the mathematical
foundation of the Global Positioning System (GPS). See Reality Check 4.

4.5.2 Models with nonlinear parameters

An important application of the Gauss–Newton Method is to fit models that are nonlinear
in the coefficients. Let (t1,y1), . . . , (tm,ym) be data points and y = fc(x) the function to be
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fit, where c = [c1, . . . ,cp] is a set of parameters to be chosen to minimize the sum of the
squares of the residuals

r1(c) = fc(t1) − y1

...

rm(c) = fc(tm) − ym.

This particular case of (4.31) is seen commonly enough to warrant special treatment here.
If the parameters c1, . . . ,cp enter the model in a linear way, then this is a set of linear

equations in the ci , and the normal equations, or QR-factorization solution, gives the optimal
choice of parameters c. If the parameters ci are nonlinear in the model, the same treatment
results in a system of equations that is nonlinear in the ci . For example, fitting the model
y = c1tc2 to the data points (ti ,yi) yields the nonlinear equations

y1 = c1t
c2
1

y2 = c1t
c2
2

...

ym = c1tc2
m .

Because c2 enters the model nonlinearly, the system of equations cannot be put in matrix
form.

In Section 4.2, we handled this difficulty by changing the problem: We “linearized
the model’’ by taking log of both sides of the model and minimized the error in these log-
transformed coordinates by least squares. In cases where the log-transformed coordinates
are really the proper coordinates in which to be minimizing error, this is appropriate.

To solve the original least squares problem, however, we turn to the Gauss–Newton
Method. It is used to minimize the error function E as a function of the vector of parameters c.
The matrix Dr is the matrix of partial derivatives of the errors ri with respect to the
parameters cj , which are

(Dr)ij = ∂ri

∂cj
= fcj (ti).

With this information, the Gauss–Newton Method (4.33) can be implemented.

! EXAMPLE 4.24 Use the Gauss–Newton Method to fit the world automobile supply data of Example 4.8
with a (nonlinearized) exponential model.

Finding the best least squares fit of the data to an exponential model means finding
c1,c2 that minimize the RMSE for errors ri = c1ec2ti − yi , i = 1, . . . ,m. Using model
linearization in the previous section, we minimized the RMSE for the errors of the log
model ln yi − (ln c1 + c2ti ). The values of ci that minimize the RMSE in the two different
senses are different in general.

To compute the best least squares fit by the Gauss–Newton Method, define

r =

⎡

⎢⎣
c1ec2t1 − y1

...

c1ec2tm − ym

⎤

⎥⎦ ,

and take derivatives with respect to the parameters c1 and c2 to get

Dr = −

⎡

⎢⎣
ec2t1 c1t1ec2t1

...
...

ec2tm c1tmec2tm

⎤

⎥⎦ .
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Convergence Nonlinearity in least squares problems causes extra challenges. The

normal equations and QR approach find the single solution as long as the coefficient matrix

A has full rank. On the other hand, Gauss–Newton iteration applied to a nonlinear problem

may converge to one of several different relative minima of the least squares error. Using a

reasonable approximation for the initial vector, if available, aids convergence to the absolute

minimum.
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x

Figure 4.14 Exponential fit of world automobile supply data, without using lin-

earization. The best least squares fit is y = 58.51e0.05772t .

This model is fit with the world automobile supply data, where t is measured in years since
1970, and cars in millions. Five steps of the Gauss–Newton Method (4.33) from initial
guess (c1,c2) = (50,0.1) yields (c1,c2) ≈ (58.51,0.05772) with four digits of precision.
The best least squares exponential model for the data is

y = 58.51e0.05772t . (4.36)

The RMSE is 7.68, meaning an average modeling error, in the least squares sense, of 7.68
million cars (see Figure 4.14).

The best model (4.36) can be compared with the best linearized exponential model

y = 54.03e0.06152t

calculated in Example 4.8. This was obtained from the normal equations applied to the
linearized model ln y = ln c1 + c2t . The RMSE of the errors ri of the linearized model
is 9.56, greater than the RMSE of (4.36), as necessary. However, the linearized model
minimizes the RMSE of the errors ln yi − (ln c1 + c2ti ), giving a value of 0.0357, lower
than the corresponding value 0.0568 for model (4.36), also as required. Each of the models
is the optimal fit in its data space.

The moral is that there are computational algorithms for solving either problem.
Minimizing the ri is the standard least squares problem, but the user must decide on the
basis of the data context whether it is more appropriate to minimize errors or log errors. "

4.5.3 The Levenberg–Marquardt Method.

Least squares minimization is especially challenging when the coefficient matrix turns out to
be ill-conditioned. In Example 4.5, large errors were encountered in the least squares solution
of Ax = b when using the normal equations, since AT A had large condition number.
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The problem is often worse for nonlinear least squares minimization. Many plausible
model definitions yield poorly conditioned Dr matrices. The Levenberg–Marquardt Method
uses a “regularization term’’ to partially remedy the conditioning problem. It can be thought
of as a mixture of Gauss–Newton and the steepest descent method, which will be introduced
for general optimization problems in Chapter 13.

The algorithm is a simple modification of the Gauss–Newton Method.

Levenberg–Marquardt Method

To minimize

r1(x)2 + ·· · + rm(x)2.

Set x0 = initial vector, λ = constant
for k = 0,1,2, . . .

A = Dr(xk)

(AT A + λ diag(AT A))vk = −AT r(xk)

xk+1 = xk + vk

end

The λ = 0 case is identical to Gauss–Newton. Increasing the regularization parameter
λ accentuates the effect of the diagonal of the matrix AT A, which improves the condition
number and generally allows the method to converge from a broader set of initial guesses
x0 than Gauss–Newton.

! EXAMPLE 4.25 Use Levenberg–Marquardt to fit the model y = c1e−c2(t−c3)2
to the data points

(ti ,yi) = {(1,3), (2,5), (2,7), (3,5), (4,1)}.
We must find the c1,c2,c3 that minimize the RMSE for error vector

r =

⎡

⎢⎢⎣

c1e−c2(t1−c3)2 − y1
...

c1e−c2(t5−c3)2 − y5

⎤

⎥⎥⎦ .

The derivative of r evaluated at the five data points is the 5 × 3 matrix

Dr =

⎡

⎢⎢⎣

e−c2(t1−c3)2 −c1(t1 − c3)2e−c2(t1−c3)2
2c1c2(t1 − c3)e−c2(t1−c3)2

...
...

...

e−c2(t5−c3)2 −c1(t5 − c3)2e−c2(t5−c3)2
2c1c2(t5 − c3)e−c2(t5−c3)2

⎤

⎥⎥⎦ .

Levenberg–Marquardt with initial guess (c1,c2,c3) = (1,1,1) and λ fixed at 50 con-
verges to the best least squares model

y = 6.301e−0.5088(t−2.249)2
.

The best model is plotted along with the data points in Figure 4.15. The corresponding
Gauss–Newton Method diverges to infinity from this initial guess. "

The method originated by a suggestion in Levenberg [1944] to add λI to AT A in
Gauss–Newton to improve its conditioning. Several years later, D. Marquardt, a statistician
at DuPont, improved on Levenberg’s suggestion by replacing the identity matrix with the
diagonal of AT A (Marquardt [1963]).
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Figure 4.15 Model Fit of Example 4.25. The Levenberg–Marquardt Method is used to

find the best least squares model y = 6.301e−0.5088(t − 2.249)2, plotted as the solid

curve.

Although we have treated λ as a constant for simplicity, the method is often applied
adaptively with a varying λ. A common strategy is to continue to decrease λ by a factor of
10 on each iteration step as long as the residual sum of squared errors is decreased by the
step, and if the sum increases, to reject the step and increase λ by a factor of 10.

4.5 Exercises

1. The Gauss–Newton Method can be applied to find the point x,y for which the sum of the
squared distances to the three circles is minimized. Using initial vector (x0,y0) = (0,0), carry
out the first step to find (x1,y1) (a) centers (0,1), (1,1), (0,−1) and all radii 1 (b) centers
(−1,0), (1,1), (1,−1) and all radii 1. (Computer Problem 1 asks for (x,y).)

2. Carry out the first step of Multivariate Newton’s Method applied to the system (4.35) for the
three circles in Exercise 1. Use (x0,y0,K0) = (0,0,0). (Computer Problem 2 asks for the
solution (x,y,K).)

3. Prove that the distance from a point (x,y) to a circle (x − x1)2 + (y − y1)2 = R2
1 is

|
√

(x − x1)2 + (y − y1)2 − R1|.
4. Prove that the Gauss–Newton Method applied to the linear system Ax = b converges in one

step to the solution of the normal equations.

5. Find the matrix Dr needed for the application of Gauss–Newton iteration to the model-fitting
problem with three data points (t1,y1), (t2,y2), (t3,y3), (a) power law y = c1tc2

(b) y = c1tec2t .

6. Find the matrix Dr needed for the application of Gauss–Newton iteration to the model-fitting
problem with three data points (t1,y1), (t2,y2), (t3,y3) (a) translated exponential
y = c3 + c1ec2t (b) translated power law y = c3 + c1tc2

7. Prove that the number of real solutions (x,y,K) of (4.35) is either infinity or at most two.

4.5 Computer Problems

1. Apply the Gauss–Newton Method to find the point (x,y) for which the sum of the squared
distances to the three circles is minimized. Use initial vector (x0,y0) = (0,0). (a) Centers
(0,1), (1,1), (0,−1) and all radii 1. (b) Centers (−1,0), (1,1), (1,−1) and all radii 1.
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2. Apply Multivariate Newton’s Method to the system (4.35) for the three circles in Computer
Problem 1. Use initial vector (x0,y0,K0) = (0,0,0).

3. Find the point (x,y) and distance K that minimizes the sum of squares distance to the circles
with radii increased by K , as in Example 4.23 (a) circles with centers (−1,0), (1,0), (0,1),

(0,−2) and all radii 1 (b) circles with centers (−2,0), (3,0), (0,2), (0,−2) and all radii 1.

4. Carry out the steps of Computer Problem 3 with the following circles and plot the results
(a) centers (−2,0), (2,0), (0,2), (0,−2), and (2,2), with radii 1,1,1,1,2 respectively
(b) centers (1,1), (1,−1), (−1,1), (−1,−1), (2,0) and all radii 1.

5. Use the Gauss–Newton Method to fit a power law to the height–weight data of Example 4.10
without linearization. Compute the RMSE.

6. Use the Gauss–Newton Method to fit the blood concentration model (4.21) to the data of
Example 4.11 without linearization.

7. Use the Levenberg–Marquardt Method with λ = 1 to fit a power law to the height–weight data
of Example 4.10 without linearization. Compute the RMSE.

8. Use the Levenberg–Marquardt Method with λ = 1 to fit the blood concentration model (4.21)
to the data of Example 4.11 without linearization.

9. Apply Levenberg–Marquardt to fit the model y = c1e−c2(t−c3)2
to the following data points,

with an appropriate initial guess. State the initial guess, the regularization parameter λ used,
and the RMSE. Plot the best least squares curve and the data points.
(a) (ti ,yi) = {(−1,1), (0,5), (1,10), (3,8), (6,1)}
(b) (ti ,yi) = {(1,1), (2,3), (4,7), (5,12), (6,13), (8,5), (9,2)(11,1)}

10. Further investigate Example 4.25 by determining the initial guesses from the grid 0 ≤ c1 ≤ 10
with a grid spacing of 1, and 0 ≤ c2 ≤ 1 with a grid spacing of 0.1, c3 = 1, for which the
Levenberg–Marquardt Method converges to the correct least squares solution. Use the
Matlab mesh command to plot your answers, 1 for a convergent initial guess and 0
otherwise. Make plots for λ = 50,λ = 1, and the Gauss–Newton case λ = 0. Comment on the
differences you find.

11. Apply Levenberg–Marquardt to fit the model y = c1e−c2t cos(c3t + c4) to the following data
points, with an appropriate initial guess. State the initial guess, the regularization parameter λ

used, and the RMSE. Plot the best least squares curve and the data points. This problem has
multiple solutions with the same RMSE, since c4 is only determined modulo 2π .
(a) (ti ,yi) = {(0,3), (2,−5), (3,−2), (5,2), (6,1), (8,−1), (10,0)}
(b) (ti ,yi) = {(1,2), (3,6), (4,4), (5,2), (6,−1), (8,−3)}

4 GPS, Conditioning, and Nonlinear Least Squares
The global positioning system (GPS) consists of 24 satellites carrying atomic clocks, orbit-
ing the earth at an altitude of 20,200 km. Four satellites in each of six planes, slanted at
55◦ with respect to the poles, make two revolutions per day. At any time, from any point
on earth, five to eight satellites are in the direct line of sight. Each satellite has a simple
mission: to transmit carefully synchronized signals from predetermined positions in space,
to be picked up by GPS receivers on earth. The receivers use the information, with some
mathematics (described shortly), to determine accurate (x,y,z) coordinates of the receiver.
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At a given instant, the receiver collects the synchronized signal from the ith satellite
and determines its transmission time ti , the difference between the times the signal
was transmitted and received. The nominal speed of the signal is the speed of light,
c ≈ 299792.458 km/sec. Multiplying transmission time by c gives the distance of the
satellite from the receiver, putting the receiver on the surface of a sphere centered at the
satellite position and with radius cti . If three satellites are available, then three spheres
are known, whose intersection consists of two points, as shown in Figure 4.16. One inter-
section point is the location of the receiver. The other is normally far from the earth’s
surface and can be safely disregarded. In theory, the problem is reduced to computing this
intersection, the common solution of three sphere equations.

Figure 4.16 Three Intersecting Spheres. Generically, only two points lie on all three spheres.

However, there is a major problem with this analysis. First, although the transmissions
from the satellites are timed nearly to the nanosecond by onboard atomic clocks, the clock
in the typical low-cost receiver on earth has relatively poor accuracy. If we solve the three
equations with slightly inaccurate timing, the calculated position could be wrong by several
kilometers. Fortunately, there is a way to fix this problem. The price to pay is one extra
satellite. Define d to be the difference between the synchronized time on the (now four)
satellite clocks and the earth-bound receiver clock. Denote the location of satellite i by
(Ai,Bi,Ci). Then the true intersection point (x,y,z) satisfies

r1(x,y,z,d) =
√

(x − A1)2 + (y − B1)2 + (z − C1)2 − c(t1 − d) = 0

r2(x,y,z,d) =
√

(x − A2)2 + (y − B2)2 + (z − C2)2 − c(t2 − d) = 0

r3(x,y,z,d) =
√

(x − A3)2 + (y − B3)2 + (z − C3)2 − c(t3 − d) = 0

r4(x,y,z,d) =
√

(x − A4)2 + (y − B4)2 + (z − C4)2 − c(t4 − d) = 0 (4.37)

to be solved for the unknowns x,y,z,d . Solving the system reveals not only the receiver
location, but also the correct time from the satellite clocks, due to knowing d . Therefore,
the inaccuracy in the GPS receiver clock can be fixed by using one extra satellite.

Geometrically speaking, four spheres may not have a common intersection point,
but they will if the radii are expanded or contracted by the right common amount. The
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system (4.37) representing the intersection of four spheres is the three-dimensional ana-
logue of (4.35), representing the intersection point of three circles in the plane.

The system (4.37) can be seen to have two solutions (x,y,z,d). The equations can be
equivalently written

(x − A1)2 + (y − B1)2 + (z − C1)2 = [c(t1 − d)]2

(x − A2)2 + (y − B2)2 + (z − C2)2 = [c(t2 − d)]2

(x − A3)2 + (y − B3)2 + (z − C3)2 = [c(t3 − d)]2

(x − A4)2 + (y − B4)2 + (z − C4)2 = [c(t4 − d)]2. (4.38)

Note that by subtracting the last three equations from the first, three linear equations are
obtained. Each linear equation can be used to eliminate a variable x,y,z, and by substituting
into any of the original equations, a quadratic equation in the single variable d results.
Therefore, system (4.37) has at most two real solutions, and they can be found by the
quadratic formula.

Two further problems emerge when GPS is deployed. First is the conditioning of the
system of equations (4.37). We will find that solving for (x,y,z,d) is ill-conditioned when
the satellites are bunched closely in the sky.

The second difficulty is that the transmission speed of the signals is not precisely c. The
signals pass through 100 km of ionosphere and 10 km of troposphere, whose electromag-
netic properties may affect the transmission speed. Furthermore, the signals may encounter
obstacles on earth before reaching the receiver, an effect called multipath interference. To
the extent that these obstacles have an equal impact on each satellite path, introducing the
time correction d on the right side of (4.37) helps. In general, however, this assumption is
not viable and will lead us to add information from more satellites and consider applying
Gauss–Newton to solve a least squares problem.

Consider a three-dimensional coordinate system whose origin is the center of the
earth (radius ≈ 6370 km). GPS receivers convert these coordinates into latitude, longi-
tude, and elevation data for readout and more sophisticated mapping applications using
global information systems (GIS), a process we will not consider here.

Suggested activities:

1. Solve the system (4.37) by using Multivariate Newtons Method. Find the receiver position
(x,y,z) near earth and time correction d for known, simultaneous satellite positions
(15600,7540,20140), (18760,2750,18610), (17610,14630,13480), (19170,610,18390)

in km, and measured time intervals 0.07074,0.07220,0.07690,0.07242 in seconds,
respectively. Set the initial vector to be (x0,y0, z0,d0) = (0,0,6370,0). As a check, the
answers are approximately (x,y,z) = (−41.77271,−16.78919,6370.0596), and
d = −3.201566 × 10−3 seconds.

2. Write a Matlab program to carry out the solution via the quadratic formula. Hint:
Subtracting the last three equations of (4.37) from the first yields three linear equations in
the four unknowns xu⃗x + yu⃗y + zu⃗z + du⃗d + w⃗ = 0, expressed in vector form. A formula
for x in terms of d can be obtained from

0 = det[u⃗y |u⃗z |xu⃗x + yu⃗y + zu⃗z + du⃗d + w⃗],

noting that the determinant is linear in its columns and that a matrix with a repeated column
has determinant zero. Similarly, we can arrive at formulas for y and z, respectively, in terms
of d , that can be substituted in the first quadratic equation of (4.37), to make it an equation
in one variable.
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3. If the Matlab Symbolic Toolbox is available (or a symbolic package such as Maple
or Mathematica), an alternative to Step 2 is possible. Define symbolic variables by using the
syms command and solve the simultaneous equations with the Symbolic Toolbox command
solve. Use subs to evaluate the symbolic result as a floating point number.

4. Now set up a test of the conditioning of the GPS problem. Define satellite positions
(Ai,Bi,Ci) from spherical coordinates (ρ,φi ,θi ) as

Ai = ρ cosφi cosθi

Bi = ρ cosφi sin θi

Ci = ρ sin φi ,

where ρ = 26570 km is fixed, while 0 ≤ φi ≤ π/2 and 0 ≤ θi ≤ 2π for i = 1, . . . ,4 are
chosen arbitrarily. The φ coordinate is restricted so that the four satellites are in the upper
hemisphere. Set x = 0,y = 0, z = 6370,d = 0.0001, and calculate the corresponding

satellite ranges Ri =
√

A2
i + B2

i + (Ci − 6370)2 and travel times ti = d + Ri/c.
We will define an error magnification factor specially tailored to the situation. The

atomic clocks aboard the satellites are correct up to about 10 nanoseconds, or 10−8 second.
Therefore, it is important to study the effect of changes in the transmission time of this
magnitude. Let the backward, or input error be the input change in meters. At the speed of
light, $ti = 10−8 second corresponds to 10−8c ≈ 3 meters. Let the forward, or output error
be the change in position ||($x,$y,$z)||∞, caused by such a change in ti , also in meters.
Then we can define the dimensionless

error magnification factor = ||($x,$y,$z)||∞
c||($t1, . . . ,$tm)||∞

,

and the condition number of the problem to be the maximum error magnification factor for
all small $ti (say, 10−8 or less).

Change each ti defined in the foregoing by $ti = +10−8 or −10−8, not all the same.
Denote the new solution of the equations (4.37) by (x,y,z,d), and compute the difference
in position ||($x,$y,$z)||∞ and the error magnification factor. Try different variations of
the $ti’s. What is the maximum position error found, in meters? Estimate the
condition number of the problem, on the basis of the error magnification factors you have
computed.

5. Now repeat Step 4 with a more tightly grouped set of satellites. Choose all φi within
5 percent of one another and all θi within 5 percent of one another. Solve with and without
the same input error as in Step 4. Find the maximum position error and error magnification
factor. Compare the conditioning of the GPS problem when the satellites are tightly or
loosely bunched.

6. Decide whether the GPS error and condition number can be reduced by adding satellites.
Return to the unbunched satellite configuration of Step 4, and add four more. (At all times
and at every position on earth, 5 to 12 GPS satellites are visible.) Design a Gauss–Newton
iteration to solve the least squares system of eight equations in four variables (x,y,z,d).
What is a good initial vector? Find the maximum GPS position error, and estimate the
condition number. Summarize your results from four unbunched, four bunched, and eight
unbunched satellites. What configuration is best, and what is the maximum GPS error, in
meters, that you should expect solely on the basis of satellite signals?
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Software and Further Reading

Least squares approximation dates from the early 19th century. Like polynomial interpola-
tion, it can be viewed as a form of lossy data compression, finding a simple representation
for a complicated or noisy data set. Lines, polynomials, exponential functions, and power
laws are commonly implemented models. Periodic data call for trigonometric representa-
tions, which, taken to the extreme, lead to trigonometric interpolation and trigonometric
least squares fits, pursued in Chapter 10.

Any function that is linear in its coefficients can be used to fit data by applying the
three-step method of Section 4.2, resulting in solution of the normal equations. For ill-
conditioned problems, the normal equations are not recommended, due to the fact that the
condition number is roughly squared in this approach. The matrix factorization preferred
in this case is the QR factorization and, in some cases, the singular value decomposition,
introduced in Chapter 12. Golub and Van Loan [1996] is an excellent reference for the
QR and other matrix factorizations. Lawson and Hanson [1995] is a good source for the
fundamentals of least squares. The statistical aspects of least squares fitting the linear and
multiple regression are covered in the more specialized texts Draper and Smith [2001], Fox
[1997], and Ryan [1997].

Matlab’s backslash command applied to Ax = b carries out Gaussian elimination if
the system is consistent, and solves the least squares problem by QR factorization if incon-
sistent. Matlab’s qr command is based on the LAPACK routine DGEQRF. The IMSL
provides the routine RLINE for least squares data fitting. The NAG library routine E02ADF
carries out least squares approximation to polynomials, as does Matlab’s polyfit. Sta-
tistical packages such as S+, SAS, SPSS, and Minitab carry out a variety of regression
analyses.

Nonlinear least squares refers to fitting coefficients that are nonlinear in the model. The
Gauss–Newton Method and its variants like Levenberg–Marquardt are the preferred tools
for this calculation, although convergence is not guaranteed, and even when convergence
occurs, no unique optimum is implied. See Strang and Borre [1997] for an introduction to
the mathematics of GPS, and Hoffman-Wellenhof et al. [2001] for general information on
the topic.
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5
Numerical Differentiation and
Integration
Computer-aided manufacturing depends on precise
control of motion along a prescribed path. For exam-
ple, lathes or milling machines under numerical con-
trol rely on parametric curves, often given by cubic
or Bézier splines from computer-aided design soft-
ware, to describe the path of cutting or shaping tools.
Computer-generated animation in filmmaking, com-
puter games,and virtual reality applications face similar
problems.

Reality Check 5 on page 278 consid-
ers the problem of controlling the velocity along an
arbitrary parametric path. For the path parameter to
traverse the curve at a desired rate, the curve is
reparametrized with respect to arc length. Adaptive
quadrature applied to the arc length integral provides
an efficient way to achieve the control.

The main problem of computational calculus is to compute derivatives and integrals
of functions. There are two directions that we can take for such problems, numerical

computing and symbolic computing. We will discuss both in this chapter, but go into the
most detail on numerical computing issues. Both derivatives and integrals have clear math-
ematical definitions, but the type of answer wanted by a user often depends on the way in
which the function is specified.

The derivatives of functions like f (x) = sin x are the topic of introductory calculus.
If the function is known in terms of elementary functions, say, f (x) = sin3(xtan x cosh x),
its third derivative may be found more quickly by symbolic computing methods, where
the calculus rules are carried out by computer. The same is true for antiderivatives in cases
where the answer can be expressed in terms of elementary functions.

In practice, there are two other common ways for a function to be known.Afunction may
be specified as a tabulated list, for example, a list {(t1,T1), . . . , (tn,Tn)} of time/temperature
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pairs measured from an experiment, perhaps at evenly spaced times. In this case, finding
the derivative or antiderivative from the rules of freshman calculus is impossible. Finally,
a function may be specified as the output of an experiment or computer simulation whose
input is specified by the user. In the latter two cases, symbolic computing methods cannot
be applied, and numerical differentiation and integration are required to solve the problem.

5.1 NUMERICAL DIFFERENTIATION

To begin, we develop finite difference formulas for approximating derivatives. In some
cases, that is the goal of the calculation. In Chapters 7 and 8, these formulas will be used to
discretize ordinary and partial differential equations.

5.1.1 Finite difference formulas

By definition, the derivative of f (x) at a value x is

f ′(x) = lim
h→0

f (x + h) − f (x)

h
, (5.1)

provided that the limit exists. This leads to a useful formula for approximating the derivative
at x. Taylor’s Theorem says that if f is twice continuously differentiable, then

f (x + h) = f (x) + hf ′(x) + h2

2
f ′′(c), (5.2)

where c is between x and x + h. Equation (5.2) implies the following formula:

Two-point forward-difference formula

f ′(x) = f (x + h) − f (x)

h
− h

2
f ′′(c), (5.3)

where c is between x and x + h.

In a finite calculation, we cannot take the limit in (5.1), but (5.3) implies that the
quotient will closely approximate the derivative if h is small. We use (5.3) by computing
the approximation

f ′(x) ≈ f (x + h) − f (x)

h
(5.4)

and treating the last term in (5.3) as error. Because the error made by the approximation
is proportional to the increment h, we can make the error small by making h small. The
two-point-forward-difference formula is a first-order method for approximating the first
derivative. In general, if the error is O(hn), we call the formula an order n approximation.

A subtle point about calling the formula “first order’’ is that c depends on h. The idea
of first order is that the error should be proportional to h as h → 0. As h → 0, c is a moving
target, and as a result, the proportionality constant changes. But as long as f ′′ is continuous,
the proportionality constant f ′′(c) tends toward f ′′(x) as h → 0, making it legitimate to
call the formula first order.
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Convergence What good is the error formula −hf ′′(c)/2 of the two-point forward-

difference method? We are trying to approximate f ′(x),so f ′′(x) is likely to be out of our reach.

There are two answers. First, when verifying code and software, a good check is to run it on a

completely solved example, where the correct answers are known and even the errors can be

compared with what is expected. In such a case we may know f ′′(x) as well as f ′(x). Second,

even when we can’t evaluate the entire formula, it is often helpful to know how the error

scales with h.The fact that the formula is first order means that cutting h in half should cut the

error approximately in half, even if we have no way of computing the proportionality constant

f ′′(c)/2.

! EXAMPLE 5.1 Use the two-point forward-difference formula with h = 0.1 to approximate the derivative
of f (x) = 1/x at x = 2.

The two-point forward-difference formula (5.4) evaluates to

f ′(x) ≈ f (x + h) − f (x)

h
=

1
2.1 − 1

2

0.1
≈ −0.2381.

The difference between this approximation and the correct derivative f ′(x) = −x−2 at
x = 2 is the error

−0.2381 − (−0.2500) = 0.0119.

Compare this to the error predicted by the formula, which is hf ′′(c)/2 for some c between
2 and 2.1. Since f ′′(x) = 2x−3, the error must be between

(0.1)2−3 ≈ 0.0125 and (0.1)(2.1)−3 ≈ 0.0108,

which is consistent with our result. However, this information is usually not available. "

A second-order formula can be developed by a more advanced strategy. According to
Taylor’s Theorem, if f is three times continuously differentiable, then

f (x + h) = f (x) + hf ′(x) + h2

2
f ′′(x) + h3

6
f ′′′(c1)

and

f (x − h) = f (x) − hf ′(x) + h2

2
f ′′(x) − h3

6
f ′′′(c2),

where x − h < c2 < x < c1 < x + h. Subtracting the two equations gives the following
three-point formula with an explicit error term:

f ′(x) = f (x + h) − f (x − h)

2h
− h2

12
f ′′′(c1) − h2

12
f ′′′(c2). (5.5)

In order to be more precise about the error term for the new formula, we will use the
following theorem:

THEOREM 5.1 Generalized Intermediate Value Theorem. Let f be a continuous function on the interval
[a,b]. Let x1, . . . ,xn be points in [a,b], and a1, . . . ,an > 0. Then there exists a number c

between a and b such that

(a1 + ·· · + an)f (c) = a1f (x1) + ·· · + anf (xn). (5.6)

#
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Proof. Let f (xi) equal the minimum and f (xj ) the maximum of the n function values.
Then

a1f (xi) + ·· · + anf (xi) ≤ a1f (x1) + ·· · + anf (xn) ≤ a1f (xj ) + ·· · + anf (xj )

implies that

f (xi) ≤ a1f (x1) + ·· · + anf (xn)

a1 + ·· · + an
≤ f (xj ).

By the Intermediate Value Theorem, there is a number c between xi and xj such that

f (c) = a1f (x1) + ·· · + anf (xn)

a1 + ·· · + an
,

and (5.6) is satisfied. ❒

Theorem 5.1 says that we can combine the last two terms of (5.5), yielding a second-
order formula:

Three-point centered-difference formula

f ′(x) = f (x + h) − f (x − h)

2h
− h2

6
f ′′′(c), (5.7)

where x − h < c < x + h.

! EXAMPLE 5.2 Use the three-point centered-difference formula with h = 0.1 to approximate the derivative
of f (x) = 1/x at x = 2.

The three-point centered-difference formula evaluates to

f ′(x) ≈ f (x + h) − f (x − h)

2h
=

1
2.1 − 1

1.9

0.2
≈ −0.2506.

The error is 0.0006, an improvement on the two-point forward-difference formula in
Example 5.1. "

Approximation formulas for higher derivatives can be obtained in the same way. For
example, the Taylor expansions

f (x + h) = f (x) + hf ′(x) + h2

2
f ′′(x) + h3

6
f ′′′(x) + h4

24
f (iv)(c1)

and

f (x − h) = f (x) − hf ′(x) + h2

2
f ′′(x) − h3

6
f ′′′(x) + h4

24
f (iv)(c2),

Convergence The two- and three-point approximations converge to the derivative

as h → 0, although at different rates. The formulas break the cardinal rule of floating point

computing by subtracting nearly equal numbers, but it can’t be helped, as finding derivatives

is an inherently unstable process. For very small values of h, roundoff error will affect the

calculation, as shown in Example 5.3.
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where x − h < c2 < x < c1 < x + h can be added together to eliminate the first derivative
terms to get

f (x + h) + f (x − h) − 2f (x) = h2f ′′(x) + h4

24
f (iv)(c1) + h4

24
f (iv)(c2).

Using Theorem 5.1 to combine the error terms and dividing by h2 yields the following
formula:

Three-point centered-difference formula for second derivative

f ′′(x) = f (x − h) − 2f (x) + f (x + h)

h2 − h2

12
f (iv)(c) (5.8)

for some c between x − h and x + h.

5.1.2 Rounding error

So far, all of this chapter’s formulas break the rule from Chapter 0 that advises against
subtracting nearly equal numbers. This is the greatest difficulty with numerical differenti-
ation, but it is essentially impossible to avoid. To understand the problem better, consider
the following example:

! EXAMPLE 5.3 Approximate the derivative of f (x) = ex at x = 0.

The two-point formula (5.4) gives

f ′(x) ≈ ex+h − ex

h
, (5.9)

and the three-point formula (5.7) yields

f ′(x) ≈ ex+h − ex−h

2h
. (5.10)

The results of these formulas for x = 0 and a wide range of increment size h, along with
errors compared with the correct value e0 = 1, are given in the following table:

h formula (5.9) error formula (5.10) error

10−1 1.05170918075648 −0.05170918075648 1.00166750019844 −0.00166750019844
10−2 1.00501670841679 −0.00501670841679 1.00001666674999 −0.00001666674999
10−3 1.00050016670838 −0.00050016670838 1.00000016666668 −0.00000016666668
10−4 1.00005000166714 −0.00005000166714 1.00000000166689 −0.00000000166689
10−5 1.00000500000696 −0.00000500000696 1.00000000001210 −0.00000000001210
10−6 1.00000049996218 −0.00000049996218 0.99999999997324 0.00000000002676
10−7 1.00000004943368 −0.00000004943368 0.99999999947364 0.00000000052636
10−8 0.99999999392253 0.00000000607747 0.99999999392253 0.00000000607747
10−9 1.00000008274037 −0.00000008274037 1.00000002722922 −0.00000002722922

At first, the error decreases as h decreases, following closely the expected errors
O(h) and O(h2), respectively, for the two-point forward-difference formula (5.4) and
the three-point centered-difference formula (5.7). However, notice the deterioration of the
approximations as h is decreased still further.
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The reason that the approximations lose accuracy for very small h is loss of sig-
nificance. Both formulas subtract nearly equal numbers, lose significant digits, and then, to
make matters worse, magnify the effect by dividing by a small number. "

To get a better idea of the degree to which numerical differentiation formulas are
susceptible to loss of significance, we analyze the three-point centered-difference formula
in detail. Denote the floating point version of the input f (x + h) by f̂ (x + h), which will
differ from the correct value f (x + h) by a number on the order of machine epsilon in
relative terms. We will assume the function values are on the order of 1 for the present
discussion, so that relative and absolute errors are about equal.

Since f̂ (x + h) = f (x + h) + ϵ1 and f̂ (x − h) = f (x − h) + ϵ2, where |ϵ1|, |ϵ2| ≈
ϵmach, the difference between the correct f ′(x) and the machine version of the three-point
centered-difference formula (5.7) is

f ′(x)correct − f ′(x)machine = f ′(x) − f̂ (x + h) − f̂ (x − h)

2h

= f ′(x) − f (x + h) + ϵ1 − (f (x − h) + ϵ2)

2h

=
(

f ′(x) − f (x + h) − f (x − h)

2h

)
+ ϵ2 − ϵ1

2h

=
(
f ′(x)correct − f ′(x)formula

)
+ errorrounding.

We can view the total error as a sum of the truncation error, the difference between the
correct derivative and the correct approximating formula, and the rounding error, which
accounts for the loss of significance of the computer-implemented formula. The rounding
error has absolute value

∣∣∣∣
ϵ2 − ϵ1

2h

∣∣∣∣ ≤ 2ϵmach

2h
= ϵmach

h
,

where ϵmach represents machine epsilon. Therefore, the absolute value of the error of the
machine approximation of f ′(x) is bounded above by

E(h) ≡ h2

6
f ′′′(c) + ϵmach

h
, (5.11)

where x − h < c < x + h. Previously we had considered only the first term of the error,
the mathematical error. The preceding table forces us to consider the loss of significance
term as well.

It is instructive to plot the function E(h), shown in Figure 5.1. The minimum of E(h)

occurs at the solution of

0 = E′(h) = −ϵmach

h2 + M

3
h, (5.12)

where we have approximated |f ′′′(c)| ≈ |f ′′′(x)| by M . Solving (5.12) yields

h = (3ϵmach/M)1/3

for the increment size h that gives smallest overall error, including the effects of computer
rounding. In double precision, this is approximately ϵ

1/3
mach ≈ 10−5, consistent with the

table.
The main message is that the three-point centered-difference formula will improve in

accuracy as h is decreased until h becomes about the size of the cube root of machine
epsilon. As h drops below this size, the error may begin increasing again.

Similar results on rounding analysis can be derived for other formulas. Exercise 18
asks the reader to analyze rounding effects for the two-point forward-difference formula.
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(3!/M)1/3

E

h

Figure 5.1 The effect of rounding error on numerical differentiation. For sufficiently

small h, the error is dominated by rounding error.

5.1.3 Extrapolation

Assume that we are presented with an order n formula F(h) for approximating a given
quantity Q. The order means that

Q ≈ F(h) + Khn,

where K is roughly constant over the range of h in which we are interested. A relevant
example is

f ′(x) = f (x + h) − f (x − h)

2h
− f ′′′(ch)

6
h2, (5.13)

where we have emphasized the fact that the unknown point ch lies between x and x + h,
but depends on h. Even though ch is not constant, if the function f is reasonably smooth
and h is not too large, the values of the error coefficient f ′′′(ch)/6 should not vary far from
f ′′′(x)/6.

In a case like this, a little bit of algebra can be used to leverage an order n formula into
one of higher order. Because we know the order of the formula F(h) is n, if we apply the
formula again with h/2 instead of h, our error should be reduced from a constant times hn

to a constant times (h/2)n, or reduced by a factor of 2n. In other words, we expect

Q − F(h/2) ≈ 1
2n

(Q − F(h)). (5.14)

We are relying on the assumption that K is roughly constant. Notice that (5.14) is readily
solved for the quantity Q in question to give the following formula:

Extrapolation for order n formula

Q ≈ 2nF (h/2) − F(h)

2n − 1
. (5.15)

This is the extrapolation formula for F(h). Extrapolation, sometimes called
Richardson extrapolation, typically gives a higher-order approximation of Q than F(h).
To understand why, assume that the nth-order formula Fn(h) can be written

Q = Fn(h) + Khn + O(hn+1).
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Then cutting h in half yields

Q = Fn(h/2) + K
hn

2n
+ O(hn+1),

and the extrapolated version, which we call Fn+1(h), will satisfy

Fn+1(h) = 2nFn(h/2) − Fn(h)

2n − 1

= 2n(Q − Khn/2n − O(hn+1)) − (Q − Khn − O(hn+1))

2n − 1

= Q + −Khn + Khn + O(hn+1)

2n − 1
= Q + O(hn+1).

Therefore, Fn+1(h) is (at least) an order n + 1 formula for approximating the quantity Q.

! EXAMPLE 5.4 Apply extrapolation to formula (5.13).

We start with the second-order centered-difference formula F2(h) for the derivative
f ′(x). The extrapolation formula (5.15) gives a new formula for f ′(x) as

F4(x) = 22F2(h/2) − F2(h)

22 − 1

=
[

4
f (x + h/2) − f (x − h/2)

h
− f (x + h) − f (x − h)

2h

]/
3

= f (x − h) − 8f (x − h/2) + 8f (x + h/2) − f (x + h)

6h
. (5.16)

This is a five-point centered-difference formula. The previous argument guarantees that this
formula is of order at least three, but it turns out to have order four, because the order three
error terms cancel out. In fact, since F4(h) = F4(−h) by inspection, the error must be the
same for h as for −h. Therefore, the error terms can be even powers of h only. "

! EXAMPLE 5.5 Apply extrapolation to the second derivative formula (5.8).

Again, the method is second order, so the extrapolation formula (5.15) is used with
n = 2. The extrapolated formula is

F4(x) = 22F2(h/2) − F2(h)

22 − 1

=
[

4
f (x + h/2) − 2f (x) + f (x − h/2)

h2/4

− f (x + h) − 2f (x) + f (x − h)

h2

]/
3

= −f (x − h) + 16f (x − h/2) − 30f (x) + 16f (x + h/2) − f (x + h)

3h2 .

The new method for approximating second derivatives is fourth order, for the same reason
as the previous example. "

5.1.4 Symbolic differentiation and integration

The Matlab Symbolic Toolbox contains commands for obtaining the symbolic derivative
of symbolically written functions. The following commands are illustrative:
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>> syms x;
>> f=sin(3*x);
>> f1=diff(f)

f1=

3*cos(3*x)

>>

The third derivative is also easily found:

>>f3=diff(f,3)

f3=

-27*cos(3*x)

Integration uses the Matlab symbolic command int:

>>syms x
>>f=sin(x)

f=

sin(x)

>>int(f)

ans=

-cos(x)

>>int(f,0,pi)

ans=

2

With more complicated functions, the Matlab command pretty, to view the resulting
answer, and simple, to simplify it, are helpful, as in the following code:

>>syms x

>>f=sin(x)ˆ7

f=

sin(x)ˆ7

>>int(f)

ans=

-1/7*sin(x)ˆ6*cos(x)-6/35*sin(x)ˆ4*cos(x)-8/35*sin(x)ˆ2*cos(x)
-16/35*cos(x)
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>>pretty(simple(int(f)))
3 5 7

-cos(x) + cos(x) - 3/5 cos(x) + 1/7 cos(x)

Of course, for some integrands, there is no expression for the indefinite integral in
terms of elementary functions. Try the function f (x) = esin x to see Matlab give up. In a
case like this, there is no alternative but the numerical methods of the next section.

5.1 Exercises

1. Use the two-point forward-difference formula to approximate f ′(1), and find the
approximation error, where f (x) = ln x, for (a) h = 0.1 (b) h = 0.01 (c) h = 0.001.

2. Use the three-point centered-difference formula to approximate f ′(0), where f (x) = ex , for
(a) h = 0.1 (b) h = 0.01 (c) h = 0.001.

3. Use the two-point forward-difference formula to approximate f ′(π/3), where f (x) = sin x,
and find the approximation error. Also, find the bounds implied by the error term and show that
the approximation error lies between them (a) h = 0.1 (b) h = 0.01 (c) h = 0.001.

4. Carry out the steps of Exercise 3, using the three-point centered-difference formula.

5. Use the three-point centered-difference formula for the second derivative to approximate
f ′′(1), where f (x) = x−1, for (a) h = 0.1 (b) h = 0.01 (c) h = 0.001. Find the approximation
error.

6. Use the three-point centered-difference formula for the second derivative to approximate
f ′′(0), where f (x) = cosx, for (a) h = 0.1 (b) h = 0.01 (c) h = 0.001. Find the
approximation error.

7. Develop a formula for a two-point backward-difference formula for approximating f ′(x),
including error term.

8. Prove the second-order formula for the first derivative

f ′(x) = −f (x + 2h) + 4f (x + h) − 3f (x)

2h
+ O(h2).

9. Develop a second-order formula for the first derivative f ′(x) in terms of f (x),f (x − h), and
f (x − 2h).

10. Find the error term and order for the approximation formula

f ′(x) = 4f (x + h) − 3f (x) − f (x − 2h)

6h
.

11. Find a second-order formula for approximating f ′(x) by applying extrapolation to the
two-point forward-difference formula.

12. (a) Compute the two-point forward-difference formula approximation to f ′(x) for f (x) = 1/x,
where x and h are arbitrary. (b) Subtract the correct answer to get the error explicitly, and show
that it is approximately proportional to h. (c) Repeat parts (a) and (b), using the three-point
centered-difference formula instead. Now the error should be proportional to h2.

13. Develop a second-order method for approximating f ′(x) that uses the data f (x − h),f (x),
and f (x + 3h) only.
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14. (a) Extrapolate the formula developed in Exercise 13. (b) Demonstrate the order of the new
formula by approximating f ′(π/3), where f (x) = sin x, with h = 0.1 and h = 0.01.

15. Develop a first-order method for approximating f ′′(x) that uses the data f (x − h),f (x), and
f (x + 3h) only.

16. (a) Apply extrapolation to the formula developed in Exercise 15 to get a second-order formula
for f ′′(x). (b) Demonstrate the order of the new formula by approximating f ′′(0), where
f (x) = cosx, with h = 0.1 and h = 0.01.

17. Develop a second-order method for approximating f ′(x) that uses the data f (x − 2h),f (x),
and f (x + 3h) only.

18. Find E(h), an upper bound for the error of the machine approximation of the two-point
forward-difference formula for the first derivative. Follow the reasoning preceding (5.11). Find
the h corresponding to the minimum of E(h).

19. Prove the second-order formula for the third derivative

f ′′′(x) = −f (x − 2h) + 2f (x − h) − 2f (x + h) + f (x + 2h)

2h3 + O(h2).

20. Prove the second-order formula for the third derivative

f ′′′(x) = f (x − 3h) − 6f (x − 2h) + 12f (x − h) − 10f (x) + 3f (x + h)

2h3 + O(h2).

21. Prove the second-order formula for the fourth derivative

f (iv)(x) = f (x − 2h) − 4f (x − h) + 6f (x) − 4f (x + h) + f (x + 2h)

h4 + O(h2).

This formula is used in Reality Check 2.

22. This exercise justifies the beam equations (2.33) and (2.34) in Reality Check 2. Let f (x) be a
six-times continuously differentiable function.

(a) Prove that if f (x) = f ′(x) = 0, then

f (iv)(x + h) −
16f (x + h) − 9f (x + 2h) + 8

3 f (x + 3h) − 1
4 f (x + 4h)

h4 = O(h2).

(Hint: First show that if f (x) = f ′(x) = 0, then
f (x − h) − 10f (x + h) + 5f (x + 2h) − 5

3 f (x + 3h) + 1
4 f (x + 4h) = O(h6). Then

apply Exercise 21.)

(b) Prove that if f ′′(x) = f ′′′(x) = 0, then

f (iv)(x + h) − −28f (x) + 72f (x + h) − 60f (x + 2h) + 16f (x + 3h)

17h4 = O(h2).

(Hint: First show that if f ′′(x) = f ′′′(x) = 0, then
17f (x − h) − 40f (x) + 30f (x + h) − 8f (x + 2h) + f (x + 3h) = O(h6). Then apply
Exercise 21.)

(c) Prove that if f ′′(x) = f ′′′(x) = 0, then

f (iv)(x) − 72f (x) − 156f (x + h) + 96f (x + 2h) − 12f (x + 3h)

17h4 = O(h2).

(Hint: First show that if f ′′(x) = f ′′′(x) = 0, then
17f (x − 2h) − 130f (x) + 208f (x + h) − 111f (x + 2h) + 16f (x + 3h) = O(h6). Then
apply part (b) together with Exercise 21.)
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23. Use Taylor expansions to prove that (5.16) is a fourth-order formula.

24. The error term in the two-point forward-difference formula for f ′(x) can be written in other
ways. Prove the alternative result

f ′(x) = f (x + h) − f (x)

h
− h

2
f ′′(x) − h2

6
f ′′′(c),

where c is between x and x + h. We will use this error form in the derivation of the
Crank–Nicolson Method in Chapter 8.

25. Investigate the reason for the name extrapolation. Assume that F(h) is an nth order formula for
approximating a quantity Q, and consider the points (Kh2,F (h)) and (K(h/2)2,F (h/2)) in
the xy-plane, where error is plotted on the x-axis and the formula output on the y-axis. Find
the line through the two points (the best functional approximation for the relationship between
error and F ). The y-intercept of this line is the value of the formula when you extrapolate the
error to zero. Show that this extrapolated value is given by formula (5.15).

5.1 Computer Problems

1. Make a table of the error of the three-point centered-difference formula for f ′(0), where
f (x) = sin x − cosx, with h = 10−1, . . . ,10−12, as in the table in Section 5.1.2. Draw a plot
of the results. Does the minimum error correspond to the theoretical expectation?

2. Make a table and plot of the error of the three-point centered-difference formula for f ′(1), as
in Computer Problem 1, where f (x) = (1 + x)−1.

3. Make a table and plot of the error of the two-point forward-difference formula for f ′(0), as in
Computer Problem 1, where f (x) = sin x − cosx. Compare your answers with the theory
developed in Exercise 18.

4. Make a table and plot as in Problem 3, but approximate f ′(1), where f (x) = x−1. Compare
your answers with the theory developed in Exercise 18.

5. Make a plot as in Problem 1 to approximate f ′′(0) for (a) f (x) = cosx (b) f (x) = x−1, using
the three-point centered-difference formula. Where does the minimum error appear to occur, in
terms of machine epsilon?

5.2 NEWTON–COTES FORMULAS FOR NUMERICAL INTEGRATION

The numerical calculation of definite integrals relies on many of the same tools we
have already seen. In Chapters 3 and 4, methods were developed for finding function
approximation to a set of data points, using interpolation and least squares modeling. We
will discuss methods for numerical integration, or quadrature, based on both of these
ideas.

For example, given a function f defined on an interval [a,b], we can draw an inter-
polating polynomial through some of the points of f (x). Since it is simple to evaluate the
definite integral of a polynomial, this calculation can be used to approximate the integral
of f (x). This is the Newton–Cotes approach to approximating integrals. Alternatively, we
could find a low-degree polynomial that approximates the function well in the sense of least
squares and use the integral as the approximation, in a method called Gaussian Quadrature.
Both of these approaches will be described in this chapter.
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To develop the Newton–Cotes formulas, we need the values of three simple definite
integrals, pictured in Figure 5.2.

Figure 5.2 Three simple integrals (5.17), (5.18), and (5.19). Net positive area is (a) h/2, (b) 4h/3,

and (c) h/3.

Figure 5.2(a) shows the region under the line interpolating the data points (0,0) and
(h,1). The region is a triangle of height 1 and base h, so the area is

∫ h

0

x

h
dx = h/2. (5.17)

Figure 5.2(b) shows the region under the parabola P (x) interpolating the data points
(−h,0), (0,1), and (h,0), which has area

∫ h

−h
P (x) dx = x − x3

3h2 = 4
3

h. (5.18)

Figure 5.2(c) shows the region between the x-axis and the parabola interpolating the data
points (−h,1), (0,0), and (h,0), with net positive area

∫ h

−h
P (x) dx = 1

3
h. (5.19)

5.2.1 Trapezoid Rule

We begin with the simplest application of interpolation-based numerical integration. Let
f (x) be a function with a continuous second derivative, defined on the interval [x0,x1],
as shown in Figure 5.3(a). Denote the corresponding function values by y0 = f (x0) and
y1 = f (x1). Consider the degree 1 interpolating polynomial P1(x) through (x0,y0) and
(x1,y1). Using the Lagrange formulation, we find that the interpolating polynomial with
error term is

f (x) = y0
x − x1

x0 − x1
+ y1

x − x0

x1 − x0
+ (x − x0)(x − x1)

2! f ′′(cx) = P (x) + E(x).

It can be proved that the “unknown point’’ cx depends continuously on x.
Integrating both sides on the interval of interest [x0,x1] yields

∫ x1

x0

f (x) dx =
∫ x1

x0

P (x) dx +
∫ x1

x0

E(x) dx.
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x0 x1
x

(a)

x0 x1 x2
x

(b)

Figure 5.3 Newton–Cotes formulas are based on interpolation. (a) Trapezoid Rule

replaces the function with the line interpolating (x0, f (x0)) and (x1, f (x1)). (b) Simpson’s

Rule uses the parabola interpolating the function at three points (x0, f (x0)), (x1, f (x1)),

and (x2, f (x2)).

Computing the first integral gives

∫ x1

x0

P (x) dx = y0

∫ x1

x0

x − x1

x0 − x1
dx + y1

∫ x1

x0

x − x0

x1 − x0
dx

= y0
h

2
+ y1

h

2
= h

y0 + y1

2
, (5.20)

where we have defined h = x1 − x0 to be the interval length and computed the integrals
by using the fact (5.17). For example, substituting w = −x + x1 into the first integral
gives

∫ x1

x0

x − x1

x0 − x1
dx =

∫ 0

h

−w

−h
(−dw) =

∫ h

0

w

h
dw = h

2
,

and the second integral, after substituting w = x − x0, is

∫ x1

x0

x − x0

x1 − x0
dx =

∫ h

0

w

h
dw = h

2
.

Formula (5.20) calculates the area of a trapezoid, which gives the rule its name.
The error term is

∫ x1

x0

E(x) dx = 1
2!

∫ x1

x0

(x − x0)(x − x1)f ′′(c(x)) dx

= f ′′(c)

2

∫ x1

x0

(x − x0)(x − x1) dx

= f ′′(c)

2

∫ h

0
u(u − h) du

= −h3

12
f ′′(c),

where we have used Theorem 0.9, the Mean Value Theorem for Integrals. We have
shown:
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Trapezoid Rule
∫ x1

x0

f (x) dx = h

2
(y0 + y1) − h3

12
f ′′(c), (5.21)

where h = x1 − x0 and c is between x0 and x1.

5.2.2 Simpson’s Rule

Figure 5.3(b) illustrates Simpson’s Rule, which is similar to the Trapezoid Rule, except
that the degree 1 interpolant is replaced by a parabola. As before, we can write the integrand
f (x) as the sum of the interpolating parabola and the interpolation error:

f (x) = y0
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
+ y1

(x − x0)(x − x2)

(x1 − x0)(x1 − x2)

+y2
(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
+ (x − x0)(x − x1)(x − x2)

3! f ′′′(cx)

= P (x) + E(x).

Integrating gives

∫ x2

x0

f (x) dx =
∫ x2

x0

P (x) dx +
∫ x2

x0

E(x) dx,

where

∫ x2

x0

P (x) dx = y0

∫ x2

x0

(x − x1)(x − x2) dx

(x0 − x1)(x0 − x2)
+ y1

∫ x2

x0

(x − x0)(x − x2) dx

(x1 − x0)(x1 − x2)

+y2

∫ x2

x0

(x − x0)(x − x1) dx

(x2 − x0)(x2 − x1)

= y0
h

3
+ y1

4h

3
+ y2

h

3
.

We have set h = x2 − x1 = x1 − x0 and used (5.18) for the middle integral and (5.19) for
the first and third. The error term can be computed (proof omitted) as

∫ x2

x0

E(x) dx = −h5

90
f (iv)(c)

for some c in the interval [x0,x2], provided that f (iv) exists and is continuous. Concluding
the derivation yields Simpson’s Rule:

Simpson’s Rule
∫ x2

x0

f (x) dx = h

3
(y0 + 4y1 + y2) − h5

90
f (iv)(c), (5.22)

where h = x2 − x1 = x1 − x0 and c is between x0 and x2.
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! EXAMPLE 5.6 Apply the Trapezoid Rule and Simpson’s Rule to approximate

∫ 2

1
ln x dx,

and find an upper bound for the error in your approximations.

The Trapezoid Rule estimates that

∫ 2

1
ln x dx ≈ h

2
(y0 + y1) = 1

2
(ln 1 + ln 2) = ln 2

2
≈ 0.3466.

The error for the Trapezoid Rule is −h3f ′′(c)/12, where 1 < c < 2. Since f ′′(x) =
−1/x2, the magnitude of the error is at most

13

12c2 ≤ 1
12

≈ 0.0834.

In other words, the Trapezoid Rule says that

∫ 2

1
ln x dx = 0.3466 ± 0.0834.

The integral can be computed exactly by using integration by parts:

∫ 2

1
ln x dx = x ln x|21 −

∫ 2

1
dx

= 2ln 2 − 1ln 1 − 1 ≈ 0.386294. (5.23)

The Trapezoid Rule approximation and error bound are consistent with this result.
Simpson’s Rule yields the estimate

∫ 2

1
ln x dx ≈ h

3
(y0 + 4y1 + y2) = 0.5

3

(
ln 1 + 4ln

3
2

+ ln 2
)

≈ 0.3858.

The error for Simpson’s Rule is −h5f (iv)(c)/90, where 1 < c < 2. Since f (iv)(x) =
−6/x4, the error is at most

6(0.5)5

90c4 ≤ 6(0.5)5

90
= 1

480
≈ 0.0021.

Thus, Simpson’s Rule says that

∫ 2

1
ln x dx = 0.3858 ± 0.0021,

which is again consistent with the correct value and more accurate than the Trapezoid Rule
approximation. "

One way of comparing numerical integration rules like the Trapezoid Rule or Simpson’s
Rule is by comparing error terms.This information is conveyed simply through the following
definition:

DEFINITION 5.2 The degree of precision of a numerical integration method is the greatest integer k for
which all degree k or less polynomials are integrated exactly by the method. ❒
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For example, the error term of the Trapezoid Rule, −h3f ′′(c)/12, shows that if f (x)

is a polynomial of degree 1 or less, the error will be zero, and the polynomial will be
integrated exactly. So the degree of precision of the Trapezoid Rule is 1. This is intuitively
obvious from geometry, since the area under a linear function is approximated exactly by
a trapezoid.

It is less obvious that the degree of precision of Simpson’s Rule is three, but that is what
the error term in (5.22) shows. The geometric basis of this surprising result is the fact that
a parabola intersecting a cubic curve at three equally spaced points has the same integral as
the cubic curve over that interval (Exercise 17).

! EXAMPLE 5.7 Find the degree of precision of the degree 3 Newton–Cotes formula, called the Simpson’s
3/8 Rule

∫ x3

x0

f (x)dx ≈ 3h

8
(y0 + 3y1 + 3y2 + y3).

It suffices to test monomials in succession. We will leave the details to the reader.
For example, when f (x) = x2, we check the identity

3h

8
(x2 + 3(x + h)2 + 3(x + 2h)2 + (x + 3h)2) = (x + 3h)3 − x3

3
,

the latter being the correct integral of x2 on [x,x + 3h]. Equality holds for 1,x,x2,x3, but
fails for x4. Therefore, the degree of precision of the rule is 3. "

The Trapezoid Rule and Simpson’s Rule are examples of “closed’’ Newton–Cotes
formulas, because they include evaluations of the integrand at the interval endpoints.
The open Newton–Cotes formulas are useful for circumstances where that is not possi-
ble, for example, when approximating an improper integral. We discuss open formulas in
Section 5.2.4.

5.2.3 Composite Newton–Cotes formulas

The Trapezoid and Simpson’s Rules are limited to operating on a single interval. Of course,
since definite integrals are additive over subintervals, we can evaluate an integral by dividing
the interval up into several subintervals, applying the rule separately on each one, and then
totaling up. This strategy is called composite numerical integration.

The composite Trapezoid Rule is simply the sum of Trapezoid Rule approximations
on adjacent subintervals, or panels. To approximate

∫ b

a
f (x) dx,

consider an evenly spaced grid

a = x0 < x1 < x2 < · · · < xm−2 < xm−1 < xm = b

along the horizontal axis, where h = xi+1 − xi for each i as shown in Figure 5.4. On each
subinterval, we make the approximation with error term

∫ xi+1

xi

f (x) dx = h

2
(f (xi) + f (xi+1)) − h3

12
f ′′(ci),
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x0 xm
x

(a)
x0 x2m

x

(b)

Figure 5.4 Newton–Cotes composite formulas. (a) Composite Trapezoid Rule sums

the Trapezoid Rule formula (solid care) on m adjacent subintervals. (b) Composite

Simpson’s Rule does the same for Simpson’s Rule.

assuming that f ′′ is continuous. Adding up over all subintervals (note the overlapping on
the interior subintervals) yields

∫ b

a
f (x) dx = h

2

[

f (a) + f (b) + 2
m−1∑

i=1

f (xi)

]

−
m−1∑

i=0

h3

12
f ′′(ci).

The error term can be written

h3

12

m−1∑

i=0

f ′′(ci) = h3

12
mf ′′(c),

according to Theorem 5.1, for some a < c < b. Since mh = (b − a), the error term is
(b − a)h2f ′′(c)/12. To summarize, if f ′′ is continuous on [a,b], then the following holds:

Composite Trapezoid Rule
∫ b

a
f (x) dx = h

2

(

y0 + ym + 2
m−1∑

i=1

yi

)

− (b − a)h2

12
f ′′(c) (5.24)

where h = (b − a)/m and c is between a and b.

The composite Simpson’s Rule follows the same strategy. Consider an evenly spaced
grid

a = x0 < x1 < x2 < · · · < x2m−2 < x2m−1 < x2m = b

along the horizontal axis, where h = xi+1 − xi for each i. On each length 2h panel
[x2i ,x2i+2], for i = 0, . . . ,m − 1, a Simpson’s Method is carried out. In other words, the
integrand f (x) is approximated on each subinterval by the interpolating parabola fit at
x2i ,x2i+1, and x2i+2, which is integrated and added to the sum. The approximation with
error term on the subinterval is

∫ x2i+2

x2i

f (x) dx = h

3
[f (x2i ) + 4f (x2i+1) + f (x2i+2)] − h5

90
f (iv)(ci).

This time, the overlapping is over even-numbered xj only. Adding up over all subintervals
yields
∫ b

a
f (x) dx = h

3

[

f (a) + f (b) + 4
m∑

i=1

f (x2i−1) + 2
m−1∑

i=1

f (x2i )

]

−
m−1∑

i=0

h5

90
f (iv)(ci).
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The error term can be written

h5

90

m−1∑

i=0

f (iv)(ci) = h5

90
mf (iv)(c),

according to Theorem 5.1, for some a < c < b. Since m · 2h = (b − a), the error term is
(b − a)h4f (iv)(c)/180. Assuming that f (iv) is continuous on [a,b], the following holds:

Composite Simpson’s Rule

∫ b

a
f (x) dx = h

3

[

y0 + y2m + 4
m∑

i=1

y2i−1 + 2
m−1∑

i=1

y2i

]

− (b − a)h4

180
f (iv)(c), (5.25)

where c is between a and b.

! EXAMPLE 5.8 Carry out four-panel approximations of

∫ 2

1
ln x dx,

using the composite Trapezoid Rule and composite Simpson’s Rule.

For the composite Trapezoid Rule on [1,2], four panels means that h = 1/4. The
approximation is

∫ 2

1
ln x dx ≈ 1/4

2

[

y0 + y4 + 2
3∑

i=1

yi

]

= 1
8
[ln 1 + ln 2 + 2(ln 5/4 + ln 6/4 + ln 7/4)]

≈ 0.3837.

The error is at most

(b − a)h2

12
|f ′′(c)| = 1/16

12
1
c2 ≤ 1

(16)(12)(12)
= 1

192
≈ 0.0052.

A four-panel Simpson’s Rule sets h = 1/8. The approximation is

∫ 2

1
ln x dx ≈ 1/8

3

[

y0 + y8 + 4
4∑

i=1

y2i−1 + 2
3∑

i=1

y2i

]

= 1
24

[ln 1 + ln 2 + 4(ln 9/8 + ln 11/8 + ln 13/8 + ln 15/8)

+ 2(ln 5/4 + ln 6/4 + ln 7/4)]
≈ 0.386292.

This agrees within five decimal places with the correct value 0.386294 from (5.23). Indeed,
the error cannot be more than

(b − a)h4

180
|f (iv)(c)| = (1/8)4

180
6
c4 ≤ 6

84 · 180 · 14 ≈ 0.000008. "
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! EXAMPLE 5.9 Find the number of panels m necessary for the composite Simpson’s Rule to approximate
∫ π

0
sin2 x dx

within six correct decimal places.

We require the error to satisfy

(π − 0)h4

180
|f (iv)(c)| < 0.5 × 10−6.

Since the fourth derivative of sin2 x is −8cos2x, we need

πh4

180
8 < 0.5 × 10−6,

or h < 0.0435. Therefore, m = ceil(π/(2h)) = 37 panels will be sufficient. "

5.2.4 Open Newton–Cotes Methods

The so-called closed Newton–Cotes Methods like Trapezoid and Simpson’s Rules require
input values from the ends of the integration interval. Some integrands that have a removable
singularity at an interval endpoint may be more easily handled with an open Newton–Cotes
Method, which does not use values from the endpoints. The following rule is applicable to
functions f whose second derivative f ′′ is continuous on [a,b]:
Midpoint Rule

∫ x1

x0

f (x) dx = hf (w) + h3

24
f ′′(c), (5.26)

where h = (x1 − x0),w is the midpoint x0 + h/2, and c is between x0 and x1.

The Midpoint Rule is also useful for cutting the number of function evaluations needed.
Compared with the Trapezoid Rule, the closed Newton–Cotes Method of the same order, it
requires one function evaluation rather than two. Moreover, the error term is half the size
of the Trapezoid Rule error term.

The proof of (5.26) follows the same lines as the derivation of the Trapezoid Rule. Set
h = x1 − x0. The degree 1 Taylor expansion of f (x) about the midpoint w = x0 + h/2 of
the interval is

f (x) = f (w) + (x − w)f ′(w) + 1
2

(x − w)2f ′′(cx),

where cx depends on x and lies between x0 and x1. Integrating both sides yields
∫ x1

x0

f (x) dx = (x1 − x0)f (w) + f ′(w)

∫ x1

x0

(x − w) dx + 1
2

∫ x1

x0

f ′′(cx)(x − w)2 dx

= hf (w) + 0 + f ′′(c)

2

∫ x1

x0

(x − w)2 dx

= hf (w) + h3

24
f ′′(c),

where x0 < c < x1. Again, we have used the Mean Value Theorem for Integrals to pull the
second derivative outside of the integral. This completes the derivation of (5.26).
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The proof of the composite version is left to the reader (Exercise 12).

Composite Midpoint Rule
∫ b

a
f (x) dx = h

m∑

i=1

f (wi) + (b − a)h2

24
f ′′(c), (5.27)

where h = (b − a)/m and c is between a and b. The wi are the midpoints of the m equal
subintervals of [a,b].

! EXAMPLE 5.10 Approximate
∫ 1

0 sin x/x dx by using the Composite Midpoint Rule with m = 10 panels.

First note that we cannot apply a closed method directly to the problem, without
special handling at x = 0. The midpoint method can be applied directly. The midpoints are
0.05,0.15, . . . ,0.95, so the Composite Midpoint Rule delivers

∫ 1

0
f (x) dx ≈ 0.1

10∑

1

f (mi) = 0.94620858.

The correct answer to eight places is 0.94608307. "

Another useful open Newton–Cotes Rule is
∫ x4

x0

f (x) dx = 4h

3
[2f (x1) − f (x2) + 2f (x3)] + 14h5

45
f (iv)(c), (5.28)

where h = (x4 − x0)/4,x1 = x0 + h,x2 = x0 + 2h,x3 = x0 + 3h, and where x0 <

c < x4. The rule has degree of precision three. Exercise 11 asks you to extend it to a
composite rule.

5.2 Exercises

1. Apply the composite Trapezoid Rule with m = 1,2, and 4 panels to approximate the integral.
Compute the error by comparing with the exact value from calculus.

(a)
∫ 1

0
x2 dx (b)

∫ π/2

0
cosx dx (c)

∫ 1

0
ex dx

2. Apply the Composite Midpoint Rule with m = 1,2, and 4 panels to approximate the integrals
in Exercise 1, and report the errors.

3. Apply the composite Simpson’s Rule with m = 1,2, and 4 panels to the integrals in Exercise 1,
and report the errors.

4. Apply the composite Simpson’s Rule with m = 1,2, and 4 panels to the integrals, and report
the errors.

(a)
∫ 1

0
xex dx (b)

∫ 1

0

dx

1 + x2 dx (c)
∫ π

0
x cosx dx

5. Apply the Composite Midpoint Rule with m = 1,2, and 4 panels to approximate the integrals.
Compute the error by comparing with the exact value from calculus.

(a)
∫ 1

0

dx√
x

(b)
∫ 1

0
x−1/3 dx (c)

∫ 2

0

dx√
2 − x
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6. Apply the Composite Midpoint Rule with m = 1,2, and 4 panels to approximate the integrals.

(a)
∫ π/2

0

1 − cosx

x2 dx (b)
∫ 1

0

ex − 1
x

dx (c)
∫ π/2

0

cosx
π
2 − x

dx

7. Apply the open Newton-Cotes rule (5.28) to approximate the integrals of Exercise 5, and
report the errors.

8. Apply the open Newton-Cotes rule (5.28) to approximate the integrals of Exercise 6.

9. Apply Simpson’s Rule approximation to
∫ 1

0 x4 dx, and show that the approximation error
matches the error term from (5.22).

10. Integrate Newton’s divided-difference interpolating polynomial to prove the formula (a) (5.18)
(b) (5.19).

11. Find the degree of precision of the following approximation for
∫ 1
−1 f (x) dx:

(a)f (1) + f (−1) (b) 2/3[f (−1) + f (0) + f (1)] (c) f (−1/
√

3) + f (1/
√

3).

12. Find c1,c2, and c3 such that the rule

∫ 1

0
f (x) dx ≈ c1f (0) + c2f (0.5) + c3f (1)

has degree of precision greater than one. (Hint: Substitute f (x) = 1,x, and x2.) Do you
recognize the method that results?

13. Develop a composite version of the rule (5.28), with error term.

14. Prove the Composite Midpoint Rule (5.27).

15. Find the degree of precision of the degree four Newton–Cotes Rule (often called Boole’s Rule)

∫ x4

x0

f (x) dx ≈ 2h

45
(7y0 + 32y1 + 12y2 + 32y3 + 7y4).

16. Use the fact that the error term of Boole’s Rule is proportional to f (6)(c) to find the exact error
term, by the following strategy: Compute Boole’s approximation for

∫ 4h
0 x6 dx, find the

approximation error, and write it in terms of h and f (6)(c).

17. Let P3(x) be a degree 3 polynomial, and let P2(x) be its interpolating polynomial at the three
points x = −h,0, and h. Prove directly that

∫ h
−h P3(x) dx =

∫ h
−h P2(x) dx. What does this fact

say about Simpson’s Rule?

5.2 Computer Problems

1. Use the composite Trapezoid Rule with m = 16 and 32 panels to approximate the definite
integral. Compare with the correct integral and report the two errors.

(a)
∫ 4

0

x dx√
x2 + 9

(b)
∫ 1

0

x3 dx

x2 + 1
(c)

∫ 1

0
xex dx (d)

∫ 3

1
x2 ln x dx

(e)
∫ π

0
x2 sin x dx (f )

∫ 3

2

x3 dx√
x4 − 1

(g)
∫ 2

√
3

0

dx√
x2 + 4

dx (h)
∫ 1

0

x dx√
x4 + 1
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2. Apply the composite Simpson’s Rule to the integrals in Computer Problem 1. Use m = 16 and
32, and report errors.

3. Use the composite Trapezoid Rule with m = 16 and 32 panels to approximate the definite
integral.

(a)
∫ 1

0
ex2

dx (b)
∫ √

π

0
sin x2 dx (c)

∫ π

0
ecosx dx (d)

∫ 1

0
ln(x2 + 1) dx

(e)
∫ 1

0

x dx

2ex − e−x
(f )

∫ π

0
cosex dx (g)

∫ 1

0
xx dx (h)

∫ π/2

0
ln(cosx + sin x) dx

4. Apply the composite Simpson’s Rule to the integrals of Computer Problem 3, using m = 16
and 32.

5. Apply the Composite Midpoint Rule to the improper integrals of Exercise 5, using
m = 10,100, and 1000. Compute the error by comparing with the exact value.

6. Apply the Composite Midpoint Rule to the improper integrals of Exercise 6, using m = 16
and 32.

7. Apply the Composite Midpoint Rule to the improper integrals

(a)
∫ π

2

0

x

sin x
dx (b)

∫ π
2

0

ex − 1
sin x

dx (c)
∫ 1

0

arctan x

x
dx,

using m = 16 and 32.

8. The arc length of the curve defined by y = f (x) from x = a to x = b is given by the integral∫ b
a

√
1 + f ′(x)2 dx. Use the composite Simpson’s Rule with m = 32 panels to approximate

the lengths of the curves

(a) y = x3 on [0,1] (b) y = tan x on [0,π/4] (c) y = arctan x on [0,1].

9. For the integrals in Computer Problem 1, calculate the approximation error of the composite
Trapezoid Rule for h = b − a,h/2,h/4, . . . ,h/28, and plot. Make a log–log plot, using, for
example, Matlab’s loglog command. What is the slope of the plot, and does it agree with
theory?

10. Carry out Computer Problem 9, but use the composite Simpson’s Rule instead of the
composite Trapezoid Rule.

5.3 ROMBERG INTEGRATION

In this section, we begin discussing efficient methods for calculating definite integrals that
can be extended by adding data until the required accuracy is attained. Romberg Integra-
tion is the result of applying extrapolation to the composite Trapezoid Rule. Recall from
Section 5.1 that, given a rule N(h) for approximating a quantity M , depending on a step
size h, the rule can be extrapolated if the order of the rule is known. Equation (5.24) shows
that the composite Trapezoid Rule is a second-order rule in h. Therefore, extrapolation can
be applied to achieve a new rule of (at least) third order.

Examining the error of the Trapezoid Rule (5.24) more carefully, it can be shown that,
for an infinitely differentiable function f ,
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∫ b

a
f (x) dx = h

2

(

y0 + ym + 2
m−1∑

i=1

yi

)

+ c2h2 + c4h4 + c6h6 + ·· · , (5.29)

where the ci depend only on higher derivatives of f at a and b, and not on h. For example,
c2 = (f ′(a) − f ′(b))/12. The absence of odd powers in the error gives an extra bonus
when extrapolation is done. Since there are no odd-power terms, extrapolation with the
second-order formula given by the composite Trapezoid Rule yields a fourth-order formula;
extrapolation with the resulting fourth-order formula gives a sixth-order formula, and so on.

Extrapolation involves combining the formula evaluated once at h and once at h/2,
half the step size. Foreshadowing where we are headed, define the following series of step
sizes:

h1 = b − a

h2 = 1
2

(b − a)

...

hj = 1
2j−1 (b − a). (5.30)

The quantity being approximated is M =
∫ b

a f (x) dx. Define the approximating for-
mulas Rj1 to be the composite Trapezoid Rule, using hj . Thus, Rj+1,1 is exactly Rj1 with
step size cut in half, as needed to apply extrapolation. Second, notice the overlapping of the
formulas. Some of the same function evaluations f (x) are needed in both Rj1 and Rj+1,1.
For example, we have

R11 = h1

2
(f (a) + f (b))

R21 = h2

2

(
f (a) + f (b) + 2f

(
a + b

2

))

= 1
2

R11 + h2f

(
a + b

2

)
.

We prove by induction (see Exercise 5) that for j = 2,3, . . ..

Rj1 = 1
2

Rj−1,1 + hj

2j−2∑

i=1

f (a + (2i − 1)hj ). (5.31)

Equation (5.31) gives an efficient way to calculate the composite Trapezoid Rule incre-
mentally. The second feature of Romberg Integration is extrapolation. Form the tableau

R11
R21 R22
R31 R32 R33
R41 R42 R43 R44

...
. . . (5.32)

where we define the second column Ri2 as the extrapolations of the first column:

R22 = 22R21 − R11

3

R32 = 22R31 − R21

3

R42 = 22R41 − R31

3
. (5.33)
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The third column consists of fourth-order approximations of M , so they can be extrapo-
lated as

R33 = 42R32 − R22

42 − 1

R43 = 42R42 − R32

42 − 1

R53 = 42R52 − R42

42 − 1
, (5.34)

and so forth. The general jkth entry is given by the formula (see Exercise 6)

Rjk = 4k−1Rj,k−1 − Rj−1,k−1

4k−1 − 1
. (5.35)

The tableau is a lower triangular matrix that extends infinitely down and across. The best
approximation for the definite integral M is Rjj , the bottom rightmost entry computed so
far, which is a 2j th-order approximation. The Romberg Integration calculation is just a
matter of writing formulas (5.31) and (5.35) in a loop.

Romberg Integration

R11 = (b − a)
f (a) + f (b)

2
for j = 2,3, . . .

hj = b − a

2j−1

Rj1 = 1
2

Rj−1,1 + hj

2j−2∑

i=1

f (a + (2i − 1)hj )

for k = 2, . . . , j

Rjk = 4k−1Rj,k−1 − Rj−1,k−1

4k−1 − 1
end

end

The Matlab code is a straightforward implementation of the preceding algorithm.

%Program 5.1 Romberg integration
% Computes approximation to definite integral
% Inputs: Matlab function specifying integrand f,
% a,b integration interval, n=number of rows
% Output: Romberg tableau r
function r=romberg(f,a,b,n)
h=(b-a)./(2.ˆ(0:n-1));
r(1,1)=(b-a)*(f(a)+f(b))/2;
for j=2:n
subtotal = 0;
for i=1:2ˆ(j-2)
subtotal = subtotal + f(a+(2*i-1)*h(j));

end
r(j,1) = r(j-1,1)/2+h(j)*subtotal;
for k=2:j
r(j,k)=(4ˆ(k-1)*r(j,k-1)-r(j-1,k-1))/(4ˆ(k-1)-1);

end
end
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! EXAMPLE 5.11 Apply Romberg Integration to approximate
∫ 2

1 ln x dx.

We use the Matlab built-in function log. Its function handle is designated by
@log. Running the foregoing code results in

>> romberg(@log,1,2,4)

ans =

0.34657359027997 0 0 0
0.37601934919407 0.38583460216543 0 0
0.38369950940944 0.38625956281457 0.38628789352451 0
0.38564390995210 0.38629204346631 0.38629420884310 0.38629430908625

Note the agreement of R43 and R44 in their first six decimal places. This is a sign of
convergence of the Romberg Method to the correct value of the definite integral. Compare
with the exact value 2ln 2 − 1 ≈ 0.38629436. "

Comparing the results of Example 5.11 with those of Example 5.8 shows a match
between the last entry in the second column of Romberg and the composite Simpson’s Rule
results. This is not a coincidence. In fact, just as the first column of Romberg is defined to be
successive composite trapezoidal rule entries, the second column is composite Simpson’s
entries. In other words, the extrapolation of the composite Trapezoid Rule is the composite
Simpson’s Rule. See Exercise 3.

A common stopping criterion for Romberg Integration is to compute new rows until
two successive diagonal entries Rjj differ by less than a preset error tolerance.

5.3 Exercises

1. Apply Romberg Integration to find R33 for the integrals.

(a)
∫ 1

0
x2 dx (b)

∫ π/2

0
cosx dx (c)

∫ 1

0
ex dx

2. Apply Romberg Integration to find R33 for the integrals.

(a)
∫ 1

0
xex dx (b)

∫ 1

0

dx

1 + x2 dx (c)
∫ π

0
x cosx dx

3. Show that the extrapolation of the composite Trapezoid Rules in R11 and R21 yields the
composite Simpson’s Rule (with step size h2) in R22.

4. Show that R33 of Romberg Integration can be expressed as Boole’s Rule (with step size h3),
defined in Exercise 5.2.13.

5. Prove formula (5.31).

6. Prove formula (5.35).

5.3 Computer Problems

1. Use Romberg Integration approximation R55 to approximate the definite integral. Compare
with the correct integral, and report the error.

(a)
∫ 4

0

x dx√
x2 + 9

(b)
∫ 1

0

x3 dx

x2 + 1
(c)

∫ 1

0
xex dx (d)

∫ 3

1
x2 ln x dx
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(e)
∫ π

0
x2 sin x dx (f )

∫ 3

2

x3 dx√
x4 − 1

(g)
∫ 2

√
3

0

dx√
x2 + 4

dx (h)
∫ 1

0

x dx√
x4 + 1

dx

2. Use Romberg Integration to approximate the definite integral. As a stopping criterion, continue
until two successive diagonal entries differ by less than 0.5 × 10−8.

(a)
∫ 1

0
ex2

dx (b)
∫ √

π

0
sin x2 dx (c)

∫ π

0
ecosx dx (d)

∫ 1

0
ln(x2 + 1) dx

(e)
∫ 1

0

x dx

2ex − e−x
(f )

∫ π

0
cosex dx (g)

∫ 1

0
xx dx (h)

∫ π/2

0
ln(cosx + sin x) dx

3. (a) Test the order of the second column of Romberg. If they are fourth-order approximations,
how should a log–log plot of the error versus h look? Carry this out for the integral in
Example 5.11. (b) Test the order of the third column of Romberg.

5.4 ADAPTIVE QUADRATURE

The approximate integration methods we have learned so far use equal step sizes. Smaller
step sizes improve accuracy, in general. A wildly varying function will require more steps,
and therefore more computing time, because of the smaller steps needed to keep track of
the variations.

Although we have error formulas for the composite methods, using them to directly
calculate the value of h that meets a given error tolerance is often difficult. The formulas
involve higher derivatives, which may be complicated and hard to estimate over the interval
in question. The higher derivative may not even be available if the function is known only
through a list of values.

A second problem with applying the composite formulas with equal step sizes is that
functions often vary wildly over some of their domain and vary more slowly through other
parts. (See Figure 5.5.) A step size that is sufficient to meet the error tolerance in the former
section may be overkill in the latter section.

Fortunately, there is a way to solve both problems. By using the information from the
integration error formulas, a criterion can be developed for deciding during the calculation
what step size is appropriate for a particular subinterval. The idea behind this method, called
Adaptive Quadrature, is closely related to the extrapolation ideas we have studied in this
chapter.

According to (5.21), the Trapezoid Rule S[a,b] on the interval [a,b] satisfies the formula

∫ b

a
f (x) dx = S[a,b] − h3 f ′′(c0)

12
(5.36)

for some a < c0 < b, where h = b − a. Setting c to be the midpoint of [a,b], we could
apply the Trapezoid Rule to both half-intervals and, by the same formula, get

∫ b

a
f (x) dx = S[a,c] − h3

8
f ′′(c1)

12
+ S[c,b] − h3

8
f ′′(c2)

12

= S[a,c] + S[c,b] − h3

4
f ′′(c3)

12
, (5.37)
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(a) (b)

Figure 5.5 Adaptive quadrature applied to f(x) = 1 + sin e3x. Tolerance is set

to TOL = 0.005. (a) Adaptive Trapezoid Rule requires 140 subintervals. (b) Adaptive

Simpson’s Rule requires 20 subintervals.

where c1 and c2 lie in [a,c] and [c,b], respectively. We have applied Theorem 5.1 to
consolidate the error terms. Subtracting (5.37) from (5.36) yields

S[a,b] − (S[a,c] + S[c,b]) = −h3

4
f ′′(c3)

12
+ h3 f ′′(c0)

12

≈ 3
4

h3 f ′′(c3)

12
, (5.38)

where the approximation f ′′(c3) ≈ f ′′(c0) has been made.
By subtracting the exact integral out of the equation, we have written the error (approx-

imately) in terms of things we can compute. For example, note that S[a,b] − (S[a,c] + S[c,b])
is approximately three times the size of the integration error of the formula S[a,c] + S[c,b]
on [a,b], from (5.37). Therefore, we can check whether the former expression is less than
3*TOL for some error tolerance as an approximate way of checking whether the latter
approximates the unknown exact integral within TOL.

If the criterion is not met, we can subdivide again. Now that there is a criterion for
accepting an approximation over a given subinterval, we can continue breaking intervals
in half and applying the criterion to the halves recursively. For each half, the required error
tolerance goes down by a factor of 2, while the error (for the Trapezoid Rule) should drop
by a factor of 23 = 8, so a sufficient number of halvings should allow the original tolerance
to be met with an adaptive composite approach.

Adaptive quadrature

To approximate
∫ b

a f (x) dx within tolerance TOL:

c = a + b

2
S[a,b] = (b − a)

f (a) + f (b)

2
if |S[a,b] − S[a,c] − S[c,b]| < 3 · TOL ·

(
b − a

borig − aorig

)

accept S[a,c] + S[c,b] as approximation over [a,b]
else

repeat above recursively for [a,c] and [c,b]
end
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The Matlab programming strategy works as follows: A list is established of subin-
tervals yet to be processed. The list originally consists of one interval, [a,b]. In general,
choose the last subinterval on the list and apply the criterion. If met, the approximation
of the integral over that subinterval is added to a running sum, and the interval is crossed
off the list. If unmet, the subinterval is replaced on the list by two subintervals, lengthening
the list by one, and we move to the end of the list and repeat. The following Matlab code
carries out this strategy:

%Program 5.2 Adaptive Quadrature
% Computes approximation to definite integral
% Inputs: Matlab function f, interval [a0,b0],
% error tolerance tol0
% Output: approximate definite integral
function int=adapquad(f,a0,b0,tol0)
int=0; n=1; a(1)=a0; b(1)=b0; tol(1)=tol0; app(1)=trap(f,a,b);
while n>0 % n is current position at end of the list

c=(a(n)+b(n))/2; oldapp=app(n);
app(n)=trap(f,a(n),c);app(n+1)=trap(f,c,b(n));
if abs(oldapp-(app(n)+app(n+1)))<3*tol(n)

int=int+app(n)+app(n+1); % success
n=n-1; % done with interval

else % divide into two intervals
b(n+1)=b(n); b(n)=c; % set up new intervals
a(n+1)=c;

tol(n)=tol(n)/2; tol(n+1)=tol(n);
n=n+1; % go to end of list, repeat
end

end

function s=trap(f,a,b)
s=(f(a)+f(b))*(b-a)/2;

! EXAMPLE 5.12 Use Adaptive Quadrature to approximate the integral

∫ 1

−1
(1 + sin e3x) dx.

Figure 5.5(a) shows the result of the Adaptive Quadrature algorithm for f (x), with
an error tolerance of 0.005. Although 140 intervals are required, only 11 of them lie in the
“calm’’ region [−1,0]. The approximate definite integral is 2.502 ± 0.005. In a second run,
we change the error tolerance to 0.5 × 10−4 and get 2.5008, reliable to four decimal places,
computed over 1316 subintervals. "

Of course, the Trapezoid Rule can be replaced by more sophisticated rules. For example,
let S[a,b] denote Simpson’s Rule (5.22) on the interval [a,b]:

∫ b

a
f (x) dx = S[a,b] − h5

90
f (iv)(c0). (5.39)

Applying Simpson’s Rule to two halves of [a,b] yields

∫ b

a
f (x) dx = S[a,c] − h5

32
f (iv)(c1)

90
+ S[c,b] − h5

32
f (iv)(c2)

90

= S[a,c] + S[c,b] − h5

16
f (iv)(c3)

90
, (5.40)
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where we have applied Theorem 5.1 to consolidate the error terms. Subtracting (5.40) from
(5.39) yields

S[a,b] − (S[a,c] + S[c,b]) = h5 f (iv)(c0)

90
− h5

16
f (iv)(c3)

90

≈ 15
16

h3 f (iv)(c3)

90
, (5.41)

where we make the approximation f (iv)(c3) ≈ f (iv)(c0).
Since S[a,b] − (S[a,c] + S[c,b]) is now 15 times the error of the approximation S[a,c] +

S[c,b] for the integral, we can make our new criterion

|S[a,b] − (S[a,c] + S[c,b])| < 15 ∗ TOL (5.42)

and proceed as before. It is traditional to replace the 15 by 10 in the criterion to make the
algorithm more conservative. Figure 5.5(b) shows an application of Adaptive Simpson’s
Quadrature to the same integral. The approximate integral is 2.500 when a tolerance of 0.005
is used, using 20 subintervals, a considerable savings over adaptive Trapezoid Rule Quadra-
ture. Decreasing the tolerance to 0.5 × 10−4 yields 2.5008, using just 58 subintervals.

5.4 Exercises

1. Apply Adaptive Quadrature by hand, using the Trapezoid Rule with tolerance TOL= 0.05 to
approximate the integrals. Find the approximation error.

(a)
∫ 1

0
x2 dx (b)

∫ π/2

0
cosx dx (c)

∫ 1

0
ex dx

2. Apply Adaptive Quadrature by hand, using Simpson’s Rule with tolerance TOL= 0.01 to
approximate the integrals. Find the approximation error.

(a)
∫ 1

0
xex dx (b)

∫ 1

0

dx

1 + x2 dx (c)
∫ π

0
x cosx dx

3. Develop an Adaptive Quadrature method for the Midpoint Rule (5.26). Begin by finding a
criterion for meeting the tolerance on subintervals.

4. Develop an Adaptive Quadrature method for rule (5.28).

5.4 Computer Problems

1. Use Adaptive Trapezoid Quadrature to approximate the definite integral within 0.5 × 10−8.
Report the answer with eight correct decimal places and the number of subintervals required.

(a)
∫ 4

0

x dx√
x2 + 9

(b)
∫ 1

0

x3 dx

x2 + 1
(c)

∫ 1

0
xex dx (d)

∫ 3

1
x2 ln x dx

(e)
∫ π

0
x2 sin x dx (f )

∫ 3

2

x3 dx√
x4 − 1

(g)
∫ 2

√
3

0

dx√
x2 + 4

dx (h)
∫ 1

0

x dx√
x4 + 1

dx

2. Modify the Matlab code for Adaptive Trapezoid Rule Quadrature to use Simpson’s Rule
instead, applying the criterion (5.42) with the 15 replaced by 10. Approximate the integral in
Example 5.12 within 0.005, and compare with Figure 5.5(b). How many subintervals were
required?
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3. Carry out the steps of Computer Problem 1 for adaptive Simpson’s Rule, developed in
Computer Problem 2.

4. Carry out the steps of Computer Problem 1 for the adaptive Midpoint Rule, developed in
Exercise 3.

5. Carry out the steps of Computer Problem 1 for the adaptive open Newton–Cotes Rule
developed in Exercise 4. Use criterion (5.42) with the 15 replaced by 10.

6. Use Adaptive Trapezoid Quadrature to approximate the definite integral within 0.5 × 10−8.

(a)
∫ 1

0
ex2

dx (b)
∫ √

π

0
sin x2 dx (c)

∫ π

0
ecosx dx (d)

∫ 1

0
ln(x2 + 1) dx

(e)
∫ 1

0

x dx

2ex − e−x
(f )

∫ π

0
cosex dx (g)

∫ 1

0
xx dx (h)

∫ π/2

0
ln(cosx + sin x) dx

7. Carry out the steps of Problem 6, using Adaptive Simpson’s Quadrature.

8. The probability within σ standard deviations of the mean of the normal distribution is

1√
2π

∫ σ

−σ
e−x2/2 dx.

Use Adaptive Simpson’s Quadrature to find, within eight correct decimal places, the
probability within (a) 1 (b) 2 (c) 3 standard deviations.

9. Write a Matlab function called myerf.m that uses Adaptive Simpson’s Rule to calculate the
value of

erf(x) = 2√
π

∫ x

0
e−s2

ds

within eight correct decimal places for arbitrary input x. Test your program for x = 1 and
x = 3 by comparing with Matlab’s function erf.

5.5 GAUSSIAN QUADRATURE

The degree of precision of a quadrature method is the degree for which all polynomial
functions are integrated by the method with no error. Newton–Cotes Methods of degree n

have degree of precision n (for n odd) and n + 1 (for n even). The Trapezoid Rule (Newton–
Cotes for n = 1) has degree of precision one. Simpson’s Rule (n = 2) is correct up to and
including third degree polynomials.

To achieve this degree of precision, the Newton–Cotes formulas use n + 1 function
evaluations, done at evenly spaced points. The question we ask is reminiscent of our discus-
sion in Chapter 3 about Chebyshev polynomials. Are the Newton–Cotes formulas optimal
for their degree of precision, or can more powerful formulas be developed? In particu-
lar, if the requirement that evaluation points be evenly spaced is relaxed, are there better
methods?

At least from the point of view of degree of precision, there are more powerful and
sophisticated methods. We pick out the most famous one to discuss in this section. Gaussian
Quadrature has degree of precision 2n + 1 when n + 1 points are used, double that of
Newton–Cotes. The evaluation points are not evenly spaced. Explaining how Gaussian



274 | CHAPTER 5 Numerical Differentiation and Integration

Quadrature works involves a short digression into orthogonal functions, which is not only
interesting in its own right, but the tip of an iceberg of numerical methods inspired by the
benefits of orthogonality.

DEFINITION 5.3 The set of nonzero functions {p0, . . . ,pn} on the interval [a,b] is orthogonal on [a,b] if
∫ b

a
pj (x)pk(x) dx =

{
0 j ̸= k

̸= 0 j = k. ❒

THEOREM 5.4 If {p0,p1, . . . ,pn} is an orthogonal set of polynomials on the interval [a,b], where deg
pi = i, then {p0,p1, . . . ,pn} is a basis for the vector space of degree at most n polynomials
on [a,b]. #

Proof. We must show that the polynomials span the vector space and are linearly inde-
pendent. An easy induction argument shows that any set of polynomials {p0,p1, . . . ,pn},
where deg pi = i, spans the space of polynomials of degree at most n. To show linear inde-
pendence, we will assume that there is a linear dependency

∑n
i=0 cipi(x) = 0 and show

that all ci must be zero, using the orthogonality assumption. For any 0 ≤ k ≤ n, since pk is
orthogonal to every polynomial but itself, we get

0 =
∫ b

a
pk

n∑

i=0

cipi(x) dx =
n∑

i=0

ci

∫ b

a
pkpi dx = ck

∫ b

a
p2

k dx. (5.43)

Therefore, ck = 0. ❒

The proof of the next theorem is omitted.

THEOREM 5.5 If {p0, . . . ,pn} is an orthogonal set of polynomials on [a,b] and if deg pi = i, then pi has
i distinct roots in the interval (a,b). #

! EXAMPLE 5.13 Find a set of three orthogonal polynomials on the interval [−1,1].
Guessing p0(x) = 1 and p1(x) = x is a good start, because

∫ 1

−1
1 · x dx = 0.

Trying p2(x) = x2 doesn’t quite work, since it lacks orthogonality with p0(x):
∫ 1

−1
p0(x)x2 dx = 2/3 ̸= 0.

Orthogonality In Chapter 4, we found that orthogonality of finite-dimensional

vectors was helpful in formulating and solving least squares problems. For quadrature, we

need orthogonality in infinite-dimensional spaces like the vector space of polynomials in one

variable. One basis is the monomial basis {1,x,x2, . . .}. However, a more useful basis is one

that is also an orthogonal set. For orthogonality on the interval [−1,1], the right choice is the

Legendre polynomials.
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Adjusting to p2(x) = x2 + c, we find that
∫ 1

−1
p0(x)(x2 + c) dx = 2/3 + 2c = 0,

as long as c = −1/3. Check that p1 and p2 are orthogonal. (See Exercise 7.) Therefore, the
set {1,x,x2 − 1/3} is an orthogonal set on [−1,1]. "

The three polynomials in Example 5.13 belong to a set discovered by Legendre.

! EXAMPLE 5.14 Show that the set of Legendre polynomials

pi(x) = 1
2i i!

di

dxi
[(x2 − 1)i]

for 0 ≤ i ≤ n is orthogonal on [−1,1].
Notice first that pi(x) is a degree i polynomial (as the ith derivative of a degree

2i polynomial). Second, notice that the ith derivative of (x2 − 1)j is divisible by (x2 − 1)

if i < j .
We want to show that if i < j , then the integral

∫ 1

−1
[(x2 − 1)i](i)[(x2 − 1)j ](j) dx

is zero. Integrating by parts with u = [(x2 − 1)i](i) and dv = [(x2 − 1)j ](j) dx yields

uv −
∫ 1

−1
v du = [(x2 − 1)i](i)[(x2 − 1)j ](j−1)|1−1

−
∫ 1

−1
[(x2 − 1)i](i+1)[(x2 − 1)j ](j−1) dx

= −
∫ 1

−1
[(x2 − 1)i](i+1)[(x2 − 1)j ](j−1) dx,

since [(x2 − 1)j ](j−1) is divisible by (x2 − 1).
After i + 1 repeated integration by parts, we are left with

(−1)i+1
∫ 1

−1
[(x2 − 1)i](2i+1)[(x2 − 1)j ](j−i−1) dx = 0,

because the (2i + 1)st derivative of (x2 − 1)i is zero. "

By Theorem 5.5, the nth Legendre polynomial has n roots x1, . . . ,xn in [−1,1].
Gaussian Quadrature of a function is simply a linear combination of function evalua-
tions at the Legendre roots. We achieve this by approximating the integral of the desired
function by the integral of the interpolating polynomial, whose nodes are the Legendre
roots.

Fix an n, and let Q(x) be the interpolating polynomial for the integrand f (x) at the
nodes x1, . . . ,xn. Using the Lagrange formulation, we can write

Q(x) =
n∑

i=1

Li(x)f (xi), where Li(x) = (x − x1) · · ·(x − xi) · · ·(x − xn)

(xi − x1) · · ·(xi − xi) · · ·(xi − xn)
.

Integrating both sides yields the following approximation for the integral:
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n roots xi coefficients ci

2 −√
1/3 = −0.57735026918963 1 = 1.00000000000000√
1/3 = 0.57735026918963 1 = 1.00000000000000

3 −√
3/5 = −0.77459666924148 5/9 = 0.55555555555555

0 = 0.00000000000000 8/9 = 0.88888888888888√
3/5 = 0.77459666924148 5/9 = 0.55555555555555

4 −
√

15+2
√

30
35 = −0.86113631159405 90−5

√
30

180 = 0.34785484513745

−
√

15−2
√

30
35 = −0.33998104358486 90+5

√
30

180 = 0.65214515486255√
15−2

√
30

35 = 0.33998104358486 90+5
√

30
180 = 0.65214515486255√

15+2
√

30
35 = 0.86113631159405 90−5

√
30

180 = 0.34785484513745

Table 5.1 Gaussian quadrature coefficients. The roots xi of the nth Legendre

polynomials, and the coefficients ci in (5.44).

Gaussian Quadrature
∫ 1

−1
f (x) dx ≈

n∑

i=1

cif (xi), (5.44)

where

ci =
∫ 1

−1
Li(x) dx, i = 1, . . . ,n.

The ci are tabulated to great accuracy. Values are given in Table 5.1 up to n = 4.

! EXAMPLE 5.15 Approximate
∫ 1

−1
e− x2

2 dx,

using Gaussian Quadrature.

The correct answer to 14 digits is 1.71124878378430. For the integrand f (x) =
e−x2/2, the n = 2 Gaussian Quadrature approximation is

∫ 1

−1
e− x2

2 dx ≈ c1f (x1) + c2f (x2)

= 1 · f (−
√

1/3) + 1 · f (
√

1/3) ≈ 1.69296344978123.

The n = 3 approximation is

5
9

f (−
√

3/5) + 8
9

f (0) + 5
9

f (
√

3/5) ≈ 1.71202024520191,

and the n = 4 approximation is

c1f (x1) + c2f (x2) + c3f (x3) + c4f (x4) ≈ 1.71122450459949.

This approximation, using four function evaluations, is much closer than the Romberg
approximation R33, which uses five evenly spaced function evaluations on [−1,1]:
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1.21306131942527 0 0
1.60653065971263 1.73768710647509 0
1.68576223244091 1.71217275668367 1.71047180003091 "

The secret of the accuracy of Gaussian Quadrature is revealed by the next theorem.

THEOREM 5.6 The Gaussian Quadrature Method, using the degree n Legendre polynomial on [−1,1], has
degree of precision 2n − 1. #

Proof. Let P (x) be a polynomial of degree at most 2n − 1. We must show it is integrated
exactly by Gaussian Quadrature.

Using long division of polynomials, we can express

P (x) = S(x)pn(x) + R(x), (5.45)

where the S(x) and R(x) are polynomials of degree less than n. Note that Gaussian
Quadrature will be exact on the polynomial R(x), since it is just integration of the interpo-
lating polynomial of degree n − 1, which is identical to R(x).

At the roots xi of the nth Legendre polynomial, P (xi) = R(xi), since pn(xi) = 0 for
all i. This implies that their Gaussian Quadrature approximations will be the same. But their
integrals are also identical: Integrating (5.45) gives

∫ 1

−1
P (x) dx =

∫ 1

−1
S(x)pn(x) dx +

∫ 1

−1
R(x) dx = 0 +

∫ 1

−1
R(x) dx,

since by Theorem 5.4, S(x) can be written as a linear combination of polynomials of degree
less than n, which are orthogonal to pn(x). Since Gaussian Quadrature is exact on R(x), it
must also be for P (x). ❒

To approximate integrals on a general interval [a,b], the problem needs to be translated
back to [−1,1]. Using the substitution t = (2x − a − b)/(b − a), we find it easy to check
that

∫ b

a
f (x) dx =

∫ 1

−1
f

(
(b − a)t + b + a

2

)
b − a

2
dt. (5.46)

We demonstrate with an example.

! EXAMPLE 5.16 Approximate the integral
∫ 2

1
ln x dx,

using Gaussian Quadrature.

From (5.46),
∫ 2

1
ln x dx =

∫ 1

−1
ln

(
t + 3

2

)
1
2

dt.

Now we can set f (t) = ln((t + 3)/2)/2 and use the standard roots and coefficients.
The result for n = 4 is 0.38629449693871, compared with the correct value 2ln 2 − 1 ≈
0.38629436111989. Again, this is more accurate than the Romberg Integration using four
points in Example 5.11. "
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5.5 Exercises

1. Approximate the integrals, using n = 2 Gaussian Quadrature. Compare with the correct value,
and give the approximation error.

(a)
∫ 1

−1
(x3 + 2x) dx (b)

∫ 1

−1
x4 dx (c)

∫ 1

−1
ex dx (d)

∫ 1

−1
cosπx dx

2. Approximate the integrals in Exercise 1, using n = 3 Gaussian Quadrature, and give the
error.

3. Approximate the integrals in Exercise 1, using n = 4 Gaussian Quadrature, and give the error.

4. Change variables, using the substitution (5.46) to rewrite as an integral over [−1,1].

(a)
∫ 4

0

x dx√
x2 + 9

(b)
∫ 1

0

x3 dx

x2 + 1
(c)

∫ 1

0
xex dx (d)

∫ 3

1
x2 ln x dx

5. Approximate the integrals in Exercise 4, using n = 3 Gaussian Quadrature.

6. Approximate the integrals, using n = 4 Gaussian Quadrature.

(a)
∫ 1

0
(x3 + 2x) dx (b)

∫ 4

1
ln x dx (c)

∫ 2

−1
x5 dx (d)

∫ 3

−3
e− x2

2 dx

7. Show that the Legendre polynomials p1(x) = x and p2(x) = x2 − 1/3 are orthogonal on
[−1,1].

8. Find the Legendre polynomials up to degree 3 and compare with Example 5.13.

9. Verify the coefficients ci and xi in Table 5.1 for degree n = 3.

10. Verify the coefficients ci and xi in Table 5.1 for degree n = 4.

5 Motion Control in Computer-AidedModeling
Computer-aided modeling and manufacturing requires precise control of spatial position
along a prescribed motion path. We will illustrate the use of Adaptive Quadrature to solve
a fundamental piece of the problem: equipartition, or the division of an arbitrary path into
equal-length subpaths.

In numerical machining problems, it is preferable to maintain constant speed along the
path. During each second, progress should be made along an equal length of the machine–
material interface. In other motion planning applications, including computer animation,
more complicated progress curves may be required: A hand reaching for a doorknob might
begin and end with low velocity and have higher velocity in between. Robotics and virtual
reality applications require the construction of parametrized curves and surfaces to be
navigated. Building a table of small equal increments in path distance is often a necessary
first step.

Assume that a parametric path P = {x(t),y(t)|0 ≤ t ≤ 1} is given. Figure 5.6 shows
the example path

P =
{

x(t) = 0.5 + 0.3t + 3.9t2 − 4.7t3

y(t) = 1.5 + 0.3t + 0.9t2 − 2.7t3 ,
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2

t = 0

t = 1/4 t = 1/2

t = 3/4

t = 1

y

x

Figure 5.6 Parametrized curve given by Bézier spline. Typically, equal intervals of

the parameter t do not divide the path into segments of equal length.

which is the Bézier curve defined by the four points (0.5,1.5), (0.6,1.6), (2,2), (0,0). (See
Section 3.5.) Points defined by evenly spaced parameter values t = 0,1/4,1/2,3/4,1 are
shown. Note that even spacing in parameter does not imply even spacing in arc length. Your
goal is to apply quadrature methods to divide this path into n equal lengths.

Recall from calculus that the arc length of the path from t1 to t2 is

∫ t2

t1

√
x′(t)2 + y′(t)2 dt.

Only rarely does the integral yield a closed-form expression, and normally an Adaptive
Quadrature technique is used to control the parametrization of the path.

Suggested activities:

1. Write a Matlab function that uses Adaptive Quadrature to compute the arc length from
t = 0 to t = T for a given T ≤ 1.

2. Write a program that, for any input s between 0 and 1, finds the parameter t∗(s) that is s

of the way along the curve. In other words, the arc length from t = 0 to t = t∗(s) divided
by the arc length from t = 0 to t = 1 should be equal to s. Use the Bisection Method to
locate the point t∗(s) to three correct decimal places. What function is being set to zero?
What bracketing interval should be used to start the Bisection Method?

3. Equipartition the path of Figure 5.6 into n subpaths of equal length, for n = 4 and n = 20.
Plot analogues of Figure 5.6, showing the equipartitions. If your computations are too slow,
consider speeding up the Adaptive Quadrature with Simpson’s Rule, as suggested in
Computer Problem 5.4.2.

4. Replace the Bisection Method in Step 2 with Newton’s Method, and repeat Steps 2 and 3.
What is the derivative needed? What is a good choice for the initial guess? Is computation
time decreased by this replacement?

5. Appendix A demonstrates animation commands available in Matlab. For example, the
commands

set(gca,’XLim’,[-2 2],’YLim’,[-2 2],’Drawmode’,’fast’,...
’Visible’,’on’);

cla
axis square
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ball=line(’color’,’r’,’Marker’,’o’,’MarkerSize’,10,...
’LineWidth’,2, ’erase’,’xor’,’xdata’,[],’ydata’,[]);

define an object “ball’’ that is assigned position (x,y) by the following commands:

set(ball,’xdata’,x,’ydata’,y); drawnow;pause(0.01)

Putting this line in a loop that changes x and y causes the ball to move along the path in the
Matlab figure window.
Use Matlab’s animation commands to demonstrate traveling along the path, first at the
original parameter 0 ≤ t ≤ 1 speed and then at the (constant) speed given by t∗(s) for
0 ≤ s ≤ 1.

6. Experiment with equipartitioning a path of your choice. Build a design, initial, etc. of your
choice out of Bézier curves, partition it into equal arc length segments, and animate as in
Step 5.

7. Write a program that traverses the path P according to an arbitrary progress curve
C(s),0 ≤ s ≤ 1, with C(0) = 0 and C(1) = 1. The object is to move along the curve C in
such a way that the proportion C(s) of the path’s total arc length is traversed between 0
and s. For example, constant speed along the path would be represented by C(s) = s. Try
progress curves C(s) = s1/3,C(s) = s2,C(s) = sin sπ/2, or
C(s) = 1/2 + (1/2)sin(2s − 1)π/2, for example.

Consult Wang et al. [2003] and Guenter and Parent [1990] for more details and appli-
cations of reparametrization of curves in the plane and space.

Software and Further Reading

The closed and open Newton–Cotes Methods are basic tools for approximating definite
integrals. Romberg Integration is an accelerated version. Most commercial software imple-
mentations involve Adaptive Quadrature in some form. Classic texts on numerical differ-
entiation and integration include Davis and Rabinowitz [1984], Stroud and Secrest [1966],
Krommer and Ueberhuber [1998], Engels [1980], and Evans [1993].

Many effective quadrature techniques are implemented by Fortran subroutines in the
public–domain software package Quadpack (Piessens et al. [1983]), available in Netlib
(www.netlib.org/quadpack). The Gauss–Kronrod Method is an adaptive method
based on Gaussian Quadrature. Quadpack provides nonadaptive and adaptive methods QNG
and QAG, respectively, the latter based on Gauss–Kronrod. The programs in both IMSL
and NAG are based on the Quadpack subroutines. The quadrature class in IMSL is the
java implementation, for example.

Matlab’s quad command is an implementation of adaptive composite Simpson’s
Quadrature, and dblquad handles double integrals. Matlab’s Symbolic Toolbox has
commands diff and int for symbolic differentiation and integration, respectively.

Integration of functions of several variables can be done by extending the one-
dimensional methods in a straightforward way, as long as the integration region is simple;
for example, see Davis and Rabinowitz [1984] and Haber [1970]. For some complicated
regions, Monte Carlo integration is indicated. Monte Carlo is easier to implement, but
converges more slowly in general. These issues are discussed further in Chapter 9.

www.netlib.org/quadpack


C H A P T E R

6
Ordinary Differential
Equations
By November 7, 1940, the Tacoma Narrows Bridge,
the third longest suspension bridge in the world, had
become famous for its pronounced vertical oscillations
during high winds. Around 11 A.M. on that day, it fell into
Puget Sound.

But the motion which preceded the collapse was
primarily torsional, twisting from side to side. This
motion, which had been seldom seen prior to that day,
continued for 45 minutes before the collapse.The twist-
ing motion eventually became large enough to snap a
support cable, and the bridge disintegrated rapidly.

The debate among architects and engineers about
the reason for the collapse has continued unabated
since that time. High winds caused vertical oscillation
for aerodynamic reasons, with the bridge acting like
an airplane wing, but the bridge’s integrity was not in
danger from strictly vertical movements. The mystery
is how the torsional oscillation arose.

Reality Check 6 on page 322 proposes
a differential equations model that explores possible
mechanisms for the torsional oscillation.

Adifferential equation is an equation involving derivatives. In the form

y′(t) = f (t,y(t)),

a first-order differential equation expresses the rate of change of a quantity y in terms of the
present time and the current value of the quantity. Differential equations are used to model,
understand, and predict systems that change with time.

A wide majority of interesting equations have no closed-form solution, which leaves
approximations as the only recourse. This chapter covers the approximate solution of ordi-
nary differential equations (ODE) by computational methods. After introductory ideas on
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differential equations, Euler’s Method is described and analyzed in detail. Although too
simple to be heavily used in applications, Euler’s Method is crucial, since most of the
important issues in the subject can be easily understood in its very simple context.

More sophisticated methods follow, and interesting examples of systems of differential
equations are explored. Variable step-size protocols are important for efficient solution, and
special methods are necessary for stiff problems. The chapter ends with an introduction to
implicit and multistep methods.

6.1 INITIAL VALUE PROBLEMS

Many physical laws that have been successful in modeling nature are expressed in the
form of differential equations. Sir Isaac Newton wrote his laws of motion in that form:
F = ma is an equation connecting the composite force acting on an object and the object’s
acceleration, which is the second derivative of the position. In fact, Newton’s postulation
of his laws, together with development of the infrastructure needed to write them down
(calculus), constituted one of the most important revolutions in the history of science.

A simple model known as the logistic equation models the rate of change of a popu-
lation as

y′ = cy(1 − y), (6.1)

where y′ denotes the derivative with respect to time t . If we think of y as representing the
population as a proportion of the carrying capacity of the animal’s habitat, then we expect
y to grow to near that capacity and then level off. The differential equation (6.1) shows the
rate of change y′ as being proportional to the product of the current population y and the
“remaining capacity’’1 − y. Therefore, the rate of change is small both when the population
is small (y near 0) and also when the population nears capacity (y near 1).

The ordinary differential equation (6.1) is typical in that it has infinitely many solutions
y(t). By specifying an initial condition, we can identify which of the infinite family we are
interested in. (We will get more precise about existence and uniqueness in the next section.)
An initial value problem for a first-order ordinary differential equation is the equation
together with an initial condition on a specific interval a ≤ t ≤ b:⎧

⎨

⎩

y′ = f (t,y)

y(a) = ya

t in [a,b]
. (6.2)

It will be helpful to think of a differential equation as a field of slopes, as in Figure 6.1(a).
Equation (6.1) can be viewed as specifying a slope for any current values of (t,y). If we use
an arrow to plot the slope at each point in the plane, we get the slope field, or direction field,
of the differential equation. The equation is autonomous if the right-hand side f (t,y) is

independent of t . This is apparent in Figure 6.1.
When an initial condition is specified on a slope field, one out of the infinite family of

solutions can be identified. In Figure 6.1(b), two different solutions are plotted starting at
two different initial values, y(0) = 0.2 and y(0) = 1.4, respectively.

Equation (6.1) has a solution that can be written in terms of elementary functions. We
check, by differentiating and substituting, that as long as the initial condition y0 ̸= 1,

y(t) = 1 − 1
1 + y0

1−y0
ect

(6.3)

is the solution of the initial value problem
⎧
⎨

⎩

y′ = cy(1 − y)

y(0) = y0
t in [0,T ]

. (6.4)
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Figure 6.1 The logistic differential equation. (a) The slope field varies in the

y-direction but is constant for all t, the definition of an autonomous equation. (b) Two

solutions of the differential equation.

The solution follows the arrows in Figure 6.1(b). If y0 = 1, the solution is y(t) = 1, which
is checked the same way.

6.1.1 Euler’s Method

The logistic equation had an explicit, fairly simple solution. A much more common sce-
nario is a differential equation with no explicit solution formula. The geometry of Figure 6.1
suggests an alternative approach: to computationally “solve’’ the differential equation by
following arrows. Start at the initial condition (t0,y0), and follow the direction specified
there. After moving a short distance, re-evaluate the slope at the new point (t1,y1), move
farther according to the new slope, and repeat the process. There will be some error asso-
ciated with the process, since, in between evaluations of the slope, we will not be moving
along a completely accurate slope. But if the slopes change slowly, we may get a fairly
good approximation to the solution of the initial value problem.

! EXAMPLE 6.1 Draw the slope field of the initial value problem
⎧
⎨

⎩

y′ = ty + t3

y(0) = y0
t in [0,1]

. (6.5)

Figure 6.2(a) shows the slope field. For each point (t,y) in the plane, an arrow is
plotted with slope equal to ty + y3. This initial value problem is nonautonomous because t

appears explicitly in the right-hand side of the equation. It is also clear from the slope field,
which varies according to both t and y. The exact solution y(t) = 3et2/2 − t2 − 2 is shown
for initial condition y(0) = 1. See Example 6.6 for derivation of the explicit solution. "

Figure 6.2(b) shows an implementation of the method of computationally following
the slope field, which is known as Euler’s Method. We begin with a grid of n + 1 points

t0 < t1 < t2 < · · · < tn
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Figure 6.2 Solution of the initial value problem (6.5). (a) Slope field for a nonau-

tonomous equation varies with t. Solution satisfying y(0) = 1 is shown.

(b) Application of Euler’s Method to the equation, with step size h = 0.2.

along the t-axis with equal step size h. In Figure 6.2(b), the t values were selected to be

t0 = 0.0 t1 = 0.2 t2 = 0.4 t3 = 0.6 t4 = 0.8 t5 = 1.0 (6.6)

with step size h = 0.2.
Begin with w0 = y0. Following the slope field at each ti yields the approximation

wi+1 = wi + hf (ti ,wi)

at ti+1, since f (ti ,wi) represents the slope of the solution. Note that the change in y is
the horizontal distance h multiplied by the slope. As shown in Figure 6.2(b), each wi is an
approximation to the solution at ti .

The formula for this method can be expressed as follows:

Euler’s Method

w0 = y0

wi+1 = wi + hf (ti ,wi). (6.7)

! EXAMPLE 6.2 Apply Euler’s Method to initial value problem (6.5), with initial condition y0 = 1.

The right-hand side of the differential equation is f (t,y) = ty + t3. Therefore,
Euler’s Method will be the iteration

w0 = 1

wi+1 = wi + h(tiwi + t3
i ). (6.8)

Using the grid (6.6) with step size h = 0.2, we calculate the approximate solution
iteratively from (6.8). The values wi given by Euler’s Method and plotted in Figure 6.2(b)
are compared with the true values yi in the following table:
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step ti wi yi ei

0 0.0 1.0000 1.0000 0.0000
1 0.2 1.0000 1.0206 0.0206
2 0.4 1.0416 1.0899 0.0483
3 0.6 1.1377 1.2317 0.0939
4 0.8 1.3175 1.4914 0.1739
5 1.0 1.6306 1.9462 0.3155

The table also shows the error ei = |yi − wi | at each step. The error tends to grow, from zero
at the initial condition to its largest value at the end of the interval, although the maximum
error will not always be found at the end.

Applying Euler’s Method with step size h = 0.1 causes the error to decrease, as is
apparent from Figure 6.3(a). Again using (6.8), we calculate the following values:

step ti wi yi ei

0 0.0 1.0000 1.0000 0.0000
1 0.1 1.0000 1.0050 0.0050
2 0.2 1.0101 1.0206 0.0105
3 0.3 1.0311 1.0481 0.0170
4 0.4 1.0647 1.0899 0.0251
5 0.5 1.1137 1.1494 0.0357
6 0.6 1.1819 1.2317 0.0497
7 0.7 1.2744 1.3429 0.0684
8 0.8 1.3979 1.4914 0.0934
9 0.9 1.5610 1.6879 0.1269

10 1.0 1.7744 1.9462 0.1718

Compare the error e10 for the h = 0.1 calculation with the error e5 for the h = 0.2 cal-
culation. Note that cutting the step size h in half results in cutting the error at t = 1.0
approximately in half. "

1

1
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t

y

(a)

1

1

2

t

y

(b)

Figure 6.3 Euler’s Method applied to IVP (6.5). The arrows show the Euler

steps, exactly as in Figure 6.2, except for the step size. (a) Ten steps of size h = 0.1

(b) Twenty steps of size h = 0.05.
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Euler’s Method is implemented in the Matlab code that follows, which has been writ-
ten in somewhat modular form to highlight the three individual components. The plotting
program calls a subprogram to execute each Euler step, which in turn calls the function
containing the right-hand side f of the differential equation. In this form, it will be easy
later to trade both the right-hand side for another differential equation and the Euler Method
for another more sophisticated method. Here is the code:

%Program 6.1 Euler’s Method for Solving Initial Value Problems
%Use with ydot.m to evaluate rhs of differential equation
% Input: interval inter, initial value y0, number of steps n
% Output: time steps t, solution y
% Example usage: euler([0 1],1,10);
function [t,y]=euler(inter,y0,n)
t(1)=inter(1); y(1)=y0;
h=(inter(2)-inter(1))/n;
for i=1:n
t(i+1)=t(i)+h;
y(i+1)=eulerstep(t(i),y(i),h);

end
plot(t,y)

function y=eulerstep(t,y,h)
%one step of Euler’s Method
%Input: current time t, current value y, stepsize h
%Output: approximate solution value at time t+h
y=y+h*ydot(t,y);

function z=ydot(t,y)
%right-hand side of differential equation
z=t*y+tˆ3;

Comparing the Euler’s Method approximation for (6.5) with the exact solution at t = 1
gives us the following table, extending our previous results for n = 5 and 10:

steps n step size h error at t = 1
5 0.20000 0.3155

10 0.10000 0.1718
20 0.05000 0.0899
40 0.02500 0.0460
80 0.01250 0.0233

160 0.00625 0.0117
320 0.00312 0.0059
640 0.00156 0.0029

Two facts are evident from the table and Figures 6.3 and 6.4. First, the error is nonzero.
Since Euler’s Method takes noninfinitesimal steps, the slope changes along the step and the
approximation does not lie exactly on the solution curve. Second, the error decreases as
the step size is decreased, as can also be seen in Figure 6.3. It appears from the table that
the error is proportional to h; this fact will be confirmed in the next section.

! EXAMPLE 6.3 Find the Euler’s Method formula for the following initial value problem:
⎧
⎨

⎩

y′ = cy

y(0) = y0
t in [0,1]

. (6.9)
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Figure 6.4 Error as a function of step size for Euler’s Method. The difference

between the approximate solution of (6.5) and the correct solution at t = 1 has slope 1

on a log–log plot and so is proportional to the step size h, for small h.

For f (t,y) = cy where c is a constant, Euler’s Method gives

w0 = y0

wi+1 = wi + hcwi = (1 + hc)wi for i = 1,2,3 . . . . "

The exact solution of the equation y′ = cy can be found by using the method of
separation of variables. Assuming that y ̸= 0, divide both sides by y, separate variables,
and integrate, as follows:

dy

y
= c dt

ln |y| = ct + k.

|y| = ect+k = ekect

The initial condition y(0) = y0 implies y = y0ect .
In this simple case, we can show that Euler’s Method converges to the correct solution

as the number of steps n → ∞. Note that

wi = (1 + hc)wi−1 = (1 + hc)2wi−2 = ·· · = (1 + hc)iw0.

For a fixed t , set the step size h = t/n for an integer n. Then the approximate value at t is

wn = (1 + hc)ny0

=
(

1 + ct

n

)n

y0.

The classical formula says that

lim
n→∞

(
1 + ct

n

)n

= ect ,

which shows that, as n → ∞, Euler’s Method will converge to the correct value.

6.1.2 Existence, uniqueness, and continuity for solutions

This section provides some theoretical background for computational initial value problem
methods. Before we start out to compute a solution to a problem, it is helpful to know that
(1) the solution exists and (2) there is only one solution, so that the algorithm is not confused
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about which one to calculate. Under the right circumstances, initial value problems have
exactly one solution.

DEFINITION 6.1 A function f (t,y) is Lipschitz continuous in the variable y on the rectangle S = [a,b] ×
[α,β] if there exists a constant L (called the Lipschitz constant) satisfying

|f (t,y1) − f (t,y2)| ≤ L|y1 − y2|

for each (t,y1), (t,y2) in S. ❒

A function that is Lipschitz continuous in y is continuous in y, but not necessarily
differentiable.

! EXAMPLE 6.4 Find the Lipschitz constant for the right-hand side f (t,y) = ty + t3 of (6.5).

The function f (t,y) = ty + t3 is Lipschitz continuous in the variable y on the set
0 ≤ t ≤ 1,−∞ < y < ∞. Check that

|f (t,y1) − f (t,y2)| = |ty1 − ty2| ≤ |t ||y1 − y2| ≤ |y1 − y2| (6.10)

on the set. The Lipschitz constant is L = 1. "

Although Definition 6.1 specifies the set S to be a rectangle, more generally S can be
a convex set, one that contains the line segment connecting any two points in the set. If the
function f is continuously differentiable in the variable y, the maximum absolute value of
the partial derivative ∂f /∂y is a Lipschitz constant. According to the Mean Value Theorem,
for each fixed t , there is a c between y1 and y2 such that

f (t,y1) − f (t,y2)

y1 − y2
= ∂f

∂y
(t,c).

Therefore, L can be taken to be the maximum of
∣∣∣∣
∂f

∂y
(t,c)

∣∣∣∣

on the set.
The Lipschitz continuity hypothesis guarantees the existence and uniqueness of solu-

tions of initial value problems. We refer to Birkhoff and Rota [1989] for a proof of the
following theorem:

THEOREM 6.2 Assume that f (t,y) is Lipschitz continuous in the variable y on the set [a,b] × [α,β] and
that α < ya < β. Then there exists c between a and b such that the initial value problem

⎧
⎨

⎩

y′ = f (t,y)

y(a) = ya

t in [a,c]
(6.11)

has exactly one solution y(t). Moreover, if f is Lipschitz on [a,b] × (−∞,∞), then there
exists exactly one solution on [a,b]. #

A careful reading of Theorem 6.2 is important, especially if the goal is to calculate the
solution numerically. The fact that the initial value problem satisfies a Lipschitz condition
on [a,b] × [α,β] containing the initial condition does not guarantee a solution for t in the
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entire interval [a,b]. The simple reason is that the solution may wander outside the y range
[α,β] for which the Lipschitz constant is valid. The best that can be said is that the solution
exists on some shorter interval [a,c]. This point is illustrated by the following example:

! EXAMPLE 6.5 On which intervals [0,c] does the initial value problem have a unique solution?
⎧
⎨

⎩

y′ = y2

y(0) = 1
t in [0,2].

(6.12)

The partial derivative of f with respect to y is 2y. The Lipschitz constant
max |2y| = 20 is valid on the set 0 ≤ t ≤ 2,−10 ≤ y ≤ 10. Theorem 6.2 guarantees a solu-
tion starting at t = 0 and existing on some interval [a,c] for c > 0, but a solution is not
guaranteed on the entire interval [0,2].

In fact, the unique solution of the differential equation (6.12) is y(t) = 1/(1 − t),
which can be found by separation of variables. This solution goes to infinity as t

approaches 1. In other words, the solution exists on the interval 0 ≤ t ≤ c for any 0 < c < 1,
but not for any larger c. This example explains the role of c in Theorem 6.2: The Lipschitz
constant 20 is valid for |y| ≤ 10, but the solution y exceeds 10 before t reaches 2. "

Theorem 6.3 is the basic fact about stability (error amplification) for ordinary differ-
ential equations. If a Lipschitz constant exists for the right-hand side of the differential
equation, then the solution at a later time is a Lipschitz function of the initial value, with
a new Lipschitz constant that is exponential in the original one. This is a version of the
Gronwall inequality.

THEOREM 6.3 Assume that f (t,y) is Lipschitz in the variable y on the set S = [a,b] × [α,β]. If Y (t) and
Z(t) are solutions in S of the differential equation

y′ = f (t,y)

with initial conditions Y (a) and Z(a) respectively, then

|Y (t) − Z(t)| ≤ eL(t−a)|Y (a) − Z(a)|. (6.13)

#

Proof. If Y (a) = Z(a), then Y (t) = Z(t) by uniqueness of solutions, and (6.13) is
trivially satisfied. We may assume that Y (a) ̸= Z(a), in which case Y (t) ̸= Z(t) for all t in
the interval, to avoid contradicting uniqueness.

Define u(t) = Y (t) − Z(t). Since u(t) is either strictly positive or strictly negative, and
because (6.13) depends only on |u|, we may assume that u > 0. Then u(a) = Y (a) − Z(a),

Conditioning Error magnification was discussed in Chapters 1 and 2 as a way to

quantify the effects of small input changes on the solution. The analogue of that question

for initial value problems is given a precise answer by Theorem 6.3. When initial condition

(input data) Y (a) is changed to Z(a), the greatest possible change in output t time units later,

Y (t) − Z(t), is exponential in t and linear in the initial condition difference. The latter implies

that we can talk of a “condition number’’ equal to eL(t−a) for a fixed time t .
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and the derivative is u′(t) = Y ′(t) − Z′(t) = f (t,Y (t)) − f (t,Z(t)). The Lipschitz con-
dition implies that

u′ = |f (t,Y ) − f (t,Z)| ≤ L|Y (t) − Z(t)| = L|u(t)| = Lu(t),

and therefore (ln u)′ = u′/u ≤ L. By the Mean Value Theorem,

ln u(t) − ln u(a)

t − a
≤ L,

which simplifies to

ln
u(t)

u(a)
≤ L(t − a)

u(t) ≤ u(a)eL(t−a).

This is the desired result. ❒

Returning to Example 6.4, Theorem 6.3 implies that solutions Y (t) and Z(t), starting
at different initial values, must not grow apart any faster than a multiplicative factor of et

for 0 ≤ t ≤ 1. In fact, the solution at initial value Y0 is Y (t) = (2 + Y0)et2/2 − t2 − 2, and
so the difference between two solutions is

|Y (t) − Z(t)| ≤ |(2 + Y0)et2/2 − t2 − 2 − ((2 + Z0)et2/2 − t2 − 2)|
≤ |Y0 − Z0|et2/2, (6.14)

which is less than |Y0 − Z0|et for 0 ≤ t ≤ 1, as prescribed by Theorem 6.3.

6.1.3 First-order linear equations

A special class of ordinary differential equations that can be readily solved provides a handy
set of illustrative examples. They are the first-order equations whose right-hand sides are
linear in the y variable. Consider the initial value problem

⎧
⎨

⎩

y′ = g(t)y + h(t)

y(a) = ya

t in [a,b]
. (6.15)

First note that if g(t) is continuous on [a,b], a unique solution exists by Theorem 6.2, using
L = max[a,b] g(t) as the Lipschitz constant. The solution is found by a trick, multiplying the
equation through by an “integrating factor.’’

The integrating factor is e−
∫

g(t) dt. Multiplying both sides by it yields

(y′ − g(t)y)e−
∫

g(t) dt = e−
∫

g(t) dth(t)
(
ye−

∫
g(t) dt

)′ = e−
∫

g(t) dth(t)

ye−
∫

g(t) dt =
∫

e−
∫

g(t) dth(t) dt,

which can be solved as

y(t) = e
∫

g(t) dt

∫
e−

∫
g(t) dth(t) dt. (6.16)

If the integrating factor can be expressed simply, this method allows an explicit solution of
the first-order linear equation (6.15).
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! EXAMPLE 6.6 Solve the first-order linear differential equation
{

y′ = ty + t3

y(0) = y0
. (6.17)

The integrating factor is

e−
∫

g(t) dt = e− t2
2 .

According to (6.16), the solution is

y(t) = e
t2
2

∫
e− t2

2 t3 dt

= e
t2
2

∫
e−u(2u) du

= 2e
t2
2

[
− t2

2
e− t2

2 − e− t2
2 + C

]

= −t2 − 2 + 2Ce
t2
2 ,

where the substitution u = t2/2 was made. Solving for the integration constant C yields
y0 = −2 + 2C, so C = (2 + y0)/2. Therefore,

y(t) = (2 + y0)e
t2
2 − t2 − 2. "

6.1 Exercises

1. Show that the function y(t) = t sin t is a solution of the differential equations
(a) y + t2 cos t = ty′ (b) y′′ = 2cos t − y (c) t(y′′ + y) = 2y′ − 2sin t .

2. Show that the function y(t) = esin t is a solution of the initial value problems
(a) y′ = y cos t,y(0) = 1 (b) y′′ = (cos t)y′ − (sin t)y,y(0) = 1,y′(0) = 1
(c) y′′ = y(1 − ln y − (ln y)2),y(π) = 1,y′(π) = −1.

3. Use separation of variables to find solutions of the IVP given by y(0) = 1 and the following
differential equations:

(a) y′ = t (b) y′ = t2y (c) y′ = 2(t + 1)y

(d) y′ = 5t4y (e) y′ = 1/y2 (f ) y′ = t3/y2

4. Find the solutions of the IVP given by y(0) = 0 and the following first-order linear differential
equations:

(a) y′ = t + y (b) y′ = t − y (c) y′ = 4t − 2y

5. Apply Euler’s Method with step size h = 1/4 to the IVPs in Exercise 3 on the interval
[0,1]. List the wi, i = 0, . . . ,4, and find the error at t = 1 by comparing with the correct
solution.

6. Apply Euler’s Method with step size h = 1/4 to the IVPs in Exercise 4 on the interval [0,1].
Find the error at t = 1 by comparing with the correct solution.
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7. (a) Show that y = tan(t + c) is a solution of the differential equation y′ = 1 + y2 for each c.
(b) For each real number y0, find c in the interval (−π/2,π/2) such that the initial value
problem y′ = 1 + y2,y(0) = y0 has a solution y = tan(t + c).

8. (a) Show that y = tanh(t + c) is a solution of the differential equation y′ = 1 − y2 for each c.
(b) For each real number y0 in the interval (−1,1), find c such that the initial value problem
y′ = 1 − y2,y(0) = y0 has a solution y = tanh(t + c).

9. For which of these initial value problems on [0,1] does Theorem 6.2 guarantee a unique
solution? Find the Lipschitz constants if they exist (a) y′ = t (b) y′ = y (c) y′ = −y

(d) y′ = −y3.

10. Sketch the slope field of the differential equations in Exercise 9, and draw rough
approximations to the solutions, starting at the initial conditions y(0) = 1,y(0) = 0, and
y(0) = −1.

11. Find the solutions of the initial value problems in Exercise 9. For each equation, use the
Lipschitz constants from Exercise 9, and verify, if possible, the inequality of Theorem 6.3 for
the pair of solutions with initial conditions y(0) = 0 and y(0) = 1.

12. (a) Show that if a ̸= 0, the solution of the initial value problem y′ = ay + b,y(0) = y0 is
y(t) = (b/a)(eat − 1) + y0eat . (b) Verify the inequality of Theorem 6.3 for solutions
y(t),z(t) with initial values y0 and z0, respectively.

13. Use separation of variables to solve the initial value problem y′ = y2,y(0) = 1.

14. Find the solution of the initial value problem y′ = ty2 with y(0) = 1. What is the largest
interval [0,b] for which the solution exists?

15. Consider the initial value problem y′ = sin y, y(a) = ya on a ≤ t ≤ b.
(a) On what subinterval of [a,b] does Theorem 6.2 guarantee a unique solution?
(b) Show that y(t) = 2arctan(et−a tan(ya/2)) + 2π [(ya + π)/2π ] is the solution of the initial
value problem, where [ ] denotes the greatest integer function.

16. Consider the initial value problem y′ = sinh y, y(a) = ya on a ≤ t ≤ b.
(a) On what subinterval of [a,b] does Theorem 6.2 guarantee a unique solution?
(b) Show that y(t) = 2 arctanh(et−a tanh(ya/2)) is a solution of the initial value problem.
(c) On what interval [a,c) does the solution exist?

6.1 Computer Problems

1. Apply Euler’s Method with step size h = 0.1 on [0,1] to the initial value problems in
Exercise 3. Print a table of the t values, Euler approximations, and error (difference from exact
solution) at each step.

2. Plot the Euler’s Method approximate solutions for the IVPs in Exercise 3 on [0,1] for step
sizes h = 0.1,0.05, and 0.025, along with the exact solution.

3. Plot the Euler’s Method approximate solutions for the IVPs in Exercise 4 on [0,1] for step
sizes h = 0.1,0.05, and 0.025, along with the exact solution.

4. For the IVPs in Exercise 3, make a log–log plot of the error of Euler’s Method at t = 1 as a
function of h = 0.1 × 2−k for 0 ≤ k ≤ 5. Use the Matlab loglog command as in
Figure 6.4.
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5. For the IVPs in Exercise 4, make a log–log plot of the error of Euler’s Method at t = 1 as a
function of h = 0.1 × 2−k for 0 ≤ k ≤ 5.

6. For the initial value problems in Exercise 4, make a log–log plot of the error of Euler’s Method
at t = 2 as a function of h = 0.1 × 2−k for 0 ≤ k ≤ 5.

7. Plot the Euler’s Method approximate solution on [0,1] for the differential equation
y′ = 1 + y2 and initial condition (a) y0 = 0 (b) y0 = 1, along with the exact solution (see
Exercise 7). Use step sizes h = 0.1 and 0.05.

8. Plot the Euler’s Method approximate solution on [0,1] for the differential equation
y′ = 1 − y2 and initial condition (a) y0 = 0 (b) y0 = −1/2, along with the exact solution (see
Exercise 8). Use step sizes h = 0.1 and 0.05.

9. Calculate the Euler’s Method approximate solution on [0,4] for the differential equation
y′ = sin y and initial condition (a) y0 = 0 (b) y0 = 100, using step sizes h = 0.1 × 2−k for
0 ≤ k ≤ 5. Plot the k = 0 and k = 5 approximate solutions along with the exact solution (see
Exercise 15), and make a log–log plot of the error at t = 4 as a function of h.

10. Calculate the Euler’s Method approximate solution of the differential equation y′ = sinh y

and initial condition (a) y0 = 1/4 on the interval [0,2] (b) y0 = 2 on the interval [0,1/4],
using step sizes h = 0.1 × 2−k for 0 ≤ k ≤ 5. Plot the k = 0 and k = 5 approximate solutions
along with the exact solution (see Exercise 16), and make a log–log plot of the error at the end
of the time interval as a function of h.

6.2 ANALYSIS OF IVP SOLVERS

Figure 6.4 shows consistently decreasing error in the Euler’s Method approximation as a
function of decreasing step size for Example 6.1. Is this generally true? Can we make the
error as small as we want, just by decreasing the step size? A careful investigation of error
in Euler’s Method will illustrate the issues for IVP solvers in general.

6.2.1 Local and global truncation error

Figure 6.5 shows a schematic picture for one step of a solver like Euler’s Method when
solving an initial value problem of the form

⎧
⎨

⎩

y′ = f (t,y)

y(a) = ya

t in [a,b]
. (6.18)

At step i, the accumulated error from the previous steps is carried along and perhaps ampli-
fied, while new error from the Euler approximation is added. To be precise, let us define
the global truncation error

gi = |wi − yi |

to be the difference between the ODE solver (Euler’s Method, for example) approximation
and the correct solution of the initial value problem.Also, we will define the local truncation
error, or one-step error, to be

ei+1 = |wi+1 − z(ti+1)|, (6.19)
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gi

ti ti + 1

yi

wi

yi + 1

wi + 1

ei + 1

gi + 1

t

Figure 6.5 One step of an ODE solver. The Euler Method follows a line segment with

the slope of the vector field at the current point to the next point (ti+1,wi+1). The

upper curve represents the true solution to the differential equation. The global trun-

cation error gi+1 is the sum of the local truncation error ei+1 and the accumulated,

amplified error from previous steps.

the difference between the value of the solver on that interval and the correct solution of
the “one-step initial value problem’’

⎧
⎨

⎩

y′ = f (t,y)

y(ti) = wi

t in [ti , ti+1]
. (6.20)

(We give the solution the name z because y is already being used for the solution to the same
initial value problem starting at the exact initial condition y(ti) = yi .) The local truncation
error is the error occurring just from a single step, taking the previous solution approximation
wi as the starting point. The global truncation error is the accumulated error from the first i

steps. The local and global truncation errors are illustrated in Figure 6.5. At each step, the
new global error is the combination of the amplified global error from the previous step and
the new local error. Because of the amplification, the global error is not simply the sum of
the local truncation errors.

! EXAMPLE 6.7 Find the local truncation error for Euler’s Method.

According to the definition, this is the new error made on a single step of
Euler’s Method. Assume that the previous step wi is correct, solve the initial value
problem (6.20) exactly, and compare the exact solution y(ti+1) with the Euler Method
approximation.

Assuming that y′′ is continuous, the exact solution at ti+1 = ti + h is

y(ti + h) = y(ti) + hy′(ti) + h2

2
y′′(c),

according to Taylor’s Theorem, for some (unknown) c satisfying ti < c < ti+1. Since
y(ti) = wi and y′(ti) = f (ti ,wi), this can be written as

y(ti+1) = wi + hf (ti ,wi) + h2

2
y′′(c).

Meanwhile, Euler’s Method says that

wi+1 = wi + hf (ti ,wi).

Subtracting the two expressions yields the local truncation error

ei+1 = |wi+1 − y(ti+1)| = h2

2
|y′′(c)|
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for some c in the interval. If M is an upper bound for y′′ on [a,b], then the local truncation
error satisfies ei ≤ Mh2/2. "

Now let’s investigate how the local errors accumulate to form global errors. At the
initial condition y(a) = ya , the global error is g0 = |w0 − y0| = |ya − ya| = 0. After one
step, there is no accumulated error from previous steps, and the global error is equal to
the first local error, g1 = e1 = |w1 − y1|. After two steps, break down g2 into the local
truncation error plus the accumulated error from the earlier step, as in Figure 6.5. Define
z(t) to be the solution of the initial value problem

⎧
⎨

⎩

y′ = f (t,y)

y(t1) = w1
t in [t1, t2]

. (6.21)

Thus, z(t2) is the exact value of the solution starting at initial condition (t1,w1). Note that
if we used the initial condition (t1,y1), we would get y2, which is on the actual solu-
tion curve, unlike z(t2). Then e2 = |w2 − z(t2)| is the local truncation error of step i = 2.
The other difference |z(t2) − y2| is covered by Theorem 6.3, since it is the difference
between two solutions of the same equation with different initial conditions w1 and y1.
Therefore,

g2 = |w2 − y2| = |w2 − z(t2) + z(t2) − y2|
≤ |w2 − z(t2)| + |z(t2) − y2|
≤ e2 + eLhg1

= e2 + eLhe1.

The argument is the same for step i = 3, which yields

g3 = |w3 − y3| ≤ e3 + eLhg2 ≤ e3 + eLhe2 + e2Lhe1. (6.22)

Likewise, the global truncation error at step i satisfies

gi = |wi − yi | ≤ ei + eLhei−1 + e2Lhei−2 + ·· · + e(i−1)Lhe1. (6.23)

In Example 6.7, we found that Euler’s Method has local truncation error proportional to h2.
More generally, assume that the local truncation error satisfies

ei ≤ Chk+1

for some integer k and a constant C > 0. Then

gi ≤ Chk+1(1 + eLh + ·· · + e(i−1)Lh
)

= Chk+1 eiLh − 1
eLh − 1

≤ Chk+1 eL(ti−a) − 1
Lh

= Chk

L
(eL(ti−a) − 1). (6.24)

Note how the local truncation error is related to the global truncation error. The local
truncation error is proportional to hk+1 for some k. Roughly speaking, the global truncation
error “adds up’’ the local truncation errors over a number of steps proportional to h−1, the
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Convergence Theorem 6.4 is the main theorem on convergence of one-step differ-

ential equation solvers. The dependence of global error on h shows that we can expect error

to decrease as h is decreased, so that (at least in exact arithmetic) error can be made as small

as desired.This brings us to the other important point: the exponential dependence of global

error on b. As time increases, the global error bound may grow extremely large. For large ti ,

the step size h required to keep global error small may be so tiny as to be impractical.

reciprocal of the step size. Thus, the global error turns out to be proportional to hk . This is
the major finding of the preceding calculation, and we state it in the following theorem:

THEOREM 6.4 Assume that f (t,y) has a Lipschitz constant L for the variable y and that the value yi of
the solution of the initial value problem (6.2) at ti is approximated by wi from a one-step
ODE solver with local truncation error ei ≤ Chk+1, for some constant C and k ≥ 0. Then,
for each a < ti < b, the solver has global truncation error

gi = |wi − yi | ≤ Chk

L
(eL(ti−a) − 1). (6.25)

#

If an ODE solver satisfies (6.25) as h → 0, we say that the solver has order k.
Example 6.7 shows that the local truncation error of Euler’s Method is of size bounded by
Mh2/2, so the order of Euler’s Method is 1. Restating the theorem in the Euler’s Method
case gives the following corollary:

COROLLARY 6.5 (Euler’s Method convergence) Assume that f (t,y) has a Lipschitz constant L for the
variable y and that the solution yi of the initial value problem (6.2) at ti is approximated
by wi , using Euler’s Method. Let M be an upper bound for |y′′(t)| on [a,b]. Then

|wi − yi | ≤ Mh

2L
(eL(ti−a) − 1). (6.26)

#

! EXAMPLE 6.8 Find an error bound for Euler’s Method applied to Example 6.1.

The Lipschitz constant on [0,1] is L = 1. Now that the solution y(t) = 3et2/2 −
t2 − 2 is known, the second derivative is determined to be y′′(t) = (t2 + 2)et2/2 − 2, whose
absolute value is bounded above on [0,1] by M = y′′(1) = 3

√
e − 2. Corollary 6.5 implies

that the global truncation error at t = 1 must be smaller than

Mh

2L
eL(1 − 0) = (3

√
e − 2)

2
eh ≈ 4.004h. (6.27)

This upper bound is confirmed by the actual global truncation errors, shown in Figure 6.4,
which are roughly 2 times h for small h. "

So far, Euler’s Method seems to be foolproof. It is intuitive in construction, and the
errors it makes get smaller when the step size decreases, according to Corollary 6.5. How-
ever, for more difficult IVPs, Euler’s Method is rarely used. There exist more sophisticated
methods whose order, or power of h in (6.25), is greater than one. This leads to vastly reduced
global error, as we shall see. We close this section with an innocent-looking example in
which such a reduction in error is needed.
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10–10

1

t

y

Figure 6.6 Approximation of Example 6.9 by Euler’s Method. From bottom to top,

approximate solutions with step sizes h = 10−3,10−4, and 10−5. The correct solution

has y(0) = 1. Extremely small steps are needed to get a reasonable approximation.

! EXAMPLE 6.9 Apply Euler’s Method to the initial value problem

⎧
⎨

⎩

y′ = −4t3y2

y(−10) = 1/10001
t in [−10,0].

(6.28)

It is easy to check by substitution that the exact solution is y(t) = 1/(t4 + 1). The
solution is very well behaved on the interval of interest. We will assess the ability of Euler’s
Method to approximate the solution at t = 0.

Figure 6.6 shows Euler’s Method approximations to the solution, with step sizes
h = 10−3,10−4, and 10−5, from bottom to top. The value of the correct solution at t = 0 is
y(0) = 1. Even the best approximation, which uses one million steps to reach t = 0 from
the initial condition, is noticeably incorrect. "

This example shows that more accurate methods are needed to achieve accuracy in a
reasonable amount of computation. The remainder of the chapter is devoted to developing
more sophisticated methods that require fewer steps to get the same or better accuracy.

6.2.2 The explicit Trapezoid Method

A small adjustment in the Euler’s Method formula makes a great improvement in accuracy.
Consider the following geometrically motivated method:

Explicit Trapezoid Method

w0 = y0

wi+1 = wi + h

2
(f (ti ,wi) + f (ti + h,wi + hf (ti ,wi))). (6.29)

For Euler’s Method, the slope y′(ti) governing the discrete step is taken from the slope
field at the left-hand end of the interval [ti , ti+1]. For the Trapezoid Method, as illustrated
in Figure 6.7, this slope is replaced by the average between the contribution y′(ti) from the
left-hand endpoint and the slope f (ti + h,wi + hf (ti ,wi)) from the right-hand point that
Euler’s Method would have given. The Euler’s Method “prediction’’ is used as the w-value
to evaluate the slope function f at ti+1 = ti + h. In a sense, the Euler’s Method prediction
is corrected by the Trapezoid Method, which is more accurate, as we will show.

The Trapezoid Method is called explicit because the new approximation wi+1 can be
determined by an explicit formula in terms of previous wi, ti , and h. Euler’s Method is also
an explicit method.
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Figure 6.7 Schematic view of single step of the Explicit Trapezoid Method. The

slopes sL = f (ti ,wi) and sR = f (ti + h,wi + hf (ti ,wi)) are averaged to define the slope

used to advance the solution to ti+1.

The reason for the name “Trapezoid Method’’ is that in the special case where f (t,y)

is independent of y, the method

wi+1 = wi + h

2
[f (ti) + f (ti + h)]

can be viewed as adding a Trapezoid Rule approximation of the integral
∫ ti+h

ti
f (t) dt to

the current wi . Since
∫ ti+h

ti

f (t) dt =
∫ ti+h

ti

y′(t) dt = y(ti + h) − y(ti),

this corresponds to solving the differential equation y′ = f (t) by integrating both sides
with the use of the Trapezoid Rule (5.21). The Explicit Trapezoid Method is also called the
improved Euler Method and the Heun Method in the literature, but we will use the more
descriptive and more easily remembered title.

! EXAMPLE 6.10 Apply the Explicit Trapezoid Method to the initial value problem (6.5) with initial condition
y(0) = 1.

Formula (6.29) for f (t,y) = ty + t3 is

w0 = y0 = 1

wi+1 = wi + h

2
(f (ti ,wi) + f (ti + h,wi + hf (ti ,wi)))

= wi + h

2
(tiyi + t3

i + (ti + h)(wi + h(tiyi + t3
i )) + (ti + h)3).

Using step size h = 0.1, the iteration yields the following table:

step ti wi yi ei

0 0.0 1.0000 1.0000 0.0000
1 0.1 1.0051 1.0050 0.0001
2 0.2 1.0207 1.0206 0.0001
3 0.3 1.0483 1.0481 0.0002
4 0.4 1.0902 1.0899 0.0003
5 0.5 1.1499 1.1494 0.0005
6 0.6 1.2323 1.2317 0.0006
7 0.7 1.3437 1.3429 0.0008
8 0.8 1.4924 1.4914 0.0010
9 0.9 1.6890 1.6879 0.0011

10 1.0 1.9471 1.9462 0.0010 "
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The comparison of Example 6.10 with the results of Euler’s Method on the same
problem in Example 6.2 is striking. In order to quantify the improvement that the Trapezoid
Method brings toward solving initial value problems, we need to calculate its local truncation
error (6.19).

The local truncation error is the error made on a single step. Starting at an assumed
correct solution point (ti ,yi), the correct extension of the solution at ti+1 can be given by
the Taylor expansion

yi+1 = y(ti + h) = yi + hy′(ti) + h2

2
y′′(ti) + h3

6
y′′′(c), (6.30)

for some number c between ti and ti+1, assuming that y′′′ is continuous. In order to compare
these terms with the Trapezoid Method, we will write them a little differently. From the
differential equation y′(t) = f (t,y), differentiate both sides with respect to t , using the
chain rule:

y′′(t) = ∂f

∂t
(t,y) + ∂f

∂y
(t,y)y′(t)

= ∂f

∂t
(t,y) + ∂f

∂y
(t,y)f (t,y).

The new version of (6.30) is

yi+1 = yi + hf (ti ,yi) + h2

2

(
∂f

∂t
(ti ,yi) + ∂f

∂y
(ti ,yi)f (ti ,yi)

)
+ h3

6
y′′′(c). (6.31)

We want to compare this expression with the Explicit Trapezoid Method, using the
two-dimensional Taylor theorem to expand the term

f (ti + h,yi + hf (ti ,yi)) = f (ti ,yi) + h
∂f

∂t
(ti ,yi) + hf (ti ,yi)

∂f

∂y
(ti ,yi) + O(h2).

The Trapezoid Method can be written

wi+1 = yi + h

2

(
f (ti ,yi) + f (ti + h,yi + hf (ti ,yi))

)

= yi + h

2
f (ti ,yi) + h

2

(
f (ti ,yi) + h

(
∂f

∂t
(ti ,yi)

+ f (ti ,yi)
∂f

∂y
(ti ,yi)

)
+ O(h2)

)

= yi + hf (ti ,yi) + h2

2

(
∂f

∂t
(ti ,yi) + f (ti ,yi)

∂f

∂y
(ti ,yi)

)
+ O(h3). (6.32)

Complexity Is a second-order method more efficient or less efficient than a first-

order method? On each step, the error is smaller, but the computational work is greater, since

ordinarily two function evaluations (of f (t,y)) are required instead of one.A rough comparison

goes like this: Suppose that an approximation has been run with step size h, and we want to

double the amount of computation to improve the approximation. For the same number of

function evaluations, we can (a) halve the step size of the first-order method, multiplying the

global error by 1/2, or (b) keep the same step size, but use a second-order method, replacing

the h in Theorem 6.4 by h2, essentially multiplying the global error by h. For small h, (b) wins.
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Figure 6.8 Approximation of Example 6.9 by the Trapezoid Method. Step size is

h = 10– 3. Note the significant improvement in accuracy compared with Euler’s Method

in Figure 6.6.

Subtracting (6.32) from (6.31) gives the local truncation error as

yi+1 − wi+1 = O(h3).

Theorem 6.4 shows that the global error of the Trapezoid Method is proportional to h2,
meaning that the method is of order two, compared with order one for Euler’s Method. For
small h this is a significant difference, as shown by returning to Example 6.9.

! EXAMPLE 6.11 Apply the Trapezoid Method to Example 6.9:
⎧
⎨

⎩

y′ = −4t3y2

y(−10) = 1/10001.

t in [−10,0]
Revisiting Example 6.9 with a more powerful method yields a great improvement

in approximating the solution, for example, at x = 0. The correct value y(0) = 1 is attained
within .0015 with a step size of h = 10−3 with the Trapezoid Method, as shown in Figure 6.8.
This is already better than Euler with a step size of h = 10−5. Using the Trapezoid Method
with h = 10−5 yields an error on the order of 10−7 for this relatively difficult initial value
problem. "

6.2.3 Taylor Methods

So far, we have learned two methods for approximating solutions of ordinary differential
equations. The Euler Method has order one, and the apparently superior Trapezoid Method
has order two. In this section, we show that methods of all orders exist. For each positive
integer k, there is a Taylor Method of order k, which we will describe next.

The basic idea is a straightforward exploitation of the Taylor expansion.Assume that the
solution y(t) is (k + 1) times continuously differentiable. Given the current point (t,y(t))

on the solution curve, the goal is to express y(t + h) in terms of y(t) for some step size h,
using information about the differential equation. The Taylor expansion of y(t) about t is

y(t + h) = y(t) + hy′(t) + 1
2

h2y′′(t) + ·· · + 1
k!h

ky(k)(t)

+ 1
(k + 1)!h

k+1y(k+1)(c), (6.33)

where c lies between t and t + h. The last term is the Taylor remainder term. This equation
motivates the following method:

Taylor Method of order k

w0 = y0

wi+1 = wi + hf (ti ,wi) + h2

2
f ′(ti ,wi) + ·· · + hk

k! f (k−1)(ti ,wi). (6.34)
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The prime notation refers to the total derivative of f (t,y(t)) with respect to t . For
example,

f ′(t,y) = ft (t,y) + fy(t,y)y′(t)
= ft (t,y) + fy(t,y)f (t,y).

We use the notation ft to denote the partial derivative of f with respect to t , and similarly
for fy . To find the local truncation error of the Taylor Method, set wi = yi in (6.34) and
compare with the Taylor expansion (6.33) to get

yi+1 − wi+1 = hk+1

(k + 1)!y
(k+1)(c).

We conclude that the Taylor Method of order k has local truncation error hk+1 and has
order k, according to Theorem 6.4.

The first-order Taylor Method is

wi+1 = wi + hf (ti ,wi),

which is identified as Euler’s Method. The second-order Taylor Method is

wi+1 = wi + hf (ti ,wi) + 1
2

h2(ft (ti ,wi) + fy(ti ,wi)f (ti ,wi)).

! EXAMPLE 6.12 Determine the second-order Taylor Method for the first-order linear equation
{

y′ = ty + t3

y(0) = y0
(6.35)

Since f (t,y) = ty + t3, it follows that

f ′(t,y) = ft + fyf

= y + 3t2 + t(ty + t3),

and the method gives

wi+1 = wi + h(tiwi + t3
i ) + 1

2
h2(wi + 3t2

i + ti (tiwi + t3
i )). "

Although second-order Taylor Method is a second-order method, notice that manual
labor on the user’s part was required to determine the partial derivatives. Compare this
with the other second-order method we have learned, where (6.29) requires only calls to a
routine that computes values of f (t,y) itself.

Conceptually, the lesson represented by Taylor Methods is that ODE methods of arbi-
trary order exist, as shown in (6.34). However, they suffer from the problem that extra
work is needed to compute the partial derivatives of f that show up in the formula. Since
formulas of the same orders can be developed that do not require these partial derivatives,
the Taylor Methods are used only for specialized purposes.

6.2 Exercises

1. Using initial condition y(0) = 1 and step size h = 1/4, calculate the Trapezoid Method
approximation w0, . . . ,w4 on the interval [0,1]. Find the error at t = 1 by comparing with the
correct solution found in Exercise 6.1.3.

(a) y′ = t (b) y′ = t2y (c) y′ = 2(t + 1)y
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(d) y′ = 5t4y (e) y′ = 1/y2 (f ) y′ = t3/y2

2. Using initial condition y(0) = 0 and step size h = 1/4, calculate the Trapezoid Method
approximation on the interval [0,1]. Find the error at t = 1 by comparing with the correct
solution found in Exercise 6.1.4.

(a) y′ = t + y (b) y′ = t − y (c) y′ = 4t − 2y

3. Find the formula for the second-order Taylor Method for the following differential equations:
(a) y′ = ty (b) y′ = ty2 + y3 (c) y′ = y sin y (d) y′ = eyt2

4. Apply the second-order Taylor Method to the initial value problems in Exercise 1. Using
step size h = 1/4, calculate the second-order Taylor Method approximation on the interval
[0,1]. Compare with the correct solution found in Exercise 6.1.3, and find the error
at t = 1.

5. (a) Prove (6.22) (b) Prove (6.23).

6.2 Computer Problems

1. Apply the Explicit Trapezoid Method on a grid of step size h = 0.1 in [0,1] to the initial value
problems in Exercise 1. Print a table of the t values, approximations, and global truncation
error at each step.

2. Plot the approximate solutions for the IVPs in Exercise 1 on [0,1] for step sizes h = 0.1,0.05,
and 0.025, along with the true solution.

3. For the IVPs in Exercise 1, plot the global truncation error of the explicit Trapezoid
Method at t = 1 as a function of h = 0.1 × 2−k for 0 ≤ k ≤ 5. Use a log–log plot as in
Figure 6.4.

4. For the IVPs in Exercise 1, plot the global truncation error of the second-order Taylor Method
at t = 1 as a function of h = 0.1 × 2−k for 0 ≤ k ≤ 5.

5. Plot the Trapezoid Method approximate solution on [0,1] for the differential equation
y′ = 1 + y2 and initial condition (a) y0 = 0 (b) y0 = 1, along with the exact solution (see
Exercise 6.1.7). Use step sizes h = 0.1 and 0.05.

6. Plot the Trapezoid Method approximate solution on [0,1] for the differential equation
y′ = 1 − y2 and initial condition (a) y0 = 0 (b) y0 = −1/2, along with the exact solution (see
Exercise 6.1.8). Use step sizes h = 0.1 and 0.05.

7. Calculate the Trapezoid Method approximate solution on [0,4] for the differential
equation y′ = sin y and initial condition (a) y0 = 0 (b) y0 = 100, using step sizes
h = 0.1 × 2−k for 0 ≤ k ≤ 5. Plot the k = 0 and k = 5 approximate solutions along with the
exact solution (see Exercise 6.1.15), and make a log–log plot of the error at t = 4 as a
function of h.

8. Calculate the Trapezoid Method approximate solution of the differential equation y′ = sinh y

and initial condition (a) y0 = 1/4 on the interval [0,2] (b) y0 = 2 on the interval [0,1/4], using
step sizes h = 0.1 × 2−k for 0 ≤ k ≤ 5. Plot the k = 0 and k = 5 approximate solutions along
with the exact solution (see Exercise 6.1.16), and make a log–log plot of the error at the end of
the time interval as a function of h.



6.3 Systems of Ordinary Differential Equations | 303

6.3 SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

Approximation of systems of differential equations can be done as a simple extension of
the methodology for a single differential equation. Treating systems of equations greatly
extends our ability to model interesting dynamical behavior.

The ability to solve systems of ordinary differential equations lies at the core of the
art and science of computer simulation. In this section, we introduce two physical systems
whose simulation has motivated a great deal of development of ODE solvers: the pendulum
and orbital mechanics. The study of these examples will provide the reader some practical
experience in the capabilities and limitations of the solvers.

The order of a differential equation refers to the highest order derivative appearing in
the equation. A first-order system has the form

y′
1 = f1(t,y1, . . . ,yn)

y′
2 = f2(t,y1, . . . ,yn)

...

y′
n = fn(t,y1, . . . ,yn).

In an initial value problem, each variable needs its own initial condition.

! EXAMPLE 6.13 Apply Euler’s Method to the first-order system of two equations:

y′
1 = y2

2 − 2y1

y′
2 = y1 − y2 − ty2

2

y1(0) = 0

y2(0) = 1. (6.36)

Check that the solution of the system (6.36) is the vector-valued function

y1(t) = te−2t

y2(t) = e−t .

For the moment, forget that we know the solution, and apply Euler’s Method. The scalar
Euler’s Method formula is applied to each component in turn as follows:

wi+1,1 = wi,1 + h(w2
i,2 − 2wi,1)

wi+1,2 = wi,2 + h(wi,1 − wi,2 − tiw
2
i,2).

Figure 6.9 shows the Euler Method approximations of y1 and y2, along with the correct
solution. The Matlab code that carries this out is essentially the same as Program 6.1, with
a few adjustments to treat y as a vector:

% Program 6.2 Vector version of Euler Method
% Input: interval inter, initial vector y0, number of steps n
% Output: time steps t, solution y
% Example usage: euler2([0 1],[0 1],10);
function [t,y]=euler2(inter,y0,n)
t(1)=inter(1); y(1,:)=y0;
h=(inter(2)-inter(1))/n;
for i=1:n
t(i+1)=t(i)+h;
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y(i+1,:)=eulerstep(t(i),y(i,:),h);
end
plot(t,y(:,1),t,y(:,2));

function y=eulerstep(t,y,h)
%one step of the Euler Method
%Input: current time t, current vector y, step size h
%Output: the approximate solution vector at time t+h
y=y+h*ydot(t,y);

function z=ydot(t,y)
%right-hand side of differential equation
z(1)=y(2)ˆ2-2*y(1);
z(2)=y(1)-y(2)-t*y(2)ˆ2; "

6.3.1 Higher order equations

A single differential equation of higher order can be converted to a system. Let

y(n) = f (t,y,y′,y′′, . . . ,y(n−1))

be an nth-order ordinary differential equation. Define new variables

y1 = y

y2 = y′

y3 = y′′

...

yn = y(n−1),

and notice that the original differential equation can be written

y′
n = f (t,y1,y2, . . . ,yn).

1

1

t

y

Figure 6.9 Equation (6.36) approximated by Euler Method. Step size h = 0.1. The

upper curve is y1(t), along with its approximate solution wi,1 (circles), while the lower

curve is y2(t) and wi,2.
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Taken together, the equations

y′
1 = y2

y′
2 = y3

y′
3 = y4

...

y′
n−1 = yn,

y′
n = f (t,y1, . . . ,yn)

convert the nth-order differential equation into a system of first-order equations, which can
be solved by using methods like the Euler or Trapezoid Methods.

! EXAMPLE 6.14 Convert the third-order differential equation

y′′′ = a(y′′)2 − y′ + yy′′ + sin t (6.37)

to a system.
Set y1 = y and define the new variables

y2 = y′

y3 = y′′.

Then, in terms of first derivatives, (6.37) is equivalent to

y′
1 = y2

y′
2 = y3

y′
3 = ay2

3 − y2 + y1y3 + sin t . (6.38)

The solution y(t) of the third-order equation (6.37) can be found by solving the system (6.38)
for y1(t),y2(t),y3(t). "

Because of the possibility of converting higher-order equations to systems, we will
restrict our attention to systems of first-order equations. Note also that a system of several
higher-order equations can be converted to a system of first-order equations in the same way.

6.3.2 Computer simulation: the pendulum

Figure 6.10 shows a pendulum swinging under the influence of gravity. Assume that the
pendulum is hanging from a rigid rod that is free to swing through 360 degrees. Denote
by y the angle of the pendulum with respect to the vertical, so that y = 0 corresponds to
straight down. Therefore, y and y + 2π are considered the same angle.

Newton’s second law of motion F = ma can be used to find the pendulum equation.
The motion of the pendulum bob is constrained to be along a circle of radius l, where l is the
length of the pendulum rod. If y is measured in radians, then the component of acceleration
tangent to the circle is ly′′, because the component of position tangent to the circle is ly.
The component of force along the direction of motion is mg sin y. It is a restoring force,
meaning that it is directed in the opposite direction from the displacement of the variable y.
The differential equation governing the frictionless pendulum is therefore

mly′′ = F = −mg sin y. (6.39)

This is a second-order differential equation for the angle y of the pendulum. The initial
conditions are given by the initial angle y(0) and angular velocity y′(0).



306 | CHAPTER 6 Ordinary Differential Equations

–1 0 1

–1

0

1

length l

–mgsin y –mg

y

y

x

Figure 6.10 The pendulum. Component of force in the tangential direction is

F = −mg sin y, where y is the angle the pendulum bob makes with the vertical.

By setting y1 = y and introducing the new variable y2 = y′, the second-order equation
is converted to a first-order system:

y′
1 = y2

y′
2 = −g

l
sin y1. (6.40)

The system is autonomous because there is no t dependence in the right-hand side. If
the pendulum is started from a position straight out to the right, the initial conditions are
y1(0) = π/2 and y2(0) = 0. In MKS units, the gravitational acceleration at the earth’s
surface is about 9.81m/sec2. Using these parameters, we can test the suitability of Euler’s
Method as a solver for this system.

Figure 6.11 shows Euler’s Method approximations to the pendulum equations with two
different step sizes. The pendulum rod is assigned to be l = 1 meter in length. The smaller
curve represents the angle y as a function of time, and the larger amplitude curve is the
instantaneous angular velocity. Note that the zeros of the angle, representing the vertical
position of the pendulum, correspond to the largest angular velocity, positive or negative.
The pendulum is traveling fastest as it swings through the lowest point. When the pendulum
is extended to the far right, the peak of the smaller curve, the velocity is zero as it turns
from positive to negative.

The inadequacy of Euler’s Method is apparent in Figure 6.11. The step size h = 0.01
is clearly too large to achieve even qualitative correctness. An undamped pendulum started
with zero velocity should swing back and forth forever, returning to its starting position with
a regular periodicity. The amplitude of the angle in Figure 6.11(a) is growing, which violates
the conservation of energy. Using 10 times more steps, as in Figure 6.11(b), improves the
situation at least visually, but a total of 104 steps are needed, an extreme number for the
routine dynamical behavior shown by the pendulum.

A second-order ODE solver like the Trapezoid Method improves accuracy at a much
lower cost. We will rewrite the Matlab code to use the Trapezoid Method and take the
opportunity to illustrate the ability of Matlab to do simple animations.

The code pend.m that follows contains the same differential equation information,
but eulerstep is replaced by trapstep. In addition, the variables rod and bob are
introduced to represent the rod and pendulum bob, respectively. The Matlabset command
assigns attributes to variables. The drawnow command plots the rod and bob variables.
Note that the erase mode of both variables is set to xor, meaning that when the plotted
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Figure 6.11 Euler Method applied to the pendulum equation (6.40). The curve

of smaller amplitude is the angle y1 in radians; the curve of larger amplitude is the

angular velocity y2. (a) Step size h = 0.01 is too large; energy is growing. (b) Step size

h = 0.001 shows more accurate trajectories.

variable is redrawn somewhere else, the previous position is erased. Figure 6.10 is a screen
shot of the animation. Here is the code:

% Program 6.3 Animation program for pendulum
% Inputs: time interval inter,
% initial values ic=[y(1,1) y(1,2)], number of steps n
% Calls a one-step method such as trapstep.m
% Example usage: pend([0 10],[pi/2 0],200)
function pend(inter,ic,n)
h=(inter(2)-inter(1))/n; % plot n points in total
y(1,:)=ic; % enter initial conds in y
t(1)=inter(1);
set(gca,’xlim’,[-1.2 1.2],’ylim’,[-1.2 1.2], ...
’XTick’,[-1 0 1],’YTick’,[-1 0 1], ...
’Drawmode’,’fast’,’Visible’,’on’,’NextPlot’,’add’);

cla;
axis square % make aspect ratio 1 - 1
bob=line(’color’,’r’,’Marker’,’.’,’markersize’,40,...

’erase’,’xor’,’xdata’,[],’ydata’,[]);
rod=line(’color’,’b’,’LineStyle’,’-’,’LineWidth’,3,...

’erase’,’xor’,’xdata’,[],’ydata’,[]);
for k=1:n
t(k+1)=t(k)+h;
y(k+1,:)=trapstep(t(k),y(k,:),h);
xbob=sin(y(k+1,1)); ybob= -cos(y(k+1,1));
xrod=[0 xbob]; yrod=[0 ybob];
set(rod,’xdata’,xrod,’ydata’,yrod)
set(bob,’xdata’,xbob,’ydata’,ybob)
drawnow; pause(h)

end

function y=trapstep(t,x,h)
%one step of the Trapezoid Method
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z1=ydot(t,x);
g=x+h*z1;
z2=ydot(t+h,g);
y=x+h*(z1+z2)/2;

function z=ydot(t,y)
g=9.81;length=1;
z(1)=y(2);
z(2)=-(g/length)*sin(y(1));

Using the Trapezoid Method in the pendulum equation allows fairly accurate solutions
to be found with larger step size. This section ends with several interesting variations on
the basic pendulum simulation, which the reader is encouraged to experiment with in the
Computer Problems.

! EXAMPLE 6.15 The damped pendulum.

The force of damping, such as air resistance or friction, is often modeled as
being proportional and in the opposite direction to velocity. The pendulum equation
becomes

y′
1 = y2

y′
2 = −g

l
sin y1 − dy2, (6.41)

where d > 0 is the damping coefficient. Unlike the undamped pendulum, this one will lose
energy through damping and in time approach the limiting equilibrium solution y1 = y2 = 0,
from any initial condition. Computer Problem 3 asks you to run a damped version of
pend.m. "

! EXAMPLE 6.16 The forced damped pendulum.

Adding a time-dependent term to (6.41) represents outside forcing on the damped
pendulum. Consider adding the sinusoidal term Asin t to the right-hand side of y′

2,
yielding

y′
1 = y2

y′
2 = −g

l
sin y1 − dy2 + Asin t . (6.42)

This can be considered as a model of a pendulum that is affected by an oscillating magnetic
field, for example.

A host of new dynamical behaviors becomes possible when forcing is added. For
a two-dimensional autonomous system of differential equations, the Poincaré–Bendixson
Theorem (from the theory of differential equations) says that trajectories can tend toward
only regular motion, such as stable equilibria like the down position of the pendulum, or
stable periodic cycles like the pendulum swinging back and forth forever. The forcing makes
the system nonautonomous (it can be rewritten as a three-dimensional autonomous system,
but not as a two-dimensional one), so that a third type of trajectories is allowed, namely,
chaotic trajectories.

Setting the damping coefficient to d = 1 and the forcing coefficient to A = 10
results in interesting periodic behavior, explored in Computer Problem 4. Moving the
parameter to A = 15 introduces chaotic trajectories. "
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! EXAMPLE 6.17 The double pendulum.

The double pendulum is composed of a simple pendulum, with another simple
pendulum hanging from its bob. If y1 and y3 are the angles of the two bobs with respect to
the vertical, the system of differential equations is

y′
1 = y2

y′
2 = −3g sin y1 − g sin(y1 − 2y3) − 2sin(y1 − y3)(y2

4 − y2
2 cos(y1 − y3))

3 − cos(2y1 − 2y3)
− dy2

y′
3 = y4

y′
4 = 2sin(y1 − y3)[2y2

2 + 2g cosy1 + y2
4 cos(y1 − y3)]

3 − cos(2y1 − 2y3)
,

where g = 9.81 and the length of both rods has been set to 1. The parameter d represents
friction at the pivot. For d = 0, the double pendulum exhibits sustained nonperiodicity for
many initial conditions and is mesmerizing to observe. See Computer Problem 8. "

6.3.3 Computer simulation: orbital mechanics

As a second example, we simulate the motion of an orbiting satellite. Newton’s second law
of motion says that the acceleration a of the satellite is related to the force F applied to the
satellite as F = ma, where m is the mass. The law of gravitation expresses the force on a
body of mass m1 due to a body of mass m2 by an inverse-square law

F = gm1m2

r2 ,

where r is the distance separating the masses. In the one-body problem, one of the masses
is considered negligible compared with the other, as in the case of a small satellite orbiting
a large planet. This simplification allows us to neglect the force of the satellite on the planet,
so that the planet may be regarded as fixed.

Place the large mass at the origin, and denote the position of the satellite by (x,y). The
distance between the masses is r =

√
x2 + y2, and the force on the satellite is central—that

is, in the direction of the large mass. The direction vector, a unit vector in this direction, is
(

− x
√

x2 + y2
,− y

√
x2 + y2

)

.

Therefore, the force on the satellite in terms of components is

(Fx,Fy) =
(

gm1m2

x2 + y2

−x
√

x2 + y2
,

gm1m2

x2 + y2

−y
√

x2 + y2

)

. (6.43)

Inserting these forces into Newton’s law of motion yields the two second-order equations

m1x′′ = − gm1m2x

(x2 + y2)3/2

m1y′′ = − gm1m2y

(x2 + y2)3/2 .

Introducing the variables vx = x′ and vy = y′ allows the two second-order equations to be
reduced to a system of four first-order equations:
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x′ = vx

vx
′ = − gm2x

(x2 + y2)3/2

y′ = vy

v′
y = − gm2y

(x2 + y2)3/2 (6.44)

The following Matlab program orbit.m calls eulerstep.m and sequentially
plots the satellite orbit.

%Program 6.4 Plotting program for one-body problem
%Inputs: time interval inter, initial conditions
% ic=[x0 vx0 y0 vy0], x position, x velocity, y pos, y vel,
% number of steps n, steps per point plotted p
% Calls a one-step method such as trapstep.m
% Example usage: orbit([0 100],[0 1 2 0],10000,5)
function z=orbit(inter,ic,n,p)
h=(inter(2)-inter(1))/n; % plot n points
x0=ic(1);vx0=ic(2);y0=ic(3);vy0=ic(4); % grab initial conds
y(1,:)=[x0 vx0 y0 vy0];t(1)=inter(1); % build y vector
set(gca,’XLim’,[-5 5],’YLim’,[-5 5],’XTick’,[-5 0 5],’YTick’,...
[-5 0 5],’Drawmode’,’fast’,’Visible’,’on’);

cla;
sun=line(’color’,’y’,’Marker’,’.’,’markersize’,25,...
’xdata’,0,’ydata’,0);

drawnow;
head=line(’color’,’r’,’Marker’,’.’,’markersize’,25,...
’erase’,’xor’,’xdata’,[],’ydata’,[]);

tail=line(’color’,’b’,’LineStyle’,’-’,’erase’,’none’, ...
’xdata’,[],’ydata’,[]);

%[px,py]=ginput(1); % include these three lines
%[px1,py1]=ginput(1); % to enable mouse support
%y(1,:)=[px px1-px py py1-py]; % 2 clicks set direction
for k=1:n/p
for i=1:p
t(i+1)=t(i)+h;
y(i+1,:)=eulerstep(t(i),y(i,:),h);

end
y(1,:)=y(p+1,:);t(1)=t(p+1);
set(head,’xdata’,y(1,1),’ydata’,y(1,3))
set(tail,’xdata’,y(2:p,1),’ydata’,y(2:p,3))
drawnow;

end

function y=eulerstep(t,x,h)
%one step of the Euler Method
y=x+h*ydot(t,x);

function z=ydot(t,x)
m2=3;g=1;mg2=m2*g;px2=0;py2=0;
px1=x(1);py1=x(3);vx1=x(2);vy1=x(4);
dist=sqrt((px2-px1)ˆ2+(py2-py1)ˆ2);
z=zeros(1,4);
z(1)=vx1;
z(2)=(mg2*(px2-px1))/(distˆ3);
z(3)=vy1;
z(4)=(mg2*(py2-py1))/(distˆ3);
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Running the Matlab script orbit.m immediately shows the limitations of Euler’s
Method for approximating interesting problems. Figure 6.12(a) shows the outcome of run-
ning orbit([0 100],[0 1 2 0],10000,5). In other words, we follow the orbit
over the time interval [a,b] = [0,100], the initial position is (x0,y0) = (0,2), the initial
velocity is (vx,vy) = (1,0), and the Euler step size is h = 100/10000 = 0.01.

Solutions to the one-body problem must be conic sections—either ellipses, parabo-
las, or hyperbolas. The spiral seen in Figure 6.12(a) is a numerical artifact, meaning a
misrepresentation caused by errors of computation. In this case, it is the truncation error
of Euler’s Method that leads to the failure of the orbit to close up into an ellipse. If the
step size is cut by a factor of 10 to h = 0.001, the result is improved, as shown in Fig-
ure 6.12(b). It is clear that even with the greatly decreased step size, the accumulated error is
noticeable.

Figure 6.12 Euler’s Method applied to one-body problem. (a) h = 0.01 and (b) h = 0.001.

Corollary 6.5 says that the Euler Method, in principle, can approximate a solution with
as much accuracy as desired, if the step size h is sufficiently small. However, results like
those represented by Figures 6.6 and 6.12 show that the method is seriously limited in
practice.

Figure 6.13 shows the clear improvement in the one-body problem resulting from the
replacement of the Euler step with the Trapezoid step. The plot was made by replacing the
function eulerstep by trapstep in the foregoing code.

The one-body problem is fictional, in the sense that it ignores the force of the satellite
on the (much larger) planet. When the latter is included as well, the motion of the two
objects is called the two-body problem.

The case of three objects interacting gravitationally, called the three-body problem,
holds an important position in the history of science. Even when all motion is confined to
a plane (the restricted three-body problem) the long-term trajectories may be essentially
unpredictable. In 1889, King Oscar II of Sweden and Norway held a competition for work
proving the stability of the solar system. The prize was awarded to Henri Poincaré, who
showed that it would be impossible to prove any such thing, due to phenomena seen even
for three interacting bodies.

The unpredictability stems from sensitive dependence on initial conditions, a term
which denotes the fact that small uncertainties in the initial positions and velocities can
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Figure 6.13 One-body problem approximated by the Trapezoid Method. Step size

h = 0.01. The orbit appears to close, at least to the resolution visible in the plot.

lead to large deviations at a later time. In our terms, this is the statement that the solution
of the system of differential equations is ill-conditioned with respect to the input of initial
conditions.

The restricted three-body problem is a system of 12 equations, 4 for each body, that are
also derived from Newton’s second law. For example, the equations of the first body are

x′
1 = v1x

v′
1x = gm2(x2 − x1)

((x2 − x1)2 + (y2 − y1)2)3/2 + gm3(x3 − x1)

((x3 − x1)2 + (y3 − y1)2)3/2

y′
1 = v1y

v′
1y = gm2(y2 − y1)

((x2 − x1)2 + (y2 − y1)2)3/2 + gm3(y3 − y1)

((x3 − x1)2 + (y3 − y1)2)3/2 . (6.45)

The second and third bodies, at (x2,y2) and (x3,y3), respectively, satisfy similar equations.
Computer Problems 9 and 10 ask the reader to computationally solve the two- and

three-body problems. The latter problem illustrates severe sensitive dependence on initial
conditions.

6.3 Exercises

1. Apply the Euler’s Method with step size h = 1/4 to the initial value problem on [0,1].

(a)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y′
1 = y1 + y2

y′
2 = −y1 + y2

y1(0) = 1
y2(0) = 0

(b)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y′
1 = −y1 − y2

y′
2 = y1 − y2

y1(0) = 1
y2(0) = 0

(c)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y′
1 = −y2

y′
2 = y1

y1(0) = 1
y2(0) = 0

(d)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y′
1 = y1 + 3y2

y′
2 = 2y1 + 2y2

y1(0) = 5
y2(0) = 0

Find the global truncation errors of y1 and y2 at t = 1 by comparing with the correct solutions
(a) y1(t) = et cos t,y2(t) = −et sin t (b) y1(t) = e−t cos t,y2(t) = e−t sin t

(c) y1(t) = cos t,y2(t) = sin t (d) y1(t) = 3e−t + 2e4t ,y2(t) = −2e−t + 2e4t .
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2. Apply the Trapezoid Method with h = 1/4 to the initial value problems in Exercise 1. Find the
global truncation error at t = 1 by comparing with the correct solutions.

3. Convert the higher-order ordinary differential equation to a first-order system of equations.
(a) y′′ − ty = 0 (Airy’s equation) (b) y′′ − 2ty′ + 2y = 0 (Hermite’s equation)
(c) y′′ − ty′ − y = 0

4. Apply the Trapezoid Method with h = 1/4 to the initial value problems in Exercise 3, using
y(0) = y′(0) = 1.

5. (a) Show that y(t) = (et + e−t − t2)/2 − 1 is the solution of the initial value problem
y′′′ − y′ = t , with y(0) = y′(0) = y′′(0) = 0. (b) Convert the differential equation to a system
of three first-order equations. (c) Use Euler’s Method with step size h = 1/4 to approximate
the solution on [0,1]. (d) Find the global truncation error at t = 1.

6.3 Computer Problems

1. Apply Euler’s Method with step sizes h = 0.1 and h = 0.01 to the initial value problems in
Exercise 1. Plot the approximate solutions and the correct solution on [0,1], and find the global
truncation error at t = 1. Is the reduction in error for h = 0.01 consistent with the order of
Euler’s Method?

2. Carry out Computer Problem 1 for the Trapezoid Method.

3. Adapt pend.m to model the damped pendulum. Run the resulting code with d = 0.1. Except
for the initial condition y1(0) = π,y2(0) = 0, all trajectories move toward the straight-down
position as time progresses. Check the exceptional initial condition: Does the simulation agree
with theory? with a physical pendulum?

4. Adapt pend.m to build a forced, damped version of the pendulum. Run the Trapezoid Method
in the following: (a) Set damping d = 1 and the forcing parameter A = 10. Set the step size
h = 0.005 and the initial condition of your choice. After moving through some transient
behavior, the pendulum will settle into a periodic (repeating) trajectory. Describe this trajectory
qualitatively. Try different initial conditions. Do all solutions end up at the same “attracting’’
periodic trajectory? (b) Now increase the step size to h = 0.01, and repeat the experiment. Try
initial condition [π/2,0] and others. Describe what happens, and give a reasonable explanation
for the anomalous behavior at this step size.

5. Run the forced damped pendulum as in Computer Problem 4, but set A = 12. Use the
Trapezoid Method with h = 0.005. There are now two periodic attractors that are mirror
images of one another. Describe the two attracting trajectories, and find two initial conditions
(y1,y2) = (a,0) and (b,0), where |a − b| ≤ 0.1, that are attracted to different periodic
trajectories. Set A = 15 to view chaotic motion of the forced damped pendulum.

6. Adapt pend.m to build a damped pendulum with oscillating pivot. The goal is to investigate
the phenomenon of parametric resonance, by which the inverted pendulum becomes stable!
The equation is

y′′ + dy′ +
(g

l
+ Acos2π t

)
sin y = 0,

where A is the forcing strength. Set d = 0.1 and the length of the pendulum to be 2.5 meters. In
the absence of forcing A = 0, the downward pendulum y = 0 is a stable equilibrium, and the
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inverted pendulum y = π is an unstable equilibrium. Find as accurately as possible the range of
parameter A for which the inverted pendulum becomes stable. (Of course, A = 0 is too small;
it turns out that A = 30 is too large.) Use the initial condition y = 3.1 for your test, and call the
inverted position “stable’’ if the pendulum does not pass through the downward position.

7. Use the parameter settings of Computer Problem 6 to demonstrate the other effect of
parametric resonance: The stable equilibrium can become unstable with an oscillating pivot.
Find the smallest (positive) value of the forcing strength A for which this happens. Classify the
downward position as unstable if the pendulum eventually travels to the inverted position.

8. Adapt pend.m to build the double pendulum. A new pair of rod and bob must be defined for
the second pendulum. Note that the pivot end of the second rod is equal to the formerly free
end of the first rod: The (x,y) position of the free end of the second rod can be calculated by
using simple trigonometry.

9. Adapt orbit.m to solve the two-body problem. Set the masses to m1 = 0.3, m2 = 0.03, and
plot the trajectories with initial conditions (x1,y1) = (2,2), (x′

1,y′
1) = (0.2,−0.2) and

(x2,y2) = (0,0), (x′
2,y′

2) = (−0.01,0.01).

10. Adapt orbit.m to solve the three-body problem. Set the masses to m1 = 0.3,
m2 = m3 = 0.03. (a) Plot the trajectories with initial conditions (x1,y1) = (2,2),
(x′

1,y′
1) = (0.2,−0.2), (x2,y2) = (0,0), (x′

2,y′
2) = (0,0) and (x3,y3) = (−2,−2),

(x′
3,y′

3) = (−0.2,0.2). (b) Change the initial condition of x′
1 to 0.20001, and compare the

resulting trajectories. This is a striking visual example of sensitive dependence.

11. A remarkable three-body figure-eight orbit was discovered by C. Moore in 1993. In this
configuration, three bodies of equal mass chase one another along a single figure-eight loop.
Set the masses to m1 = m2 = m3 = 1 and gravity g = 1. (a) Adapt orbit.m to plot the
trajectory with initial conditions (x1,y1) = (−0.970,0.243), (x′

1,y′
1) = (−0.466,−0.433),

(x2,y2) = (−x1,−y1), (x′
2,y′

2) = (x′
1,y′

1) and (x3,y3) = (0,0), (x′
3,y′

3) = (−2x′
1,−2y′

1).
(b) Are the trajectories sensitive to small changes in initial conditions? Investigate the effect
of changing x′

3 by 10−k for 1 ≤ k ≤ 5. For each k, decide whether the figure-eight pattern
persists, or a catastrophic change eventually occurs.

6.4 RUNGE–KUTTA METHODS AND APPLICATIONS

The Runge–Kutta Methods are a family of ODE solvers that include the Euler and Trapezoid
Methods, and also more sophisticated methods of higher order. In this section, we introduce a
variety of one-step methods and apply them to simulate trajectories of some key applications.

6.4.1 The Runge–Kutta family

We have seen that the Euler Method has order one and the Trapezoid Method has order
two. In addition to the Trapezoid Method, there are other second-order methods of the
Runge–Kutta type. One important example is the Midpoint Method.

Midpoint Method

w0 = y0

wi+1 = wi + hf

(
ti + h

2
,wi + h

2
f (ti ,wi)

)
. (6.46)
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To verify the order of the Midpoint Method, we must compute its local truncation error.
When we did this for the Trapezoid Method, we found the expression (6.31) useful:

yi+1 = yi + hf (ti ,yi) + h2

2

(
∂f

∂t
(ti ,yi) + ∂f

∂y
(ti ,yi)f (ti ,yi)

)
+ h3

6
y′′′(c). (6.47)

To compute the local truncation error at step i, we assume that wi = yi and calculate
yi+1 − wi+1. Repeating the use of the Taylor series expansion as for the Trapezoid Method,
we can write

wi+1 = yi + hf

(
ti + h

2
,yi + h

2
f (ti ,yi)

)

= yi + h

(
f (ti ,yi) + h

2
∂f

∂t
(ti ,yi) + h

2
f (ti ,yi)

∂f

∂y
(ti ,yi) + O(h2)

)
. (6.48)

Comparing (6.47) and (6.48) yields

yi+1 − wi+1 = O(h3),

so the Midpoint Method is of order two by Theorem 6.4.
Each function evaluation of the right-hand side of the differential equation is called a

stage of the method. The Trapezoid and Midpoint Methods are members of the family of
two-stage, second-order Runge–Kutta Methods, having form

wi+1 = wi + h

(
1 − 1

2α

)
f (ti ,wi) + h

2α
f (ti + αh,wi + αhf (ti ,wi)) (6.49)

for some α ̸= 0. Setting α = 1 corresponds to the Explicit Trapezoid Method and α = 1/2
to the Midpoint Method. Exercise 5 asks you to verify the order of methods in this family.

Figure 6.14 illustrates the intuition behind the Trapezoid and Midpoint Methods. The
Trapezoid Method uses an Euler step to the right endpoint of the interval, evaluates the slope
there, and then averages with the slope from the left endpoint. The Midpoint Method uses
an Euler step to move to the midpoint of the interval, evaluates the slope there as f (ti +
h/2,wi + (h/2)f (ti ,wi)), and uses that slope to move from wi to the new approximation
wi+1. These methods use different approaches to solving the same problem: acquiring a
slope that represents the entire interval better than the Euler Method, which uses only the
slope estimate from the left end of the interval.

wi Euler wi

Trapezoid wi + 1

ti

SL

SR
(SL + SR)/2

ti + 1
t

(a)

wi

Midpoint wi + 1

ti

SL

SM

SM

ti + 1ti + h/2
t

(b)

Figure 6.14 Schematic view of two members of the RK2 family. (a) The Trapezoid

Method uses an average from the left and right endpoints to traverse the interval.

(b) The Midpoint Method uses a slope from the interval midpoint.
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Convergence The convergence properties of a fourth-order method, like RK4, are

far superior to those of the order 1 and 2 methods we have discussed so far. Convergence here

means how fast the (global) error of the ODE approximation at some fixed time t goes to zero

as the step size h goes to zero. Fourth order means that for every halving of the step size, the

error drops by approximately a factor of 24 = 16, as is clear from Figure 6.15.

There are Runge–Kutta Methods of all orders. A particularly ubiquitous example is the
method of fourth order.

Runge–Kutta Method of order four (RK4)

wi+1 = wi + h

6
(s1 + 2s2 + 2s3 + s4) (6.50)

where

s1 = f (ti ,wi)

s2 = f

(
ti + h

2
,wi + h

2
s1

)

s3 = f

(
ti + h

2
,wi + h

2
s2

)

s4 = f (ti + h,wi + hs3) .

The popularity of this method stems from its simplicity and ease of programming. It is
a one-step method, so that it requires only an initial condition to get started; yet, as a fourth-
order method, it is considerably more accurate than either the Euler or Trapezoid Methods.

The quantity h(s1 + 2s2 + 2s3 + s4)/6 in the fourth-order Runge–Kutta Method takes
the place of slope in the Euler Method. This quantity can be considered as an improved guess
for the slope of the solution in the interval [ti , ti + h]. Note that s1 is the slope at the left
end of the interval, s2 is the slope used in the Midpoint Method, s3 is an improved slope at
the midpoint, and s4 is an approximate slope at the right-hand endpoint ti + h. The algebra
needed to prove that this method is order four is similar to our derivation of the Trapezoid
and Midpoint Methods, but is a bit lengthy, and can be found, for example, in Henrici
[1962]. We return one more time to differential equation (6.5) for purposes of comparison.

! EXAMPLE 6.18 Apply Runge–Kutta of order four to the initial value problem
{

y′ = ty + t3

y(0) = 1
. (6.51)

Computing the global truncation error at t = 1 for a variety of step sizes gives the
following table:

steps n step size h error at t = 1

5 0.20000 2.3788 × 10−5

10 0.10000 1.4655 × 10−6

20 0.05000 9.0354 × 10−8

40 0.02500 5.5983 × 10−9

80 0.01250 3.4820 × 10−10

160 0.00625 2.1710 × 10−11

320 0.00312 1.3491 × 10−12

640 0.00156 7.2609 × 10−14
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Figure 6.15 Error as a function of step size for Runge–Kutta of order 4. The differ-

ence between the approximate solution of (6.5) and the correct solution at t = 1 has

slope 4 on a log–log plot, so is proportional to h4, for small h.

Compare with the corresponding table for Euler’s Method on page 286. The difference
is remarkable and easily makes up for the extra complexity of RK4, which requires four
function calls per step, compared with only one for Euler. Figure 6.15 displays the same
information in a way that exhibits the fact that the global truncation error is proportional
to h4, as expected for a fourth-order method. "

6.4.2 Computer simulation: the Hodgkin–Huxley neuron

Computers were in their early development stages in the middle of the 20th century. Some of
the first applications were to help solve hitherto intractable systems of differential equations.

A.L. Hodgkin and A.F. Huxley gave birth to the field of computational neuroscience
by developing a realistic firing model for nerve cells, or neurons. They were able to approx-
imate solutions of the differential equations model even with the rudimentary computers
that existed at the time. For this work, they won the Nobel Prize in Biology in 1963.

The model is a system of four coupled differential equations, one of which models the
voltage difference between the interior and exterior of the cell. The three other equations
model activation levels of ion channels, which do the work of exchanging sodium and
potassium ions between the inside and outside. The Hodgkin–Huxley equations are

Cv′ = −g1m3h(v − E1) − g2n4(v − E2) − g3(v − E3) + Iin

m′ = (1 − m)αm(v − E0) − mβm(v − E0)

n′ = (1 − n)αn(v − E0) − nβn(v − E0)

h′ = (1 − h)αh(v − E0) − hβh(v − E0), (6.52)

where

αm(v) = 2.5 − 0.1v

e2.5−0.1v − 1
, βm(v) = 4e−v/18,

αn(v) = 0.1 − 0.01v

e1−0.1v − 1
, βn(v) = 1

8
e−v/80,

and

αh(v) = 0.07e−v/20, βh(v) = 1
e3−0.1v + 1

.
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The coefficient C denotes the capacitance of the cell, and Iin denotes the input current from
other cells. Typical coefficient values are capacitance C = 1 microFarads, conductances
g1 = 120, g2 = 36, g3 = 0.3 siemens, and voltages E0 = −65, E1 = 50,E2 = −77, E3 =
−54.4 millivolts.

The v′ equation is an equation of current per unit area, in units of milliamperes/cm2,
while the three other activations m, n, and h are unitless. The coefficient C is the capacitance
of the neuron membrane, g1, g2, g3 are conductances, and E1, E2, and E3 are the “reversal
potentials,’’ which are the voltage levels that form the boundary between currents flowing
inward and outward.

Hodgkin and Huxley carefully chose the form of the equations to match experimental
data, which was acquired from the giant axon of the squid. They also fit parameters to the
model. Although the particulars of the squid axon differ from mammal neurons, the model
has held up as a realistic depiction of neural dynamics. More generally, it is useful as an
example of excitable media that translates continuous input into an all-or-nothing response.
The Matlab code implementing the model is as follows:

% Program 6.5 Hodgkin-Huxley equations
% Inputs: time interval inter,
% ic=initial voltage v and 3 gating variables, steps n
% Output: solution y
% Calls a one-step method such as rk4step.m
% Example usage: hh([0,100],[-65,0,0.3,0.6],2000);
function y=hh(inter,ic,n)
global pa pb pulse
inp=input(’pulse start, end, muamps in [ ], e.g. [50 51 7]: ’);
pa=inp(1);pb=inp(2);pulse=inp(3);
a=inter(1); b=inter(2); h=(b-a)/n; % plot n points in total
y(1,:)=ic; % enter initial conds in y
t(1)=a;
for i=1:n
t(i+1)=t(i)+h;
y(i+1,:)=rk4step(t(i),y(i,:),h);

end
subplot(3,1,1);
plot([a pa pa pb pb b],[0 0 pulse pulse 0 0]);
grid;axis([0 100 0 2*pulse])
ylabel(’input pulse’)
subplot(3,1,2);
plot(t,y(:,1));grid;axis([0 100 -100 100])
ylabel(’voltage (mV)’)
subplot(3,1,3);
plot(t,y(:,2),t,y(:,3),t,y(:,4));grid;axis([0 100 0 1])
ylabel(’gating variables’)
legend(’m’,’n’,’h’)
xlabel(’time (msec)’)

function y=rk4step(t,w,h)
%one step of the Runge-Kutta order 4 method
s1=ydot(t,w);
s2=ydot(t+h/2,w+h*s1/2);
s3=ydot(t+h/2,w+h*s2/2);
s4=ydot(t+h,w+h*s3);
y=w+h*(s1+2*s2+2*s3+s4)/6;

function z=ydot(t,w)
global pa pb pulse
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c=1;g1=120;g2=36;g3=0.3;T=(pa+pb)/2;len=pb-pa;
e0=-65;e1=50;e2=-77;e3=-54.4;
in=pulse*(1-sign(abs(t-T)-len/2))/2;
% square pulse input on interval [pa,pb] of pulse muamps
v=w(1);m=w(2);n=w(3);h=w(4);
z=zeros(1,4);
z(1)=(in-g1*m*m*m*h*(v-e1)-g2*n*n*n*n*(v-e2)-g3*(v-e3))/c;
v=v-e0;
z(2)=(1-m)*(2.5-0.1*v)/(exp(2.5-0.1*v)-1)-m*4*exp(-v/18);
z(3)=(1-n)*(0.1-0.01*v)/(exp(1-0.1*v)-1)-n*0.125*exp(-v/80);
z(4)=(1-h)*0.07*exp(-v/20)-h/(exp(3-0.1*v)+1);

Without input, the Hodgkin–Huxley neuron stays quiescent, at a voltage of approxi-
mately E0. Setting Iin to be a square current pulse of length 1 msec and strength 7 microamps
is sufficient to cause a spike, a large depolarizing deflection of the voltage. This is illustrated
in Figure 6.16. Run the program to check that 6.9 µA is not sufficient to cause a full spike.
Hence, the all-or-nothing response. It is this property of greatly magnifying the effect of
small differences in input that may explain the neuron’s success at information processing.
Figure 6.16(b) shows that if the input current is sustained, the neuron will fire a periodic
volley of spikes. Computer Problem 10 is an investigation of the thresholding capabilities
of this virtual neuron.

Figure 6.16 Screen shots of Hodgkin–Huxley program. (a) Square wave input of size

Iin = 7 µA at time 50 msecs, 1 msec duration, causes the model neuron to fire once.

(b) Sustained square wave, with Iin = 7 µA, causes the model neuron to fire periodically.

6.4.3 Computer simulation: the Lorenz equations

In the late 1950s, MIT meteorologist E. Lorenz acquired one of the first commercially
available computers. It was the size of a refrigerator and operated at the speed of 60 multi-
plications per second. This unprecedented cache of personal computing power allowed
him to develop and meaningfully evaluate weather models consisting of several dif-
ferential equations that, like the Hodgkin–Huxley equations, could not be analytically
solved.

The Lorenz equations are a simplification of a miniature atmosphere model that he
designed to study Rayleigh-Bénard convection, the movement of heat in a fluid, such as air,
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from a lower warm medium (such as the ground) to a higher cool medium (like the upper
atmosphere). In this model of a two-dimensional atmosphere, a circulation of air develops
that can be described by the following system of three equations:

x′ = −sx + sy

y′ = −xz + rx − y

z′ = xy − bz. (6.53)

The variable x denotes the clockwise circulation velocity, y measures the temperature
difference between the ascending and descending columns of air, and z measures the devi-
ation from a strictly linear temperature profile in the vertical direction. The Prandtl number
s, the Rayleigh number r , and b are parameters of the system. The most common setting for
the parameters is s = 10, r = 28, and b = 8/3. These settings were used for the trajectory
shown in Figure 6.17, computed by order four Runge–Kutta, using the following code to
describe the differential equation.

function z=ydot(t,y)
%Lorenz equations
s=10; r=28; b=8/3;
z(1)=-s*y(1)+s*y(2);
z(2)=-y(1)*y(3)+r*y(1)-y(2)
z(3)=y(1)*y(2)-b*y(3)

0 25
0

25

50

Figure 6.17 One trajectory of the Lorenz equations (6.53), projected to the xz-

plane. Parameters are set to s = 10, r = 28, and b = 8/3.

The Lorenz equations are an important example because the trajectories show great
complexity, despite the fact that the equations are deterministic and fairly simple (almost
linear). The explanation for the complexity is similar to that of the double pendulum or
three-body problem: sensitive dependence on initial conditions. Computer Problems 12
and 13 explore the sensitive dependence of this so-called chaotic attractor.

6.4 Exercises

1. Apply the Midpoint Method for the IVPs

(a) y′ = t (b) y′ = t2y (c) y′ = 2(t + 1)y

(d) y′ = 5t4y (e) y′ = 1/y2 (f ) y′ = t3/y2
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with initial condition y(0) = 1. Using step size h = 1/4, calculate the Midpoint Method
approximation on the interval [0,1]. Compare with the correct solution found in
Exercise 6.1.3, and find the global truncation error at t = 1.

2. Carry out the steps of Exercise 1 for the IVPs

(a) y′ = t + y (b) y′ = t − y (c) y′ = 4t − 2y

with initial condition y(0) = 0. The exact solutions were found in Exercise 6.1.4.

3. Apply fourth-order Runge–Kutta Method to the IVPs in Exercise 1. Using step size h = 1/4,
calculate the approximation on the interval [0,1]. Compare with the correct solution found in
Exercise 6.1.3, and find the global truncation error at t = 1.

4. Carry out the steps of Exercise 3 for the IVPs in Exercise 2.

5. Prove that for any α ̸= 0, the method (6.49) is second order.

6. Consider the initial value problem y′ = λy. The solution is y(t) = y0eλt . (a) Calculate w1 for
RK4 in terms of w0 for this differential equation. (b) Calculate the local truncation error by
setting w0 = y0 = 1 and determining y1 − w1. Show that the local truncation error is of size
O(h5), as expected for a fourth-order method.

7. Assume that the right-hand side f (t,y) = f (t) does not depend on y. Show that s2 = s3 in
fourth-order Runge–Kutta and that RK4 is equivalent to Simpson’s Rule for the integral∫ ti+h

ti
f (s) ds.

6.4 Computer Problems

1. Apply the Midpoint Method on a grid of step size h = 0.1 in [0,1] for the initial value
problems in Exercise 1. Print a table of the t values, approximations, and global truncation
error at each step.

2. Apply the fourth-order Runge–Kutta Method solution on a grid of step size h = 0.1 in [0,1]
for the initial value problems in Exercise 1. Print a table of the t values, approximations, and
global truncation error at each step.

3. Carry out the steps of Computer Problem 2, but plot the approximate solutions on [0,1] for
step sizes h = 0.1,0.05, and 0.025, along with the true solution.

4. Carry out the steps of Computer Problem 2 for the equations of Exercise 2.

5. Plot the fourth-order Runge–Kutta Method approximate solution on [0,1] for the differential
equation y′ = 1 + y2 and initial condition (a) y0 = 0 (b) y0 = 1, along with the exact solution
(see Exercise 6.1.7). Use step sizes h = 0.1 and 0.05.

6. Plot the fourth-order Runge–Kutta Method approximate solution on [0,1] for the differential
equation y′ = 1 − y2 and initial condition (a) y0 = 0 (b) y0 = −1/2, along with the exact
solution (see Exercise 6.1.8). Use step sizes h = 0.1 and 0.05.

7. Calculate the fourth-order Runge–Kutta Method approximate solution on [0,4] for the
differential equation y′ = sin y and initial condition (a) y0 = 0 (b) y0 = 100, using step sizes
h = 0.1 × 2−k for 0 ≤ k ≤ 5. Plot the k = 0 and k = 5 approximate solutions along with the
exact solution (see Exercise 6.1.15), and make a log–log plot of the error as a function of h.
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8. Calculate the fourth-order Runge–Kutta Method approximate solution of the differential
equation y′ = sinh y and initial condition (a) y0 = 1/4 on the interval [0,2] (b) y0 = 2 on the
interval [0,1/4], using step sizes h = 0.1 × 2−k for 0 ≤ k ≤ 5. Plot the k = 0 and k = 5
approximate solutions along with the exact solution (see Exercise 6.1.16), and make a log–log
plot of the error as a function of h.

9. For the IVPs in Exercise 1, plot the global error of the RK4 method at t = 1 as a function of h,
as in Figure 6.4.

10. Consider the Hodgkin–Huxley equations (6.52) with default parameters. (a) Find as accurately
as possible the minimum threshold, in microamps, for generating a spike with a 1 msec pulse.
(b) Does the answer change if the pulse is 5 msec long? (c) Experiment with the shape of the
pulse. Does a triangular pulse of identical enclosed area cause the same effect as a square
pulse? (d) Discuss the existence of a threshold for constant sustained input.

11. Adapt the orbit.m Matlab program to animate a solution to the Lorenz equations by the
order four Runge–Kutta Method with step size h = 0.001. Draw the trajectory with initial
condition (x0,y0, z0) = (5,5,5).

12. Assess the conditioning of the Lorenz equations by following two trajectories from two nearby
initial conditions. Consider the initial conditions (x,y,z) = (5,5,5) and another initial
condition at a distance $ = 10−5 from the first. Compute both trajectories by fourth-order
Runge–Kutta with step size h = 0.001, and calculate the error magnification factor after t = 10
and t = 20 time units.

13. Follow two trajectories of the Lorenz equations with nearby initial conditions, as in Computer
Problem 12. For each, construct the binary symbol sequence consisting of 0 if the trajectory
traverses the “negative x’’ loop in Figure 6.17 and 1 if it traverses the positive loop. For how
many time units do the symbol sequences of the two trajectories agree?

6 The TacomaNarrows Bridge
A mathematical model that attempts to capture the Tacoma Narrows Bridge incident was
proposed by McKenna and Tuama [2001]. The goal is to explain how torsional, or twisting,
oscillations can be magnified by forcing that is strictly vertical.

Consider a roadway of width 2l hanging between two suspended cables, as in
Figure 6.18(a). We will consider a two-dimensional slice of the bridge, ignoring the dimen-
sion of the bridge’s length for this model, since we are only interested in the side-to-side
motion. At rest, the roadway hangs at a certain equilibrium height due to gravity; let y

denote the current distance the center of the roadway hangs below this equilibrium.
Hooke’s law postulates a linear response, meaning that the restoring force the cables

apply will be proportional to the deviation. Let θ be the angle the roadway makes with
the horizontal. There are two suspension cables, stretched y − l sin θ and y + l sin θ from
equilibrium, respectively. Assume that a viscous damping term is given that is proportional
to the velocity. Using Newton’s law F = ma and denoting Hooke’s constant by K , the
equations of motion for y and θ are as follows:

y′′ = −dy′ −
[

K

m
(y − l sin θ) + K

m
(y + l sin θ)

]

θ ′′ = −dθ ′ + 3cosθ

l

[
K

m
(y − l sin θ) − K

m
(y + l sin θ)

]
.
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Figure 6.18 Schematics for the McKenna-Tuama model of the Tacoma Narrows Bridge.

(a) Denote the distance from the roadway center of mass to its equilibrium position by y, and the

angle of the roadway with the horizontal by θ . (b) Exponential Hooke’s law curve

f (y) = (K/a)(eay – 1).

However, Hooke’s law is designed for springs, where the restoring force is more or less
equal whether the springs are compressed or stretched. McKenna and Tuama hypothesize
that cables pull back with more force when stretched than they push back when compressed.
(Think of a string as an extreme example.) They replace the linear Hooke’s law restor-
ing force f (y) = Ky with a nonlinear force f (y) = (K/a)(eay − 1), as shown in Fig-
ure 6.18(b). Both functions have the same slope K at y = 0; but for the nonlinear force, a
positive y (stretched cable) causes a stronger restoring force than the corresponding negative
y (slackened cable). Making this replacement in the preceding equations yields

y′′ = −dy′ − K

ma

[
ea(y−l sin θ) − 1 + ea(y+l sin θ) − 1

]

θ ′′ = −dθ ′ + 3cosθ

l

K

ma

[
ea(y−l sin θ) − ea(y+l sin θ)

]
. (6.54)

As the equations stand, the state y = y′ = θ = θ ′ = 0 is an equilibrium. Now turn on
the wind. Add the forcing term 0.2W sin ωt to the right-hand side of the y equation, where
W is the wind speed in km/hr. This adds a strictly vertical oscillation to the bridge.

Useful estimates for the physical constants can be made. The mass of a one-foot length
of roadway was about 2500 kg, and the spring constant K has been estimated at 1000
Newtons. The roadway was about 12 meters wide. For this simulation, the damping coef-
ficient was set at d = 0.01, and the Hooke’s nonlinearity coefficient a = 0.2. An observer
counted 38 vertical oscillations of the bridge in one minute shortly before the collapse—set
ω = 2π(38/60). These coefficients are only guesses, but they suffice to show ranges of
motion that tend to match photographic evidence of the bridge’s final oscillations. Matlab
code that runs the model (6.54) is as follows:

%Program 6.6 Animation program for bridge using IVP solver
%Inputs: time interval inter,
% ic=[y(1,1) y(1,2) y(1,3) y(1,4)],
% number of steps n, steps per point plotted p
%Calls a one-step method such as trapstep.m
%Example usage: tacoma([0 1000],[1 0 0.001 0],25000,5)
function tacoma(inter,ic,n,p)



324 | CHAPTER 6 Ordinary Differential Equations

clf % clear figure window
h=(inter(2)-inter(1))/n;
y(1,:)=ic; % enter initial conds in y
t(1)=inter(1);len=6;
set(gca,’XLim’,[-8 8],’YLim’,[-8 8], ...

’XTick’,[-8 0 8],’YTick’,[-8 0 8], ...
’Drawmode’,’fast’,’Visible’,’on’,’NextPlot’,’add’);

cla; % clear screen
axis square % make aspect ratio 1-1
road=line(’color’,’b’,’LineStyle’,’-’,’LineWidth’,5,...

’erase’,’xor’,’xdata’,[],’ydata’,[]);
lcable=line(’color’,’r’,’LineStyle’,’-’,’LineWidth’,1,...

’erase’,’xor’,’xdata’,[],’ydata’,[]);
rcable=line(’color’,’r’,’LineStyle’,’-’,’LineWidth’,1,...

’erase’,’xor’,’xdata’,[],’ydata’,[]);
for k=1:n
for i=1:p
t(i+1)=t(i)+h;
y(i+1,:)=trapstep(t(i),y(i,:),h);

end
y(1,:)=y(p+1,:);t(1)=t(p+1);
z1(k)=y(1,1);z3(k)=y(1,3);
c=len*cos(y(1,3));s=len*sin(y(1,3));
set(road,’xdata’,[-c c],’ydata’,[-s-y(1,1) s-y(1,1)])
set(lcable,’xdata’,[-c -c],’ydata’,[-s-y(1,1) 8])
set(rcable,’xdata’,[c c],’ydata’,[s-y(1,1) 8])
drawnow; pause(h)
end

function y=trapstep(t,x,h)
%one step of the Trapezoid Method
z1=ydot(t,x);
g=x+h*z1;
z2=ydot(t+h,g);
y=x+h*(z1+z2)/2;

function ydot=ydot(t,y)
len=6;a=0.2; W=80; omega=2*pi*38/60;
a1=exp(a*(y(1)-len*sin(y(3))));
a2=exp(a*(y(1)+len*sin(y(3))));
ydot(1)=y(2);
ydot(2)=-0.01*y(2)-0.4*(a1+a2-2)/a+0.2*W*sin(omega*t);
ydot(3)=y(4);
ydot(4)=-0.01*y(4)+1.2*cos(y(3))*(a1-a2)/(len*a);

Run tacoma.m with the default parameter values to see the phenomenon postulated
earlier. If the angle θ of the roadway is set to any small nonzero value, vertical forcing
causes θ to eventually grow to a macroscopic value, leading to significant torsion of the
roadway. The interesting point is that there is no torsional forcing applied to the equation;
the unstable “torsional mode’’ is excited completely by vertical forcing.

Suggested activities:

1. Run tacoma.m with wind speed W = 80 km/hr and initial conditions y = y′ = θ ′ = 0,
θ = 0.001. The bridge is stable in the torsional dimension if small disturbances in θ die out;
unstable if they grow far beyond original size. Which occurs for this value of W?
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2. Replace the trapezoid method by fourth-order Runge–Kutta to improve accuracy. Also, add
new figure windows to plot y(t) and θ(t).

3. The system is torsionally stable for W = 50 km/hr. Find the magnification factor for a small
initial angle. That is, set θ(0) = 10−3 and find the ratio of the maximum angle θ(t),
0 ≤ t < ∞, to θ(0). Is the magnification factor approximately consistent for initial angles
θ(0) = 10−4, 10−5, . . .?

4. Find the minimum wind speed W for which a small disturbance θ(0) = 10−3 has a
magnification factor of 100 or more. Can a consistent magnification factor be defined for
this W?

5. Design and implement a method for computing the minimum wind speed in
Step 4, to within 0.5 × 10−3 km/hr. You may want to use an equation solver from
Chapter 1.

6. Try some larger values of W. Do all extremely small initial angles eventually grow to
catastrophic size?

7. What is the effect of increasing the damping coefficient? Double the current value and
compare the critical A when ω = 3. Can you suggest possible changes in design that might
have made the bridge less susceptible to torsion?

This project is an example of experimental mathematics. The equations are too difficult
to derive closed-form solutions, and even too difficult to prove qualitative results about.
Equipped with reliable ODE solvers, we can generate numerical trajectories for various
parameter settings to illustrate the types of phenomena available to this model. Used in this
way, differential equation models can predict behavior and shed light on mechanisms in
scientific and engineering problems.

6.5 VARIABLE STEP-SIZE METHODS

Up to this point, the step size h has been treated as a constant in the implementation of
the ODE solver. However, there is no reason that h cannot be changed during the solution
process. A good reason to want to change the step size is for a solution that moves between
periods of slow change and periods of fast change. To make the fixed step size small
enough to track the fast changes accurately may mean that the rest of the solution is solved
intolerably slowly.

In this section, we discuss strategies for controlling the step size of ODE solvers. The
most common approach uses two solvers of different orders, called embedded pairs.

6.5.1 Embedded Runge–Kutta pairs

The key idea of a variable step-size method is to monitor the error produced by the current
step. The user sets an error tolerance that must be met by the current step. Then the method
is designed to (1) reject the step and cut the step size if the error tolerance is exceeded, or
(2) if the error tolerance is met, to accept the step and then choose a step size h that should
be appropriate for the next step. The key need is for some way to approximate the error
made on each step. First let’s assume that we have found such a way and explain how to
change the step size.

The simplest way to vary step size is to double or halve the step size, depending on the
current error. Compare the error estimate ei , or relative error estimate ei/|wi |, with the error
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tolerance. (Here, as in the rest of this section, we will assume the ODE system being solved
consists of one equation. It is fairly easy to generalize the ideas of this section to higher
dimensions.) If the tolerance is not met, the step is repeated with new step size equal to
hi/2. If the tolerance is met too well—say, if the error is less than 1/10 the tolerance—after
accepting the step, the step size is doubled for the next step.

In this way, the step size will be adjusted automatically to a size that maintains the
(relative) local truncation error near the user-requested level. Whether the absolute or
relative error is used depends on the context; a good general-purpose technique is to use
the hybrid ei/max(|wi |,θ) to compare with the error tolerance, where the constant θ > 0
protects against very small values of wi .

A more sophisticated way to choose the appropriate step size follows from knowledge
of the order of the ODE solver.Assume that the solver has order p, so that the local truncation
error ei = O(hp+1). Let T be the relative error tolerance allowed by the user for each step.
That means the goal is to ensure ei/|wi | < T .

If the goal ei/|wi | < T is met, then the step is accepted and a new step size for the next
step is needed. Assuming that

ei ≈ ch
p+1
i (6.55)

for some constant c, the step size h that best meets the tolerance satisfies

T |wi | = chp+1. (6.56)

Solving the equations (6.55) and (6.56) for h and c yields

h∗ = 0.8
(

T |wi |
ei

) 1
p+1

hi, (6.57)

where we have added a safety factor of 0.8 to be conservative. Thus, the next step size will
be set to hi+1 = h∗.

On the other hand, if the goal ei/|wi | < T is not met by the relative error, then hi

is set to h∗ for a second try. This should suffice, because of the safety factor. However,
if the second try also fails to meet the goal, then the step size is simply cut in half. This
continues until the goal is achieved. As stated for general purposes, the relative error should
be replaced by ei/max(|wi |,θ).

Both the simple and sophisticated methods described depend heavily on some way to
estimate the error of the current step of the ODE solver ei = |wi+1 − yi+1|. An important
constraint is to gain the estimate without requiring a large amount of extra computation.

The most widely used way for obtaining such an error estimate is to run a higher order
ODE solver in parallel with the ODE solver of interest. The higher order method’s estimate
for wi+1—call it zi+1—will be significantly more accurate than the original wi+1, so that
the difference

ei+1 ≈ |zi+1 − wi+1| (6.58)

is used as an error estimate for the current step from ti to ti+1.
Following this idea, several “pairs’’ of Runge–Kutta methods, one of order p and

another of order p + 1, have been developed that share much of the needed computations.
In this way, the extra cost of step-size control is kept low. Such a pair is often called an
embedded Runge–Kutta pair.

! EXAMPLE 6.19 RK2/3, An example of a Runge–Kutta order 2/order 3 embedded pair.

The Explicit Trapezoid Method can be paired with a third-order RK method to
make an embedded pair suitable for step-size control. Set
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wi+1 = wi + h
s1 + s2

2

zi+1 = wi + h
s1 + 4s3 + s2

6
,

where

s1 = f (ti ,wi)

s2 = f (ti + h,wi + hs1)

s3 = f

(
ti + 1

2
h,wi + 1

2
h

s1 + s2

2

)
.

In the preceding equations, wi+1 is the trapezoid step, and zi+1 represents a third-order
method, which requires the three Runge–Kutta stages shown. The third-order method is
just an application of Simpson’s Rule for numerical integration to the context of differential
equations. From the two ODE solvers, an estimate for the error can be found by subtracting
the two approximations:

ei+1 ≈ |wi+1 − zi+1| =
∣∣∣∣h

s1 − 2s3 + s2

3

∣∣∣∣ . (6.59)

Using this estimate for the local truncation error allows the implementation of either of
the step-size control protocols previously described. Note that the local truncation error
estimate for the Trapezoid Method is achieved at the cost of only one extra evaluation of
f , used to compute S3. "

Although the step-size protocol has been worked out for wi+1, it makes even better
sense to use the higher order approximation zi+1 to advance the step, since it is available.
This is called local extrapolation.

! EXAMPLE 6.20 The Bogacki–Shampine order 2/order 3 embedded pair.

Matlab uses a different embedded pair in its ode23 command. Let

s1 = f (ti ,wi)

s2 = f

(
ti + 1

2
h,wi + 1

2
hs1

)

s3 = f

(
ti + 3

4
h,wi + 3

4
hs2

)

zi+1 = wi + h

9
(2s1 + 3s2 + 4s3)

s4 = f (t + h,zi+1)

wi+1 = wi + h

24
(7s1 + 6s2 + 8s3 + 3s4). (6.60)

It can be checked that zi+1 is an order 3 approximation, and wi+1, despite having four
stages, is order 2. The error estimate needed for step-size control is

ei+1 = |zi+1 − wi+1| = h

72
| − 5s1 + 6s2 + 8s3 − 9s4|. (6.61)

Note that s4 becomes s1 on the next step if it is accepted, so that there are no wasted
stages—at least three stages are needed, anyway, for a third-order Runge–Kutta Method.
This design of the second-order method is called FSAL, for First Same As Last. "
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6.5.2 Order 4/5 methods

! EXAMPLE 6.21 The Runge–Kutta–Fehlberg order 4/order 5 embedded pair.

s1 = f (ti ,wi)

s2 = f

(
ti + 1

4
h,wi + 1

4
hs1

)

s3 = f

(
ti + 3

8
h,wi + 3

32
hs1 + 9

32
hs2

)

s4 = f

(
ti + 12

13
h,wi + 1932

2197
hs1 − 7200

2197
hs2 + 7296

2197
hs3

)

s5 = f

(
ti + h,wi + 439

216
hs1 − 8hs2 + 3680

513
hs3 − 845

4104
hs4

)

s6 = f

(
ti + 1

2
h,wi − 8

27
hs1 + 2hs2 − 3544

2565
hs3 + 1859

4104
hs4 − 11

40
hs5

)

wi+1 = wi + h

(
25
216

s1 + 1408
2565

s3 + 2197
4104

s4 − 1
5

s5

)

zi+1 = wi + h

(
16
135

s1 + 6656
12825

s3 + 28561
56430

s4 − 9
50

s5 + 2
55

s6

)
. (6.62)

It can be checked that zi+1 is an order 5 approximation, and that wi+1 is order 4. The error
estimate needed for step-size control is

ei+1 = |zi+1 − wi+1| = h

∣∣∣∣
1

360
s1 − 128

4275
s3 − 2197

75240
s4 + 1

50
s5 + 2

55
s6

∣∣∣∣ . (6.63)
"

The Runge–Kutta–Fehlberg Method (RKF45) is currently the best-known variable
step-size one-step method. Implementation is simple, given the preceding formulas. The
user must set a relative error tolerance T and an initial step size h. After computing w1, z1,
and e1, the relative error test

ei

|wi |
< T (6.64)

is checked for i = 1. If successful, the new w1 is replaced with the locally extrapolated
version z1, and the program moves on to the next step. On the other hand, if the relative
error test (6.64) fails, the step is tried again with step size h given by (6.57) with p = 4,
the order of the method producing wi . (A repeated failure, which is unlikely, is treated by
cutting step size in half until success is reached.) In any case, the step size h1 for the next
step should be calculated from (6.57).

! EXAMPLE 6.22 The Dormand–Prince order 4/order 5 embedded pair.

s1 = f (ti ,wi)

s2 = f

(
ti + 1

5
h,wi + 1

5
hs1

)

s3 = f

(
ti + 3

10
h,wi + 3

40
hs1 + 9

40
hs2

)
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s4 = f

(
ti + 4

5
h,wi + 44

45
hs1 − 56

15
hs2 + 32

9
hs3

)

s5 = f

(
ti + 8

9
h,wi + h

(
19372
6561

s1 − 25360
2187

s2 + 64448
6561

s3 − 212
729

s4

))

s6 = f

(
ti + h,wi + h

(
9017
3168

s1 − 355
33

s2 + 46732
5247

s3 + 49
176

s4 − 5103
18656

s5

))

zi+1 = wi + h

(
35
384

s1 + 500
1113

s3 + 125
192

s4 − 2187
6784

s5 + 11
84

s6

)

s7 = f (ti + h,zi+1)

wi+1 = wi + h

(
5179
57600

s1 + 7571
16695

s3 + 393
640

s4 − 92097
339200

s5 + 187
2100

s6 + 1
40

s7

)
.

(6.65)

It can be checked that zi+1 is an order 5 approximation, and that wi+1 is order 4. The error
estimate needed for step-size control is

ei+1 = |zi+1 − wi+1|

= h

∣∣∣∣
71

57600
s1 − 71

16695
s3 + 71

1920
s4 − 17253

339200
s5 + 22

525
s6 − 1

40
s7

∣∣∣∣ . (6.66)

Again, local extrapolation is used, meaning that the step is advanced with zi+1
instead of wi+1. Note that, in fact, wi+1 need not be computed—only ei+1 is necessary
for error control. This is a FSAL method, like the Bogacki–Shampine Method, since s7
becomes s1 on the next step, if it is accepted. There are no wasted stages; it can be shown
that at least six stages are needed for a fifth-order Runge–Kutta Method. "

The Matlab command ode45 uses the Dormand–Prince embedded pair along with
step-size control, roughly as just described. The user can set the relative tolerance T as
desired. The right-hand side of the differential equation must be specified as a Matlab
function. For example, the commands

>> opts=odeset(’RelTol’,1e-4,’Refine’,1,’MaxStep’,1);
>> [t,y]=ode45(@(t,y) t*y+tˆ3,[0 1],1,opts);

will solve the initial value problem of Example 6.1 with initial condition y0 = 1 and relative
error tolerance T = 0.0001. If the parameter RelTol is not set, the default of 0.001 is used.
Note that the function f input to ode45 must be a function of two variables, in this case t

and y, even if one of them is absent in the definition of the function.
The output from ode45, using the foregoing parameter settings for this problem, is

step ti wi yi ei

0 0.00000000 1.00000000 1.00000000 0.00000000
1 0.54021287 1.17946818 1.17946345 0.00000473
2 1.00000000 1.94617812 1.94616381 0.00001431
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If a relative tolerance of 10−6 is used, the following output results:

step ti wi yi ei

0 0.00000000 1.00000000 1.00000000 0.00000000
1 0.21506262 1.02393440 1.02393440 0.00000000
2 0.43012524 1.10574441 1.10574440 0.00000001
3 0.68607729 1.32535658 1.32535653 0.00000005
4 0.91192246 1.71515156 1.71515144 0.00000012
5 1.00000000 1.94616394 1.94616381 0.00000013

The approximate solutions more than meet the relative error tolerance because of local
extrapolation, meaning that the zi+1 is being used instead of wi+1, even though the step
size is designed to be sufficient for wi+1. This is the best we can do; if we had an error
estimate for zi+1, we could use it to tune the step size even better, but we don’t have one.
Note also that the solutions stop exactly at the end of the interval [0,1], sinceode45 detects
the end of the interval and truncates the step as necessary.

In order to see ode45 do its step-size selection, we had to turn off some basic default
settings, using the odeset command. The Refine parameter normally increases the
number of solution values reported beyond what is computed by the method, to make a
more beautiful graph, if and when the output is used for that purpose. The default value
is 4, which causes four times the necessary number of points to be provided as output.
The MaxStep parameter puts an upper limit on the step size h, and defaults to one-tenth
the interval length. Using the default values for both of these parameters would mean that a
step size of h = 0.1 would be used, and after refining by a factor of 4, the solution would be
shown with a step size of 0.025. In fact, running the command without an output variable
specified, as in the code

>> opts=odeset(’RelTol’,1e-6);
>> ode45(@(t,y) t*y+tˆ3,[0 1],1,opts);

will cause Matlab to automatically plot the solution on a grid of constant step size 0.025,
as shown in Figure 6.19.

0 0.5 1
1

1.2

1.4

1.6

1.8

2

t

y

Figure 6.19 Matlab’s ode45 command. Solution of the initial value problem of

Example 6.1 is computed, correct to within 10−6.

An alternative way to define the right-hand side function f is to create a function file,
for example f.m, and use the @ character to designate its function handle:

function y=f(t,y)
y=t*y+tˆ3;
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The command

>> [t,y]=ode45(@f,[0 1],1,opts);

causes ode45 to run as before. This alternative will be convenient when the number of
independent variables in the differential equation increases.

While it is tempting to crown variable step size Runge–Kutta Methods as the champion
ODE solvers, there are a few types of equations that they do not handle very well. Here is
a particularly simple but vexing example:

! EXAMPLE 6.23 Use ode45 to solve the initial value problem within a relative tolerance of 10−4:
⎧
⎨

⎩

y′ = 10(1 − y)

y(0) = 1/2
t in [0,100].

(6.67)

This can be accomplished with the following three lines of Matlab code:

>> opts=odeset(’RelTol’,1e-4);
>> [t,y]=ode45(@(t,y) 10*(1-y),[0 100],.5,opts);
>> length(t)

ans= 1241
>>

We have printed the number of steps because it seems excessive. The solution to the
initial value problem is easy to determine: y(t) = 1 − e−10t /2. For t > 1, the solution has
already reached its equilibrium 1 within 4 decimal places, and it never moves any farther
away from 1. Yet ode45 moves at a snail’s pace, using an average step size of less than
0.1. Why such a conservative step size selection for a tame solution?

Part of the answer becomes clear by viewing the output from ode45 in Fig-
ure 6.20. Although the solution is very close to 1, the solver continually overshoots in
trying to approximate closely. The differential equation is “stiff,’’ a term we will formally
define in the next section. For stiff equations, a different strategy in numerical solution

0 5 10
(b)

15 20

1

.9999

1.0001

y

0 5 10
(a)

15 20

1

.9999

1.0001

y

Figure 6.20 Numerical solution of the initial value problem of Example 6.23. (a) Using

ode45 requires over 10 steps per unit time to stay within relative tolerance 10−4. (b) With

ode23s, far fewer steps are needed.
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greatly increases solving efficiency. For example, note the difference in steps needed when
one of Matlab’s stiff solvers are used:

>> opts=odeset(’RelTol’,1e-4);
>> [t,y]=ode23s(@(t,y) 10*(1-y),[0 100],.5,opts);
>> length(t)

ans=
39

Figure 6.20(b) plots the solution points from the solver ode23s. Relatively few points are
needed to keep the numerical solution within the tolerance. We will investigate how to build
methods that handle this type of difficulty in the next section. "

6.5 Computer Problems

1. Write a Matlab implementation of RK23 (Example 6.19), and apply to approximating the
solutions of the IVPs in Exercise 6.1.3 with a relative tolerance of 10−8 on [0,1]. Ask the
program to stop exactly at the endpoint t = 1. Report the maximum step size used and
the number of steps.

2. Compare the results of Computer Problem 1 with the application of Matlab’s ode23 to the
same problem.

3. Carry out the steps of Computer Problem 1 for the Runge–Kutta–Fehlberg Method RKF45.

4. Compare the results of Computer Problem 3 with the application of Matlab’s ode45 to the
same problem.

5. Apply a Matlab implementation of RKF45 to approximating the solutions of the systems in
Exercise 6.3.1 with a relative tolerance of 10−6 on [0,1]. Report the maximum step size used
and the number of steps.

6.6 IMPLICIT METHODS AND STIFF EQUATIONS

The differential equations solvers we have presented so far are explicit, meaning that there
is an explicit formula for the new approximation wi+1 in terms of known data, such as h, ti ,
and wi . It turns out that some differential equations are poorly served by explicit methods,
and our first goal is to explain why. In Example 6.23, a sophisticated variable step-size
solver seems to spend most of its energy overshooting the correct solution in one direction
or another.

The stiffness phenomenon can be more easily understood in a simpler context. Accord-
ingly, we begin with Euler’s Method.

! EXAMPLE 6.24 Apply Euler’s Method to Example 6.23.

Euler’s Method for the right-hand side f (t,y) = 10(1 − y) with step size h is

wi+1 = wi + hf (ti ,wi)

= wi + h(10)(1 − wi)

= wi(1 − 10h) + 10h. (6.68)
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Since the solution is y(t) = 1 − e−10t /2, the approximate solution must approach 1 in
the long run. Here we get some help from Chapter 1. Notice that (6.68) can be viewed
as a fixed-point iteration with g(x) = x(1 − 10h) + 10h. This iteration will converge to
the fixed point at x = 1 as long as |g′(1)| = |1 − 10h| < 1. Solving this inequality yields
0 < h < 0.2. For any larger h, the fixed point 1 will repel nearby guesses, and the solution
will have no hope of being accurate. "

Figure 6.21 shows this effect for Example 6.24. The solution is very tame: an attracting
equilibrium at y = 1. An Euler step of size h = 0.3 has difficulty finding the equilibrium
because the slope of the nearby solution changes greatly between the beginning and the end
of the h interval. This causes overshoot in the numerical solution.

0 10.3 0.6

Backward Euler

Euler

1

0.7

1.3

y

t

Figure 6.21 Comparison of Euler and Backward Euler steps. The differential equa-

tion in Example 6.23 is stiff. The equilibrium solution y = 1 is surrounded by other

solutions with large curvature (fast-changing slope). The Euler step overshoots, while

the Backward Euler step is more consistent with the system dynamics.

Differential equations with this property—that attracting solutions are surrounded with
fast-changing nearby solutions—are called stiff. This is often a sign of multiple timescales
in the system. Quantitatively, it corresponds to the linear part of the right-hand side f of the
differential equation, in the variable y, being large and negative. (For a system of equations,
this corresponds to an eigenvalue of the linear part being large and negative.) This definition
is a bit relative, but that is the nature of stiffness—the more negative, the smaller the step
size must be to avoid overshoot. For Example 6.24, stiffness is measured by evaluating
∂f /∂y = −10 at the equilibrium solution y = 1.

One way to solve the problem depicted in Figure 6.21 is to somehow bring in informa-
tion from the right side of the interval [ti , ti + h], instead of relying solely on information
from the left side. That is the motivation behind the following variation on Euler’s Method:

Backward Euler Method

w0 = y0

wi+1 = wi + hf (ti+1,wi+1). (6.69)

Note the difference: While Euler’s Method uses the left-end slope to step across the
interval, Backward Euler would like to somehow cross the interval so that the slope is
correct at the right end.

A price must be paid for this improvement. Backward Euler is our first example of
an implicit method, meaning that the method does not directly give a formula for the new
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approximation wi+1. Instead, we must work a little to get it. For the example y′ = 10(1 − y),
the Backward Euler Method gives

wi+1 = wi + 10h(1 − wi+1),

which, after a little algebra, can be expressed as

wi+1 = wi + 10h

1 + 10h
.

Setting h = 0.3, for example, the Backward Euler Method gives wi+1 = (wi + 3)/4. We
can again evaluate the behavior as a fixed point iteration w → g(w) = (w + 3)/4. There is a
fixed point at 1, and g′(1) = 1/4 < 1, verifying convergence to the true equilibrium solution
y = 1. Unlike the Euler Method with h = 0.3, at least the correct qualitative behavior is
followed by the numerical solution. In fact, note that the Backward Euler Method solution
converges to y = 1 no matter how large the step size h (Exercise 3).

Because of the better behavior of implicit methods like Backward Euler in the presence
of stiff equations, it is worthwhile performing extra work to evaluate the next step, even
though it is not explicitly available. Example 6.24 was not challenging to solve for wi+1,
due to the fact that the differential equation is linear, and it was possible to change the
original implicit formula to an explicit one for evaluation. In general, however, this is not
possible, and we need to use more indirect means.

If the implicit method leaves a nonlinear equation to solve, we must refer to Chapter 1.
Both Fixed-Point Iteration and Newton’s Method are often used to solve for wi+1. This
means that there is an equation-solving loop within the loop advancing the differential
equation. The next example shows how this can be done.

! EXAMPLE 6.25 Apply the Backward Euler Method to the initial value problem
⎧
⎨

⎩

y′ = y + 8y2 − 9y3

y(0) = 1/2
t in [0,3].

This equation, like the previous example, has an equilibrium solution y = 1. The partial
derivative ∂f /∂y = 1 + 16y − 27y2 evaluates to −10 at y = 1, identifying this equation
as moderately stiff. There will be an upper bound, similar to that of the previous example,
for h, such that Euler’s Method is successful. Thus, we are motivated to try the Backward
Euler Method

wi+1 = wi + hf (ti+1,wi+1)

= wi + h(wi+1 + 8w2
i+1 − 9w3

i+1).

This is a nonlinear equation in wi+1, which we need to solve in order to advance the numeri-
cal solution. Renaming z = wi+1, we must solve the equation z = wi + h(z + 8z2 − 9z3),
or

9hz3 − 8hz2 + (1 − h)z − wi = 0 (6.70)

for the unknown z. We will demonstrate with Newton’s Method.
To start Newton’s Method, an initial guess is needed. Two choices that come

to mind are the previous approximation wi and the Euler’s Method approximation for
wi+1. Although the latter is accessible since Euler is explicit, it may not be the best choice
for stiff problems, as shown in Figure 6.21. In this case, we will use wi as the starting
guess.
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Figure 6.22 Numerical solution of the initial value problem of Example 6.25. True

solution is the dashed curve. The black circles denote the Euler Method approximation; the

blue circles denote Backward Euler. (a) h = 0.3 (b) h = 0.15.

Assembling Newton’s Method for (6.70) yields

znew = z − 9hz3 − 8hz2 + (1 − h)z − wi

27hz2 − 16hz + 1 − h
. (6.71)

After evaluating (6.71), replace z with znew and repeat. For each Backward Euler step,
Newton’s Method is run until znew − z is smaller than a preset tolerance (smaller than the
errors that are being made in approximating the differential equation solution).

Figure 6.22 shows the results for two different step sizes. In addition, numerical
solutions from Euler’s Method are shown. Clearly, h = 0.3 is too large for Euler on this
stiff problem. On the other hand, when h is cut to 0.15, both methods perform at about the
same level. "

So-called stiff solvers like Backward Euler allow sufficient error control with
comparatively large step size, increasing efficiency. Matlab’s ode23s is a higher order
version with a built-in variable step-size strategy.

6.6 Exercises

1. Using initial condition y(0) = 0 and step size h = 1/4, calculate the Backward Euler
approximation on the interval [0,1]. Find the error at t = 1 by comparing with the correct
solution found in Exercise 6.1.4.

(a) y′ = t + y (b) y′ = t − y (c) y′ = 4t − 2y

2. Find all equilibrium solutions and the value of the Jacobian at the equilibria. Is the equation
stiff? (a) y′ = y − y2 (b) y′ = 10y − 10y2 (c) y′ = −10sin y

3. Show that for every step size h, the Backward Euler approximate solution converges to the
equilibrium solution y = 1 as ti → ∞ for Example 6.24.

4. Consider the linear differential equation y′ = ay + b for a < 0. (a) Find the equilibrium.
(b) Write down the Backward Euler Method for the equation. (c) View Backward Euler as a
Fixed-Point Iteration to prove that the method’s approximate solution will converge to the
equilibrium as t → ∞.
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6.6 Computer Problems

1. Apply Backward Euler, using Newton’s Method as a solver, for the initial value problems.
Which of the equilibrium solutions are approached by the approximate solution? Apply Euler’s
Method. For what approximate range of h can Euler be used successfully to converge to the
equilibrium? Plot approximate solutions given by Backward Euler, and by Euler with an
excessive step size.

(a)

⎧
⎪⎨

⎪⎩

y′ = y2 − y3

y(0) = 1/2
t in [0,20]

(b)

⎧
⎪⎨

⎪⎩

y′ = 6y − 6y2

y(0) = 1/2
t in [0,20]

2. Carry out the steps in Computer Problem 1 for the following initial value problems:

(a)

⎧
⎪⎨

⎪⎩

y′ = 6y − 3y2

y(0) = 1/2
t in [0,20]

(b)

⎧
⎪⎨

⎪⎩

y′ = 10y3 − 10y4

y(0) = 1/2
t in [0,20]

6.7 MULTISTEP METHODS

The Runge–Kutta family that we have studied consists of one-step methods, meaning that the
newest step wi+1 is produced on the basis of the differential equation and the value of the
previous step wi . This is in the spirit of initial value problems, for which Theorem 6.2
guarantees a unique solution starting at an arbitrary w0.

The multistep methods suggest a different approach: using the knowledge of more
than one of the previous wi to help produce the next step. This will lead to ODE solvers
that have order as high as the one-step methods, but much of the necessary computation
will be replaced with interpolation of already computed values on the solution path.

6.7.1 Generating multistep methods

As a first example, consider the following two-step method:

Adams–Bashforth Two-Step Method

wi+1 = wi + h

[
3
2

f (ti ,wi) − 1
2

f (ti−1,wi−1)

]
. (6.72)

While the second-order Midpoint Method,

wi+1 = wi + hf

(
ti + h

2
,wi + h

2
f (ti ,wi)

)
,

needs two function evaluations of the ODE right-hand side f per step, theAdams–Bashforth
Two-Step Method requires only one new evaluation per step (one is stored from the previ-
ous step). We will see subsequently that (6.72) is also a second-order method. Therefore,
multistep methods can achieve the same order with less computational effort—usually just
one function evaluation per step.

Since multistep methods use more than one previous w value, they need help getting
started. The start-up phase for an s-step method typically consists of a one-step method
that uses w0 to produce s − 1 values w1,w2, . . . ,ws−1, before the multistep method can be
used. The Adams–Bashforth Two-Step Method (6.72) needs w1, along with the given initial
condition w0, in order to begin. The following Matlab code uses the Trapezoid Method to
provide the start-up value w1.
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% Program 6.7 Multistep method
% Inputs: time interval inter,
% ic=[y0] initial condition, number of steps n,
% s=number of (multi)steps, e.g. 2 for 2-step method
% Output: time steps t, solution y
% Calls a multistep method such as ab2step.m
% Example usage: [t,y]=exmultistep([0,1],1,20,2)
function [t,y]=exmultistep(inter,ic,n,s)
h=(inter(2)-inter(1))/n;
% Start-up phase
y(1,:)=ic;t(1)=inter(1);
for i=1:s-1 % start-up phase, using one-step method
t(i+1)=t(i)+h;
y(i+1,:)=trapstep(t(i),y(i,:),h);
f(i,:)=ydot(t(i),y(i,:));

end
for i=s:n % multistep method loop
t(i+1)=t(i)+h;
f(i,:)=ydot(t(i),y(i,:));
y(i+1,:)=ab2step(t(i),i,y,f,h);

end
plot(t,y)

function y=trapstep(t,x,h)
%one step of the Trapezoid Method from section 6.2
z1=ydot(t,x);
g=x+h*z1;
z2=ydot(t+h,g);
y=x+h*(z1+z2)/2;

function z=ab2step(t,i,y,f,h)
%one step of the Adams-Bashforth 2-step method
z=y(i,:)+h*(3*f(i,:)/2-f(i-1,:)/2);

function z=unstable2step(t,i,y,f,h)
%one step of an unstable 2-step method
z=-y(i,:)+2*y(i-1,:)+h*(5*f(i,:)/2+f(i-1,:)/2);

function z=weaklystable2step(t,i,y,f,h)
%one step of a weakly-stable 2-step method
z=y(i-1,:)+h*2*f(i,:);

function z=ydot(t,y) % IVP from section 6.1
z=t*y+tˆ3;

Figure 6.23(a) shows the result of applying the Adams–Bashforth Two-Step Method
to the initial value problem (6.5) from earlier in the chapter, using step size h = 0.05 and
applying the Trapezoid Method for start-up. Part (b) of the figure shows the use of a different
two-step method. Its instability will be the subject of our discussion of stability analysis in
the next sections.

A general s-step method has the form

wi+1 = a1wi + a2wi−1 + ·· · + aswi−s+1 + h[b0fi+1 + b1fi

+ b2fi−1 + ·· · + bsfi−s+1]. (6.73)
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Figure 6.23 Two-step methods applied to IVP (6.5). Dashed curve shows the correct

solution. Step size h = 0.05. (a) Adams–Bashforth Two-Step Method plotted as circles. (b)

Unstable method (6.81) in circles.

The step size is h, and we use the notational convenience

fi ≡ f (ti ,wi).

If b0 = 0, the method is explicit. If b0 ̸= 0, the method is implicit. We will discuss how to
use implicit methods shortly.

First, we want to show how multistep methods are derived and how to decide which
ones will work best. The main issues that arise with multistep methods can be introduced
in the relatively simple case of two-step methods, so we begin there. A general two-step
method (setting s = 2 in (6.73)) has the form

wi+1 = a1wi + a2wi−1 + h[b0fi+1 + b1fi + b2fi−1]. (6.74)

To develop a multistep method, we need to refer to Taylor’s Theorem, since the game
is still to match as many terms of the solution’s Taylor expansion as possible with the terms
of the method. What remains will be the local truncation error.

We assume that all previous wi are correct—that is, wi = yi and wi−1 = yi−1 in (6.74).
The differential equation says that y′

i = fi , so all terms can be expanded in a Taylor expan-
sion as follows:

wi+1 = a1wi + a2wi−1 + h[b0fi+1 + b1fi + b2fi−1]
= a1[yi]

+ a2[yi − hy′
i + h2

2 y′′
i − h3

6 y′′′
i + h4

24 y′′′′
i − · · · ]

+ b0[ hy′
i + h2y′′

i + h3

2 y′′′
i + h4

6 y′′′′
i + ·· · ]

+ b1[ hy′
i]

+ b2[ hy′
i − h2y′′

i + h3

2 y′′′
i − h4

6 y′′′′
i + ·· · ].

Adding up yields

wi+1 = (a1 + a2)yi + (b0 + b1 + b2 − a2)hy′
i + (a2 − 2b2 + 2b0)

h2

2
y′′

i

+ (−a2 + 3b0 + 3b2)
h3

6
y′′′

i + (a2 + 4b0 − 4b2)
h4

24
y′′′′

i + ·· · . (6.75)
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By choosing the ai and bi appropriately, the local truncation error yi+1 − wi+1, where

yi+1 = yi + hy′
i + h2

2
y′′

i + h3

6
y′′′

i + ·· · , (6.76)

can be made as small as possible, assuming that the derivatives involved actually exist.
Next, we will investigate the possibilities.

6.7.2 Explicit multistep methods

To look for explicit methods, set b0 = 0. A second-order method can be developed by
matching terms in (6.75) and (6.76) up to and including the h2 term, making the local
truncation error of size O(h3). Comparing terms yields the system

a1 + a2 = 1

−a2 + b1 + b2 = 1

a2 − 2b2 = 1. (6.77)

There are three equations in four unknowns a1,a2,b1,b2, so it will be possible to find
infinitely many different explicit order-two methods. (One of the solutions corresponds to
an order-three method. See Exercise 3.) Note that the equations can be written in terms of
a1 as follows:

a2 = 1 − a1

b1 = 2 − 1
2

a1

b2 = −1
2

a1. (6.78)

The local truncation error will be

yi+1 − wi+1 = 1
6

h3y′′′
i − 3b2 − a2

6
h3y′′′

i + O(h4)

= 1 − 3b2 + a2

6
h3y′′′

i + O(h4)

= 4 + a1

12
h3y′′′

i + O(h4). (6.79)

We are free to set a1 arbitrarily—any choice leads to a second-order method, as we
have just shown. Setting a1 = 1 yields the second-order Adams–Bashforth Method (6.72).
Note that a2 = 0 by the first equation, and b2 = −1/2 and b1 = 3/2. According to (6.79),
the local truncation error is 5/12h3y′′′(ti) + O(h4).

Alternatively, we could set a1 = 1/2 to get another two-step second-order method with
a2 = 1/2,b1 = 7/4, and b2 = −1/4:

wi+1 = 1
2

wi + 1
2

wi−1 + h

[
7
4

fi − 1
4

fi−1

]
. (6.80)

This method has local truncation error 3/8h3y′′′(ti) + O(h4).

Complexity The advantage of multistep methods to one-step methods is clear.After

the first few steps, only one new evaluation of the right-hand side function need to be made.

For one-step methods, it is typical for several function evaluations to be needed. Fourth-order

Runge–Kutta, for example, needs four evaluations per step, while the fourth-order Adams–

Bashforth Method needs only one after the start-up phase.
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A third choice, a1 = −1, gives the second-order two-step method

wi+1 = −wi + 2wi−1 + h

[
5
2

fi + 1
2

fi−1

]
(6.81)

that was used in Figure 6.23(b). The failure of (6.81) brings out an important stability
condition that must be met by multistep solvers. Consider the even simpler IVP

⎧
⎨

⎩

y′ = 0
y(0) = 0
t in [0,1]

. (6.82)

Applying method (6.81) to this example yields

wi+1 = −wi + 2wi−1 + h[0]. (6.83)

One solution {wi} to (6.83) is wi ≡ 0. However, there are others. Substituting the form
wi = cλi into (6.83) yields

cλi+1 + cλi − 2cλi−1 = 0

cλi−1(λ2 + λ − 2) = 0. (6.84)

The solutions of the “characteristic polynomial’’λ2 + λ − 2 = 0 of this recurrence relation
are 1 and −2. The latter is a problem—it means that solutions of form (−2)ic are solutions
of the method for constant c. This allows small rounding and truncation errors to quickly
grow to observable size and swamp the computation, as seen in Figure 6.23. To avoid this
possibility, it is important that the roots of the characteristic polynomial of the method are
bounded by 1 in absolute value. This leads to the following definition:

DEFINITION 6.6 The multistep method (6.73) is stable if the roots of the polynomial P (x) = xs− a1xs−1 −
. . . − as are bounded by 1 in absolute value, and any roots of absolute value 1 are simple
roots. A stable method for which 1 is the only root of absolute value 1 is called strongly
stable; otherwise it is weakly stable. ❒

TheAdams–Bashforth Method (6.72) has roots 0 and 1, making it strongly stable, while
(6.81) has roots −2 and 1, making it unstable.

The characteristic polynomial of the general two-step formula, using the fact that
a1 = 1 − a2 from (6.78), is

P (x) = x2 − a1x − a2

= x2 − a1x − 1 + a1

= (x − 1)(x − a1 + 1),

whose roots are 1 and a1 − 1. Returning to (6.78), we can find a weakly stable second-order
method by setting a1 = 0. Then the roots are 1 and −1, leading to the following weakly
stable second-order two-step method:

wi+1 = wi−1 + 2hfi. (6.85)

! EXAMPLE 6.26 Apply strongly stable method (6.72), weakly stable method (6.85), and unstable method
(6.81) to the initial value problem ⎧

⎨

⎩

y′ = −3y

y(0) = 1
t in [0,2]

. (6.86)

The solution is the curve y = e−3t . We will use Program 6.7 to follow the solutions,
where ydot.m has been changed to

function z=ydot(t,y)
z=-3*y;
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and ab2step is replaced by one of the three calls ab2step, weaklystable2step,
or unstable2step.

Figure 6.24 shows the three solution approximations for step size h = 0.1. The
weakly stable and unstable methods seem to follow closely for a while and then move
quickly away from the correct solution. Reducing the step size does not eliminate the
problem, although it may delay the onset of instability. "

Figure 6.24 Comparison of second-order, two-step methods applied to IVP (6.86). (a) Adams-

Bashforth Method. (b) Weakly stable method (in circles) and unstable method (in squares).

With two more definitions, we can state the fundamental theorem of multistep solvers.

DEFINITION 6.7 A multistep method is consistent if it has order at least 1. A solver is convergent if the
approximate solutions converge to the exact solution for each t , as h → 0. ❒

THEOREM 6.8 (Dahlquist) Assume that the starting values are correct. Then a multistep method (6.73)
is convergent if and only if it is stable and consistent. #

For a proof of Dahlquist’s theorem, see Hairer and Wanner [1996]. Theorem 6.8 tells
us that avoiding a catastrophe like Figure 6.24(b) for a second-order two-step method is as
simple as checking the method’s stability.

One root of the characteristic polynomial must be at 1 (see Exercise 6). The
Adams–Bashforth Methods are the ones whose other roots are all at 0. For this reason, the
Adams–Bashforth Two-Step Method is considered the most stable of the two-step methods.

The derivation of higher order methods, using more steps, is precisely analogous to
our previous derivation of two-step methods. Exercises 13 and 14 ask for verification that
the following methods are strongly stable:

Adams–Bashforth Three-Step Method (third order)

wi+1 = wi + h

12
[23fi − 16fi−1 + 5fi−2]. (6.87)

Adams–Bashforth Four-Step Method (fourth order)

wi+1 = wi + h

24
[55fi − 59fi−1 + 37fi−2 − 9fi−3]. (6.88)
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6.7.3 Implicit multistep methods

When the coefficient b0 in (6.73) is nonzero, the method is implicit. The simplest second-
order implicit method (see Exercise 5) is the implicit Trapezoid Method:

Implicit Trapezoid Method (second order)

wi+1 = wi + h

2
[fi+1 + fi]. (6.89)

If the fi+1 term is replaced by evaluating f at the “prediction’’ for wi+1 made by
Euler’s Method, then this becomes the Explicit Trapezoid Method. The Implicit Trapezoid
Method is also called theAdams–Moulton One-Step Method, by analogy with what follows.
An example of a two-step implicit method is the Adams–Moulton Two-Step Method:

Adams–Moulton Two-Step Method (third order)

wi+1 = wi + h

12
[5fi+1 + 8fi − fi−1]. (6.90)

There are significant differences between the implicit and explicit methods. First, it is
possible to get a stable third-order implicit method by using only two previous steps, unlike
the explicit case. Second, the corresponding local truncation error formula is smaller for
implicit methods. On the other hand, the implicit method has the inherent difficulty that
extra processing is necessary to evaluate the implicit part.

For these reasons, implicit methods are often used as the corrector in a “predictor–
corrector’’pair. Implicit and explicit methods of the same order are used together. Each step
is the combination of a prediction by the explicit method and a correction by the implicit
method, where the implicit method uses the predicted wi+1 to calculate fi+1. Predictor–
corrector methods take approximately twice the computational effort, since an evaluation of
the differential equation right-hand side f is done on both the prediction and the correction
parts of the step. However, the added accuracy and stability often make the price worth
paying.

A simple predictor–corrector method pairs the Adams–Bashforth Two-Step Explicit
Method as predictor with the Adams–Moulton One-Step Implicit Method as corrector.
Both are second-order methods. The Matlab code looks similar to the Adams–Bashforth
code used earlier, but with a corrector step added:

% Program 6.8 Adams-Bashforth-Moulton second-order p-c
% Inputs: time interval inter,
% ic=[y0] initial condition
% number of steps n, number of (multi)steps s for explicit method
% Output: time steps t, solution y
% Calls multistep methods such as ab2step.m and am1step.m
% Example usage: [t,y]=predcorr([0 1],1,20,2)
function [t,y]=predcorr(inter,ic,n,s)
h=(inter(2)-inter(1))/n;
% Start-up phase
y(1,:)=ic;t(1)=inter(1);
for i=1:s-1 % start-up phase, using one-step method
t(i+1)=t(i)+h;
y(i+1,:)=trapstep(t(i),y(i,:),h);
f(i,:)=ydot(t(i),y(i,:));

end
for i=s:n % multistep method loop
t(i+1)=t(i)+h;
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f(i,:)=ydot(t(i),y(i,:));
y(i+1,:)=ab2step(t(i),i,y,f,h); % predict
f(i+1,:)=ydot(t(i+1),y(i+1,:));
y(i+1,:)=am1step(t(i),i,y,f,h); % correct

end
plot(t,y)

function y=trapstep(t,x,h)
%one step of the Trapezoid Method from section 6.2
z1=ydot(t,x);
g=x+h*z1;
z2=ydot(t+h,g);
y=x+h*(z1+z2)/2;

function z=ab2step(t,i,y,f,h)
%one step of the Adams-Bashforth 2-step method
z=y(i,:)+h*(3*f(i,:)-f(i-1,:))/2;

function z=am1step(t,i,y,f,h)
%one step of the Adams-Moulton 1-step method
z=y(i,:)+h*(f(i+1,:)+f(i,:))/2;

function z=ydot(t,y) % IVP
z=t*y+tˆ3;

The Adams–Moulton Two-Step Method is derived just as the explicit methods were
established. Redo the set of equations (6.77), but without requiring that b0 = 0. Since there is
an extra parameter now (b0), we are able to match up (6.75) and (6.76) through the degree 3
terms with only a two-step method, putting the local truncation error in the h4 term. The
analogue to (6.77) is

a1 + a2 = 1

−a2 + b0 + b1 + b2 = 1

a2 + 2b0 − 2b2 = 1

−a2 + 3b0 + 3b2 = 1. (6.91)

Satisfying these equations results in a third-order two-step implicit method.
The equations can be written in terms of a1 as follows:

a2 = 1 − a1

b0 = 1
3

+ 1
12

a1

b1 = 4
3

− 2
3

a1

b2 = 1
3

− 5
12

a1. (6.92)

The local truncation error is

yi+1 − wi+1 = 1
24

h4y′′′′
i − 4b0 − 4b2 + a2

24
h4y′′′′

i + O(h5)

= 1 − a2 − 4b0 + 4b2

24
h4y′′′′

i + O(h5)

= − a1

24
h4y′′′′

i + O(h5).

The order of the method will be three, as long as a1 ̸= 0. Since a1 is a free parameter, there
are infinitely many third-order two-step implicit methods. The Adams–Moulton Two-Step
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Method uses the choice a1 = 1. Exercise 8 asks for a verification that this method is strongly
stable. Exercise 9 explores other choices of a1.

Note one more special choice, a1 = 0. From the local truncation formula, we see that
this two-step method will be fourth order.

Milne–Simpson Method

wi+1 = wi−1 + h

3
[fi+1 + 4fi + fi−1]. (6.93)

Exercise 10 asks you to check that it is only weakly stable. For this reason, it is susceptible
to error magnification.

The suggestive terminology of the Implicit Trapezoid Method (6.89) and Milne–
Simpson Method (6.93) should remind the reader of the numerical integration formulas
from Chapter 5. In fact, although we have not emphasized this approach, many of the multi-
step formulas we have presented can be alternatively derived by integrating approximating
interpolants, in a close analogy to numerical integration schemes.

The basic idea behind this approach is that the differential equation y′ = f (t,y) can
be integrated on the interval [ti , ti+1] to give

y(ti+1) − y(ti) =
∫ ti+1

ti

f (t,y) dt. (6.94)

Applying a numerical integration scheme to approximate the integral in (6.94) results in a
multistep ODE method. For example, using the Trapezoid Rule for numerical integration
from Chapter 5 yields

y(ti+1) − y(ti) = h

2
(fi+1 + fi) + O(h2),

which is the second-order Trapezoid Method for ODEs. If we approximate the integral by
Simpson’s Rule, the result is

y(ti+1) − y(ti) = h

3
(fi+1 + 4fi + fi−1) + O(h4),

the fourth-order Milne–Simpson Method (6.93). Essentially, we are approximating the
right-hand side of the ODE by a polynomial and integrating, just as is done in numerical
integration. This approach can be extended to recover a number of the multistep methods
we have already presented, by changing the degree of interpolation and the location of the
interpolation points. Although this approach is a more geometric way of deriving some
the multistep methods, it gives no particular insight into the stability of the resulting ODE
solver.

By extending the previous methods, the higher order Adams–Moulton methods can be
derived, in each case using a1 = 1:

Adams–Moulton Three-Step Method (fourth order)

wi+1 = wi + h

24
[9fi+1 + 19fi − 5fi−1 + fi−2]. (6.95)

Adams–Moulton Four-Step Method (fifth order)

wi+1 = wi + h

720
[251fi+1 + 646fi − 264fi−1 + 106fi−2 − 19fi−3]. (6.96)
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These methods are heavily used in predictor–corrector methods, along with an Adams–
Bashforth predictor of the same order. Computer Problems 9 and 10 ask for Matlab code
to implement this idea.

6.7 Exercises

1. Apply the Adams–Bashforth Two-Step Method to the IVPs

(a) y′ = t (b) y′ = t2y (c) y′ = 2(t + 1)y

(d) y′ = 5t4y (e) y′ = 1/y2 (f ) y′ = t3/y2

with initial condition y(0) = 1. Use step size h = 1/4 on the interval [0,1]. Use the Explicit
Trapezoid Method to create w1. Using the correct solution in Exercise 6.1.3, find the global
truncation error at t = 1.

2. Carry out the steps of Exercise 1 on the IVPs

(a) y′ = t + y (b) y′ = t − y (c) y′ = 4t − 2y

with initial condition y(0) = 0. Use the correct solution from Exercise 6.1.4 to find the global
truncation error at t = 1.

3. Find a two-step, third-order explicit method. Is the method stable?

4. Find a second-order, two-step explicit method whose characteristic polynomial has a double
root at 1.

5. Show that the implicit Trapezoid Method (6.89) is a second-order method.

6. Explain why the characteristic polynomial of an explicit or implicit s-step method, for s ≥ 2,
must have a root at 1.

7. (a) For which a1 does there exist a strongly stable second-order, two-step explicit method?
(b) Answer the same question for weakly stable such method.

8. Show that the coefficients of the Adams–Moulton Two-Step Implicit Method satisfy (6.92) and
that the method is strongly stable.

9. Find the order and stability type for the following two-step implicit methods:

(a) wi+1 = 3wi − 2wi−1 + h
12 [13fi+1 − 20fi − 5fi−1]

(b) wi+1 = 4
3 wi − 1

3 wi−1 + 2
3 hfi+1

(c) wi+1 = 4
3 wi − 1

3 wi−1 + h
9 [4fi+1 + 4fi − 2fi−1]

(d) wi+1 = 3wi − 2wi−1 + h
12 [7fi+1 − 8fi − 11fi−1]

(e) wi+1 = 2wi − wi−1 + h
2 [fi+1 − fi−1]

10. Derive the Milne–Simpson Method (6.93) from (6.92), and show that it is fourth order and
weakly stable.

11. Find a second-order, two-step implicit method that is weakly stable.

12. The Milne–Simpson Method is a weakly stable fourth-order, two-step implicit method. Are
there any weakly stable third-order, two-step implicit methods?

13. (a) Find the conditions (analogous to (6.77)) on ai,bi required for a third-order, three-step
explicit method. (b) Show that the Adams–Bashforth Three-Step Method satisfies the
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conditions. (c) Show that the Adams–Bashforth Three-Step Method is strongly stable. (d) Find
a weakly stable third-order, three-step explicit method, and verify these properties.

14. (a) Find the conditions (analogous to (6.77)) on ai,bi required for a fourth-order, four-step
explicit method. (b) Show that the Adams–Bashforth Four-Step Method satisfies the
conditions. (c) Show that the Adams–Bashforth Four-Step Method is strongly stable.

15. (a) Find the conditions (analogous to (6.77)) on ai,bi required for a fourth-order, three-step
implicit method. (b) Show that the Adams–Moulton Three-Step Method satisfies the
conditions. (c) Show that the Adams–Moulton Three-Step Method is strongly stable.

6.7 Computer Problems

1. Adapt the exmultistep.m program to apply the Adams–Bashforth Two-Step Method to the
IVPs in Exercise 1. Using step size h = 0.1, calculate the approximation on the interval [0,1].
Print a table of the t values, approximations, and global truncation error at each
step.

2. Adapt the exmultistep.m program to apply the Adams–Bashforth Two-Step Method to the
IVPs in Exercise 2. Using step size h = 0.1, calculate the approximation on the interval [0,1].
Print a table of the t values, approximations, and global truncation error at each
step.

3. Carry out the steps of Computer Problem 2, using the unstable two-step method (6.81).

4. Carry out the steps of Computer Problem 2, using the Adams–Bashforth Three-Step Method.
Use order-four Runge–Kutta to compute w1 and w2.

5. Plot the Adams–Bashforth Three-Step Method approximate solution on [0,1] for the
differential equation y′ = 1 + y2 and initial condition (a) y0 = 0 (b) y0 = 1, along with the
exact solution (see Exercise 6.1.7). Use step sizes h = 0.1 and 0.05.

6. Plot the Adams–Bashforth Three-Step Method approximate solution on [0,1] for the
differential equation y′ = 1 − y2 and initial condition (a) y0 = 0 (b) y0 = −1/2, along with
the exact solution (see Exercise 6.1.8). Use step sizes h = 0.1 and 0.05.

7. Calculate the Adams–Bashforth Three-Step Method approximate solution on [0,4] for the
differential equation y′ = sin y and initial condition (a) y0 = 0 (b) y0 = 100, using step sizes
h = 0.1 × 2−k for 0 ≤ k ≤ 5. Plot the k = 0 and k = 5 approximate solutions along with the
exact solution (see Exercise 6.1.15), and make a log-log plot of the error as a function of h.

8. Calculate the Adams–Bashforth Three-Step Method approximate solution of the differential
equation y′ = sinh y and initial condition (a) y0 = 1/4 on the interval [0,2] (b) y0 = 2 on the
interval [0,1/4], using step sizes h = 0.1 × 2−k for 0 ≤ k ≤ 5. Plot the k = 0 and k = 5
approximate solutions along with the exact solution (see Exercise 6.1.16), and make a log–log
plot of the error as a function of h.

9. Change Program 6.8 into a third-order predictor–corrector method, using the
Adams–Bashforth Three-Step Method and the Adams–Moulton Two-Step Method with step
size 0.05. Plot the approximation and the correct solution of IVP (6.5) on the interval [0,5].

10. Change Program 6.8 into a third-order predictor–corrector method, using the Adams-Bashforth
Four-Step Method and the Adams–Moulton Three-Step Method with step size 0.05. Plot the
approximation and the correct solution of IVP (6.5) on the interval [0,5].
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Software and Further Reading

Traditional sources for fundamentals on ordinary differential equations are Blanchard et al.
[2002], Boyce and DiPrima [2008], Braun [1993], Edwards and Penny [2004], and Kostelich
and Armbruster [1997]. Many books teach the basics of ODEs along with ample com-
putational and graphical help; we mention ODE Architect [1999] as a good example.
The Matlab codes in Polking [1999] are an excellent way to learn and visualize ODE
concepts.

To supplement our tour through one-step and multistep numerical methods for solving
ordinary differential equations, there are many intermediate and advanced texts. Henrici
[1962] and Gear [1971] are classics. A contemporary Matlab approach is taken by
Shampine et al. [2003]. Other recommended texts are Iserles [1996], Shampine [1994],
Ascher and Petzold [1998], Lambert [1991], Dormand [1996], Butcher [1987], and the
comprehensive two-volume set Hairer et al. [1993] and Hairer and Wanner [1996].

There is a great deal of sophisticated software available for solving ODEs. Details on
the solvers used by Matlab can be found in Shampine and Reichelt [1997] and Ashino
et al. [2000]. Variable-step-size explicit methods of the Runge–Kutta type are usually suc-
cessful for nonstiff or mildly stiff problems. In addition to Runge–Kutta–Fehlberg and
Dormand–Prince, the variant Runge–Kutta–Verner, an order 5/6 method, is often used. For
stiff problems, backward-difference methods and extrapolation methods are called for.

The IMSL includes the double precision routine DIVPRK, based on the Runge–Kutta–
Verner method, and DIVPAG for a multistep Adams-type method that can handle stiff
problems. The NAG library provides a driver routine D02BJF that runs standard Runge–
Kutta steps. The multistep driver is D02CJF, which includes Adams-style programs with
error control. For stiff problems, the D02EJF routine is recommended, where the user has
an option to specify the Jacobian for faster computation.

The Netlib repository contains a Fortran routine RKF45 for the Runge–Kutta–Fehlberg
method and DVERK for the Runge–Kutta–Verner method. The Netlib package ODE
contains several multistep routines. The routine VODE handles stiff problems.

The collection ODEPACK is a public-domain set of Fortran code implementing ODE
solvers, developed at Lawrence Livermore National Laboratory (LLNL). The basic solver
LSODE and its variants are suitable for stiff and nonstiff problems. The routines are freely
available at the LLNL website http://www.llnl.gov/CASC/odepack.

http://www.llnl.gov/CASC/odepack
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7
Boundary Value Problems
Underground and undersea pipelines must be desig-
ned to withstand pressure from the outside environ-
ment. The deeper the pipe, the more expensive a
failure due to collapse will be. The oil pipelines con-
necting North Sea platforms to the coast lie at a
70-meter depth. The increasing importance of natural
gas, and the danger and expense of transportation by
ship, may lead to the construction of intercontinental
gas pipelines. Mid-Atlantic depths exceed 5 kilometers,
where the hydrostatic pressure of 7000 psi will require

innovation in pipe materials and construction to avoid
buckling.

The theory of pipe buckling is central to a wide ar-
ray of applications, from architectural supports to coro-
nary stents. Numerical models of buckling are valuable
when direct experimentation is expensive and difficult.

Reality Check 7 on page 355 represents
a cross-sectional slice of a pipe as a circular ring and
examines when and how buckling occurs.

Chapter 6 described methods for calculating the solution to an initial value problem
(IVP), a differential equation together with initial data, specified at the left end of the

solution interval. The methods we proposed were all “marching’’ techniques—the approx-
imate solution began at the left end and progressed forward in the independent variable t .
An equally important set of problems arises when a differential equation is presented along
with boundary data, specified at both ends of the solution interval.

Chapter 7 describes methods for approximating solutions of a boundary value problem
(BVP). The methods are of three types. First, shooting methods are presented, a combina-
tion of the IVP solvers from Chapter 6 and equation solvers from Chapter 1. Then, finite
difference methods are explored, which convert the differential equation and boundary
conditions into a system of linear or nonlinear equations to be solved. The final section is
focused on collocation methods and the Finite Element Method, which solve the problem
by expressing the solution in terms of elementary basis functions.
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7.1 SHOOTING METHOD

The first method converts the boundary value problem into an initial value problem by
determining the missing initial values that are consistent with the boundary values. Methods
that we have already developed in Chapters 1 and 6 can be combined to carry this out.

7.1.1 Solutions of boundary value problems

A general second-order boundary value problem asks for a solution of
⎧
⎨

⎩

y′′ = f (t,y,y′)
y(a) = ya

y(b) = yb

(7.1)

on the interval a ≤ t ≤ b, as shown in Figure 7.1. In Chapter 6, we learned that a differential
equation under typical smoothness conditions has infinitely many solutions, and that extra
data is needed to pin down a particular solution. In (7.1), the equation is second order, and
two extra constraints are needed. They are given as boundary conditions for the solution
y(t) at a and b.

a b

ya

ybslope sa

y

t

Figure 7.1 Comparison of IVP and BVP. In an initial value problem, the initial value

ya = y(a) and initial slope sa = y′(a) are specified as part of the problem. In a bound-

ary value problem, boundary values ya and yb are specified instead; sa is unknown.

To aid your intuition, consider a projectile, which satisfies the second-order differential
equation y′′(t) = −g as it moves, where y is the projectile height and g is the acceleration
of gravity. Specifying the initial position and velocity uniquely determines the projectile’s
motion, as an initial value problem. On the other hand, a time interval [a,b] and the positions
y(a) and y(b) could be specified. The latter problem, a boundary value problem, also has
a unique solution in this instance.

! EXAMPLE 7.1 Find the maximum height of a projectile that is thrown from the top of a 30-meter tall
building and reaches the ground 4 seconds later.

The differential equation is derived from Newton’s second law F = ma, where
the force of gravity is F = −mg and g = 9.81 m/sec2. Let y(t) be the height at time t . The
trajectory can be expressed as the solution of the IVP

⎧
⎨

⎩

y′′ = −g

y(0) = 30
y′(0) = v0
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!

y

t

Figure 7.2 Solution of BVP (7.2). Plot of solution y(t) = t sin t along with boundary values

y(0) = 0 and y(π) = 0.

or the BVP
⎧
⎨

⎩

y′′ = −g

y(0) = 30
y(4) = 0

Since we don’t know the initial velocity v0, we must solve the boundary value problem.
Integrating twice gives

y(t) = −1
2

gt2 + v0t + y0.

Use of the boundary conditions yields

30 = y(0) = y0

0 = y(4) = −16
2

g + 4v0 + 30,

which implies that v0 ≈ 12.12 m/sec. The solution trajectory is y(t) = − 1
2 gt2 +

12.12t + 30. Now it is easy to use calculus to find the maximum of the trajectory, which is
about 37.5 m. "

! EXAMPLE 7.2 Show that y(t) = t sin t is a solution of the boundary value problem
⎧
⎨

⎩

y′′ = −y + 2cos t

y(0) = 0
y(π) = 0

(7.2)

The function y(t) = t sin t is shown in Figure 7.2. This function solves the differ-
ential equation because

y′′(t) = −t sin t + 2cos t .

Checking the boundary conditions gives y(0) = 0sin 0 = 0 and y(π) = π sin π = 0. "

The existence and uniqueness theory of boundary value problems is more complicated
than the corresponding theory for initial value problems. Seemingly reasonable BVPs may
have no solutions or infinitely many solutions, a situation that is rare for IVPs.

The existence and uniqueness situation is analogous to the arc of a human cannonball
acting under earth’s gravity. Assume that the cannon has a fixed muzzle velocity, but that
the angle of the cannon can be varied. Any values for the original position and velocity will
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determine a trajectory due to earth’s gravity. A solution to the initial value problem always
exists, and it is always unique. The boundary value problem has different properties. If the
net to catch the performer is set beyond the range of the cannon, no solution can exist.
Moreover, for any boundary condition within the cannon’s range, there are two solutions,
a short trip (with the cannon’s firing angle less than 45◦) and a longer trip (with angle greater
than 45◦), violating uniqueness. The next two examples show the possibilities for a very
simple differential equation.

! EXAMPLE 7.3 Show that the boundary value problem
⎧
⎨

⎩

y′′ = −y

y(0) = 0
y(π) = 1

has no solutions.

The differential equation has a two-dimensional family of solutions, generated
by the linearly independent solutions cos t and sin t . All solutions of the equation must
have the form y(t) = a cos t + b sin t . Substituting the first boundary condition, 0 = y(0) =
a implies that a = 0 and y(t) = b sin t . The second boundary condition 1 = y(π) =
b sin π = 0 gives a contradiction. There is no solution, and existence fails. "

! EXAMPLE 7.4 Show that the boundary value problem
⎧
⎨

⎩

y′′ = −y

y(0) = 0
y(π) = 0

has infinitely many solutions.

Check that y(t) = k sin t is a solution of the differential equation and satisfies
the boundary conditions, for every real number k. In particular, there is no uniqueness of
solutions for this example. "

! EXAMPLE 7.5 Find all solutions of the boundary value problem
⎧
⎨

⎩

y′′ = 4y

y(0) = 1
y(1) = 3

(7.3)

This example is simple enough to solve exactly, yet interesting enough to serve
as an example for our BVP solution methods to follow. We can guess two solutions to the
differential equation, y = e2t and y = e−2t . Since the solutions are not multiples of one
another, they are linearly independent; therefore, from elementary differential equations
theory, all solutions of the differential equation are linear combinations c1e2t + c2e−2t .
The two constants c1 and c2 are evaluated by enforcing the two boundary conditions

1 = y(0) = c1 + c2

and

3 = y(1) = c1e2 + c2e−2.

Solving for the constants yields the solution:

y(t) = 3 − e−2

e2 − e−2 e2t + e2 − 3
e2 − e−2 e−2t . (7.4)

"
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7.1.2 Shooting Method implementation

The Shooting Method solves the BVP (7.1) by finding the IVP that has the same solution.
A sequence of IVPs is produced, converging to the correct one. The sequence begins with
an initial guess for the slope sa , provided to go along with the initial value ya . The IVP that
results from this initial slope is solved and compared with the boundary value yb. By trial
and error, the initial slope is improved until the boundary value is matched. To put a more
formal structure on this method, define the following function:

F(s) =

⎧
⎪⎪⎨

⎪⎪⎩

difference between yb and
y(b), where y(t) is the
solution of the IVP with
y(a) = ya and y′(a) = s.

With this definition, the boundary value problem is reduced to solving the equation

F(s) = 0, (7.5)

as shown in Figure 7.3.

1

1

2

3

(a)

y

t

ya s0

s1

yb

1

1

2

3

(b)

y

t

s*ya

yb

Figure 7.3 The Shooting Method. (a) To solve the BVP, the IVP with initial

conditions y(a) = ya,y′(a) = s0 is solved with initial guess s0. The value of F(s0)

is y(b) − yb . Then a new s1 is chosen, and the process is repeated with the goal

of solving F(s) = 0 for s. (b) The Matlab command ode45 is used with root s∗ to plot

the solution of the BVP (7.7).

An equation-solving method from Chapter 1 may now be used to solve the equation.
The Bisection Method or a more sophisticated method like Brent’s Method may be chosen.
Two values of s, called s0 and s1, should be found for which F(s0)F (s1) < 0. Then s0 and
s1 bracket a root of (7.5), and a root s∗ can be located within the required tolerance by
the chosen equation solver. Finally, the solution to the BVP (7.1) can be traced (by an IVP
solver from Chapter 6, for example) as the solution to the initial value problem

⎧
⎨

⎩

y′′ = f (t,y,y′)
y(a) = ya

y′(a) = s∗
. (7.6)

We show a Matlab implementation of the Shooting Method in the next example.

! EXAMPLE 7.6 Apply the Shooting Method to the boundary value problem
⎧
⎨

⎩

y′′ = 4y

y(0) = 1.

y(1) = 3
(7.7)
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Write the differential equation as a first-order system in order to use Matlab’s
ode45 IVP solver:

y′ = v

v′ = 4y. (7.8)

Write a function file F.m representing the function in (7.5):

function z=F(s)
a=0;b=1;yb=3;
ydot=@(t,y) [y(2);4*y(1)];
[t,y]=ode45(ydot,[a,b],[1,s]);
z=y(end,1)-yb; % end means last entry of solution y

Compute F (−1) ≈ −1.05 and F(0) ≈ 0.76, as can be viewed in Figure 7.3(a). There-
fore, there is a root of F between −1 and 0. Run an equation solver such as bisect.m
from Chapter 1 or the Matlab command fzero with starting interval [−1,0] to find s
within desired precision. For example,

>> sstar=fzero(@F,[-1,0])

returns approximately −0.4203. (Recall that fzero requires as input the function handle
from the function F, which is @F.) Then the solution can be plotted as the solution of an
initial value problem (see Figure 7.3(b)). The exact solution of (7.7) is given in (7.4) and
s∗ = y′(0) ≈ −0.4203. "

For systems of ordinary differential equations, boundary value problems arise in many
forms. To conclude this section, we explore one possible form and refer the reader to the
exercises and Reality Check 7 for further examples.

! EXAMPLE 7.7 Apply the Shooting Method to the boundary value problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y′
1 = (4 − 2y2)/t3

y′
2 = −ey1

y1(1) = 0
y2(2) = 0
t in [1,2].

(7.9)

If the initial condition y2(1) were present, this would be an initial value problem. We
will apply the Shooting Method to determine the unknown y2(1), using Matlab routine

1 2

1

2

y

x

Figure 7.4 Solution of Example 7.7 from the Shooting Method. The curves y1(t)

and y2(t) are shown. The black circles denote the given boundary data.
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ode45 as in Example 7.6 to solve the initial value problems. Define the function F(s) to
be the end condition y2(2), where the IVP is solved with initial conditions y1(1) = 0 and
y2(1) = s. The objective is to solve F(s) = 0.

The solution is bracketed by noting that F(0) ≈ −3.97 and F(2) ≈ 0.87.An application
of fzero(@F,[0 2]) finds s∗ = 1.5. Using ode45 with initial values y1(1) = 0 and
y2(1) = 1.5 results in the solution depicted in Figure 7.4. The exact solutions are y1(t) =
ln t,y2(t) = 2 − t2/2. "

7.1 Exercises

1. Show that the solutions to the linear BVPs

(a)

⎧
⎪⎨

⎪⎩

y′′ = y + 2et

y(0) = 0
y(1) = e

(b)

⎧
⎪⎨

⎪⎩

y′′ = (2 + 4t2)y

y(0) = 1
y(1) = e

(c)

⎧
⎪⎨

⎪⎩

y′′ = −y + 2cos t

y(0) = 0
y( π

2 ) = π
2

(d)

⎧
⎪⎨

⎪⎩

y′′ = 2 − 4y

y(0) = 0
y( π

2 ) = 1

are (a) y = tet , (b) y = et2
, (c) y = t sin t , (d) y = sin2 t , respectively.

2. Show that solutions to the BVPs

(a)

⎧
⎪⎨

⎪⎩

y′′ = 3
2 y2

y(1) = 4
y(2) = 1

(b)

⎧
⎪⎨

⎪⎩

y′′ = 2yy′

y(0) = 0
y( π

4 ) = 1
(c)

⎧
⎪⎨

⎪⎩

y′′ = −e−2y

y(1) = 0
y(e) = 1

(d)

⎧
⎪⎨

⎪⎩

y′′ = 6y
1
3

y(1) = 1
y(2) = 8

are (a) y = 4t−2, (b) y = tan t , (c) y = ln t , (d) y = t3, respectively.

3. Consider the boundary value problem
⎧
⎪⎨

⎪⎩

y′′ = −4y

y(a) = ya.

y(b) = yb

(a) Find two linearly independent solutions to the differential equation. (b) Assume that a = 0
and b = π . What conditions on ya,yb must be satisfied in order for a solution to exist?
(c) Same question as (b), for b = π/2. (d) Same question as (b), for b = π/4.

4. Express, as the solution of a second-order boundary value problem, the height of a projectile
that is thrown from the top of a 60-meter tall building and takes 5 seconds to reach the ground.
Then solve the boundary value problem and find the maximum height reached by the projectile.

5. Find all solutions of the BVP y′′ = ky,y(0) = y0,y(1) = y1, for k ≥ 0.

7.1 Computer Problems

1. Apply the Shooting Method to the linear BVPs. Begin by finding an interval [s0, s1] that
brackets a solution. Use the Matlab command fzero or the Bisection Method to find the
solution. Plot the approximate solution on the specified interval.

(a)

⎧
⎪⎨

⎪⎩

y′′ = y + 2
3 et

y(0) = 0
y(1) = 1

3 e

(b)

⎧
⎪⎨

⎪⎩

y′′ = (2 + 4t2)y

y(0) = 1
y(1) = e
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2. Carry out the steps of Computer Problem 1 for the BVPs.

(a)

⎧
⎪⎨

⎪⎩

9y′′ + π2y = 0
y(0) = −1
y
( 3

2

)
= 3

(b)

⎧
⎪⎨

⎪⎩

y′′ = 3y − 2y′

y(0) = e3

y(1) = 1

3. Apply the Shooting Method to the nonlinear BVPs. Find a bracketing interval [s0, s1] and
apply an equation solver to find and plot the solution.

(a)

⎧
⎪⎨

⎪⎩

y′′ = 18y2

y(1) = 1
3

y(2) = 1
12

(b)

⎧
⎪⎨

⎪⎩

y′′ = 2e−2y(1 − t2)

y(0) = 0
y(1) = ln 2

4. Carry out the steps of Computer Problem 3 for the nonlinear BVPs.

(a)

⎧
⎪⎨

⎪⎩

y′′ = ey

y(0) = 1
y(1) = 3

(b)

⎧
⎪⎨

⎪⎩

y′′ = sin y′

y(0) = 1
y(1) = −1

5. Apply the Shooting Method to the nonlinear systems of boundary value problems. Follow the
method of Example 7.7.

(a)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y′
1 = 1/y2

y′
2 = t + tan y1

y1(0) = 0
y2(1) = 2

(b)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y′
1 = y1 − 3y1y2

y′
2 = −6(ty2 + ln y1)

y1(0) = 1
y2(1) = − 2

3

7 Buckling of a Circular Ring
Boundary value problems are natural models for structure calculations. A system of seven
differential equations serves as a model for a circular ring with compressibility c, under
hydrostatic pressure p coming from all directions. The model will be nondimensionalized
for simplicity, and we will assume that the ring has radius 1 with horizontal and vertical
symmetry in the absence of external pressure.Although simplified, the model is useful for the
study of the phenomenon of buckling, or collapse of the circular ring shape. This example
and many other structural boundary value problems can be found in Huddleston [2000].

The model accounts for only the upper left quarter of the ring—the rest can be filled
in by the symmetry assumption. The independent variable s represents arc length along the
original centerline of the ring, which goes from s = 0 to s = π/2. The dependent variables
at the point specified by arc length s are as follows:

y1(s) = angle of centerline with respect to horizontal

y2(s) = x-coordinate

y3(s) = y-coordinate

y4(s) = arc length along deformed centerline

y5(s) = internal axial force

y6(s) = internal normal force

y7(s) = bending moment.

Figure 7.5(a) shows the ring and the first four variables. The boundary value problem
(see, for example, Huddleston [2000]) is
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p p

p

(a)

(y2, y3)

y4

y1

s = 0

s = !/2

–1 1

–1

1

(b)

Figure 7.5 Schematics for Buckling Ring. (a) The s variable represents arc length

along the dotted centerline of the top left quarter of the ring. (b) Three different

solutions for the BVP with parameters c = 0.01, p = 3.8. The two buckled solutions are

stable.

y′
1 = −1 − cy5 + (c + 1)y7 y1(0) = π

2 y1(π
2 ) = 0

y′
2 = (1 + c(y5 − y7))cosy1 y2(π

2 ) = 0
y′

3 = (1 + c(y5 − y7))sin y1 y3(0) = 0
y′

4 = 1 + c(y5 − y7) y4(0) = 0
y′

5 = −y6(−1 − cy5 + (c + 1)y7)

y′
6 = y7y5 − (1 + c(y5 − y7))(y5 + p) y6(0) = 0 y6(π

2 ) = 0
y′

7 = (1 + c(y5 − y7))y6.

Under no pressure (p = 0), note that y1 = π/2 − s, (y2,y3) = (−coss,sin s),y4 = s,y5 =
y6 = y7 = 0 is a solution. This solution is a perfect quarter-circle, which corresponds to a
perfectly circular ring with the symmetries.

In fact, the following circular solution to the boundary value problem exists for any
choice of parameters c and p:

y1(s) = π

2
− s

y2(s) = c + 1
cp + c + 1

(−coss)

y3(s) = c + 1
cp + c + 1

sin s

y4(s) = c + 1
cp + c + 1

s

y5(s) = − c + 1
cp + c + 1

p

y6(s) = 0

y7(s) = − cp

cp + c + 1
. (7.10)

As pressure increases from zero, the radius of the circle decreases. As the pressure
parameter p is increased further, there is a bifurcation, or change of possible states, of the
ring. The circular shape of the ring remains mathematically possible, but unstable, meaning



7.2 Finite Difference Methods | 357

that small perturbations cause the ring to move to another possible configuration (solution
of the BVP) that is stable.

For applied pressure p below the bifurcation point, or critical pressure pc, only
solution (7.10) exists. For p > pc, three different solutions of the BVP exist, shown in
Figure 7.5(b). Beyond critical pressure, the role of the circular ring as an unstable state is
similar to that of the inverted pendulum (Computer Problem 6.3.6) or the bridge without
torsion in Reality Check 6.

The critical pressure depends on the compressibility of the ring. The smaller the param-
eter c, the less compressible the ring is, and the lower the critical pressure at which it changes
shape instead of compressing in original shape. Your job is to use the Shooting Method
paired with Broyden’s Method to find the critical pressure pc and the resulting buckled
shapes obtained by the ring.

Suggested activities:

1. Verify that (7.10) is a solution of the BVP for each compressibility c and pressure p.

2. Set compressibility to the moderate value c = 0.01. Solve the BVP by the Shooting Method
for pressures p = 0 and 3. The function F in the Shooting Method should use the three
missing initial values (y2(0),y5(0),y7(0)) as input and the three final values
(y1(π/2),y2(π/2),y6(π/2)) as output. The multivariate solver Broyden II from Chapter 2
can be used to solve for the roots of F . Compare with the correct solution (7.10). Note that,
for both values of p, various initial conditions for Broyden’s Method all result in the same
solution trajectory. How much does the radius decrease when p increases from 0 to 3?

3. Plot the solutions in Step 2. The curve (y2(s),y3(s)) represents the upper left quarter of the
ring. Use the horizontal and vertical symmetry to plot the entire ring.

4. Change pressure to p = 3.5, and resolve the BVP. Note that the solution obtained depends
on the initial condition used for Broyden’s Method. Plot each different solution found.

5. Find the critical pressure pc for the compressibility c = 0.01, accurate to two decimal
places. For p > pc, there are three different solutions. For p < pc, there is only one
solution (7.10).

6. Carry out Step 5 for the reduced compressibility c = 0.001. The ring now is more brittle.
Is the change in pc for the reduced compressibility case consistent with your intuition?

7. Carry out Step 5 for increased compressibility c = 0.05.

7.2 FINITE DIFFERENCE METHODS

The fundamental idea behind finite difference methods is to replace derivatives in the
differential equation by discrete approximations, and evaluate on a grid to develop a system
of equations. The approach of discretizing the differential equation will also be used in
Chapter 8 on PDEs.

7.2.1 Linear boundary value problems

Let y(t) be a function with at least four continuous derivatives. In Chapter 5, we developed
discrete approximations for the first derivative

y′(t) = y(t + h) − y(t − h)

2h
− h2

6
y′′′(c) (7.11)
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and for the second derivative

y′′(t) = y(t + h) − 2y(t) + y(t − h)

h2 + h2

12
f ′′′′(c). (7.12)

Both are accurate up to an error proportional to h2.
The Finite Difference Method consists of replacing the derivatives in the differential

equation with the discrete versions, and solving the resulting simpler, algebraic equations
for approximations wi to the correct values yi , as shown in Figure 7.6. The boundary
conditions are substituted in the system of equations where they are needed.

1

...t0

ya

t1

y1

w1
w2

wn–1
wn

yn yb

yn–1

y2

t2 tn–1 tn tn+1

y

t

Figure 7.6 The Finite Difference Method for BVPs. Approximations wi , i = 1, . . . ,n for

the correct values yi at discrete points ti are calculated by solving a linear system of

equations.

After the substitutions, there are two possible situations. If the original boundary value
problem was linear, then the resulting system of equations is linear and can be solved by
Gaussian elimination or iterative methods. If the original problem was nonlinear, then
the algebraic system is a system of nonlinear equations, requiring more sophisticated
approaches. We begin with a linear example.

! EXAMPLE 7.8 Solve the BVP (7.7)
⎧
⎨

⎩

y′′ = 4y

y(0) = 1,

y(1) = 3

using finite differences.
Consider the discrete form of the differential equation y′′ = 4y, using the centered-

difference form for the second derivative. The finite difference version at ti is

wi+1 − 2wi + wi−1

h2 − 4wi = 0

or equivalently

wi−1 + (−4h2 − 2)wi + wi+1 = 0.

For n = 3, the interval size is h = 1/(n + 1) = 1/4 and there are three equations. Inserting
the boundary conditions w0 = 1 and w4 = 3, we are left with the following system to solve
for w1,w2,w3:

1 + (−4h2 − 2)w1 + w2 = 0

w1 + (−4h2 − 2)w2 + w3 = 0

w2 + (−4h2 − 2)w3 + 3 = 0.
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Substituting for h yields the tridiagonal matrix equation

⎡

⎣
− 9

4 1 0
1 − 9

4 1
0 1 − 9

4

⎤

⎦

⎡

⎣
w1
w2
w3

⎤

⎦ =

⎡

⎣
−1

0
−3

⎤

⎦.

Solving this system by Gaussian elimination gives the approximate solution values
1.0249,1.3061,1.9138 at three points. The following table shows the approximate values
wi of the solution at ti compared with the correct solution values yi (note that the boundary
values, w0 and w4, are known ahead of time and are not computed):

i ti wi yi

0 0.00 1.0000 1.0000
1 0.25 1.0249 1.0181
2 0.50 1.3061 1.2961
3 0.75 1.9138 1.9049
4 1.00 3.0000 3.0000

The differences are on the order of 10−2. To get even smaller errors, we need to use larger n.
In general, h = (b − a)/(n + 1) = 1/(n + 1), and the tridiagonal matrix equation is

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4h2 − 2 1 0 · · · 0 0 0

1 −4h2 − 2
. . . 0 0 0

0 1
. . .

. . . 0 0 0
...

. . .
. . .

. . .
...

0 0 0
. . .

. . . 1 0

0 0 0
. . . −4h2 − 2 1

0 0 0 · · · 0 1 −4h2 − 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

w1
w2
w3
...

wn−1
wn

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
0
0
...

0
0

−3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

As we add more subintervals, we expect the approximations wi to be closer to the corre-
sponding yi . "

The potential sources of error in the Finite Difference Method are the truncation error
made by the centered-difference formulas and the error made in solving the system of
equations. For step sizes h greater than the square root of machine epsilon, the former error
dominates. This error is O(h2), so we expect the error to decrease as O(n−2) as the number
of subintervals n + 1 gets large.

We test this expectation for the problem (7.7). Figure 7.7 shows the magnitude of the
error E of the solution at t = 3/4, for various numbers of subintervals n + 1. On a log–log
plot, the error as a function of number of subintervals is essentially a straight line with slope
−2, meaning that logE ≈ a + b logn, where b = −2; in other words, the error E ≈ Kn−2,
as was expected.

7.2.2 Nonlinear boundary value problems

When the Finite Difference Method is applied to a nonlinear differential equation, the result
is a system of nonlinear algebraic equations to solve. In Chapter 2, we used Multivariate
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Figure 7.7 Convergence of the Finite Difference Method. The error |wi − yi | at

ti = 3/4 in Example 7.8 is graphed versus the number of subintervals n. The slope is

−2, confirming that the error is O(n−2) = O(h2).

Newton’s Method to solve such systems. We demonstrate the use of Newton’s Method to
approximate the following nonlinear boundary value problem:

! EXAMPLE 7.9 Solve the nonlinear BVP
⎧
⎪⎨

⎪⎩

y′′ = y − y2

y(0) = 1
y(1) = 4

(7.13)

by finite differences.
The discretized form of the differential equation at ti is

wi+1 − 2wi + wi−1

h2 − wi + w2
i = 0

or

wi−1 − (2 + h2)wi + h2w2
i + wi+1 = 0

for 2 ≤ i ≤ n − 1, together with the first and last equations

ya − (2 + h2)w1 + h2w2
1 + w2 = 0

wn−1 − (2 + h2)wn + h2w2
n + yb = 0

which carry the boundary condition information.

Convergence Figure 7.7 illustrates the second-order convergence of the Finite Dif-

ference Method. This follows from the use of the second-order formulas (7.11) and (7.12).

Knowledge of the order allows us to apply extrapolation, as introduced in Chapter 5. For any

fixed t and step size h, the approximation wh(t) from the Finite Difference Method is second

order in h and can be extrapolated with a simple formula. Computer Problems 7 and 8 explore

this opportunity to speed convergence.
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Solving the discretized version of the boundary value problem means solving
F(w) = 0, which we carry out by Newton’s Method. Multivariate Newton’s Method is the
iteration wk+1 = wk − DF(wk)−1F(wk). As usual, it is best to carry out the iteration by
solving for $w = wk+1 − wk in the equation DF(wk)$w = −F(wk).

The function F (w) is given by

F

⎡

⎢⎢⎢⎢⎢⎣

w1
w2
...

wn−1
wn

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

ya − (2 + h2)w1 + h2w2
1 + w2

w1 − (2 + h2)w2 + h2w2
2 + w3

...

wn−2 − (2 + h2)wn−1 + h2w2
n−1 + wn

wn−1 − (2 + h2)wn + h2w2
n + yb

⎤

⎥⎥⎥⎥⎥⎥⎦
,

where ya = 1 and yb = 4. The Jacobian DF(w) of F is

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

2h2w1 − (2 + h2) 1 0 · · · 0

1 2h2w2 − (2 + h2)
. . .

. . .
...

0 1
. . . 1 0

...
. . .

. . . 2h2wn−1 − (2 + h2) 1
0 · · · 0 1 2h2wn − (2 + h2)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

The ith row of the Jacobian is determined by taking the partial derivative of the ith equation
(the ith component of F ) with respect to each wj .

Figure 7.8(a) shows the result of using Multivariate Newton’s Method to solve
F(w) = 0, for n = 40. The Matlab code is given in Program 7.1. Twenty steps of Newton’s
Method are sufficient to reach convergence within machine precision.

(a) (b)

Figure 7.8 Solutions of Nonlinear BVPs by the Finite Difference Method. (a) Solu-

tion of Example 7.9 with n = 40, after convergence of Newton’s Method. (b) Same for

Example 7.10.

% Program 7.1 Nonlinear Finite Difference Method for BVP
% Uses Multivariate Newton’s Method to solve nonlinear equation
% Inputs: interval inter, boundary values bv, number of steps n
% Output: solution w
% Example usage: w=nlbvpfd([0 1],[1 4],40)
function w=nlbvpfd(inter,bv,n);
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a=inter(1); b=inter(2); ya=bv(1); yb=bv(2);
h=(b-a)/(n+1); % h is step size
w=zeros(n,1); % initialize solution array w
for i=1:20 % loop of Newton step
w=w-jac(w,inter,bv,n)\f(w,inter,bv,n);

end
plot([a a+(1:n)*h b],[ya w’ yb]); % plot w with boundary data

function y=f(w,inter,bv,n)
y=zeros(n,1);h=(inter(2)-inter(1))/(n+1);
y(1)=bv(1)-(2+hˆ2)*w(1)+hˆ2*w(1)ˆ2+w(2);
y(n)=w(n-1)-(2+hˆ2)*w(n)+hˆ2*w(n)ˆ2+bv(2);
for i=2:n-1

y(i)=w(i-1)-(2+hˆ2)*w(i)+hˆ2*w(i)ˆ2+w(i+1);
end

function a=jac(w,inter,bv,n)
a=zeros(n,n);h=(inter(2)-inter(1))/(n+1);
for i=1:n
a(i,i)=2*hˆ2*w(i)-2-hˆ2;

end
for i=1:n-1
a(i,i+1)=1;
a(i+1,i)=1;

end "
! EXAMPLE 7.10 Use finite differences to solve the nonlinear boundary value problem

⎧
⎨

⎩

y′′ = y′ + cosy

y(0) = 0
y(π) = 1.

(7.14)

The discretized form of the differential equation at ti is

wi+1 − 2wi + wi−1

h2 − wi+1 − wi−1

2h
− cos(wi) = 0,

or

(1 + h/2)wi−1 − 2wi + (1 − h/2)wi+1 − h2 coswi = 0,

for 2 ≤ i ≤ n − 1, together with the first and last equations,

(1 + h/2)ya − 2w1 + (1 − h/2)w2 − h2 cosw1 = 0

(1 + h/2)wn−1 − 2wn + (1 − h/2)yb − h2 coswn = 0,

where ya = 0 and yb = 1. The left-hand sides of the n equations form a vector-valued
function

F(w) =

⎡

⎢⎢⎢⎢⎢⎢⎣

(1 + h/2)ya − 2w1 + (1 − h/2)w2 − h2 cosw1
...

(1 + h/2)wi−1 − 2wi + (1 − h/2)wi+1 − h2 coswi

...

(1 + h/2)wn−1 − 2wn + (1 − h/2)yb − h2 coswn

⎤

⎥⎥⎥⎥⎥⎥⎦
.
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The Jacobian DF(w) of F is
⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−2 + h2 sin w1 1 − h/2 0 · · · 0

1 + h/2 −2 + h2 sin w2
. . .

. . .
...

0 1 + h/2
. . . 1 − h/2 0

...
. . .

. . . −2 + h2 sin wn−1 1 − h/2
0 · · · 0 1 + h/2 −2 + h2 sin wn

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

The following code can be inserted into Program 7.1, along with appropriate
changes to the boundary condition information, to handle the nonlinear boundary value
problem:

function y=f(w,inter,bv,n)
y=zeros(n,1);h=(inter(2)-inter(1))/(n+1);
y(1)=-2*w(1)+(1+h/2)*bv(1)+(1-h/2)*w(2)-h*h*cos(w(1));
y(n)=(1+h/2)*w(n-1)-2*w(n)-h*h*cos(w(n))+(1-h/2)*bv(2);
for j=2:n-1
y(j)=-2*w(j)+(1+h/2)*w(j-1)+(1-h/2)*w(j+1)-h*h*cos(w(j));

end

function a=jac(w,inter,bv,n)
a=zeros(n,n);h=(inter(2)-inter(1))/(n+1);
for j=1:n
a(j,j)=-2+h*h*sin(w(j));

end
for j=1:n-1
a(j,j+1)=1-h/2;
a(j+1,j)=1+h/2;

end

Figure 7.8(b) shows the resulting solution curve y(t). "

7.2 Computer Problems

1. Use finite differences to approximate solutions to the linear BVPs for n = 9,19, and 39.

(a)

⎧
⎪⎨

⎪⎩

y′′ = y + 2
3 et

y(0) = 0
y(1) = 1

3 e

(b)

⎧
⎪⎨

⎪⎩

y′′ = (2 + 4t2)y

y(0) = 1
y(1) = e

Plot the approximate solutions together with the exact solutions (a) y(t) = tet /3
and (b) y(t) = et2

, and display the errors as a function of t in a separate semilog
plot.

2. Use finite differences to approximate solutions to the linear BVPs for n = 9,19, and 39.

(a)

⎧
⎪⎨

⎪⎩

9y′′ + π2y = 0
y(0) = −1
y( 3

2 ) = 3
(b)

⎧
⎪⎨

⎪⎩

y′′ = 3y − 2y′

y(0) = e3

y(1) = 1

Plot the approximate solutions together with the exact solutions (a) y(t) = 3sin π t
3 − cos π t

3
and (b) y(t) = e3−3t , and display the errors as a function of t in a separate semilog
plot.
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3. Use finite differences to approximate solutions to the nonlinear boundary value problems for
n = 9,19, and 39.

(a)

⎧
⎪⎨

⎪⎩

y′′ = 18y2

y(1) = 1
3

y(2) = 1
12

(b)

⎧
⎪⎨

⎪⎩

y′′ = 2e−2y(1 − t2)

y(0) = 0
y(1) = ln 2

Plot the approximate solutions together with the exact solutions (a) y(t) = 1/(3t2) and
(b) y(t) = ln(t2 + 1), and display the errors as a function of t in a separate semilog plot.

4. Use finite differences to plot solutions to the nonlinear BVPs for n = 9,19, and 39.

(a)

⎧
⎪⎨

⎪⎩

y′′ = ey

y(0) = 1
y(1) = 3

(b)

⎧
⎪⎨

⎪⎩

y′′ = sin y′

y(0) = 1
y(1) = −1

5. (a) Find the solution of the BVP y′′ = y,y(0) = 0,y(1) = 1 analytically. (b) Implement the
finite difference version of the equation, and plot the approximate solution for n = 15.
(c) Compare the approximation with the exact solution by making a log–log plot of the error at
t = 1/2 versus n for n = 2p − 1,p = 2, . . . ,7.

6. Solve the nonlinear BVP 4y′′ = ty4,y(1) = 2,y(2) = 1 by finite differences. Plot the
approximate solution for n = 15. Compare your approximation with the exact solution
y(t) = 2/t to make a log–log plot of the error at t = 3/2 for n = 2p − 1,p = 2, . . . ,7.

7. Extrapolate the approximate solutions in Computer Problem 5. Apply Richardson
extrapolation (Section 5.1) to the formula N(h) = wh(1/2), the finite difference
approximation with step size h. How close can extrapolation get to the exact value y(1/2) by
using only the approximate values from h = 1/4,1/8, and 1/16?

8. Extrapolate the approximate solutions in Computer Problem 6. Use the formula
N(h) = wh(3/2), the finite difference approximation with step size h. How close can
extrapolation get to the exact value y(3/2) by using only the approximate values from
h = 1/4,1/8, and 1/16?

9. Solve the nonlinear boundary value problem y′′ = sin y,y(0) = 1,y(π) = 0 by finite
differences. Plot approximations for n = 9,19, and 39.

10. Use finite differences to solve the equation
⎧
⎪⎨

⎪⎩

y′′ = 10y(1 − y)

y(0) = 0
y(1) = 1

.

Plot approximations for n = 9,19, and 39.

11. Solve
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y′′ = cy(1 − y)

y(0) = 0
y(1/2) = 1/4
y(1) = 1

for c > 0, within three correct decimal places. (Hint: Consider the BVP formed by fixing two
of the three boundary conditions. Let G(c) be the discrepancy at the third boundary condition,
and use the Bisection Method to solve G(c) = 0.)
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7.3 COLLOCATION AND THE FINITE ELEMENT METHOD

Like the Finite Difference Method, the idea behind Collocation and the Finite Element
Method is to reduce the boundary value problem to a set of solvable algebraic equations.
However, instead of discretizing the differential equation by replacing derivatives with finite
differences, the solution is given a functional form whose parameters are fit by the method.

Choose a set of basis functions φ1(t), . . . ,φn(t), which may be polynomials, trigono-
metric functions, splines, or other simple functions. Then consider the possible solution

y(t) = c1φ1(t) + ·· · + cnφn(t). (7.15)

Finding an approximate solution reduces to determining values for the ci . We will consider
two different ways to find the coefficients.

The collocation approach is to substitute (7.15) into the boundary value problem and
evaluate at a grid of points. This method is straightforward, reducing the problem to solving
a system of equations in ci , linear if the original problem was linear. Each point gives an
equation, and solving them for ci is a type of interpolation.

A second approach, the Finite Element Method, proceeds by treating the fitting as
a least squares problem instead of interpolation. The Galerkin projection is employed to
minimize the difference between (7.15) and the exact solution in the sense of squared error.
The Finite Element Method is revisited in Chapter 8 to solve boundary value problems in
partial differential equations.

7.3.1 Collocation

Consider the BVP
⎧
⎨

⎩

y′′ = f (t,y,y′)
y(a) = ya

y(b) = yb.
(7.16)

Choose n points, beginning and ending with the boundary points a and b, say,

a = t1 < t2 < · · · < tn = b. (7.17)

The Collocation Method works by substituting the candidate solution (7.15) into the differ-
ential equation (7.16) and evaluating the differential equation at the points (7.17) to get n

equations in the n unknowns c1, . . . ,cn.
To start as simply as possible, we choose the basis functions φj (t) = tj−1 for 1 ≤ j ≤ n.

The solution will be of form

y(t) =
n∑

j=1

cj φj (t) =
n∑

j=1

cj tj−1. (7.18)

We will write n equations in the n unknowns c1, . . . ,cn. The first and last are the boundary
conditions:

i = 1 :
n∑

j=1

cj aj−1 = y(a)

i = n :
n∑

j=1

cj bj−1 = y(b).
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The remaining n − 2 equations come from the differential equation evaluated at ti for
2 ≤ i ≤ n − 1. The differential equation y′′ = f (t,y,y′) applied to y(t) = ∑n

j=1 cj tj−1 is

n∑

j=1

(j − 1)(j − 2)cj tj−3 = f

⎛

⎝t,

n∑

j=1

cj tj−1,

n∑

j=1

cj (j − 1)tj−2

⎞

⎠ (7.19)

Evaluating at ti for each i yields n equations to solve for the ci . If the differential equation
is linear, then the equations in the ci will be linear and can be readily solved. We illustrate
the approach with the following example.

! EXAMPLE 7.11 Solve the boundary value problem
⎧
⎨

⎩

y′′ = 4y

y(0) = 1
y(1) = 3

by the Collocation Method.

The first and last equations are the boundary conditions

c1 =
n∑

j=1

cj φj (0) = y(0) = 1

c1 + ·· · + cn =
n∑

j=1

cj φj (1) = y(1) = 3.

The other n − 2 equations come from (7.19), which has the form

n∑

j=1

(j − 1)(j − 2)cj tj−3 − 4
n∑

j=1

cj tj−1 = 0.

Evaluating at ti for each i yields

n∑

j=1

[(j − 1)(j − 2)t
j−3
i − 4t

j−1
i ]cj = 0.

The n equations form a linear system Ac = g, where the coefficient matrix A is defined by

Aij =

⎧
⎨

⎩

1 0 0 . . . 0 row i = 1
(j − 1)(j − 2)t

j−3
i − 4t

j−1
i rows i = 2 through n − 1

1 1 1 . . . 1 row i = n

and g = (1,0,0, . . . ,0,3)T . It is common to use the evenly spaced grid points

ti = a + i − 1
n − 1

(b − a) = i − 1
n − 1

.

After solving for the cj , we obtain the approximate solution y(t) = ∑
cj tj−1.

For n = 2 the system Ac = g is
[

1 0
1 1

][
c1
c2

]
=

[
1
3

]
,
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1

1

2

3

y

x

Figure 7.9 Solutions of the linear BVP of Example 7.11 by the Collocation

Method. Solutions with n = 2 (upper curve) and n = 4 (lower) are shown.

and the solution is c = [1,2]T . The approximate solution (7.18) is the straight line
y(t) = c1 + c2t = 1 + 2t . The computation for n = 4 yields the approximate solution
y(t) ≈ 1 − 0.1886t + 1.0273t2 + 1.1613t3. The solutions for n = 2 and n = 4 are plotted
in Figure 7.9. Already for n = 4 the approximation is very close to the exact solution (7.4)
shown in Figure 7.3(b). More precision can be achieved by increasing n. "

The equations to be solved for ci in Example 7.11 are linear because the differential
equation is linear. Nonlinear boundary value problems can be solved by collocation in a
similar way. Newton’s Method is used to solve the resulting nonlinear system of equations,
exactly as in the finite difference approach.

Although we have illustrated the use of collocation with monomial basis functions for
simplicity, there are many better choices. Polynomial bases are generally not recommended.
Since collocation is essentially doing interpolation of the solution, the use of polynomial
basis functions makes the method susceptible to the Runge phenomenon (Chapter 3). The
fact that the monomial basis elements tj are not orthogonal to one another as functions
makes the coefficient matrix of the linear equations ill-conditioned when n is large. Using
the roots of Chebyshev polynomials as evaluation points, rather than evenly spaced points,
improves the conditioning.

The choice of trigonometric functions as basis functions in collocation leads to Fourier
analysis and spectral methods, which are heavily used for both boundary value problems
and partial differential equations. This is a “global’’ approach, where the basis functions
are nonzero over a large range of t , but have good orthogonality properties. We will study
discrete Fourier approximations in Chapter 10.

7.3.2 Finite elements and the Galerkin Method

The choice of splines as basis functions leads to the Finite Element Method. In this
approach, each basis function is nonzero only over a short range of t . Finite element meth-
ods are heavily used for BVPs and PDEs in higher dimensions, especially when irregular
boundaries make parametrization by standard basis functions inconvenient.

In collocation, we assumed a functional form y(t) = ∑
ciφi (t) and solved for the coef-

ficients ci by forcing the solution to satisfy the boundary conditions and exactly satisfy the
differential equation at discrete points. On the other hand, the Galerkin approach minimizes
the squared error of the differential equation along the solution. This leads to a different
system of equations for the ci .
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The finite element approach to the BVP
⎧
⎨

⎩

y′′ = f (t,y,y′)
y(a) = ya

y(b) = yb.

is to choose the approximate solution y so that the residual r = y′′ − f , the difference in
the two sides of the differential equation, is as small as possible. In analogy with the least
squares methods of Chapter 4, this is accomplished by choosing y to make the residual
orthogonal to the vector space of potential solutions.

For an interval [a,b], define the vector space of square integrable functions

L2[a,b] =
{

functions y(t) on [a,b]
∣∣∣
∫ b

a
y(t)2 dt exists and is finite

}
.

The L2 function space has an inner product

⟨y1,y2⟩ =
∫ b

a
y1(t)y2(t) dt

that has the usual properties:

1. ⟨y1,y1⟩ ≥ 0;

2. ⟨αy1 + βy2, z⟩ = α⟨y1, z⟩ + β⟨y2, z⟩ for scalars α,β;

3. ⟨y1,y2⟩ = ⟨y2,y1⟩.
Two functions y1 and y2 are orthogonal in L2[a,b] if ⟨y1,y2⟩ = 0. Since L2[a,b] is

an infinite-dimensional vector space, we cannot make the residual r = y′′ − f orthogonal
to all of L2[a,b] by a finite computation. However, we can choose a basis that spans as
much of L2 as possible with the available computational resources. Let the set of n + 2
basis functions be denoted by φ0(t), . . . ,φn+1(t). We will specify these later.

The Galerkin Method consists of two main ideas. The first is to minimize r by forcing
it to be orthogonal to the basis functions, in the sense of the L2 inner product. This means
forcing

∫ b
a (y′′ − f )φi dt = 0, or

∫ b

a
y′′(t)φi (t) dt =

∫ b

a
f (t,y,y′)φi (t) dt (7.20)

for each 0 ≤ i ≤ n + 1. The form (7.20) is called the weak form of the boundary value
problem.

The second idea of Galerkin is to use integration by parts to eliminate the second
derivatives. Note that

∫ b

a
y′′(t)φi (t) dt = φi (t)y

′(t)|ba −
∫ b

a
y′(t)φ′

i (t) dt

= φi (b)y′(b) − φi (a)y′(a) −
∫ b

a
y′(t)φ′

i (t) dt. (7.21)

Using (7.20) and (7.21) together gives a set of equations

∫ b

a
f (t,y,y′)φi (t) dt = φi (b)y′(b) − φi (a)y′(a) −

∫ b

a
y′(t)φ′

i (t) dt (7.22)
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1
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"0 "1 "2 "n–1 "n+1"n

t2 t3 tn–1 tn tn+1

Figure 7.10 Piecewise-linear B-splines used as finite elements. Each φi(t), for

1 ≤ i ≤ n, has support on the interval from ti−1 to ti+1.

for each i that can be solved for the ci in the functional form

y(t) =
n+1∑

i=0

ciφi (t). (7.23)

The two ideas of Galerkin make it convenient to use extremely simple functions as
the finite elements φi (t). We will introduce piecewise-linear B-splines only and direct the
reader to the literature for more elaborate choices.

Start with a grid t0 < t1 < · · · < tn < tn+1 of points on the t axis. For i = 1, . . . ,n define

φi (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t − ti−1

ti − ti−1
for ti−1 < t ≤ ti

ti+1 − t

ti+1 − ti
for ti < t < ti+1.

0 otherwise

Also define

φ0(t) =

⎧
⎨

⎩

t1 − t

t1 − t0
for t0 ≤ t < t1

0 otherwise
and φn+1(t) =

⎧
⎨

⎩

t − tn

tn+1 − tn
for tn < t ≤ tn+1

0 otherwise
.

The piecewise-linear “tent’’ functions φi , shown in Figure 7.10, satisfy the following inter-
esting property:

φi (tj ) =
{

1 if i = j

0 if i ̸= j
. (7.24)

For a set of data points (ti ,ci), define the piecewise-linear B-spline

S(t) =
n+1∑

i=0

ciφi (t).

It follows immediately from (7.24) that S(tj ) = ∑n+1
i=0 ciφi (tj ) = cj . Therefore, S(t)

is a piecewise-linear function that interpolates the data points (ti ,ci). In other words,
the y-coordinates are the coefficients! This will simplify the interpretation of the solu-
tion (7.23). The ci are not only the coefficients, but also the solution values at the grid
points ti .
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Orthogonality We saw in Chapter 4 that the distance from a point to a plane is

minimized by drawing the perpendicular segment from the point to the plane. The plane

represents candidates to approximate the point; the distance between them is approxima-

tion error. This simple fact about orthogonality permeates numerical analysis. It is the core

of least squares approximation and is fundamental to the Galerkin approach to boundary

value problems and partial differential equations, as well as Gaussian quadrature (Chapter 5),

compression (see Chapters 10 and 11), and the solutions of eigenvalue problems (Chapter 12).

Now we show how the ci are calculated to solve the BVP (7.16). The first and last of
the ci are found by collocation:

y(a) =
n+1∑

i=0

ciφi (a) = c0φ0(a) = c0

y(b) =
n+1∑

i=0

ciφi (b) = cn+1φn+1(b) = cn+1.

For i = 1, . . . ,n, use the finite element equations (7.22):
∫ b

a
f (t,y,y′)φi (t) dt +

∫ b

a
y′(t)φ′

i (t) dt = 0,

or substituting the functional form y(t) = ∑
ciφi (t),

∫ b

a
φi (t)f (t,

∑
cj φj (t),

∑
cj φ′

j (t)) dt +
∫ b

a
φ′

i (t)
∑

cj φ′
j (t) dt = 0. (7.25)

Note that the boundary terms of (7.22) are zero for i = 1, . . . ,n.
Assume that the grid is evenly spaced with step size h. We will need the following

integrals, for i = 1, . . . ,n:
∫ b

a
φi (t)φi+1(t) dt =

∫ h

0

t

h

(
1 − t

h

)
dt =

∫ h

0

(
t

h
− t2

h2

)
dt

= t2

2h
− t3

3h2

∣∣∣∣
h

0
= h

6
(7.26)

∫ b

a
(φi (t))

2 dt = 2
∫ h

0

(
t

h

)2

dt = 2
3

h (7.27)

∫ b

a
φ′

i (t)φ
′
i+1(t) dt =

∫ h

0

1
h

(
− 1

h

)
dt = − 1

h
(7.28)

∫ b

a
(φ′

i (t))
2 dt = 2

∫ h

0

(
1
h

)2

dt = 2
h

. (7.29)

The formulas (7.26)–(7.29) are used to simplify (7.25) once the details of the differential
equation y′′ = f (t,y,y′) are substituted. As long as the differential equation is linear, the
resulting equations for the ci will be linear.
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! EXAMPLE 7.12 Apply the Finite Element Method to the BVP
⎧
⎨

⎩

y′′ = 4y

y(0) = 1.

y(1) = 3

Substituting the differential equation into (7.25) yields for each i, the equation

0 =
∫ 1

0

⎛

⎝4φi (t)

n+1∑

j=0

cj φj (t) +
n+1∑

j=0

cj φ′
j (t)φ′

i (t)

⎞

⎠ dt

=
n+1∑

j=0

cj

[

4
∫ 1

0
φi (t)φj (t) dt +

∫ 1

0
φ′

j (t)φ′
i (t) dt

]

.

Using the B-spline relations (7.26)–(7.29) for i = 1, . . . ,n, and the relations c0 =
f (a),cn+1 = f (b), we find that the equations are

[
2
3

h − 1
h

]
c0 +

[
8
3

h + 2
h

]
c1 +

[
2
3

h − 1
h

]
c2 = 0

[
2
3

h − 1
h

]
c1 +

[
8
3

h + 2
h

]
c2 +

[
2
3

h − 1
h

]
c3 = 0

...[
2
3

h − 1
h

]
cn−1 +

[
8
3

h + 2
h

]
cn +

[
2
3

h − 1
h

]
cn+1 = 0. (7.30)

Note that we have c0 = ya = 1 and cn+1 = yb = 3, so the matrix form of the equations is
symmetric tridiagonal

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

α β 0 · · · 0

β α
. . .

. . .
...

0 β
. . . β 0

...
. . .

. . . α β

0 · · · 0 β α

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

c1
c2
...

cn−1
cn

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

−yaβ

0
...

0
−ybβ

⎤

⎥⎥⎥⎥⎥⎦

where

α = 8
3

h + 2
h

and β = 2
3

h − 1
h

.

Recalling the Matlab command spdiags used in Chapter 2, we can write a sparse
implementation that is very compact:

% Program 7.2 Finite element solution of linear BVP
% Inputs: interval inter, boundary values bv, number of steps n
% Output: solution values c
% Example usage: c=bvpfem ([0 1],[1 3],9);
function c=bvpfem(inter,bv,n)
a=inter(1); b=inter(2); ya=bv(1); yb=bv(2);
h=(b-a)/(n+1);
alpha=(8/3)*h+2/h; beta=(2/3)*h-1/h;
e=ones(n,1);
M=spdiags([beta*e alpha*e beta*e],-1:1,n,n);
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d=zeros(n,1);
d(1)=-ya*beta;
d(n)=-yb*beta;
c=M\d;

For n = 3, the Matlab code gives the following ci :

i ti wi = ci yi

0 0.00 1.0000 1.0000
1 0.25 1.0109 1.0181
2 0.50 1.2855 1.2961
3 0.75 1.8955 1.9049
4 1.00 3.0000 3.0000

The approximate solution wi at ti has the value ci , which is compared with the exact solution
yi . The errors are around 10−2, the same size as the errors for the Finite Difference Method.
In fact, Figure 7.11 shows that running the Finite Element Method with larger values of
n gives a convergence curve almost identical to that of the Finite Difference Method in
Figure 7.7, showing O(n−2) convergence.

Number of subintervals

E
rr

or
 a

t t
 =

 3
/4

10–7

101 102 103

10–6

10–5

10–4

10–3

Figure 7.11 Convergence of the Finite Element Method. The error |wi − yi | for

Example 7.12 at ti = 3/4 is graphed versus the number of subintervals n. According to

the slope, the error is O(n−2) = O(h2).

"

7.3 Computer Problems

1. Use the Collocation Method with n = 8 and 16 to approximate solutions to the linear boundary
value problems

(a)

⎧
⎪⎨

⎪⎩

y′′ = y + 2
3 et

y(0) = 0
y(1) = 1

3 e

(b)

⎧
⎪⎨

⎪⎩

y′′ = (2 + 4t2)y

y(0) = 1
y(1) = e

Plot the approximate solutions together with the exact solutions (a) y(t) = tet /3 and
(b) y(t) = et2

, and display the errors as a function of t in a separate semilog plot.

2. Use the Collocation Method with n = 8 and 16 to approximate solutions to the linear boundary
value problems
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(a)

⎧
⎪⎨

⎪⎩

9y′′ + π2y = 0
y(0) = −1
y( 3

2 ) = 3
(b)

⎧
⎪⎨

⎪⎩

y′′ = 3y − 2y′

y(0) = e3

y(1) = 1

Plot the approximate solutions together with the exact solutions
(a) y(t) = 3sin π t/3 − cosπ t/3 and (b) y(t) = e3−3t , and display the errors as a function of t

in a separate semilog plot.

3. Carry out the steps of Computer Problem 1, using the Finite Element Method.

4. Carry out the steps of Computer Problem 2, using the Finite Element Method.

Software and Further Reading

Boundary value problems are discussed in most texts on ordinary differential equations.
Ascher et al. [1995] is a comprehensive survey of techniques for ODE boundary value
problems, including multiple-shooting methods that are not covered in this chapter. Other
good references on shooting methods and finite difference methods for BVPs include Keller
[1968], Bailey et al. [1968], and Roberts and Shipman [1972].

The routines BVPMS and BVPFD of the IMSL are implementations of shooting meth-
ods and finite difference methods, respectively, for two-point BVPs. BVPFD uses a variable-
order, variable-step-size finite difference method.

The NAG program D02HAF implements a shooting method for the two-point BVP,
using the Runge–Kutta–Merson Method and Newton iteration. The routine D02GAF imple-
ments a finite difference technique with Newton iteration to solve the resulting equations.
The Jacobian matrix is calculated by numerical differentiation. Finally, D02JAF solves a
linear BVP for a single nth-order ODE by collocation.

The Netlib library contains two user-callable Fortran subroutines: MUSL, for linear
problems, and MUSN, for nonlinear problems. Each is based upon shooting methods.



C H A P T E R

8
Partial Differential Equations
The 8086 central processing units manufactured by
Intel Corp. in the 1970s ran at 5 MHz and required less
than 5 watts of power. Today, at speeds increased by a
factor of several hundred, chips dissipate over 50 watts.
To avoid damage to the processor from excessively
high temperatures, it is essential to distribute the heat
by using a sink and fan. Cooling considerations are a
constant obstacle to extending Moore’s Law to faster
processing speeds.

The time course of heat dissipation is well modeled
by a parabolic PDE. When the heat reaches an equi-
librium, an elliptic equation models the steady-state
distribution.

Reality Check 8 on page 403 shows
how to model a simple heat sink configuration, using
an elliptic partial differential equation with thermal
convection boundary conditions.

Apartial differential equation is a differential equation with more than one independent
variable. While the topic is vast, we will limit our discussion to equations with two

independent variables having the form

Auxx + Buxy + Cuyy + F(ux,uy,u,x,y) = 0, (8.1)

where the partial derivatives are denoted by subscripts x and y for the independent variables,
and u denotes the solution. When one of the variables represents time, as in the heat equation,
we prefer to call the independent variables x and t .

Depending on the leading order terms of (8.1), solutions have quite different properties.
Second-order PDEs with two independent variables are classified as follows:

(1) Parabolic if B2 − 4AC = 0
(2) Hyperbolic if B2 − 4AC > 0
(3) Elliptic if B2 − 4AC < 0

The practical difference is that parabolic and hyperbolic equations are defined on an
open region. Boundary conditions for one variable—in most cases the time variable—are
specified at one end of the region, and the system solution is solved moving away from that
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boundary. Elliptic equations, on the other hand, are customarily specified with boundary
conditions on the entire boundary of a closed region. We will study some examples of each
type and illustrate the numerical methods available to approximate solutions.

8.1 PARABOLIC EQUATIONS

The heat equation

ut = Duxx (8.2)

represents temperature x measured along a one-dimensional homogeneous rod. The constant
D > 0 is called the diffusion coefficient, representing the thermal diffusivity of the material
making up the rod. The heat equation models the spread of heat from regions of higher
concentration to regions of lower concentration. The independent variables are x and t .

We use the variable t instead of y in (8.2) because it represents time. From the foregoing
classification, we have B2 − 4AC = 0, so the heat equation is parabolic. The so-called heat
equation is an example of a diffusion equation, which models the diffusion of a substance. In
materials science, the same equation is known as Fick’s second law and describes diffusion
of a substance within a medium.

Similar to the case of ODEs, the PDE (8.2) has infinitely many solutions, and extra
conditions are needed to pin down a particular solution. Chapters 6 and 7 treated the solu-
tion of ODEs, where initial conditions or boundary conditions were used, respectively. In
order to properly pose a PDE, various combinations of initial and boundary conditions can
be used.

For the heat equation, a straightforward analysis suggests which conditions should
be required. To specify the situation uniquely, we need to know the initial temperature
distribution along the rod and what is happening at the ends of the rod as time progresses.
The properly posed heat equation on a finite interval has the form

⎧
⎪⎪⎨

⎪⎪⎩

ut = Duxx for all a ≤ x ≤ b, t ≥ 0
u(x,0) = f (x) for all a ≤ x ≤ b

u(a, t) = l(t) for all t ≥ 0
u(b, t) = r(t) for all t ≥ 0

, (8.3)

where the rod extends along the interval a ≤ x ≤ b. The diffusion coefficient D governs the
rate of heat transfer. The function f (x) on [a,b] gives the initial temperature distribution
along the rod, and l(t), r(t) for t ≥ 0 give the temperature at the ends. Here, we have used
a combination of initial conditions f (x) and boundary conditions l(t) and r(t) to specify a
unique solution of the PDE.

8.1.1 Forward Difference Method

The use of finite difference methods to approximate the solution of a partial differential
equation follows the direction established in the previous two chapters. The idea is to lay
down a grid in the independent variables and discretize the PDE. The continuous problem
is changed into a discrete problem of a finite number of equations. If the PDE is linear, the
discrete equations are linear and can be solved by the methods of Chapter 2.

To discretize the heat equation on the time interval [0, T ], we consider a grid, or mesh,
of points as shown in Figure 8.1. The closed circles represent values of the solution u(x, t)

already known from the initial and boundary conditions, and the open circles are mesh
points that will be filled in by the method. We will denote the exact solution by u(xi, tj ) and
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a b

T

x

t

0

Figure 8.1 Mesh for the Finite Difference Method. The filled circles represent known

initial and boundary conditions. The open circles represent unknown values that must be

determined.

its approximation at (xi, tj ) by wij . Let M and N be the total number of steps in the x and t

directions, and let h = (b − a)/M and k = T /N be the step sizes in the x and t directions.
The discretization formulas from Chapter 5 can be used to approximate derivatives in

the x and t directions. For example, applying the centered-difference formula for the second
derivative to the x variable yields

uxx(x, t) ≈ 1
h2 (u(x + h, t) − 2u(x, t) + u(x − h, t)), (8.4)

with error h2 uxxxx(c1, t)/12; and the forward-difference formula for the first derivative
used for the time variable gives

ut (x, t) ≈ 1
k

(u(x, t + k) − u(x, t)), (8.5)

with error kutt (x,c2)/2, where x − h < c1 < x + h and t < c2 < t + h. Substituting into
the heat equation at the point (xi, tj ) yields

D

h2 (wi+1,j − 2wij + wi−1,j ) ≈ 1
k

(wi,j+1 − wij ), (8.6)

with the local truncation errors given by O(k) + O(h2). Just as in our study of ordinary
differential equations, the local truncation errors will give a good picture of the total errors,
as long as the method is stable. We will investigate the stability of the Finite Difference
Method after presenting the implementation details.

Note that initial and boundary conditions give known quantities wi0 for i = 0, . . . ,M ,
and w0j and wMj for j = 0, . . . ,N , which correspond to the bottom and sides of the rectangle
in Figure 8.1. The discrete version (8.6) can be solved by stepping forward in time. Rearrange
(8.6) as

wi,j+1 = wij + Dk

h2 (wi+1,j − 2wij + wi−1,j )

= σwi+1,j + (1 − 2σ )wij + σwi−1,j , (8.7)

where we have defined σ = Dk/h2. Figure 8.2 shows the set of mesh points involved in
(8.7), often called the stencil of the method.

The Forward Difference Method (8.7) is explicit, since there is a way to determine
new values (in the sense of time) directly from the previously known values. A method
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i + 1i – 1 i

j + 1

j

Figure 8.2 Stencil for Forward Difference Method. The open circle represents wi,j+1, which

can be determined from the values wi−1,j ,wij , and wi+1,j at the closed circles by (8.7).

that is not explicit is called implicit. The stencil of the method shows that this method is
explicit. In matrix terms, we can get the values wi,j+1 at time tj+1 by computing a matrix
multiplication wj+1 = Awj + sj , or

⎡

⎢⎢⎢⎢⎢⎣

w1,j+1

...

wm,j+1

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 − 2σ σ 0 · · · 0

σ 1 − 2σ σ
. . .

...

0 σ 1 − 2σ
. . . 0

...
. . .

. . .
. . . σ

0 · · · 0 σ 1 − 2σ

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

w1j

...

wmj

⎤

⎥⎥⎥⎥⎥⎦
+ σ

⎡

⎢⎢⎢⎢⎢⎣

w0,j

0
...

0
wm+1,j

⎤

⎥⎥⎥⎥⎥⎦
.

(8.8)
Here, the matrix A is m × m, where m = M − 1. The vector sj on the right represents the
side conditions imposed by the problem, in this case the temperature at the ends of the rod.

The solution reduces to iterating a matrix formula, which allows us to fill in the empty
circles in Figure 8.1 row by row. Iterating the matrix formula wj+1 = Awj + sj is sim-
ilar to the iterative methods for linear systems described in Chapter 2. There we learned
that convergence of the iteration depends on the eigenvalues of the matrix. In our present
situation, we are interested in the eigenvalues for the analysis of error magnification.

Consider the heat equation for D = 1, with initial condition f (x) = sin2 2πx and
boundary conditions u(0, t) = u(1, t) = 0 for all time t . Matlab code to carry out the
calculation in (8.8) is given in Program 8.1.

% Program 8.1 Forward difference method for heat equation
% input: space interval [xl,xr], time interval [yb,yt],
% number of space steps M, number of time steps N
% output: solution w
% Example usage: w=heatfd(0,1,0,1,10,250)
function w=heatfd(xl,xr,yb,yt,M,N)
f=@(x) sin(2*pi*x).ˆ2;
l=@(t) 0*t;
r=@(t) 0*t;
D=1; % diffusion coefficient
h=(xr-xl)/M; k=(yt-yb)/N; m=M-1; n=N;
sigma=D*k/(h*h);
a=diag(1-2*sigma*ones(m,1))+diag(sigma*ones(m-1,1),1);
a=a+diag(sigma*ones(m-1,1),-1); % define matrix a
lside=l(yb+(0:n)*k); rside=r(yb+(0:n)*k);
w(:,1)=f(xl+(1:m)*h)’; % initial conditions
for j=1:n
w(:,j+1)=a*w(:,j)+sigma*[lside(j);zeros(m-2,1);rside(j)];

end
w=[lside;w;rside]; % attach boundary conds
x=(0:m+1)*h;t=(0:n)*k;
mesh(x,t,w’) % 3-D plot of solution w
view(60,30);axis([xl xr yb yt -1 1])
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The initial temperature peaks should diffuse away with time, yielding a graph like the
one shown in Figure 8.3(a). In that graph, formulas (8.8) are used with step sizes h = 0.1
along the rod and k = 0.004 in time. The explicit Forward Difference Method (8.7) gives
an approximate solution in Figure 8.3(a), showing the smooth flow of the heat to a near
equilibrium after less than one time unit. This corresponds to the temperature of the rod
u → 0 as t → ∞.

In Figure 8.3(b), a slightly larger time step k > .005 is used. At first, the heat bumps
start to die down as expected; but after more time steps, small errors in the approximation
become magnified by the Forward Difference Method, causing the solution to move away
from the correct equilibrium of zero. This is an artifact of the solution process, a sign that
the method is unstable. If the simulation were allowed to proceed further, these errors would
grow without bound. Therefore, we are constrained to keep the time step k rather small to
ensure convergence.

0
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x
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(b)

Figure 8.3 Heat Equation (8.2) approximation by Forward Finite Difference Method of

Program 8.1. The diffusion parameter is D = 1, with initial condition f (x) = sin2 2πx . Space

step size is h = 0.1. The Forward Difference Method is (a) stable for time step k = 0.0040,

(b) unstable for k > .005.
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8.1.2 Stability analysis of Forward Difference Method

The strange behavior shown by the preceding heat equation simulation has led us to the core
of the problem. In solving partial differential equations by the Forward Difference Method,
controlling the error magnification for practical step sizes turns out to be a crucial aspect of
efficient solution.

Just as in the ODE case studied earlier, there are two types of error involved. The
discretization itself contributes truncation errors due to the derivative approximations. We
know the size of these errors from the Taylor error formula, as in (8.4) and (8.5). In addi-
tion, there is magnification of the errors due to the method itself. To investigate this mag-
nification, we need to look more closely at what the Finite Difference Method is doing.
Von Neumann stability analysis measures the error magnification, or amplification. For
a stable method, step sizes must be chosen so that the amplification factor is no larger
than 1.

Let yj be the exact solution that satisfies yj+1 = Ayj + sj in equation (8.8), and let
wj be the computed approximation, satisfying wj+1 = Awj + sj . The difference ej =
wj − yj satisfies

ej = wj − yj = Awj−1 + sj−1 − (Ayj−1 + sj−1)

= A(wj−1 − yj−1)

= Aej−1. (8.9)

Theorem A.7 from Appendix A says that, to ensure that the errors ej are not amplified, we
must require the spectral radius ρ(A) < 1. This requirement puts limits on the step sizes h

and k of the Finite Difference Method. To determine these limits, we need information on
the eigenvalues of symmetric tridiagonal matrices.

Consider the following fundamental example:

T =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · 0

−1 1 −1
. . .

...

0 −1 1
. . . 0

...
. . .

. . .
. . . −1

0 · · · 0 −1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (8.10)

THEOREM 8.1 The eigenvectors of the matrix T in (8.10) are the vectors vj in (8.12) for j = 1, . . . ,m with
corresponding eigenvalues λj = 1 − 2cosπj/(m + 1). #

Proof. First, recall the sine addition formula from trigonometry. For any integer i and
real number x, we can add the two equations

sin(i − 1)x = sin ix cosx − cos ix sin x

sin(i + 1)x = sin ix cosx + cos ix sin x

to get

sin(i − 1)x + sin(i + 1)x = 2sin ix cosx,

which can be rewritten as

−sin(i − 1)x + sin ix − sin(i + 1)x = (1 − 2cosx)sin ix. (8.11)
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Equation (8.11) can be viewed as a fact about matrix multiplication by T . Fix an integer j ,
and define the vector

vj =
[

sin
jπ

m + 1
,sin

2πj

m + 1
, . . . ,sin

mπj

m + 1

]
. (8.12)

Note the pattern: The entries are of form sin ix as in (8.11), where x = πj/(m + 1). Now
(8.11) implies that

T vj =
(

1 − 2cos
πj

m + 1

)
vj (8.13)

for j = 1, . . . ,m, which exhibits the m eigenvectors and eigenvalues. ❒

For j starting at m + 1, the vectors vj repeat, so there are exactly m eigenvectors, as
expected. (See Exercise 6.) The eigenvalues of T all lie between −1 and 3.

Theorem 8.1 can be exploited to find the eigenvalues of any symmetric tridiagonal
matrix whose main diagonal and superdiagonal are constant. For example, the matrix A

in (8.8) can be expressed as A = −σT + (1 − σ )I . According to Theorem 8.1, the eigen-
values of A are −σ (1 − 2cosπj/(m + 1)) + 1 − σ = 2σ (cosπj/(m + 1) − 1) + 1 for
j = 1, . . . ,m. Here we have used the fact that the eigenvalues of a matrix that is shifted by
adding a multiple of the identity matrix are shifted by the same multiple.

Now we can apply the criterion of Theorem A.7. Since −2 < cosx − 1 < 0 for the
given arguments x = πj/(m + 1), where 1 ≤ j ≤ m, the eigenvalues of A can range from
−4σ + 1 to 1. Assuming that the diffusion coefficient D > 0, we need to restrict σ < 1/2
to ensure that the absolute values of all eigenvalues of A are less than 1—that is, that
ρ(A) < 1.

We can state the result of the Von Neumann stability analysis as follows:

THEOREM 8.2 Let h be the space step and k be the time step for the Forward Difference Method applied
to the heat equation (8.2) with D > 0. If Dk

h2 < 1
2 , the Forward Difference Method is

stable. #

Our analysis confirms what we observed in Figure 8.3. By definition, σ = Dk/h2 =
(1)(0.004)/(0.1)2 = 0.4 < 1/2 in Figure 8.3(a), while k is slightly larger than 0.005 in
Figure 8.3(b), leading to σ > (1)(0.005)/(0.1)2 = 1/2 and noticeable error magnification.
The explicit Forward Difference Method is called conditionally stable, because its stability
depends on the choice of step sizes.

8.1.3 Backward Difference Method

As an alternative, the finite difference approach can be redone with better error magnification
properties by using an implicit method. As before, we replace uxx in the heat equation with
the centered-difference formula, but this time we use the backward-difference formula

ut = 1
k

(u(x, t) − u(x, t − k)) + k

2
utt (x,c0),

where t − k < c0 < t , to approximate ut . Our motivation follows from Chapter 6, where
we improved on the stability characteristics of the (explicit) Euler Method by using the
(implicit) backward Euler Method, which uses a backward difference.

Substituting the difference formulas into the heat equation at the point (xi, tj ) gives

1
k

(wij − wi,j−1) = D

h2 (wi+1,j − 2wij + wi−1,j ), (8.14)
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with local truncation error of O(k) + O(h2), the same error that the Forward Difference
Method gives. Equation (8.14) can be rearranged as

−σwi+1,j + (1 + 2σ )wij − σwi−1,j = wi,j−1,

with σ = Dk/h2, and written as the m × m matrix equation
⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 + 2σ −σ 0 · · · 0

−σ 1 + 2σ −σ
. . .

...

0 −σ 1 + 2σ
. . . 0

...
. . .

. . .
. . . −σ

0 · · · 0 −σ 1 + 2σ

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

w1j

...

wmj

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

w1,j−1

...

wm,j−1

⎤

⎥⎥⎥⎥⎥⎦
+ σ

⎡

⎢⎢⎢⎢⎢⎣

w0j

0
...

0
wm+1,j

⎤

⎥⎥⎥⎥⎥⎦
.

(8.15)
With small changes, Program 8.1 can be adapted to follow the Backward Difference
Method.

% Program 8.2 Backward difference method for heat equation
% input: space interval [xl,xr], time interval [yb,yt],
% number of space steps M, number of time steps N
% output: solution w
% Example usage: w=heatbd(0,1,0,1,10,10)
function w=heatbd(xl,xr,yb,yt,M,N)
f=@(x) sin(2*pi*x).ˆ2;
l=@(t) 0*t;
r=@(t) 0*t;
D=1; % diffusion coefficient
h=(xr-xl)/M; k=(yt-yb)/N; m=M-1; n=N;
sigma=D*k/(h*h);
a=diag(1+2*sigma*ones(m,1))+diag(-sigma*ones(m-1,1),1);
a=a+diag(-sigma*ones(m-1,1),-1); % define matrix a
lside=l(yb+(0:n)*k); rside=r(yb+(0:n)*k);
w(:,1)=f(xl+(1:m)*h)’; % initial conditions
for j=1:n
w(:,j+1)=a\(w(:,j)+sigma*[lside(j);zeros(m-2,1);rside(j)]);

end
w=[lside;w;rside]; % attach boundary conds
x=(0:m+1)*h;t=(0:n)*k;
mesh(x,t,w’) % 3-D plot of solution w
view(60,30);axis([xl xr yb yt -1 2])

! EXAMPLE 8.1 Apply the Backward Difference Method to the heat equation
⎧
⎪⎪⎨

⎪⎪⎩

ut = uxx for all 0 ≤ x ≤ 1, t ≥ 0
u(x,0) = sin2 2πx for all 0 ≤ x ≤ 1
u(0, t) = 0 for all t ≥ 0
u(1, t) = 0 for all t ≥ 0

.

Using step sizes h = k = 0.1, we arrive at the approximate solution shown in Figure
8.4. Compare this with the performance of the Forward Difference Method in Figure 8.3,
where h = 0.1 and k must be much smaller to avoid instability. "

What is the reason for the improved performance of the implicit method? The stability
analysis for the Backward Difference Method proceeds similarly to the explicit case. The
Backward Difference Method (8.15) can be viewed as the matrix iteration

wj = A−1wj−1 + b,
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Figure 8.4 Approximate solution of Example 8.1 by the Backward Difference Method.

Diffusion coefficient is D = 1, and step sizes are h = 0.1,k = 0.1.

where

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 + 2σ −σ 0 · · · 0

−σ 1 + 2σ −σ
. . .

...

0 −σ 1 + 2σ
. . . 0

...
. . .

. . .
. . . −σ

0 · · · 0 −σ 1 + 2σ

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (8.16)

As in the Von Neumann stability analysis of the Forward Difference Method, the relevant
quantities are the eigenvalues of A−1. Since A = σT + (1 + σ )I , Lemma 8.1 implies that
the eigenvalues of A are

σ

(
1 − 2cos

πj

m + 1

)
+ 1 + σ = 1 + 2σ − 2σ cos

πj

m + 1
,

and the eigenvalues of A−1 are the reciprocals. To ensure that the spectral radius of A−1 is
less than 1, we need

|1 + 2σ (1 − cosx)| > 1, (8.17)

which is true for all σ , since 1 − cosx > 0 and σ = Dk/h2 > 0. Therefore, the implicit
method is stable for all σ , and thus for all choices of step sizes h and k, which is the definition
of unconditionally stable. The step size then can be made much larger, limited only by
local truncation error considerations.

THEOREM 8.3 Let h be the space step and k be the time step for the Backward Difference Method applied
to the heat equation (8.2) with D > 0. For any h,k, the Backward Difference Method is
stable. #

! EXAMPLE 8.2 Apply the Backward Difference Method to solve the heat equation
⎧
⎪⎪⎨

⎪⎪⎩

ut = 4uxx for all 0 ≤ x ≤ 1,0 ≤ t ≤ 1
u(x,0) = e−x/2 for all 0 ≤ x ≤ 1
u(0, t) = et for all 0 ≤ t ≤ 1
u(1, t) = et−1/2 for all 0 ≤ t ≤ 1

.
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Figure 8.5 Approximate solution of Example 8.2 by Backward Difference Method. Step

sizes are h = 0.1,k = 0.1.

Check that the correct solution is u(x, t) = et−x/2. Setting h = k = 0.1 and D = 4
implies that σ = Dk/h2 = 40. The matrix A is 9 × 9, and at each of 10 time steps, (8.15)
is solved by using Gaussian elimination. The solution is shown in Figure 8.5. "

Since the Backward Difference Method is stable for any step size, we can discuss the
size of the truncation errors that are made by discretizing in space and time. The errors
from the time discretization are of order O(k), and the errors from the space discretiza-
tion are of order O(h2). This means that, for small step sizes h ≈ k, the error from the
time step will dominate, since O(h2) will be negligible compared with O(k). In other
words, the error from the Backward Difference Method can be roughly described as
O(k) + O(h2) ≈ O(k).

To demonstrate this conclusion, we used the implicit Finite Difference Method to
produce solutions of Example 8.2 for fixed h = 0.1 and a series of decreasing k. The
accompanying table shows that the error measured at (x, t) = (0.5,1) decreases linearly
with k; that is, when k is cut in half, so is the error. If the size of h were decreased, the
amount of computation would increase, but the errors for a given k would look virtually
the same.

h k u(0.5,1) w(0.5,1) error
0.10 0.10 2.11700 2.12015 0.00315
0.10 0.05 2.11700 2.11861 0.00161
0.10 0.01 2.11700 2.11733 0.00033

The boundary conditions we have been applying to the heat equation are called
Dirichlet boundary conditions. They specify the values of the solution u(x, t) on the
boundary of the solution domain. In the last example, Dirichlet conditions u(0, t) = et

and u(1, t) = et−1/2 set the required temperature values at the boundaries of the domain
[0,1]. Considering the heat equation as a model of heat conduction, this corresponds to
holding the temperature at the boundary at a prescribed level.

An alternative type of boundary condition corresponds to an insulated boundary. Here
the temperature is not specified, but the assumption is that heat may not conduct across the
boundary. In general, a Neumann boundary condition specifies the value of a derivative at
the boundary. For example, on the domain [a,b], requiring ux(a, t) = ux(b, t) = 0 for all
t corresponds to an insulated, or no-flux, boundary. In general, boundary conditions set to
zero are called homogeneous boundary conditions.
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! EXAMPLE 8.3 Apply the Backward Difference Method to solve the heat equation with homogeneous
Neumann boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

ut = uxx for all 0 ≤ x ≤ 1,0 ≤ t ≤ 1
u(x,0) = sin2 2πx for all 0 ≤ x ≤ 1
ux(0, t) = 0 for all 0 ≤ t ≤ 1
ux(1, t) = 0 for all 0 ≤ t ≤ 1.

(8.18)

From Chapter 5, we recall the second-order formula for the first derivative

f ′(x) = −3f (x) + 4f (x + h) − f (x + 2h)

2h
+ O(h2). (8.19)

This formula is useful for situations where function values from both sides of x are not
available. We are in just this position with Neumann boundary conditions. Therefore, we
will use the second-order approximations

ux(0, t) ≈ −3u(0, t) + 4u(0 + h, t) − u(0 + 2h, t)

2h

ux(1, t) ≈ −u(1 − 2h, t) + 4u(1 − h, t) − 3u(1, t)

−2h

for the Neumann conditions. Setting these derivative approximations to zero translates to
the formulas

−3w0 + 4w1 − w2 = 0

−wM−2 + 4wM−1 − 3wM = 0

to be added to the nonboundary parts of the equations. For bookkeeping purposes, note that
as we move from Dirichlet boundary conditions to Neumann, the new feature is that we
need to solve for the two boundary points w0 and wM . That means that while for Dirichlet,
the matrix size in the Backward Difference Method is m × m where m = M − 1 when we
move to Neumann boundary conditions, m = M + 1, and the matrix is slightly larger. These
details are visible in the following Program 8.3. The first and last equations are replaced by
the Neumann conditions.

% Program 8.3 Backward difference method for heat equation
% with Neumann boundary conditions
% input: space interval [xl,xr], time interval [yb,yt],
% number of space steps M, number of time steps N
% output: solution w
% Example usage: w=heatbdn(0,1,0,1,20,20)
function w=heatbdn(xl,xr,yb,yt,M,N)
f=@(x) sin(2*pi*x).ˆ2;
D=1; % diffusion coefficient
h=(xr-xl)/M; k=(yt-yb)/N; m=M+1; n=N;
sigma=D*k/(h*h);
a=diag(1+2*sigma*ones(m,1))+diag(-sigma*ones(m-1,1),1);
a=a+diag(-sigma*ones(m-1,1),-1); % define matrix a
a(1,:)=[-3 4 -1 zeros(1,m-3)]; % Neumann conditions
a(m,:)=[zeros(1,m-3) -1 4 -3];
w(:,1)=f(xl+(0:M)*h)’; % initial conditions
for j=1:n
b=w(:,j);b(1)=0;b(m)=0;
w(:,j+1)=a\b;

end
x=(0:M)*h;t=(0:n)*k;
mesh(x,t,w’) % 3-D plot of solution w
view(60,30);axis([xl xr yb yt -1 1])
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Figure 8.6 Approximate solution of Neumann problem (8.18) by Backward

Difference Method. Step sizes are h = k = 0.05.

Figure 8.6 shows the results of Program 8.3. With Neumann conditions, the boundary
values are no longer fixed at zero, and the solution floats to meet the value of the initial data
that is being averaged by diffusion, which is 1/2. "

8.1.4 Crank–Nicolson Method

So far, our methods for the heat equation consist of an explicit method that is some-
times stable and an implicit method that is always stable. Both have errors of size
O(k + h2) when stable. The time step size k needs to be fairly small to obtain good
accuracy.

The Crank–Nicolson Method is a combination of the explicit and implicit meth-
ods, is unconditionally stable, and has error O(h2) + O(k2). The formulas are slightly
more complicated, but worth the trouble because of the increased accuracy and guaranteed
stability.

Crank–Nicolson uses the backward-difference formula for the time derivative, and a
evenly weighted combination of forward-difference and backward-difference approxima-
tions for the remainder of the equation. In the heat equation (8.2), for example, replace ut

with the backward difference formula

1
k

(wij − wi,j−1)

and uxx with the mixed difference

1
2

(
wi+1,j − 2wij + wi−1,j

h2

)
+ 1

2

(
wi+1,j−1 − 2wi,j−1 + wi−1,j−1

h2

)
.

Again setting σ = Dk/h2, we can rearrange the heat equation approximation in the form

2wij − 2wi,j−1 = σ [wi+1,j − 2wij + wi−1,j + wi+1,j−1 − 2wi,j−1 + wi−1,j−1],
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or

−σwi−1,j + (2 + 2σ )wij − σwi+1,j = σwi−1,j−1 + (2 − 2σ )wi,j−1 + σwi+1,j−1,

which leads to the template shown in Figure 8.7.

i + 1i – 1 i

j + 1

j

Figure 8.7 Mesh points for Crank–Nicolson Method. At each time step, the open circles

are the unknowns and the filled circles are known from the previous step.

Set wj = [w1j , . . . ,wmj ]T . In matrix form, the Crank–Nicolson Method is

Awj = Bwj−1 + σ (sj−1 + sj ),

where

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

2 + 2σ −σ 0 · · · 0

−σ 2 + 2σ −σ
. . .

...

0 −σ 2 + 2σ
. . . 0

...
. . .

. . .
. . . −σ

0 · · · 0 −σ 2 + 2σ

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

2 − 2σ σ 0 · · · 0

σ 2 − 2σ σ
. . .

...

0 σ 2 − 2σ
. . . 0

...
. . .

. . .
. . . σ

0 · · · 0 σ 2 − 2σ

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

and sj = [w0j ,0, . . . ,0,wm+1,j ]T . Applying Crank–Nicolson to the heat equation gives the
result shown in Figure 8.8, for step sizes h = 0.1 and k = 0.1. Matlab code for the method
is given in Program 8.4.

% Program 8.4 Crank-Nicolson method
% with Dirichlet boundary conditions
% input: space interval [xl,xr], time interval [yb,yt],
% number of space steps M, number of time steps N
% output: solution w
% Example usage: w=crank(0,1,0,1,10,10)
function w=crank(xl,xr,yb,yt,M,N)
f=@(x) sin(2*pi*x).ˆ2;
l=@(t) 0*t;
r=@(t) 0*t;
D=1; % diffusion coefficient
h=(xr-xl)/M;k=(yt-yb)/N; % step sizes
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Figure 8.8 Approximate solution of Heat Equation (8.2) computed by Crank–Nicolson

Method. Step sizes h = 0.1,k = 0.1.

sigma=D*k/(h*h); m=M-1; n=N;
a=diag(2+2*sigma*ones(m,1))+diag(-sigma*ones(m-1,1),1);
a=a+diag(-sigma*ones(m-1,1),-1); % define tridiagonal matrix a
b=diag(2-2*sigma*ones(m,1))+diag(sigma*ones(m-1,1),1);
b=b+diag(sigma*ones(m-1,1),-1); % define tridiagonal matrix b
lside=l(yb+(0:n)*k); rside=r(yb+(0:n)*k);
w(:,1)=f(xl+(1:m)*h)’; % initial conditions
for j=1:n

sides=[lside(j)+lside(j+1);zeros(m-2,1);rside(j)+rside(j+1)];
w(:,j+1)=a\(b*w(:,j)+sigma*sides);

end
w=[lside;w;rside];
x=xl+(0:M)*h;t=yb+(0:N)*k;
mesh(x,t,w’);
view (60,30); axis([xl xr yb yt -1 1])

To investigate the stability of Crank–Nicolson, we must find the spectral radius of the
matrix A−1B, for A and B given in the previous paragraph. Once again, the matrix in
question can be rewritten in terms of T . Note that A = σT + (2 + σ )I and B = −σT +
(2 − σ )I . Multiplying A−1B to the j th eigenvector vj of T yields

A−1Bvj = (σT + (2 + σ )I )−1(−σλj vj + (2 − σ )vj )

= 1
σλj + 2 + σ

(−σλj + 2 − σ )vj ,

where λj is the eigenvalue of T associated with vj . The eigenvalues of A−1B are

−σλj + 2 − σ

σλj + 2 + σ
= 4 − (σ (λj + 1) + 2)

σ (λj + 1) + 2
= 4

L
− 1, (8.20)

where L = σ (λj + 1) + 2 > 2, since λj > −1. The eigenvalues (8.20) are therefore
between −1 and 1. The Crank–Nicolson Method, like the implicit Finite Difference Method,
is unconditionally stable.
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Convergence Crank–Nicolson is a convenient Finite Difference Method for the

heat equation due to its unconditional stability (Theorem 8.4) and second-order conver-

gence, shown in (8.23). It is not straightforward to derive such a method, due to the first

partial derivative ut in the equation. For the wave equation and Poisson equation discussed

later in the chapter, only second-order derivatives appear, and it is much easier to find stable

second-order methods.

THEOREM 8.4 The Crank–Nicolson Method applied to the heat equation (8.2) with D > 0 is stable for any
step sizes h,k > 0. #

To finish this section, we derive the truncation error for the Crank–Nicolson Method,
which is O(h2) + O(k2). In addition to its unconditional stability, this makes the method
in general superior to the Forward and Backward Difference Methods for the heat equation
ut = Duxx .

The next four equations are needed for the derivation. We assume the existence of
higher derivatives of the solution u as needed. From Exercise 5.1.24, we have the backward-
difference formula

ut (x, t) = u(x, t) − u(x, t − k)

k
+ k

2
utt (x, t) − k2

6
uttt (x, t1), (8.21)

where t − k < t1 < t , assuming that the partial derivatives exist. Expanding uxx in a Taylor
series in the variable t yields

uxx(x, t − k) = uxx(x, t) − kuxxt (x, t) + k2

2
uxxtt (x, t2),

where t − k < t2 < t , or

uxx(x, t) = uxx(x, t − k) + kuxxt (x, t) − k2

2
uxxtt (x, t2). (8.22)

The centered-difference formula for second derivatives gives both

uxx(x, t) = u(x + h, t) − 2u(x, t) + u(x − h, t)

h2 + h2

12
uxxxx(x1, t) (8.23)

and

uxx(x, t − k) = u(x + h, t − k) − 2u(x, t − k) + u(x − h, t − k)

h2

+ h2

12
uxxxx(x2, t − k), (8.24)

where x1 and x2 lie between x and x + h.
Substitute from the preceding four equations into the heat equation

ut = D

(
1
2

uxx + 1
2

uxx

)
,

where we have split the right side into two. The strategy is to replace the left side by using
(8.21), the first half of the right side with (8.23), and the second half of the right side with
(8.22) in combination with (8.24). This results in
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u(x, t) − u(x, t − k)

k
+ k

2
utt (x, t) − k2

6
uttt (x, t1)

= 1
2

D

[
u(x + h, t) − 2u(x, t) + u(x − h, t)

h2 + h2

12
uxxxx(x1, t)

]

+ 1
2

D

[
kuxxt (x, t) − k2

2
uxxtt (x, t2)

+ u(x + h, t − k) − 2u(x, t − k) + u(x − h, t − k)

h2 + h2

12
uxxxx(x2, t − k)

]
.

Therefore, the error associated with equating the difference quotients is the remainder

−k

2
utt (x, t) + k2

6
uttt (x, t1) + Dh2

24
[uxxxx(x1, t) + uxxxx(x2, t − k)]

+ Dk

2
uxxt (x, t) − Dk2

4
uxxtt (x, t2).

This expression can be simplified by using the fact ut = Duxx . For example, note that
Duxxt = (Duxx)t = utt , which causes the first and fourth terms in the expression for the
error to cancel. The truncation error is

k2

6
uttt (x, t1) − Dk2

4
uxxtt (x, t2) + Dh2

24
[uxxxx(x1, t) + uxxxx(x2, t − k)]

= k2

6
uttt (x, t1) − k2

4
uttt (x, t2) + h2

24D
[utt (x1, t) + utt (x2, t − k)].

A Taylor expansion in the variable t yields

utt (x2, t − k) = utt (x2, t) − kuttt (x2, t4),

making the truncation error equal to O(h2) + O(k2)+ higher-order terms. We conclude that
the Crank–Nicolson is a second-order, unconditionally stable method for the heat equation.

To illustrate the fast convergence of Crank–Nicolson, we return to the equation of
Example 8.2. See also Computer Problems 5 and 6 to explore the convergence rate.

! EXAMPLE 8.4 Apply the Crank–Nicolson Method to the heat equation
⎧
⎪⎪⎨

⎪⎪⎩

ut = 4uxx for all 0 ≤ x ≤ 1,0 ≤ t ≤ 1
u(x,0) = e−x/2 for all 0 ≤ x ≤ 1
u(0, t) = et for all 0 ≤ t ≤ 1
u(1, t) = et−1/2 for all 0 ≤ t ≤ 1

. (8.25)

The next table demonstrates the O(h2) + O(k2) error convergence predicted
by the preceding calculation. The correct solution u(x, t) = et−x/2 evaluated at (x, t) =
(0.5,1) is u = e3/4. Note that the error is reduced by a factor of 4 when the step sizes h and
k are halved. Compare errors with the table in Example 8.2.

h k u(0.5,1) w(0.5,1) error
0.10 0.10 2.11700002 2.11706765 0.00006763
0.05 0.05 2.11700002 2.11701689 0.00001687
0.01 0.01 2.11700002 2.11700069 0.00000067 "

To summarize, we have introduced three numerical methods for parabolic equations
using the heat equation as our primary example. The Forward Difference Method is the
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most straightforward, the Backward Difference Method is unconditionally stable and just
as accurate, and Crank–Nicolson is unconditionally stable and second-order accurate in
both space and time. Although the heat equation is representative, there is a vast array of
parabolic equations for which these methods are applicable.

One important application area for diffusive equations concerns the spatio-temporal
evolution of biological populations. Consider a population (of bacteria, prairie dogs, etc.)
living on a patch of substrate or terrain. To start simply, the patch will be a line segment
[0,L]. We will use a partial differential equation to model u(x, t), the population density
for each point 0 ≤ x ≤ L. Populations tend to act like heat in the sense that they spread out,
or diffuse, from high density areas to lower density areas when possible. They also may
grow or die, as in the following representative example.

! EXAMPLE 8.5 Consider the diffusion equation with proportional growth
⎧
⎪⎪⎨

⎪⎪⎩

ut = Duxx + Cu

u(x,0) = sin2 π
L x for all 0 ≤ x ≤ L

u(0, t) = 0 for all t ≥ 0
u(L, t) = 0 for all t ≥ 0.

(8.26)

The population density at time t and position x is denoted u(x, t). Our use of Dirichlet
boundary conditions represents the assumption that the population cannot live outside the
patch 0 ≤ x ≤ L. "

This is perhaps the simplest possible example of a reaction-diffusion equation. The
diffusion term Duxx causes the population to spread along the x-direction, while the reac-
tion term Cu contributes population growth of rate C. Because of the Dirichlet boundary
conditions, the population is wiped out as it reaches the boundary. In reaction-diffusion
equations, there is a competition between the smoothing tendency of the diffusion and the
growth contribution of the reaction. Whether the population survives or proceeds toward
extinction depends on the competition between the diffusion parameter D, the growth rate C,
and the patch size L.

We apply Crank–Nicolson to the problem. The left-hand side of the equation is replaced
with

1
k

(wij − wi,j−1)

and the right-hand side with the mixed forward/backward difference

1
2

(
D

wi+1,j − 2wij + wi−1,j

h2 + Cwij

)

+1
2

(
D

wi+1,j−1 − 2wi,j−1 + wi−1,j−1

h2 + Cwi,j−1

)
.

Setting σ = Dk/h2, we can rearrange to

−σwi−1,j + (2 + 2σ − kC)wij − σwi+1,j = σwi−1,j−1 + (2 − 2σ + kC)wi,j−1

+σwi+1,j−1.

Comparing with the Crank–Nicolson equations for the heat equation above, we need only
to subtract kC from the diagonal entries of matrix A and add kC to the diagonal entries of
matrix B. This leads to changes in two lines of Program 8.4.

Figure 8.9 shows the results of Crank–Nicolson applied to (8.26) with diffusion
coefficient D = 1, on the patch [0,1]. For the choice C = 9.5, the original population
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density tends to zero in the long run. For C = 10, the population flourishes. Although it is
beyond the scope of our discussion here, it can be shown that the model population survives
as long as

C > π2D/L2. (8.27)

In our case, that translates to C > π2, which is between 9.5 and 10, explaining the results
we see in Figure 8.9. In modeling of biological populations, the information is often used
in reverse: Given known population growth rate and diffusion rate, an ecologist studying
species survival might want to know the smallest patch that can support the population.

Computer Problems 7 and 8 ask the reader to investigate this reaction-diffusion system
further. Nonlinear reaction-diffusion equations are a focus of Section 8.4.
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Figure 8.9 Approximate solutions of equation (8.26) computed by Crank–Nicolson Method.

The parameters are D = 1,L = 1, and the step sizes used are h = k = 0.05. (a) C = 9.5

(b) C = 10.

8.1 Exercises

1. Prove that the functions (a) u(x, t) = e2t+x + e2t−x , (b) u(x, t) = e2t+x are solutions of the
heat equation ut = 2uxx with the specified initial boundary conditions:

(a)

⎧
⎪⎨

⎪⎩

u(x,0) = 2cosh x for 0 ≤ x ≤ 1
u(0, t) = 2e2t for 0 ≤ t ≤ 1
u(1, t) = (e2 + 1)e2t−1 for 0 ≤ t ≤ 1

(b)

⎧
⎪⎨

⎪⎩

u(x,0) = ex for 0 ≤ x ≤ 1
u(0, t) = e2t for 0 ≤ t ≤ 1
u(1, t) = e2t+1 for 0 ≤ t ≤ 1

2. Prove that the functions (a) u(x, t) = e−π t sin πx, (b) u(x, t) = e−π t cosπx are solutions of
the heat equation πut = uxx with the specified initial boundary conditions:

(a)

⎧
⎪⎨

⎪⎩

u(x,0) = sin πx for 0 ≤ x ≤ 1
u(0, t) = 0 for 0 ≤ t ≤ 1
u(1, t) = 0 for 0 ≤ t ≤ 1

(b)

⎧
⎪⎨

⎪⎩

u(x,0) = cosπx for all 0 ≤ x ≤ 1
u(0, t) = e−π t for 0 ≤ t ≤ 1
u(1, t) = −e−π t for 0 ≤ t ≤ 1

3. Prove that if f (x) is a degree 3 polynomial, then u(x, t) = f (x) + ctf ′′(x) is a solution of the
initial value problem ut = cuxx,u(x,0) = f (x).
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4. Is the Backward Difference Method unconditionally stable for the heat equation if c < 0?
Explain.

5. Verify the eigenvector equation (8.13).

6. Show that the nonzero vectors vj in (8.12), for all integers m, consist of only m distinct
vectors, up to change in sign.

8.1 Computer Problems

1. Solve the equation ut = 2uxx for 0 ≤ x ≤ 1,0 ≤ t ≤ 1, with the initial and boundary
conditions that follow, using the Forward Difference Method with step sizes h = 0.1 and
k = 0.002. Plot the approximate solution, using the Matlab mesh command. What happens if
k > 0.003 is used? Compare with the exact solutions from Exercise 1.

(a)

⎧
⎪⎨

⎪⎩

u(x,0) = 2cosh x for 0 ≤ x ≤ 1
u(0, t) = 2e2t for 0 ≤ t ≤ 1
u(1, t) = (e2 + 1)e2t−1 for 0 ≤ t ≤ 1

(b)

⎧
⎪⎨

⎪⎩

u(x,0) = ex for 0 ≤ x ≤ 1
u(0, t) = e2t for 0 ≤ t ≤ 1
u(1, t) = e2t+1 for 0 ≤ t ≤ 1

2. Consider the equation πut = uxx for 0 ≤ x ≤ 1,0 ≤ t ≤ 1 with the initial and boundary
conditions that follow. Set step size h = 0.1. For what step sizes k is the Forward Difference
Method stable? Apply the Forward Difference Method with step sizes h = 0.1, k = 0.01, and
compare with the exact solution from Exercise 2.

(a)

⎧
⎪⎨

⎪⎩

u(x,0) = sin πx for 0 ≤ x ≤ 1
u(0, t) = 0 for 0 ≤ t ≤ 1
u(1, t) = 0 for 0 ≤ t ≤ 1

(b)

⎧
⎪⎨

⎪⎩

u(x,0) = cosπx for all 0 ≤ x ≤ 1
u(0, t) = e−π t for 0 ≤ t ≤ 1
u(1, t) = −e−π t for 0 ≤ t ≤ 1

3. Use the Backward Difference Method to solve the problems of Computer Problem 1. Make a
table of the exact value, the approximate value, and error at (x, t) = (0.5,1) for step sizes
h = 0.02 and k = 0.02,0.01,0.005.

4. Use the Backward Difference Method to solve the problems of Computer Problem 2. Make a
table of the exact value, the approximate value, and error at (x, t) = (0.3,1) for step sizes
h = 0.1 and k = 0.02,0.01,0.005.

5. Use the Crank–Nicolson Method to solve the problems of Computer Problem 1. Make a table
of the exact value, the approximate value, and error at (x, t) = (0.5,1) for step sizes
h = k = 0.02,0.01,0.005.

6. Use the Crank–Nicolson Method to solve the problems of Computer Problem 2. Make a table
of the exact value, the approximate value, and error at (x, t) = (0.3,1) for step sizes
h = k = 0.1,0.05,0.025.

7. Set D = 1 and find the smallest C for which the population of (8.26), on the patch [0,10],
survives in the long run. Use the Crank–Nicolson Method to approximate the solution, and try
to confirm that your results do not depend on the step size choices. Compare your results with
the survival rule (8.27).

8. Setting C = D = 1 in the population model (8.26), use Crank–Nicolson to find the minimum
patch size that allows the population to survive. Compare with the rule (8.27).
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8.2 HYPERBOLIC EQUATIONS

Hyperbolic equations put less stringent constraints on explicit methods. In this section, the
stability of finite difference methods is explored in the context of a representative hyperbolic
equation called the wave equation. The CFL condition will be introduced, which is, in
general, a necessary condition for stability of the PDE solver.

8.2.1 The wave equation

Consider the partial differential equation

utt = c2uxx (8.28)

for a ≤ x ≤ b and t ≥ 0. Comparing with the normal form (8.1), we compute B2 − 4AC =
4c2 > 0, so the equation is hyperbolic. This example is called the wave equation with
wave speed c. Typical initial and boundary conditions needed to specify a unique solution are

⎧
⎪⎪⎨

⎪⎪⎩

u(x,0) = f (x) for all a ≤ x ≤ b

ut (x,0) = g(x) for all a ≤ x ≤ b

u(a, t) = l(t) for all t ≥ 0
u(b, t) = r(t) for all t ≥ 0

. (8.29)

Compared with the heat equation example, extra initial data are needed due to the higher-
order time derivative in the equation. Intuitively speaking, the wave equation describes
the time evolution of a wave propagating along the x-direction. To specify what happens,
we need to know the initial shape of the wave and the initial velocity of the wave at each point.

The wave equation models a wide variety of phenomena, from magnetic waves in
the sun’s atmosphere to the oscillation of a violin string. The equation involves an ampli-
tude u, which for the violin represents the physical displacement of the string. For a sound
wave traveling in air, u represents the local air pressure.

We will apply the Finite Difference Method to the wave equation (8.28) and analyze
its stability. The Finite Difference Method operates on a grid as in Figure 8.1, just as in
the parabolic case. The grid points are (xi, tj ), where xi = a + ih and tj = jk, for step
sizes h and k. As before, we will represent the approximation to the solution u(xi, tj )

by wij .
To discretize the wave equation, the second partial derivatives are replaced by the

centered-difference formula (8.4) in both the x and t directions:

wi,j+1 − 2wij + wi,j−1

k2 − c2 wi−1,j − 2wij + wi+1,j

h2 = 0.

Setting σ = ck/h, we can solve for the solution at the next time step and write the discretized
equation as

wi,j+1 = (2 − 2σ 2)wij + σ 2wi−1,j + σ 2wi+1,j − wi,j−1. (8.30)

The formula (8.30) cannot be used for the first time step, since values at two prior
times, j − 1 and j , are needed. This is similar to the problem with starting multistep
ODE methods. To solve the problem, we can introduce the three-point centered-difference
formula to approximate the first time derivative of the solution u:

ut (xi, tj ) ≈ wi,j+1 − wi,j−1

2k
.

Substituting initial data at the first time step (xi, t1) yields

g(xi) = ut (xi, t0) ≈ wi1 − wi,−1

2k
,
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or in other words,

wi,−1 ≈ wi1 − 2kg(xi). (8.31)

Substituting (8.31) into the finite difference formula (8.30) for j = 0 gives

wi1 = (2 − 2σ 2)wi0 + σ 2wi−1,0 + σ 2wi+1,0 − wi1 + 2kg(xi),

which can be solved for wi1 to yield

wi1 = (1 − σ 2)wi0 + kg(xi) + σ 2

2
(wi−1,0 + wi+1,0). (8.32)

Formula (8.32) is used for the first time step. This is the way the initial velocity information
g enters the calculation. For all later time steps, formula (8.30) is used. Since second-
order formulas have been used for both space and time derivatives, the error of this Finite
Difference Method will be O(h2) + O(k2) (see Computer Problems 3 and 4).

To write the Finite Difference Method in matrix terms, define

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 − 2σ 2 σ 2 0 · · · 0

σ 2 2 − 2σ 2 σ 2 . . .
...

0 σ 2 2 − 2σ 2 . . . 0
...

. . .
. . .

. . . σ 2

0 · · · 0 σ 2 2 − 2σ 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.33)

The initial equation (8.32) can be written
⎡

⎢⎢⎢⎢⎢⎣

w11

...

wm1

⎤

⎥⎥⎥⎥⎥⎦
= 1

2
A

⎡

⎢⎢⎢⎢⎢⎣

w10

...

wm0

⎤

⎥⎥⎥⎥⎥⎦
+ k

⎡

⎢⎢⎢⎢⎢⎣

g(x1)

...

g(xm)

⎤

⎥⎥⎥⎥⎥⎦
+ 1

2
σ 2

⎡

⎢⎢⎢⎢⎢⎣

w00
0
...

0
wm+1,0

⎤

⎥⎥⎥⎥⎥⎦
,

and the subsequent steps of (8.30) are given by
⎡

⎢⎢⎢⎢⎢⎣

w1,j+1

...

wm,j+1

⎤

⎥⎥⎥⎥⎥⎦
= A

⎡

⎢⎢⎢⎢⎢⎣

w1j

...

wmj

⎤

⎥⎥⎥⎥⎥⎦
−

⎡

⎢⎢⎢⎢⎢⎣

w1,j−1

...

wm,j−1

⎤

⎥⎥⎥⎥⎥⎦
+ σ 2

⎡

⎢⎢⎢⎢⎢⎣

w0j

0
...

0
wm+1,j

⎤

⎥⎥⎥⎥⎥⎦
.

Inserting the rest of the extra data, the two equations are written
⎡

⎢⎢⎢⎢⎢⎣

w11

...

wm1

⎤

⎥⎥⎥⎥⎥⎦
= 1

2
A

⎡

⎢⎢⎢⎢⎢⎣

f (x1)

...

f (xm)

⎤

⎥⎥⎥⎥⎥⎦
+ k

⎡

⎢⎢⎢⎢⎢⎣

g(x1)

...

g(xm)

⎤

⎥⎥⎥⎥⎥⎦
+ 1

2
σ 2

⎡

⎢⎢⎢⎢⎢⎣

l(t0)

0
...

0
r(t0)

⎤

⎥⎥⎥⎥⎥⎦
,

and the subsequent steps of (8.30) are given by
⎡

⎢⎢⎢⎢⎢⎣

w1,j+1

...

wm,j+1

⎤

⎥⎥⎥⎥⎥⎦
= A

⎡

⎢⎢⎢⎢⎢⎣

w1j

...

wmj

⎤

⎥⎥⎥⎥⎥⎦
−

⎡

⎢⎢⎢⎢⎢⎣

w1,j−1

...

wm,j−1

⎤

⎥⎥⎥⎥⎥⎦
+ σ 2

⎡

⎢⎢⎢⎢⎢⎣

l(tj )

0
...

0
r(tj )

⎤

⎥⎥⎥⎥⎥⎦
. (8.34)
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! EXAMPLE 8.6 Apply the explicit Finite Difference Method to the wave equation with wave speed c = 2
and initial conditions f (x) = sin πx and g(x) = l(x) = r(x) = 0.

Figure 8.10 shows approximate solutions of the wave equation with c = 2. The
explicit Finite Difference Method is conditionally stable; step sizes have to be chosen
carefully to avoid instability of the solver. Part (a) of the figure shows a stable choice of
h = 0.05 and k = 0.025, while part (b) shows the unstable choice h = 0.05 and k = 0.032.
The explicit Finite Difference Method applied to the wave equation is unstable when the
time step k is too large relative to the space step h.
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Figure 8.10 Wave Equation in Example 8.6 approximated by explicit Finite Difference Method.

Space step size is h = 0 .05. (a) Method is stable for time step k = 0 .025, (b) unstable for k = 0 .032.

"

8.2.2 The CFL condition

The matrix form allows us to analyze the stability characteristics of the explicit Finite
Difference Method applied to the wave equation. The result of the analysis, stated as
Theorem 8.5, explains Figure 8.10.

THEOREM 8.5 The Finite Difference Method applied to the wave equation with wave speed c > 0 is stable
if σ = ck/h ≤ 1. #

Proof. Equation (8.34) in vector form is

wj+1 = Awj − wj−1 + σ 2sj , (8.35)
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where sj holds the side conditions. Since wj+1 depends on both wj and wj−1, to study
error magnification we rewrite (8.35) as

[
wj+1
wj

]
=

[
A −I

I 0

][
wj

wj−1

]
+ σ 2

[
sj

0

]
, (8.36)

to view the method as a one-step recursion. Error will not be magnified as long as the
eigenvalues of

A′ =
[

A −I

I 0

]

are bounded by 1 in absolute value.
Let λ ̸= 0, (y,z)T be an eigenvalue/eigenvector pair of A′, so that

λy = Ay − z

λz = y,

which implies that

Ay =
(

1
λ

+ λ

)
y,

so that µ = 1/λ + λ is an eigenvalue of A. The eigenvalues of A lie between 2 − 4σ 2 and
2 (Exercise 5). The assumption that σ ≤ 1 implies that −2 ≤ µ ≤ 2. To finish, it need only
be shown that, for a complex number λ, the fact that 1/λ + λ is real and has magnitude at
most 2 implies that |λ| = 1 (Exercise 6). ❒

The quantity ck/h is called the CFL number of the method, after R. Courant,
K. Friedrichs, and H. Lewy [1928]. In general, the CFL number must be at most 1 in
order for the PDE solver to be stable. Since c is the wave speed, this means that the distance
ck traveled by the solution in one time step should not exceed the space step h. Figure 8.10
(a) and (b) illustrate CFL numbers of 1 and 1.28, respectively. The constraint ck ≤ h is
called the CFL condition for the wave equation.

Theorem 8.5 states that for the wave equation, the CFL condition implies stability of
the Finite Difference Method. For more general hyperbolic equations, the CFL condition is
necessary, but not always sufficient for stability. See Morton and Mayers [1996] for further
details.

The wave speed parameter c in the wave equation governs the velocity of the prop-
agating wave. Figure 8.11 shows that for c = 6, the sine wave initial condition oscillates
three times during one time unit, three times as fast as the c = 2 case.

8.2 Exercises

1. Prove that the functions (a) u(x, t) = sin πx cos4π t , (b) u(x, t) = e−x−2t , (c) u(x, t) =
ln(1 + x + t) are solutions of the wave equation with the specified initial-boundary conditions:

(a)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

utt = 16uxx

u(x,0) = sin πx for 0 ≤ x ≤ 1
ut (x,0) = 0 for 0 ≤ x ≤ 1
u(0, t) = 0 for 0 ≤ t ≤ 1
u(1, t) = 0 for 0 ≤ t ≤ 1

(b)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

utt = 4uxx

u(x,0) = e−x for 0 ≤ x ≤ 1
ut (x,0) = −2e−x for 0 ≤ x ≤ 1
u(0, t) = e−2t for 0 ≤ t ≤ 1
u(1, t) = e−1−2t for 0 ≤ t ≤ 1

(c)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

utt = uxx

u(x,0) = ln(1 + x) for 0 ≤ x ≤ 1
ut (x,0) = 1/(1 + x) for 0 ≤ x ≤ 1
u(0, t) = ln(1 + t) for 0 ≤ t ≤ 1
u(1, t) = ln(2 + t) for 0 ≤ t ≤ 1
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Figure 8.11 Explicit Finite Difference Method applied to wave equation, c = 6. The step

sizes h = 0 .05,k = 0 .008 satisfy the CFL condition.

2. Prove that the functions (a) u(x, t) = sin πx sin 2π t , (b) u(x, t) = (x + 2t)5, (c) u(x, t) =
sinh x cosh 2t are solutions of the wave equation with the specified initial-boundary conditions:

(a)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

utt = 4uxx

u(x,0) = 0 for 0 ≤ x ≤ 1
ut (x,0) = 2π sin πx for 0 ≤ x ≤ 1
u(0, t) = 0 for 0 ≤ t ≤ 1
u(1, t) = 0 for 0 ≤ t ≤ 1

(b)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

utt = 4uxx

u(x,0) = x5 for 0 ≤ x ≤ 1
ut (x,0) = 10x4 for 0 ≤ x ≤ 1
u(0, t) = 32t5 for 0 ≤ t ≤ 1
u(1, t) = (1 + 2t)5 for 0 ≤ t ≤ 1

(c)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

utt = 4uxx

u(x,0) = sinh x for 0 ≤ x ≤ 1
ut (x,0) = 0 for 0 ≤ x ≤ 1
u(0, t) = 0 for 0 ≤ t ≤ 1
u(1, t) = 1

2 (e − 1
e )cosh 2t for 0 ≤ t ≤ 1

3. Prove that u1(x, t) = sin αx coscαt and u2(x, t) = ex +ct are solutions of the wave
equation (8.28).

4. Prove that if s(x) is twice differentiable, then u(x, t) = s(αx + cαt) is a solution of the wave
equation (8.28).

5. Prove that the eigenvalues of A in (8.33) lie between 2 − 4σ 2 and 2.

6. Let λ be a complex number. (a) Prove that if λ + 1/λ is a real number, then |λ| = 1 or λ is real.
(b) Prove that if λ is real and |λ + 1/λ| ≤ 2, then |λ| = 1.

8.2 Computer Problems

1. Solve the initial-boundary value problems in Exercise 1 on 0 ≤ x ≤ 1,0 ≤ t ≤ 1 by the Finite
Difference Method with h = 0.05,k = h/c. Use Matlab’s mesh command to plot the
solution.
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2. Solve the initial-boundary value problems in Exercise 2 on 0 ≤ x ≤ 1,0 ≤ t ≤ 1 by the Finite
Difference Method with h = 0.05 and k small enough to satisfy the CFL condition. Plot the
solution.

3. For the wave equations in Exercise 1, make a table of the approximation and error at
(x, t) = (1/4,3/4) as a function of step sizes h = ck = 2−p for p = 4, . . . ,8.

4. For the wave equations in Exercise 2, make a table of the approximation and error at
(x, t) = (1/4,3/4) as a function of step sizes h = ck = 2−p for p = 4, . . . ,8.

8.3 ELLIPTIC EQUATIONS

The previous sections deal with time-dependent equations. The diffusion equation models
the flow of heat as a function of time, and the wave equation follows the motion of a
wave. Elliptic equations, the focus of this section, model steady states. For example, the
steady-state distribution of heat on a plane region whose boundary is being held at specific
temperatures is modeled by an elliptic equation. Since time is usually not a factor in elliptic
equations, we will use x and y to denote the independent variables.

DEFINITION 8.6 Let u(x,y) be a twice-differentiable function, and define the Laplacian of u as

$u = uxx + uyy.

For a continuous function f (x,y), the partial differential equation

$u(x,y) = f (x,y) (8.37)

is called the Poisson equation. The Poisson equation with f (x,y) = 0 is called the Laplace
equation. A solution of the Laplace equation is called a harmonic function. ❒

Comparing with the normal form (8.1), we compute B2 − 4AC < 0, so the Poisson
equation is elliptic. The extra conditions given to pin down a single solution are typically
boundary conditions. There are two common types of boundary conditions applied. Dirichlet
boundary conditions specify the values of the solution u(x,y) on the boundary ∂R of a region
R. Neumann boundary conditions specify values of the directional derivative ∂u/∂n on the
boundary, where n denotes the outward unit normal vector.

! EXAMPLE 8.7 Show that u(x,y) = x2 − y2 is a solution of the Laplace equation on [0,1] × [0,1] with
Dirichlet boundary conditions

u(x,0) = x2

u(x,1) = x2 − 1

u(0,y) = −y2

u(1,y) = 1 − y2.

The Laplacian is $u = uxx + uyy = 2 − 2 = 0. The boundary conditions are
listed for the bottom, top, left, and right of the unit square, respectively, and are easily
checked by substitution. "

The Poisson and Laplace equations are ubiquitous in classical physics because their
solutions represent potential energy. For example, an electric field E is the gradient of an
electrostatic potential u, or

E = −∇u.
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The gradient of the electric field, in turn, is related to the charge density ρ by Maxwell’s
equation

∇E = ρ

ϵ
,

where ϵ is the electrical permittivity. Putting the two equations together yields

$u = ∇(∇u) = −ρ

ϵ
,

the Poisson equation for the potential u. In the special case of zero charge, the potential
satisfies the Laplace equation $u = 0.

Many other instances of potential energy are modeled by the Poisson equation. The
aerodynamics of airfoils at low speeds, known as incompressible irrotational flow, are a
solution of the Laplace equation. The gravitational potential u generated by a distribution
of mass density ρ satisfies the Poisson equation

$u = 4πGρ,

where G denotes the gravitational constant. A steady-state heat distribution, such as the
limit of a solution of the heat equation as time t → ∞, is modeled by the Poisson equation.
In Reality Check 8, a variant of the Poisson equation is used to model the heat distribution
on a cooling fin.

We introduce two methods for solving elliptic equations. The first is a Finite Difference
Method that closely follows the development for parabolic and hyperbolic equations. The
second generalizes the Finite Element Method for solving boundary value problems in
Chapter 7. In most of the elliptic equations we consider, the domain is two-dimensional,
which will cause a little extra bookkeeping work.

8.3.1 Finite Difference Method for elliptic equations

We will solve the Poisson equation $u = f on a rectangle [xl,xr ] × [yb,yt ] in the plane,
with Dirichlet boundary conditions

u(x,yb) = g1(x)

u(x,yt ) = g2(x)

u(xl,y) = g3(y)

u(xr ,y) = g4(y)

A rectangular mesh of points is shown in Figure 8.12(a), using M = m − 1 steps in the
horizontal direction and N = n − 1 steps in the vertical direction. The mesh sizes in the x

and y directions are h = (xr − xl)/M and k = (yt − yb)/N , respectively.
A finite difference method involves approximating derivatives by difference quo-

tients. The centered-difference formula (8.4) can be used for both second derivatives in
the Laplacian operator. The Poisson equation $u = f has finite difference form

u(x − h,y) − 2u(x,y) + u(x + h,y)

h2 + O(h2)

+ u(x,y − k) − 2u(x,y) + u(x,y + k)

k2 + O(k2) = f (x,y),

and in terms of the approximate solution wij ≈ u(xi,yj ) can be written

wi−1,j − 2wij + wi+1,j

h2 + wi,j−1 − 2wi,j + wi,j+1

k2 = f (xi,yj ) (8.38)

where xi = xl + (i − 1)h and yj = yb + (j − 1)k for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
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Figure 8.12 Mesh for finite difference solver of Poisson equation with Dirichlet boundary

conditions. (a) Original numbering system with double subscripts. (b) Numbering system

(8.39) for linear equations, with single subscripts, orders mesh points across rows.

Since the equations in the wij are linear, we are led to construct a matrix equation
to solve for the mn unknowns. This presents a bookkeeping problem: We need to relabel
these doubly indexed unknowns into a linear order. Figure 8.12(b) shows an alternative
numbering system for the solution values, where we have set

vi+(j−1)m = wij . (8.39)

Next, we will construct a matrix A and vector b such that Av = b can be solved for v,
and translated back into the solution w on the rectangular grid. Since v is a vector of length
mn, A will be an mn × mn matrix, and each grid point will correspond to its own linear
equation.

By definition, the entry Apq is the qth linear coefficient of the pth equation of
Av = b. For example, (8.38) represents the equation at grid point (i,j), which we call
equation number p = i + (j − 1)m, according to (8.39). The coefficients of the terms
wi−1,j ,wij , . . . in (8.38) are also numbered according to (8.39), which we collect together in
Table 8.1.

x y Equation number p

i j i + (j − 1)m

x y Coefficient number q

i j i + (j − 1)m

i + 1 j i + 1 + (j − 1)m

i − 1 j i − 1 + (j − 1)m

i j + 1 i + jm

i j − 1 i + (j − 2)m

Table 8.1 Translation table for two-dimensional domains. The equation at grid point (i, j) is

numbered p, and its coefficients are Apq for various q, with p and q given in the right column

of the table. The table is simply an illustration of (8.39).

According to Table 8.1, labeling by equation number p and coefficient number q, the
matrix entries Apq from (8.38) are

Ai+(j−1)m,i+(j−1)m = − 2
h2 − 2

k2 (8.40)

Ai+(j−1)m,i+1+(j−1)m = 1
h2
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Ai+(j−1)m,i−1+(j−1)m = 1
h2

Ai+(j−1)m,i+jm = 1
k2

Ai+(j−1)m,i+(j−2)m = 1
k2 .

The right-hand side of the equation corresponding to (i,j) is

bi+(j−1)m = f (xi,yj ).

These entries of A and b hold for the interior points 1 < i < m,1 < j < n of the grid in
Figure 8.12.

Each boundary point needs an equation as well. Since we assume Dirichlet boundary
conditions, they are quite simple:

Bottom wij = g1(xi) for j = 1, 1 ≤ i ≤ m

Top side wij = g2(xi) for j = n, 1 ≤ i ≤ m

Left side wij = g3(yj ) for i = 1, 1 < j < n

Right side wij = g4(yj ) for i = m, 1 < j < n

The Dirichlet conditions translate via Table 8.1 to

Bottom Ai+(j−1)m,i+(j−1)m = 1, bi+(j−1)m = g1(xi) for j = 1, 1 ≤ i ≤ m

Top side Ai+(j−1)m,i+(j−1)m = 1, bi+(j−1)m = g2(xi) for j = n, 1 ≤ i ≤ m

Left side Ai+(j−1)m,i+(j−1)m = 1, bi+(j−1)m = g3(yj ) for i = 1, 1 < j < n

Right side Ai+(j−1)m,i+(j−1)m = 1, bi+(j−1)m = g4(yj ) for i = m, 1 < j < n

All other entries of A and b are zero. The linear system Av = b can be solved with
appropriate method from Chapter 2. We illustrate this labeling system in the next example.

! EXAMPLE 8.8 Apply the Finite Difference Method with m = n = 5 to approximate the solution of the
Laplace equation $u = 0 on [0,1] × [1,2] with the following Dirichlet boundary condi-
tions:

u(x,1) = ln(x2 + 1)

u(x,2) = ln(x2 + 4)

u(0,y) = 2ln y

u(1,y) = ln(y2 + 1).

Matlab code for the Finite Difference Method follows:

% Program 8.5 Finite difference solver for 2D Poisson equation
% with Dirichlet boundary conditions on a rectangle
% Input: rectangle domain [xl,xr]x[yb,yt] with MxN space steps
% Output: matrix w holding solution values
% Example usage: w=poisson(0,1,1,2,4,4)
function w=poisson(xl,xr,yb,yt,M,N)
f=@(x,y) 0; % define input function data
g1=@(x) log(x.ˆ2+1); % define boundary values
g2=@(x) log(x.ˆ2+4); % Example 8.8 is shown
g3=@(y) 2*log(y);
g4=@(y) log(y.ˆ2+1);
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Figure 8.13 Finite Difference Method solution for the elliptic PDE in Example 8.8.

(a) M = N = 4, mesh sizes h = k = 0.25 (b) M = N = 10, mesh sizes h = k = 0.1.

m=M+1;n=N+1; mn=m*n;
h=(xr-xl)/M;h2=hˆ2;k=(yt-yb)/N;k2=kˆ2;
x=xl+(0:M)*h; % set mesh values
y=yb+(0:N)*k;
A=zeros(mn,mn);b=zeros(mn,1);
for i=2:m-1 % interior points
for j=2:n-1
A(i+(j-1)*m,i-1+(j-1)*m)=1/h2;A(i+(j-1)*m,i+1+(j-1)*m)=1/h2;
A(i+(j-1)*m,i+(j-1)*m)=-2/h2-2/k2;
A(i+(j-1)*m,i+(j-2)*m)=1/k2;A(i+(j-1)*m,i+j*m)=1/k2;
b(i+(j-1)*m)=f(x(i),y(j));

end
end
for i=1:m % bottom and top boundary points
j=1;A(i+(j-1)*m,i+(j-1)*m)=1;b(i+(j-1)*m)=g1(x(i));
j=n;A(i+(j-1)*m,i+(j-1)*m)=1;b(i+(j-1)*m)=g2(x(i));

end
for j=2:n-1 % left and right boundary points
i=1;A(i+(j-1)*m,i+(j-1)*m)=1;b(i+(j-1)*m)=g3(y(j));
i=m;A(i+(j-1)*m,i+(j-1)*m)=1;b(i+(j-1)*m)=g4(y(j));

end
v=A\b; % solve for solution in v labeling
w=reshape(v(1:mn),m,n); %translate from v to w
mesh(x,y,w’)

We will use the correct solution u(x,y) = ln(x2 + y2) to compare with the approxima-
tion at the nine mesh points in the square. Since m = n = 5, the mesh sizes are h = k = 1/4.

The solution finds the following nine interior values for u:

w24 = 1.1390 w34 = 1.1974 w44 = 1.2878
w23 = 0.8376 w33 = 0.9159 w43 = 1.0341
w22 = 0.4847 w32 = 0.5944 w42 = 0.7539

The approximate solution wij is plotted in Figure 8.13(a). It compares well with the exact
solution u(x,y) = ln(x2 + y2) at the same points:
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Figure 8.14 Electrostatic potential from the Laplace equation. Boundary conditions set in

Example 8.9.

u( 1
4 , 7

4 ) = 1.1394 u( 2
4 , 7

4 ) = 1.1977 u( 3
4 , 7

4 ) = 1.2879

u( 1
4 , 6

4 ) = 0.8383 u( 2
4 , 6

4 ) = 0.9163 u( 3
4 , 6

4 ) = 1.0341

u( 1
4 , 5

4 ) = 0.4855 u( 2
4 , 5

4 ) = 0.5947 u( 3
4 , 5

4 ) = 0.7538

Since second-order finite difference formulas were used, the error of the Finite Dif-
ference Method poisson.m is second order in h and k. Figure 8.13(b) shows a more
accurate approximate solution, for h = k = 0.1. The Matlab code poisson.m is written
for a rectangular domain, but changes can be made to shift to more general domains. "

For another example, we use the Laplace equation to compute a potential.

! EXAMPLE 8.9 Find the electrostatic potential on the square [0,1] × [0,1], assuming no charge in the
interior and assuming the following boundary conditions:

u(x,0) = sin πx

u(x,1) = sin πx

u(0,y) = 0

u(1,y) = 0.

The potential u satisfies the Laplace equation with Dirichlet boundary conditions.
Using mesh size h = k = 0.1, or M = N = 10 in poisson.m results in the plot shown in
Figure 8.14. "

8 Heat distribution on a cooling fin
Heat sinks are used to move excess heat away from the point where it is generated. In this
project, the steady-state distribution along a rectangular fin of a heat sink will be modeled.
The heat energy will enter the fin along part of one side. The main goal will be to design
the dimensions of the fin to keep the temperature within safe tolerances.

The fin shape is a thin rectangular slab, with dimensions Lx × Ly and width δ cm,
where δ is relatively small. Due to the thinness of the slab, we will denote the temperature
by u(x,y) and consider it constant along the width dimension.

Heat moves in the following three ways: conduction, convection, and radiation.
Conduction refers to the passing of energy between neighboring molecules, perhaps due to
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the movement of electrons, while in convection the molecules themselves move. Radiation,
the movement of energy through photons, will not be considered here.

Conduction proceeds through a conducting material according to Fourier’s first law

q = −KA∇u, (8.41)

where q is heat energy per unit time (measured in watts), A is the cross-sectional area of the
material, and ∇u is the gradient of the temperature. The constant K is called the thermal
conductivity of the material. Convection is ruled by Newton’s law of cooling,

q = −HA(u − ub), (8.42)

where H is a proportionality constant called the convective heat transfer coefficient
and ub is the ambient temperature, or bulk temperature, of the surrounding fluid (in this
case, air).

The fin is a rectangle [0,Lx] × [0,Ly] by δ cm in the z direction, as illustrated in
Figure 8.15(a). Energy equilibrium in a typical $x × $y × δ box interior to the fin, aligned
along the x and y axes, says that the energy entering the box per unit time equals the energy
leaving. The heat flux into the box through the two $y × δ sides and two $x × δ sides is by
conduction, and through the two $x × $y sides is by convection, yielding the steady-state
equation

−K$yδux(x,y) + K$yδux(x + $x,y) − K$xδuy(x,y)

+K$xδuy(x,y + $y) − 2H$x$yu(x,y) = 0. (8.43)

Here, we have set the bulk temperature ub = 0 for convenience; thus, u will denote the
difference between the fin temperature and the surroundings.

Dividing through by $x$y gives

Kδ
ux(x + $x,y) − ux(x,y)

$x
+ Kδ

uy(x,y + $y) − uy(x,y)

$y
= 2Hu(x,y),

and in the limit as $x,$y → 0, the elliptic partial differential equation

uxx + uyy = 2H

Kδ
u (8.44)

results.

Lx

L
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Power

#y
#x

(a)

#y

#x
$

Conduction

Convection

(b)

Figure 8.15 Cooling fin in Reality Check 8. (a) Power input occurs along interval [0,L] on

left side of fin. (b) Energy transfer in small interior box is by conduction along the x and y

directions, and by convection along the air interface.



8.3 Elliptic Equations | 405

Similar arguments imply the convective boundary condition

Kunormal = Hu

where unormal is the partial derivative with respect to the outward normal direction n⃗. The
convective boundary condition is known as a Robin boundary condition, one that involves
both the function value and its derivative. Finally, we will assume that power enters the fin
along one side according to Fourier’s law,

unormal = P

LδK
,

where P is the total power and L is the length of the input.
On a discrete grid with step sizes h and k, respectively, the finite difference approxi-

mation (5.8) can be used to approximate the PDE (8.44) as

ui+1,j − 2uij + ui−1,j

h2 + ui,j+1 − 2uij + ui,j−1

k2 = 2H

Kδ
uij .

This discretization is used for the interior points (xi,yj ) where 1 < i < m,
1 < j < n for integers m, n. The fin edges obey the Robin conditions using the first deriva-
tive approximation

f ′(x) = −3f (x) + 4f (x + h) − f (x + 2h)

2h
+ O(h2).

To apply this approximation to the fin edges, note that the outward normal direction trans-
lates to

unormal = −uy on bottom edge

unormal = uy on top edge

unormal = −ux on left edge

unormal = ux on right edge

Second, note that the second-order first derivative approximation above yields

uy ≈ −3u(x,y) + 4u(x,y + k) − u(x,y + 2k)

2k
on bottom edge

uy ≈ −3u(x,y) + 4u(x,y − k) − u(x,y − 2k)

−2k
on top edge

ux ≈ −3u(x,y) + 4u(x + h,y) − u(x + 2h,y)

2h
on left edge

ux ≈ −3u(x,y) + 4u(x − h,y) − u(x − 2h,y)

−2h
on right edge

Putting both together, the Robin boundary condition leads to the difference equations

−3ui1 + 4ui2 − ui3

2k
= −H

K
ui1 on bottom edge

−3uin + 4ui,n−1 − ui,n−2

2k
= −H

K
uin on top edge

−3u1j + 4u2j − u3j

2h
= −H

K
u1j on left edge

−3umj + 4um−1,j − um−2,j

2h
= −H

K
umj on right edge.
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If we assume that the power enters along the left side of the fin, Fourier’s law leads to the
equation

−3u1j + 4u2j − u3j

2h
= − P

LδK
. (8.45)

There are mn equations in the mn unknowns uij , 1 ≤ i ≤ m, 1 ≤ j ≤ n to solve.
Assume that the fin is composed of aluminum, whose thermal conductivity is

K = 1.68 W/cm ◦C (watts per centimeter-degree Celsius). Assume that the convective heat
transfer coefficient is H = 0.005 W/cm2 ◦C, and that the room temperature is ub = 20◦C.

Suggested activities:

1. Begin with a fin of dimensions 2 × 2 cm, with 1 mm thickness. Assume that 5W of power is
input along the entire left edge, as if the fin were attached to dissipate power from a CPU
chip with L = 2 cm side length. Solve the PDE (8.44) with M = N = 10 steps in the x and
y directions. Use the mesh command to plot the resulting heat distribution over the
xy-plane. What is the maximum temperature of the fin, in ◦C ?

2. Increase the size of the fin to 4 × 4 cm. Input 5W of power along the interval [0,2] on the
left side of the fin, as in the previous step. Plot the resulting distribution, and find the
maximum temperature. Experiment with increased values of M and N . How much does the
solution change?

3. Find the maximum power that can be dissipated by a 4 × 4 cm fin while keeping the
maximum temperature less than 80◦C. Assume that the bulk temperature is 20◦C and the
power input is along 2 cm, as in steps 1 and 2.

4. Replace the aluminum fin with a copper fin, with thermal conductivity K = 3.85 W/cm ◦C.
Find the maximum power that can be dissipated by a 4 × 4 cm fin with the 2 cm power
input in the optimal placement, while keeping the maximum temperature below 80 ◦C.

5. Plot the maximum power that can be dissipated in step 4 (keeping maximum temperature
below 80 degrees) as a function of thermal conductivity, for 1 ≤ K ≤ 5 W/cm◦C.

6. Redo step 4 for a water-cooled fin. Assume that water has a convective heat transfer
coefficient of H = 0.1 W/cm2 ◦C, and that the ambient water temperature is maintained at
20◦C.

7. Cut a rectangular notch from the right side of the fin, and redo step 4. Does the notched fin
dissipate more, or less, power than the original?

The design of cooling fins for desktop and laptop computers is a fascinating engineering
problem. To dissipate ever greater amounts of heat, several fins are needed in a small
space, and fans are used to enhance convection near the fin edges. The addition of fans
to complicated fin geometry moves the simulation into the realm of computational fluid
dynamics, a vital area of modern applied mathematics.

8.3.2 Finite Element Method for elliptic equations

A somewhat more flexible approach to solving partial differential equations arose from
the structural engineering community in the mid-20th century. The Finite Element Method
converts the differential equation into a variational equivalent called the weak form of
the equation, and uses the powerful idea of orthogonality in function spaces to stabilize
its calculations. Moreover, the resulting system of linear equations can have considerable
symmetry in its structure matrix, even when the underlying geometry is complicated.
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We will apply finite elements by using the Galerkin Method, as introduced in Chapter 7
for ordinary differential equation boundary value problems. The method for PDEs follows
the same steps, although the bookkeeping requirements are more extensive. Consider the
Dirichlet problem for the elliptic equation

$u + r(x,y)u = f (x,y) in R

u = g(x,y) on S (8.46)

where the solution u(x,y) is defined on a region R in the plane bounded by a piecewise-
smooth closed curve S.

We will use an L2 function space over the region R, as in Chapter 7. Let

L2(R) =
{

functions φ(x,y) on R
∣∣∣
∫ ∫

R
φ(x,y)2 dx dy exists and is finite

}
.

Denote by L2
0(R) the subspace of L2(R) consisting of functions that are zero on the boundary

S of the region R.
The goal will be to minimize the squared error of the elliptic equation in (8.46) by forcing

the residual $u(x,y) + r(x,y)u(x,y) − f (x,y) to be orthogonal to a large subspace of
L2(R). Let φ1(x,y), . . . ,φP (x,y) be elements of L2(R). The orthogonality assumption
takes the form

∫ ∫

R
($u + ru − f )φp dx dy = 0,

or
∫ ∫

R
($u + ru)φp dxdy =

∫ ∫

R
f φp dx dy (8.47)

for each 1 ≤ p ≤ P . The form (8.47) is called the weak form of the elliptic equation (8.46).

The version of integration by parts needed to apply the Galerkin Method is contained
in the following fact:

THEOREM 8.7 Green’s First Identity. Let R be a bounded region with piecewise smooth boundary S. Let
u and v be smooth functions, and let n denote the outward unit normal along the boundary.
Then

∫ ∫

R
v$u =

∫

S
v

∂u

∂n
dS −

∫ ∫

R
∇u · ∇v. #

The directional derivative can be calculated as

∂u

∂n
= ∇u · (nx,ny),

where (nx,ny) denotes the outward normal unit vector on the boundary S of R. Green’s
identity applied to the weak form (8.47) yields
∫

S
φp

∂u

∂n
dS −

∫ ∫

R
(∇u · ∇φp) dx dy +

∫ ∫

R
ruφp dx dy =

∫ ∫

R
f φp dx dy. (8.48)

The essence of the Finite Element Method is to substitute

w(x,y) =
P∑

q=1

vqφq(x,y) (8.49)
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for u into the weak form of the partial differential equation, and then determine the unknown
constants vq . Assume for the moment that φp belongs to L2

0(R), that is, φp(S) = 0. Substi-
tuting the form (8.49) into (8.48) results in

−
∫ ∫

R

⎛

⎝
P∑

q=1

vq∇φq

⎞

⎠ · ∇φp dx dy +
∫ ∫

R
r

⎛

⎝
P∑

q=1

vqφq

⎞

⎠φp dx dy =
∫ ∫

R
f φp dx dy

for each φp in L2
0(R). Factoring out the constants vq yields

P∑

q=1

vq

[∫ ∫

R
∇φq · ∇φp dx dy −

∫ ∫

R
rφqφp dx dy

]
= −

∫

R
f φpdx dy. (8.50)

For each φp belonging to L2
0(R), we have developed a linear equation in the unknowns

v1, . . . ,vP . In matrix form, the equation is Av = b, where the entries of the pth row of A

and b are

Apq =
∫ ∫

R
∇φq · ∇φp dx dy −

∫ ∫

R
rφqφp dx dy (8.51)

and

bp = −
∫ ∫

R
f φp dx dy. (8.52)

We are now prepared to choose explicit functions for the finite elements φp and plan a
computation. We follow the lead of Chapter 7 in choosing linear B-splines, piecewise-linear
functions of x,y that live on triangles in the plane. For concreteness, let the region R be a
rectangle, and form a triangulation with nodes (xi,yj ) chosen from a rectangular grid. We
will reuse the M × N grid from the previous section, shown in Figure 8.16(a), where we
set m = M + 1 and n = N + 1. As before, we will denote the grid step size in the x and y

directions as h and k, respectively. Figure 8.16(b) shows the triangulation of the rectangular
region that we will use.
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Figure 8.16 Finite element solver of elliptic equation with Dirichlet boundary conditions.

(a) Mesh is same as used for finite difference solver. (b) A possible triangulation of the region. Each

interior point is a vertex of six different triangles.



8.3 Elliptic Equations | 409

Our choice of finite element functions φp from L2(R) will be the P = mn piecewise-
linear functions, each of which takes the value 1 at one grid point in Figure 8.16(a) and zero
at the other mn − 1 grid points. In other words, φ1, . . . ,φmn are determined by the equality
φi+(j−1)m(xi,yj ) = 1 and φi+(j−1)m(xi′ ,yj ′) = 0 for all other grid points (xi′ ,yj ′), while
being linear on each triangle in Figure 8.16(b). We are once again using the numbering
system of Table 8.1, on page 400. Each φp(x,y) is differentiable, except along the triangle
edges, and is therefore a Riemann-integrable function belonging to L2(R). Note that for
every nonboundary point (xi,yj ) of the rectangle R, φi+(j−1)m belongs to L2

0(R). Moreover,
due to assumption (8.49), they satisfy

w(xi,yj ) =
m∑

i=1

n∑

j=1

vi+(j−1)mφi+(j−1)m(xi,yj ) = vi+(j−1)m

for i = 1, . . . ,m,j = 1, . . . ,n. Therefore, the approximation w to the correct solution u at
(xi,vj ) will be directly available once the system Av = b is solved. This convenience is
the reason B-splines are a good choice for finite element functions.

It remains to calculate the matrix entries (8.51) and (8.52) and solve Av = b. To cal-
culate these entries, we gather a few facts about B-splines in the plane. The integrals of the
piecewise-linear functions are easily approximated by the two-dimensional Midpoint Rule.
Define the barycenter of a region in the plane as the point (x,y) where

x =
∫ ∫

R x dx dy∫ ∫
R 1 dx dy

, y =
∫ ∫

R y dx dy∫ ∫
R 1 dx dy

.

If R is a triangle with vertices (x1,y1), (x2,y2), (x3,y3), then the barycenter is (see
Exercise 8)

x = x1 + x2 + x3

3
, y = y1 + y2 + y3

3
.

LEMMA 8.8 The average value of a linear function L(x,y) on a plane region R is L(x,y), the value at
the barycenter. In other words,

∫ ∫
R L(x,y) dx dy = L(x,y) · area (R). #

Proof. Let L(x,y) = a + bx + cy. Then
∫ ∫

R
L(x,y) dx dy =

∫ ∫

R
(a + bx + cy) dx dy

= a

∫ ∫

R
dx dy + b

∫ ∫

R
x dx dy + c

∫ ∫

R
y dx dy

= area (R) · (a + bx + cy).

❒

Lemma 8.8 leads to a generalization of the Midpoint Rule of Chapter 5 that is useful
for approximating the entries of (8.51) and (8.52). Taylor’s Theorem for functions of two
variables says that

f (x,y) = f (x,y) + ∂f

∂x
(x,y)(x − x) + ∂f

∂y
(x,y)(y − y)

+O((x − x)2, (x − x)(y − y),(y − y)2)

= L(x,y) + O((x − x)2, (x − x)(y − y),(y − y)2).
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Therefore,
∫ ∫

R
f (x,y) dx dy =

∫ ∫

R
L(x,y) dx dy +

∫ ∫

R
O((x − x)2, (x − x)(y − y),(y − y)2) dx dy

= area (R) · L(x,y) + O(h4) = area (R) · f (x,y) + O(h4),

where h is the diameter of R, the largest distance between two points of R, and where we
have used Lemma 8.8. This is the Midpoint Rule in two dimensions.

Midpoint Rule in two dimensions

∫ ∫

R
f (x,y) dx dy = area (R) · f (x,y) + O(h4), (8.53)

where (x,y) is the barycenter of the bounded region R and h = diam(R).

The Midpoint Rule shows that to apply the Finite Element Method with O(h2) con-
vergence, we need to only approximate the integrals in (8.51) and (8.52) by evaluating
integrands at triangle barycenters. For the B-spline functions φp, this is particularly easy.
Proofs of the next two lemmas are deferred to Exercises 9 and 10.

LEMMA 8.9 Let φ(x,y) be a linear function on the triangle T with vertices (x1,y1), (x2,y2), (x3,y3),
satisfying φ(x1,y1) = 1,φ(x2,y2) = 0, and φ(x3,y3) = 0. Then φ(x,y) = 1/3. #

LEMMA 8.10 Let φ1(x,y) and φ2(x,y) be the linear functions on the triangle T with vertices
(x1,y1), (x2,y2), and (x3,y3), satisfying φ1(x1,y1) = 1,φ1(x2,y2) = 0, φ1(x3,y3) = 0,
φ2(x1,y1) = 0,φ2(x2,y2) = 1, and φ2(x3,y3) = 0. Let f (x,y) be a twice-differentiable
function. Set

d = det

⎡

⎣
1 1 1
x1 x2 x3
y1 y2 y3

⎤

⎦ .

Then

(a) the triangle T has area |d|/2

(b) ∇φ1(x,y) =
(

y2 − y3

d
,

x3 − x2

d

)

(c)
∫ ∫

T ∇φ1 · ∇φ1 dx dy = (x2 − x3)2 + (y2 − y3)2

2|d|

(d)
∫ ∫

T ∇φ1 · ∇φ2 dx dy = −(x1 − x3)(x2 − x3) − (y1 − y3)(y2 − y3)

2|d|
(e)

∫ ∫
T f φ1φ2 dx dy = f (x,y)|d|/18 + O(h4) =

∫ ∫
T f φ2

1 dx dy

(f )
∫ ∫

T f φ1 dx dy = f (x,y)|d|/6 + O(h4)

where (x,y) is the barycenter of T and h = diam(T ). #

We can now calculate the matrix entries of A. Consider a vertex (xi,yj ) that is not
on the boundary S of the rectangle. Then φi+(j−1)m belongs to L2

0(R), and according to
(8.51) with p = q = i + (j − 1)m, the matrix entry Ai+(j−1)m,i+(j−1)m is composed of
two integrals. The integrands are zero outside of the six triangles shown in Figure 8.17.
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Figure 8.17 Detail of the (i, j) interior point from Figure 8.16(b). Each interior point (xi ,yj)

is surrounded by six triangles, numbered as shown. The B-spline function φi+(j−1)m is linear,

takes the value 1 at the center, and is zero outside of these six triangles.

The triangles have horizontal and vertical sides h and k, respectively. For the first integral,
summing from triangle 1 to triangle 6, respectively, we can use Lemma 8.10(c) to sum the
six contributions

k2

2hk
+ h2

2hk
+ h2 + k2

2hk
+ k2

2hk
+ h2

2hk
+ h2 + k2

2hk
= 2(h2 + k2)

hk
. (8.54)

For the second integral of (8.51), we use Lemma 8.10(e).Again, the integrals are zero except
for the six triangles shown. The barycenters of the six triangles are

B1 = (xi − 2
3

h,yj − 1
3

k)

B2 = (xi − 1
3

h,yj − 2
3

k)

B3 = (xi + 1
3

h,yj − 1
3

k)

B4 = (xi + 2
3

h,yj + 1
3

k)

B5 = (xi + 1
3

h,yj + 2
3

k)

B6 = (xi − 1
3

h,yj + 1
3

k). (8.55)

The second integral contributes −(hk/18)[r(B1) + r(B2) + r(B3) + r(B4) + r(B5) +
r(B6)], and so summing up (8.54) and (8.55),

Ai+(j−1)m,i+(j−1)m = 2(h2 + k2)

hk
− hk

18
[r(B1) + r(B2) + r(B3)

+r(B4) + r(B5) + r(B6)]. (8.56)

Similar usage of Lemma 8.10 (see Exercise 12) shows that

Ai+(j−1)m,i−1+(j−1)m = − k

h
− hk

18
[r(B6) + r(B1)]

Ai+(j−1)m,i−1+(j−2)m = −hk

18
[r(B1) + r(B2)]

Ai+(j−1)m,i+(j−2)m = −h

k
− hk

18
[r(B2) + r(B3)]

Ai+(j−1)m,i+1+(j−1)m = − k

h
− hk

18
[r(B3) + r(B4)]

Ai+(j−1)m,i+1+jm = −hk

18
[r(B4) + r(B5)]
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Ai+(j−1)m,i+jm = −h

k
− hk

18
[r(B5) + r(B6)] (8.57)

Calculating the entries bp makes use of Lemma 8.10(f), which implies that for
p = i + (j − 1)m,

bi+(j−1)m = −hk

6
[f (B1) + f (B2) + f (B3) + f (B4) + f (B5) + f (B6)]. (8.58)

For finite element functions on the boundary, φi+(j−1)m does not belong to L2
0(R), and the

equations

Ai+(j−1)m,i+(j−1)m = 1

bi+(j−1)m = g(xi,yj ) (8.59)

will be used to guarantee the Dirichlet boundary condition vi+(j−1)m = g(xi,yj ), where
(xi,yj ) is a boundary point.

With these formulas, it is straightforward to build a Matlab implementation of the finite
element solver on a rectangle with Dirichlet boundary conditions. The program consists of
setting up the matrix A and vector b using (8.56) – (8.59), and solving Av = b. Although the
Matlab backslash operation is used in the code, for real applications it might be replaced
by a sparse solver as in Chapter 2.

% Program 8.6 Finite element solver for 2D PDE
% with Dirichlet boundary conditions on a rectangle
% Input: rectangle domain [xl,xr]x[yb,yt] with MxN space steps
% Output: matrix w holding solution values
% Example usage: w=poissonfem(0,1,1,2,4,4)
function w=poissonfem(xl,xr,yb,yt,M,N)
f=@(x,y) 0; % define input function data
r=@(x,y) 0;
g1=@(x) log(x.ˆ2+1); % define boundary values on bottom
g2=@(x) log(x.ˆ2+4); % top
g3=@(y) 2*log(y); % left side
g4=@(y) log(y.ˆ2+1); % right side
m=M+1; n=N+1; mn=m*n;
h=(xr-xl)/M; h2=hˆ2; k=(yt-yb)/N; k2=kˆ2; hk=h*k;
x=xl+(0:M)*h; % set mesh values
y=yb+(0:N)*k;
A=zeros(mn,mn); b=zeros(mn,1);
for i=2:m-1 % interior points
for j=2:n-1
rsum=r(x(i)-2*h/3,y(j)-k/3)+r(x(i)-h/3,y(j)-2*k/3)...

+r(x(i)+h/3,y(j)-k/3);
rsum=rsum+r(x(i)+2*h/3,y(j)+k/3)+r(x(i)+h/3,y(j)+2*k/3)...

+r(x(i)-h/3,y(j)+k/3);
A(i+(j-1)*m,i+(j-1)*m)=2*(h2+k2)/(hk)-hk*rsum/18;
A(i+(j-1)*m,i-1+(j-1)*m)=-k/h-hk*(r(x(i)-h/3,y(j)+k/3)...

+r(x(i)-2*h/3,y(j)-k/3))/18;
A(i+(j-1)*m,i-1+(j-2)*m)=-hk*(r(x(i)-2*h/3,y(j)-k/3)...

+r(x(i)-h/3,y(j)-2*k/3))/18;
A(i+(j-1)*m,i+(j-2)*m)=-h/k-hk*(r(x(i)-h/3,y(j)-2*k/3)...

+r(x(i)+h/3,y(j)-k/3))/18;
A(i+(j-1)*m,i+1+(j-1)*m)=-k/h-hk*(r(x(i)+h/3,y(j)-k/3)...

+r(x(i)+2*h/3,y(j)+k/3))/18;
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A(i+(j-1)*m,i+1+j*m)=-hk*(r(x(i)+2*h/3,y(j)+k/3)...
+r(x(i)+h/3,y(j)+2*k/3))/18;

A(i+(j-1)*m,i+j*m)=-h/k-hk*(r(x(i)+h/3,y(j)+2*k/3)...
+r(x(i)-h/3,y(j)+k/3))/18;

fsum=f(x(i)-2*h/3,y(j)-k/3)+f(x(i)-h/3,y(j)-2*k/3)...
+f(x(i)+h/3,y(j)-k/3);

fsum=fsum+f(x(i)+2*h/3,y(j)+k/3)+f(x(i)+h/3,y(j)+2*k/3)...
+f(x(i)-h/3,y(j)+k/3);

b(i+(j-1)*m)=-h*k*fsum/6;
end

end
for i=1:m % boundary points
j=1;A(i+(j-1)*m,i+(j-1)*m)=1;b(i+(j-1)*m)=g1(x(i));
j=n;A(i+(j-1)*m,i+(j-1)*m)=1;b(i+(j-1)*m)=g2(x(i));

end
for j=2:n-1
i=1;A(i+(j-1)*m,i+(j-1)*m)=1;b(i+(j-1)*m)=g3(y(j));
i=m;A(i+(j-1)*m,i+(j-1)*m)=1;b(i+(j-1)*m)=g4(y(j));

end
v=A\b; % solve for solution in v numbering
w=reshape(v(1:mn),m,n);
mesh(x,y,w’)

! EXAMPLE 8.10 Apply the Finite Element Method with M = N = 4 to approximate the solution of the
Laplace equation $u = 0 on [0, 1] × [1, 2] with the Dirichlet boundary conditions:

u(x,1) = ln(x2 + 1)

u(x,2) = ln(x2 + 4)

u(0,y) = 2ln y

u(1,y) = ln(y2 + 1)

Since M = N = 4, there is a mn × mn linear system to solve. Sixteen of the 25 equations
are evaluation of the boundary conditions. Solving Av = b yields

w24 = 1.1390 w34 = 1.1974 w44 = 1.2878
w23 = 0.8376 w33 = 0.9159 w43 = 1.0341
w22 = 0.4847 w32 = 0.5944 w42 = 0.7539

agreeing with the results in Example 8.8. "

! EXAMPLE 8.11 Apply the Finite Element Method with M = N = 16 to approximate the solution of the
elliptic Dirichlet problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

$u + 4π2u = 2sin 2πy

u(x,0) = 0 for 0 ≤ x ≤ 1
u(x,1) = 0 for 0 ≤ x ≤ 1
u(0,y) = 0 for 0 ≤ y ≤ 1
u(1,y) = sin 2πy for 0 ≤ y ≤ 1

We define r(x,y) = 4π2 and f (x,y) = 2sin 2πy. Since m = n = 17, the grid is 17 × 17,
meaning that the matrix A is 289 × 289. The solution is computed approximately within a
maximum error of about 0.023, compared with the correct solution u(x,y) = x2 sin 2πy.
The approximate solution w is shown in Figure 8.18. "
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Figure 8.18 Finite element solution of Example 8.11. Maximum error on [0,1] × [0,1] is

0.023.

8.3 Exercises

1. Show that u(x,y) = ln(x2 + y2) is a solution to the Laplace equation with Dirichlet boundary
conditions of Example 8.8.

2. Show that (a) u(x,y) = x2y − 1/3 y3 and (b) u(x,y) = 1/6 x4 − x2y2 + 1/6 y4 are
harmonic functions.

3. Prove that the functions (a) u(x,y) = e−πy sin πx, (b) u(x,y) = sinh πx sin πy are solutions
of the Laplace equation with the specified boundary conditions:

(a)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x,0) = sin πx for 0 ≤ x ≤ 1
u(x,1) = e−π sin πx for 0 ≤ x ≤ 1
u(0,y) = 0 for 0 ≤ y ≤ 1
u(1,y) = 0 for 0 ≤ y ≤ 1

(b)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x,0) = 0 for 0 ≤ x ≤ 1
u(x,1) = 0 for 0 ≤ x ≤ 1
u(0,y) = 0 for 0 ≤ y ≤ 1
u(1,y) = sinh π sin πy for 0 ≤ y ≤ 1

4. Prove that the functions (a) u(x,y) = e−xy , (b) u(x,y) = (x2 + y2)3/2 are solutions of the
specified Poisson equation with the given boundary conditions:

(a)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

$u = e−xy(x2 + y2)

u(x,0) = 1 for 0 ≤ x ≤ 1
u(x,1) = e−x for 0 ≤ x ≤ 1
u(0,y) = 1 for 0 ≤ y ≤ 1
u(1,y) = e−y for 0 ≤ y ≤ 1

(b)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

$u = 9
√

x2 + y2

u(x,0) = x3 for 0 ≤ x ≤ 1
u(x,1) = (1 + x2)3/2 for 0 ≤ x ≤ 1
u(0,y) = y3 for 0 ≤ y ≤ 1
u(1,y) = (1 + y2)3/2 for 0 ≤ y ≤ 1

5. Prove that the functions (a) u(x,y) = sin π
2 xy, (b) u(x,y) = exy are solutions of the specified

elliptic equation with the given Dirichlet boundary conditions:

(a)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

$u + π2

4 (x2 + y2)u = 0
u(x,0) = 0 for 0 ≤ x ≤ 1
u(x,1) = sin π

2 x for 0 ≤ x ≤ 1
u(0,y) = 0 for 0 ≤ y ≤ 1
u(1,y) = sin π

2 y for 0 ≤ y ≤ 1

(b)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

$u = (x2 + y2)u

u(x,0) = 1 for 0 ≤ x ≤ 1
u(x,1) = ex for 0 ≤ x ≤ 1
u(0,y) = 1 for 0 ≤ y ≤ 1
u(1,y) = ey for 0 ≤ y ≤ 1

6. Prove that the functions (a) u(x,y) = ex+2y , (b) u(x,y) = y/x are solutions of the specified
elliptic equation with the given Dirichlet boundary conditions:
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(a)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

$u = 5u

u(x,0) = ex for 0 ≤ x ≤ 1
u(x,1) = ex+2 for 0 ≤ x ≤ 1
u(0,y) = e2y for 0 ≤ y ≤ 1
u(1,y) = e2y+1 for 0 ≤ y ≤ 1

(b)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

$u = 2u

x2

u(x,0) = 0 for 1 ≤ x ≤ 2
u(x,1) = 1/x for 1 ≤ x ≤ 2
u(1,y) = y for 0 ≤ y ≤ 1
u(2,y) = y/2 for 0 ≤ y ≤ 1

7. Prove that the functions (a) u(x,y) = x2 + y2, (b) u(x,y) = y2/x are solutions of the
specified elliptic equation with the given Dirichlet boundary conditions:

(a)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

$u + u

x2 + y2 = 5

u(x,1) = x2 + 1 for 1 ≤ x ≤ 2
u(x,2) = x2 + 4 for 1 ≤ x ≤ 2
u(1,y) = y2 + 1 for 1 ≤ y ≤ 2
u(2,y) = y2 + 4 for 1 ≤ y ≤ 2

(b)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

$u − 2u

x2 = 2
x

u(x,0) = 0 for 1 ≤ x ≤ 2
u(x,2) = 4/x for 1 ≤ x ≤ 2
u(1,y) = y2 for 0 ≤ y ≤ 2
u(2,y) = y2/2 for 0 ≤ y ≤ 2

8. Show that the barycenter of a triangle with vertices (x1,y1), (x2,y2), (x3,y3) is
x = (x1 + x2 + x3)/3, y = (y1 + y2 + y3)/3.

9. Prove Lemma 8.9.

10. Prove Lemma 8.10.

11. Derive the barycenter coordinates of (8.55).

12. Derive the matrix entries in (8.57).

13. Show that the Laplace equation $T = 0 on the rectangle [0,L] × [0,H ] with Dirichlet
boundary conditions T = T0 on the three sides x = 0,x = L, and y = 0, and T = T1 on the
side y = H has solution

T (x,y) = T0 +
∞∑

k=0

Ck sin
(2k + 1)πx

L
sinh

(2k + 1)πy

L

where

Ck = 4(T1 − T0)

(2k + 1)π sinh (2k+1)πH
L

.

8.3 Computer Problems

1. Solve the Laplace equation problems in Exercise 3 on 0 ≤ x ≤ 1,0 ≤ y ≤ 1 by the Finite
Difference Method with h = k = 0.1. Use Matlab’s mesh command to plot the solution.

2. Solve the Poisson equation problems in Exercise 4 on 0 ≤ x ≤ 1,0 ≤ y ≤ 1 by the Finite
Difference Method with h = k = 0.1. Plot the solution.

3. Use the Finite Difference Method with h = k = 0.1 to approximate the electrostatic potential
on the square 0 ≤ x,y ≤ 1 from the Laplace equation with the specified boundary conditions.
Plot the solution.

(a)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x,0) = 0 for 0 ≤ x ≤ 1
u(x,1) = sin πx for 0 ≤ x ≤ 1
u(0,y) = 0 for 0 ≤ y ≤ 1
u(1,y) = 0 for 0 ≤ y ≤ 1

(b)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x,0) = sin π
2 x for 0 ≤ x ≤ 1

u(x,1) = cos π
2 x for 0 ≤ x ≤ 1

u(0,y) = sin π
2 y for 0 ≤ y ≤ 1

u(1,y) = cos π
2 y for 0 ≤ y ≤ 1
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4. Use the Finite Difference Method with h = k = 0.1 to approximate the electrostatic potential
on the square 0 ≤ x,y ≤ 1 from the Laplace equation with the specified boundary conditions.
Plot the solution.

(a)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x,0) = 0 for 0 ≤ x ≤ 1
u(x,1) = x3 for 0 ≤ x ≤ 1
u(0,y) = 0 for 0 ≤ y ≤ 1
u(1,y) = y2 for 0 ≤ y ≤ 1

(b)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x,0) = 0 for 0 ≤ x ≤ 1
u(x,1) = x sin π

2 x for 0 ≤ x ≤ 1
u(0,y) = 0 for 0 ≤ y ≤ 1
u(1,y) = y for 0 ≤ y ≤ 1

5. Hydrostatic pressure can be expressed as the hydraulic head, defined as the equivalent height u

of a column of water exerting that pressure. In an underground reservoir, steady-state
groundwater flow satisfies the Laplace equation $u = 0. Assume that the reservoir has
dimensions 2 km×1 km, and water table heights

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x,0) = 0.01 for 0 ≤ x ≤ 2
u(x,1) = 0.01 + 0.003x for 0 ≤ x ≤ 2
u(0,y) = 0.01 for 0 ≤ y ≤ 1
u(1,y) = 0.01 + 0.006y2 for 0 ≤ y ≤ 1

on the reservoir boundary, in kilometers. Compute the head u(1,1/2) at the center of the
reservoir.

6. The steady-state temperature u on a heated copper plate satisfies the Poisson equation

$u = −D(x,y)

K
,

where D(x,y) is the power density at (x,y) and K is the thermal conductivity. Assume that
the plate is the shape of the rectangle [0,4] × [0,2] cm whose boundary is kept at a constant
30◦C, and that power is generated at the constant rate D(x,y) = 5 watts/cm3. The thermal
conductivity of copper is K = 3.85 watts/cm◦C. (a) Plot the temperature distribution on the
plate. (b) Find the temperature at the center point (x,y) = (2,1).

7. For the Laplace equations in Exercise 3, make a table of the finite difference approximation
and error at (x,y) = (1/4,3/4) as a function of step sizes h = k = 2−p for p = 2, . . . ,5.

8. For the Poisson equations in Exercise 4, make a table of the finite difference approximation
and error at (x,y) = (1/4,3/4) as a function of step sizes h = k = 2−p for p = 2, . . . ,5.

9. Solve the Laplace equation problems in Exercise 3 on 0 ≤ x ≤ 1,0 ≤ y ≤ 1 by the
Finite Element Method with h = k = 0.1. Use Matlab’s mesh command to plot the
solution.

10. Solve the Poisson equation problems in Exercise 4 on 0 ≤ x ≤ 1,0 ≤ y ≤ 1 by the Finite
Element Method with h = k = 0.1. Plot the solution.

11. Solve the elliptic partial differential equations in Exercise 5 by the Finite Element Method with
h = k = 0.1. Plot the solution.

12. Solve the elliptic partial differential equations in Exercise 6 by the Finite Element Method with
h = k = 1/16. Plot the solution.

13. Solve the elliptic partial differential equations in Exercise 7 by the Finite Element Method with
h = k = 1/16. Plot the solution.
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14. Solve the elliptic partial differential equations with Dirichlet boundary conditions by the Finite
Element Method with h = k = 0.1. Plot the solution.

(a)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

$u + sin πxy = (x2 + y2)u

u(x,0) = 0 for 0 ≤ x ≤ 1
u(x,1) = 0 for 0 ≤ x ≤ 1
u(0,y) = 0 for 0 ≤ y ≤ 1
u(1,y) = 0 for 0 ≤ y ≤ 1

(b)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

$u + (sin πxy)u = e2xy

u(x,0) = 0 for 0 ≤ x ≤ 1
u(x,1) = 0 for 0 ≤ x ≤ 1
u(0,y) = 0 for 0 ≤ y ≤ 1
u(1,y) = 0 for 0 ≤ y ≤ 1

15. For the elliptic equations in Exercise 5, make a table of the Finite Element Method
approximation and error at (x,y) = (1/4,3/4) as a function of step sizes h = k = 2−p for
p = 2, . . . ,5.

16. For the elliptic equations in Exercise 6, make a log–log plot of the maximum error of the Finite
Element Method as a function of step sizes h = k = 2−p for p = 2, . . . ,6.

17. For the elliptic equations in Exercise 7, make a log–log plot of the maximum error of the Finite
Element Method as a function of step sizes h = k = 2−p for p = 2, . . . ,6.

18. Solve the Laplace equation with Dirichlet boundary conditions from Exercise 13 on
[0,1] × [0,1] with T0 = 0 and T1 = 10 using (a) a finite difference approximation and (b) the
Finite Element Method. Make log–log plots of the error at particular locations in the rectangle
as a function of step sizes h = k = 2−p for p as large as possible. Explain any simplifications
you are making to evaluate the correct solution at those locations.

8.4 NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

In the previous sections of this chapter, finite difference and finite element methods have
been analyzed and applied to linear PDEs. For the nonlinear case, an extra wrinkle is
necessary to make our previous methods appropriate.

To make matters concrete, we will focus on the implicit Backward Difference Method
of Section 8.1 and its application to nonlinear diffusion equations. Similar changes can be
applied to any of the methods we have studied to make them available for use on nonlinear
equations.

8.4.1 Implicit Newton solver

We illustrate the approach with a typical nonlinear example

ut + uux = Duxx, (8.60)

known as Burgers’ equation. The equation is nonlinear due to the product term uux . This
elliptic equation, named after J.M. Burgers (1895–1981), is a simplified model of fluid flow.
When the diffusion coefficient D = 0, it is called the inviscid Burgers’ equation. Setting
D > 0 corresponds to adding viscosity to the model.

This diffusion equation will be discretized in the same way as the heat equation in
Section 8.1. Consider the grid of points as shown in Figure 8.1. We will denote the approx-
imate solution at (xi, tj ) by wij . Let M and N be the total number of steps in the x and t

directions, and let h = (b − a)/M and k = T /N be the step sizes in the x and t directions.
Applying backward differences to ut and central differences to the other terms yields
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wij − wi,j−1

k
+ wij

(
wi+1,j − wi−1,j

2h

)
= D

h2 (wi+1,j − 2wij + wi−1,j ),

or

wij + k

2h
wij (wi+1,j − wi−1,j ) − σ (wi+1,j − 2wij + wi−1,j ) − wi,j−1 = 0 (8.61)

where we have set σ = Dk/h2. Note that due to the quadratic terms in the w variables, we
cannot directly solve for wi+1,j ,wij ,wi−1,j , explicitly or implicitly. Therefore, we call on
Multivariate Newton’s Method from Chapter 2 to do the solving.

To clarify our implementation, denote the unknowns in (8.61) by zi = wij . At time step
j , we are trying to solve the equations

Fi(z1, . . . , zm) = zi + k

2h
zi(zi+1 − zi−1) − σ (zi+1 − 2zi + zi−1) − wi,j−1 = 0

(8.62)
for the m unknowns z1, . . . , zm. Note that the last term wi,j−1 is known from the previous
time step, and is treated as a known quantity.

The first and last equations will be replaced by appropriate boundary conditions. For
example, in the case of Burgers’ equation with Dirichlet boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

ut + uux = Duxx

u(x,0) = f (x) for xl ≤ x ≤ xr

u(xl, t) = l(t) for all t ≥ 0
u(xr , t) = r(t) for all t ≥ 0,

(8.63)

we will add the equations

F1(z1, . . . , zm) = z1 − l(tj ) = 0

Fm(z1, . . . , zm) = zm − r(tj ) = 0. (8.64)

Now there are m nonlinear algebraic equations in m unknowns.
To apply Multivariate Newton’s Method, we must compute the Jacobian DF(z⃗) =

∂F⃗ /∂ z⃗, which according to (8.62) and (8.64) will have the tridiagonal form

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · ·

−σ − kz2

2h
1 + 2σ + k(z3 − z1)

2h
−σ + kz2

2h

−σ − kz3

2h
1 + 2σ + k(z4 − z2)

2h
−σ + kz3

2h

. . .
. . .

. . .

−σ − kzm−1

2h
1 + 2σ + k(zm − zm−2)

2h
−σ + kzm−1

2h

· · · 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The top and bottom rows of DF will in general depend on boundary conditions. Once DF

has been constructed, we solve for the zi = wij by the Multivariate Newton iteration

z⃗K+1 = z⃗K − DF(z⃗K )−1F(z⃗K ). (8.65)
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! EXAMPLE 8.12 Use the Backward Difference Equation with Newton iteration to solve Burgers’ equation

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut + uux = Duxx

u(x,0) = 2Dβπ sin πx

α + β cosπx
for 0 ≤ x ≤ 1

u(0, t) = 0 for all t ≥ 0
u(1, t) = 0 for all t ≥ 0.

(8.66)

Matlab code for the Dirichlet boundary condition version of our Newton solver fol-
lows, where we have set α = 5,β = 4. The program uses three Newton iterations for each
time step. For typical problems, this will be sufficient, but more may be needed for difficult
cases. Note that Gaussian elimination or equivalent is carried out in the Newton iteration;
as usual, no explicit matrix inversion is needed.

% Program 8.7 Implicit Newton solver for Burgers equation
% input: space interval [xl,xr], time interval [tb,te],
% number of space steps M, number of time steps N
% output: solution w
% Example usage: w=burgers(0,1,0,2,20,40)
function w=burgers(xl,xr,tb,te,M,N)
alf=5;bet=4;D=.05;
f=@(x) 2*D*bet*pi*sin(pi*x)./(alf+bet*cos(pi*x));
l=@(t) 0*t;
r=@(t) 0*t;
h=(xr-xl)/M; k=(te-tb)/N; m=M+1; n=N;
sigma=D*k/(h*h);
w(:,1)=f(xl+(0:M)*h)’; % initial conditions
w1=w;
for j=1:n
for it=1:3 % Newton iteration
DF1=zeros(m,m);DF2=zeros(m,m);
DF1=diag(1+2*sigma*ones(m,1))+diag(-sigma*ones(m-1,1),1);
DF1=DF1+diag(-sigma*ones(m-1,1),-1);
DF2=diag([0;k*w1(3:m)/(2*h);0])-diag([0;k*w1(1:(m-2))/(2*h);0]);
DF2=DF2+diag([0;k*w1(2:m-1)/(2*h)],1)...

-diag([k*w1(2:m-1)/(2*h);0],-1);
DF=DF1+DF2;
F=-w(:,j)+(DF1+DF2/2)*w1; % Using Lemma 8.11
DF(1,:)=[1 zeros(1,m-1)]; % Dirichlet conditions for DF
DF(m,:)=[zeros(1,m-1) 1];
F(1)=w1(1)-l(j);F(m)=w1(m)-r(j); % Dirichlet conditions for F
w1=w1-DF\F;

end
w(:,j+1)=w1;

end
x=xl+(0:M)*h;t=tb+(0:n)*k;
mesh(x,t,w’) % 3-D plot of solution w

The code is a straightforward implementation of the Newton iteration (8.65), along with
a convenient fact about homogeneous polynomials. Consider, for example, the polynomial
P (x1,x2,x3) = x1x2x2

3 + x4
1 , which is called homogeneous of degree 4, since it consists

entirely of degree 4 terms in x1,x2,x3. The partial derivatives of P with respect to the three
variables are contained in the gradient

∇P = (x2x2
3 + 4x3

1 ,x1x2
3 ,2x1x2x3).
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Figure 8.19 Approximate solution to Burgers’ equation (8.66). Homogeneous Dirichlet

boundary conditions are assumed, with step sizes h = k = 0.05.

The remarkable fact is that we can recover P by multiplying the gradient by the vector
of variables, with a extra multiple of 4:

∇P ·

⎡

⎣
x1
x2
x3

⎤

⎦ = (x2x2
3 + 4x3

1)x1 + x1x2
3x2 + 2x1x2x3x3 = 4x1x2x2

3 + 4x4
1 = 4P .

In general, define the polynomial P (x1, . . . ,xm) to be homogeneous of degree d if

P (cx1, . . . ,cxm) = cdP (x1, . . . ,xm) (8.67)

for all c.

LEMMA 8.11 Let P (x1, . . . ,xm) be a homogeneous polynomial of degree d . Then

∇P ·

⎡

⎢⎣
x1
...

xm

⎤

⎥⎦ = dP .

#

Proof. Differentiating (8.67) with respect to c yields

x1Px1(cx1, . . . ,cxm) + . . . + xmPxm(cx1, . . . ,cxm) = dcd−1P (x1, . . . ,xm)

using the multivariable chain rule. Evaluating at c = 1 results in the desired conclusion. ❒

Using this fact allows us to write code very compactly for partial differential equations
with polynomial terms, as long as we group terms of the same degree together. Note how
the matrix DF1 in Program 8.7 collects derivatives of degree 1 terms of F; DF2 collects
derivatives of degree 2 terms. Then we can define the Jacobian matrix DF as the sum
of derivatives of degree 1 and 2 terms, and essentially for free, define the function F as the
sum of degree 0, 1, and 2 terms. Lemma 8.11 is used to identify the degree d terms of F as
gradient times variables, divided by d . The added convenience of this simplification will
be even more welcome when we proceed to more difficult problems.

For certain boundary conditions, an explicit solution for Burgers’ equation is known.
The solution to the Dirichlet problem (8.66) is

u(x, t) = 2Dβπe−Dπ2t sin πx

α + βe−Dπ2t cosπx
. (8.68)

We can use the exact solution to measure the accuracy of our approximation method, as
a function of the step sizes h and k. Using the parameters α = 5,β = 4, and the diffusion
coefficient D = 0.05, we find the errors at x = 1/2 after one time unit are as follows:
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h k u(0.5,1) w(0.5,1) error
0.01 0.04 0.153435 0.154624 0.001189
0.01 0.02 0.153435 0.154044 0.000609
0.01 0.01 0.153435 0.153749 0.000314

We see the roughly first-order decrease in error as a function of time step size k, as expected
with the implicit Backward Difference Method. "

Another interesting category of nonlinear PDEs is comprised of reaction-diffusion
equations. A fundamental example of a nonlinear reaction-diffusion equation is due to the
evolutionary biologist and geneticist R.A. Fisher (1890–1962), a successor of Darwin who
helped create the foundations of modern statistics. The equation was originally derived to
model how genes propagate. The general form of Fisher’s equation is

ut = Duxx + f (u), (8.69)

where f (u) is a polynomial in u. The reaction part of the equation is the function f ;
the diffusion part is Duxx . If homogeneous Neumann boundary conditions are used, the
constant, or equilibrium state u(x, t) ≡ C is a solution whenever f (C) = 0. The equilibrium
state turns out to be stable if f ′(C) < 0, meaning that nearby solutions tend toward the
equilibrium state.

! EXAMPLE 8.13 Use the Backward Difference Equation with Newton iteration to solve Fisher’s equation
with homogeneous Neumann boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

ut = Duxx + u(1 − u)

u(x,0) = sin πx for 0 ≤ x ≤ 1
ux(0, t) = 0 for all t ≥ 0
ux(1, t) = 0 for all t ≥ 0.

(8.70)

Note that f (u) = u(1 − u), implying that f ′(u) = 1 − 2u. The equilibrium u = 0 satis-
fies f ′(0) = 1, and the other equilibrium solution u = 1 satisfies f ′(1) = −1. Therefore,
solutions are likely to tend toward the equilibrium u = 1.

The discretization retraces the derivation that was carried out for Burgers’ equation:

wij − wi,j−1

k
= D

h2 (wi+1,j − 2wij + wi−1,j ) + wij (1 − wij ),

or

(1 + 2σ − k(1 − wij ))wij − σ (wi+1,j + wi−1,j ) − wi,j−1 = 0. (8.71)

This results in the nonlinear equations

Fi(z1, . . . , zm) = (1 + 2σ − k(1 − zi))zi − σ (zi+1 + zi−1) − wi,j−1 = 0 (8.72)

to solve for the zi = wij at the j th time step. The first and last equations will establish the
Neumann boundary conditions:

F1(z1, . . . , zm) = (−3z0 + 4z1 − z2)/(2h) = 0

Fm(z1, . . . , zm) = (−zm−2 + 4zm−1 − 3zm)/(−2h) = 0
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The Jacobian DF has the form
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 4 −1
−σ 1 + 2σ − k + 2kz2 −σ

−σ 1 + 2σ − k + 2kz3 −σ

. . .
. . .

. . .

−σ 1 + 2σ − k + 2kzm−1 −σ

−1 4 −3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

After altering the function F and Jacobian DF , the Newton iteration implemented in
Program 8.7 can be used to solve Fisher’s equation. Lemma 8.11 can be used to separate
the degree 1 and 2 parts of DF . Neumann boundary conditions are also applied, as shown
in the code fragment below:

DF1=diag(1-k+2*sigma*ones(m,1))+diag(-sigma*ones(m-1,1),1);
DF1=DF1+diag(-sigma*ones(m-1,1),-1);
DF2=diag(2*k*w1);
DF=DF1+DF2;
F=-w(:,j)+(DF1+DF2/2)*w1;
DF(1,:)=[-3 4 -1 zeros(1,m-3)];F(1)=DF(1,:)*w1;
DF(m,:)=[zeros(1,m-3) -1 4 -3];F(m)=DF(m,:)*w1;

Figure 8.20 shows approximate solutions of Fisher’s equation with D = 1 that demon-
strate the tendency to relax to the attracting equilibrium u(x, t) ≡ 1. Of course, u(x, t) ≡ 0
is also a solution of (8.69) with f (u) = u(1 − u), and will be found by the initial data
u(x,0) = 0. Almost any other initial data, however, will eventually approach u = 1 as t

increases. "

While Example 8.13 covers the original equation considered by Fisher, there are many
generalized versions for other choices of the polynomial f (u). See the Computer Problems
for more explorations into this reaction-diffusion equation. Next, we will investigate a
higher-dimensional version of Fisher’s equation.
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Figure 8.20 Two solutions to Fisher’s equation. Both solutions tend toward the equilibrium

solution u(x, t) = 1 as t increases. (a) Initial condition u(x,0) = 0.5 + 0.5 cosπx .

(b) Initial condition u(x,0) = 1.5 + 0.5 cosπx . Homogeneous Neumann boundary conditions are

assumed, with step sizes h = k = 0.1.
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8.4.2 Nonlinear equations in two space dimensions

Solving partial differential equations with two-dimensional domains requires us to com-
bine techniques from previous sections. The implicit Backward Difference Method with
Newton iteration will handle the nonlinearity, and we will need to apply the accordion-style
coordinates of Table 8.1 to do the bookkeeping for the two-dimensional domain.

We begin by extending Fisher’s equation from one space dimension to two.

! EXAMPLE 8.14 Apply the Backward Difference Method with Newton’s iteration to Fisher’s equation on
the unit square [0,1] × [0,1]:

⎧
⎨

⎩

ut = D$u + u(1 − u)

u(x,y,0) = 2 + cosπx cosπy for 0 ≤ x,y ≤ 1
un⃗(x,y, t) = 0 on rectangle boundary, for all t ≥ 0.

(8.73)

Here D is the diffusion coefficient, and un⃗ denotes the directional derivative in the out-
ward normal direction. We are assuming Neumann, or no-flux, boundary conditions on the
rectangle boundary.

In this section, the two discretization subscripts will represent the two space coordinates
x and y, and we will use superscripts to denote time steps. Assuming M steps in the x

direction and N steps in the y direction, we will define step sizes h = (xr − xl)/M and
k = (yt − yb)/N . The discretized equations at nonboundary grid points, for 1 < i < m =
M + 1,1 < j < n = N + 1, are

wt
ij − wt−$t

ij

$t
= D

h2 (wt
i+1,j − 2wt

ij + wt
i−1,j ) + D

k2 (wt
i,j+1 − 2wt

ij + wt
i,j−1)

+wt
ij (1 − wt

ij ), (8.74)

which can be rearranged to the form Fij (wt ) = 0, or
(

1
$t

+ 2D

h2 + 2D

k2 − 1
)

wt
ij − D

h2 wt
i+1.j − D

h2 wt
i−1.j − D

k2 wt
i.j+1 − D

k2 wt
i.j−1

+(wt
ij )2 −

wt−$t
ij

$t
= 0 (8.75)

We need to solve the Fij equations implicitly. The equations are nonlinear, so New-
ton’s method will be used as it was for the one-dimensional version of Fisher’s equation.
Since the domain is now two-dimensional, we need to recall the alternative coordinate
system (8.39)

vi+(j−1)m = wij ,

illustrated in Table 8.1. There will be mn equations Fij , and in the v coordinates, (8.75)
represents the equation numbered i + (j − 1)m. The Jacobian matrix DF will have size
mn × mn. Using Table 8.1 to translate to the v coordinates, we get the Jacobian matrix
entries

DFi+(j−1)m,i+(j−1)m =
(

1
$t

+ 2D

h2 + 2D

k2 − 1
)

+ 2wij

DFi+(j−1)m,i+1+(j−1)m = − D

h2

DFi+(j−1)m,i−1+(j−1)m = − D

h2
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DFi+(j−1)m,i+jm = − D

k2

DFi+(j−1)m,i+(j−2)m = − D

k2

for the interior points of the grid. The outside points of the grid are governed by the homoge-
nous Neumann boundary conditions

Bottom (3wij − 4wi,j+1 + wi,j+2)/(2k) = 0 for j = 1,1 ≤ i ≤ m

Top side (3wij − 4wi,j−1 + wi,j−2)/(2k) = 0 for j = n,1 ≤ i ≤ m

Left side (3wij − 4wi+1,j + wi+2,j )/(2h) = 0 for i = 1,1 < j < n

Right side (3wij − 4wi−1,j + wi−2,j )/(2h) = 0 for i = m,1 < j < n

The Neumann conditions translate via Table 8.1 to

Bottom DF i+(j−1)m,i+(j−1)m = 3, DF i+(j−1)m,i+jm = −4, DF i+(j−1)m,i+(j+1)m = 1,

bi+(j−1)m = 0 for j = 1,1 ≤ i ≤ m

Top DF i+(j−1)m,i+(j−1)m = 3, DF i+(j−1)m,i+(j−2)m = −4, DF i+(j−1)m,i+(j−3)m = 1,

bi+(j−1)m = 0 for j = n,1 ≤ i ≤ m

Left DF i+(j−1)m,i+(j−1)m = 3, DF i+(j−1)m,i+1+(j−1)m = −4,

DF i+(j−1)m,i+2+(j−1)m = 1,

bi+(j−1)m = 0 for i = 1,1 < j < n

Right DF i+(j−1)m,i+(j−1)m = 3, DF i+(j−1)m,i−1+(j−1)m = −4,

DF i+(j−1)m,i−2+(j−1)m = 1,

bi+(j−1)m = 0 for i = m,1 < j < n
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Figure 8.21 Fisher’s equation with Neumann boundary conditions on a two-dimensional

domain. The solution tends toward the equilibrium solution u(x,y, t) = 1 as t increases. (a) The initial

condition u(x,y,0) = 2 + cosπx cosπy. (b) Approximate solution after 5 time units. Step sizes

h = k = $t = 0.05.
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The Newton iteration is carried out in the following program. Note that Lemma 8.11
has been used to divide the contributions to DF into degree 1 and degree 2 terms.

% Program 8.8 Backward difference method with Newton iteration
% for Fisher’s equation with two-dim domain
% input: space region [xl xr]x[yb yt], time interval [tb te],
% M,N space steps in x and y directions, tsteps time steps
% output: solution mesh [x,y,w]
% Example usage: [x,y,w]=fisher2d(0,1,0,1,0,5,20,20,100);
function [x,y,w]=fisher2d(xl,xr,yb,yt,tb,te,M,N,tsteps)
f=@(x,y) 2+cos(pi*x).*cos(pi*y)
delt=(te-tb)/tsteps;
D=1;
m=M+1;n=N+1;mn=m*n;
h=(xr-xl)/M;k=(yt-yb)/N;
x=linspace(xl,xr,m);y=linspace(yb,yt,n);
for i=1:m %Define initial u
for j=1:n

w(i,j)=f(x(i),y(j));
end

end
for tstep=1:tsteps
v=[reshape(w,mn,1)];
wold=w;
for it=1:3
b=zeros(mn,1);DF1=zeros(mn,mn);DF2=zeros(mn,mn);
for i=2:m-1
for j=2:n-1
DF1(i+(j-1)*m,i-1+(j-1)*m)=-D/hˆ2;
DF1(i+(j-1)*m,i+1+(j-1)*m)=-D/hˆ2;
DF1(i+(j-1)*m,i+(j-1)*m)= 2*D/hˆ2+2*D/kˆ2-1+1/(1*delt);
DF1(i+(j-1)*m,i+(j-2)*m)=-D/kˆ2;DF1(i+(j-1)*m,i+j*m)=-D/kˆ2;
b(i+(j-1)*m)=-wold(i,j)/(1*delt);
DF2(i+(j-1)*m,i+(j-1)*m)=2*w(i,j);

end
end
for i=1:m % bottom and top
j=1; DF1(i+(j-1)*m,i+(j-1)*m)=3;
DF1(i+(j-1)*m,i+j*m)=-4;DF1(i+(j-1)*m,i+(j+1)*m)=1;
j=n; DF1(i+(j-1)*m,i+(j-1)*m)=3;
DF1(i+(j-1)*m,i+(j-2)*m)=-4;DF1(i+(j-1)*m,i+(j-3)*m)=1;

end
for j=2:n-1 % left and right
i=1; DF1(i+(j-1)*m,i+(j-1)*m)=3;
DF1(i+(j-1)*m,i+1+(j-1)*m)=-4;DF1(i+(j-1)*m,i+2+(j-1)*m)=1;
i=m; DF1(i+(j-1)*m,i+(j-1)*m)=3;
DF1(i+(j-1)*m,i-1+(j-1)*m)=-4;DF1(i+(j-1)*m,i-2+(j-1)*m)=1;

end
DF=DF1+DF2;
F=(DF1+DF2/2)*v+b;
v=v-DF\F;
w=reshape(v(1:mn),m,n);

end
mesh(x,y,w’);axis([xl xr yb yt tb te]);
xlabel(’x’);ylabel(’y’);drawnow
end
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The dynamical behavior of the two-dimensional Fisher’s equation is similar to that
of the one-dimensional version in Figure 8.20, where we saw convergence to the stable
equilibrium solution at u(x, t) = 1. Figure 8.21(a) shows the initial data f (x,y) = 2 +
cosπx cosπy. The solution after t = 5 time units is shown in Figure 8.21(b). The solution
relaxes quickly toward the stable equilibrium at u(x,y, t) = 1. "

The mathematician Alan Turing (1912–1954), in a landmark paper (Turing [1952]),
proposed a possible explanation for many shapes and structures found in biology. Certain
reaction-diffusion equations that model chemical concentrations gave rise to interesting
spatial patterns, including stripes and hexagonal shapes. These were seen as a stunning
example of emergent order in nature, and are now known as Turing patterns.

Turing found that just by adding a diffusive term to a model of a stable chemical
reaction, he could cause stable, spatially constant equilibriums, such as the one in Figure
8.21(b), to become unstable. This so-called Turing instability causes a transition in which
patterns evolve into a new, spatially varying steady-state solution. Of course, this is the
opposite of the effect of diffusion we have seen so far, of averaging or smoothing initial
conditions over time.

An interesting example of a Turing instability is found in the Brusselator model,
proposed by the Belgian chemist I. Prigogine in the late 1960’s. The model consists of two
coupled PDEs, each representing one species of a two-species chemical reaction.

! EXAMPLE 8.15 Apply the Backward Difference Method with Newton’s iteration to the Brusselator equation
with homogeneous Neumann boundary conditions on the square [0,40] × [0,40]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

pt = Dp$p + p2q + C − (K + 1)p

qt = Dq$q − p2q + Kp

p(x,y,0) = C + 0.1 for 0 ≤ x,y ≤ 40
q(x,y,0) = K/C + 0.2 for 0 ≤ x,y ≤ 40
un⃗(x,y, t) = 0 on rectangle boundary, for all t ≥ 0.

(8.76)

The system of two coupled equations has variables p,q, two diffusion coefficients
Dp,Dq > 0, and two other parameters C,K > 0. According to Exercise 5, the Brusselator
has an equilibrium solution at p ≡ C,q ≡ K/C. It is known that the equilibrium is stable
for small values of the parameter K , and that a Turing instability is encountered when

K >

(

1 + C

√
Dp

Dq

)2

. (8.77)

The discretized equations at the interior grid points, for 1 < i < m,1 < j < n, are

pt
ij − pt−$t

ij

$t
− Dp

h2 (pt
i+1,j − 2pt

ij + pt
i−1,j ) − Dp

k2 (pt
i,j+1 − 2pt

ij + pt
i,j−1)

− (pt
ij )2qt

ij − C + (K + 1)pt
ij = 0

qt
ij − qt−$t

ij

$t
− Dq

h2 (qt
i+1,j − 2qt

ij + qt
i−1,j ) − Dq

k2 (qt
i,j+1 − 2qt

ij + qt
i,j−1)

+ (pt
ij )2qt

ij − Kpt
ij = 0

This is the first example we have encountered with two coupled variables, p and q. The
alternative coordinate vector v will have length 2mn, and (8.39) will be extended to
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vi+(j−1)m = pij for 1 ≤ i ≤ m,1 ≤ j ≤ n

vmn+i+(j−1)m = qij for 1 ≤ i ≤ m,1 ≤ j ≤ n. (8.78)

The Neumann boundary conditions are essentially the same as Example 8.14, now for each
variable p and q. Note that there are degree 1 and degree 3 terms to differentiate for the
Jacobian DF . Using Table 8.1 expanded in a straightforward way to cover two variables,
and Lemma 8.11, we arrive at the following Matlab code:

% Program 8.9 Backward difference method with Newton iteration
% for the Brusselator
% input: space region [xl,xr]x[yb,yt], time interval [tb,te],
% M,N space steps in x and y directions, tsteps time steps
% output: solution mesh [x,y,w]
% Example usage: [x,y,p,q]=brusselator(0,40,0,40,0,20,40,40,20);
function [x,y,p,q]=brusselator(xl,xr,yb,yt,tb,te,M,N,tsteps)
Dp=1;Dq=8;C=4.5;K=9;
fp=@(x,y) C+0.1;
fq=@(x,y) K/C+0.2;
delt=(te-tb)/tsteps;
m=M+1;n=N+1;mn=m*n;mn2=2*mn;
h=(xr-xl)/M;k=(yt-yb)/N;
x=linspace(xl,xr,m);y=linspace(yb,yt,n);
for i=1:m %Define initial conditions
for j=1:n
p(i,j)=fp(x(i),y(j));
q(i,j)=fq(x(i),y(j));

end
end
for tstep=1:tsteps
v=[reshape(p,mn,1);reshape(q,mn,1)];
pold=p;qold=q;
for it=1:3
DF1=zeros(mn2,mn2);DF3=zeros(mn2,mn2);
b=zeros(mn2,1);
for i=2:m-1
for j=2:n-1
DF1(i+(j-1)*m,i-1+(j-1)*m)=-Dp/hˆ2;
DF1(i+(j-1)*m,i+(j-1)*m)= Dp*(2/hˆ2+2/kˆ2)+K+1+1/(1*delt);
DF1(i+(j-1)*m,i+1+(j-1)*m)=-Dp/hˆ2;
DF1(i+(j-1)*m,i+(j-2)*m)=-Dp/kˆ2;
DF1(i+(j-1)*m,i+j*m)=-Dp/kˆ2;
b(i+(j-1)*m)=-pold(i,j)/(1*delt)-C;
DF1(mn+i+(j-1)*m,mn+i-1+(j-1)*m)=-Dq/hˆ2;
DF1(mn+i+(j-1)*m,mn+i+(j-1)*m)= Dq*(2/hˆ2+2/kˆ2)+1/(1*delt);
DF1(mn+i+(j-1)*m,mn+i+1+(j-1)*m)=-Dq/hˆ2;
DF1(mn+i+(j-1)*m,mn+i+(j-2)*m)=-Dq/kˆ2;
DF1(mn+i+(j-1)*m,mn+i+j*m)=-Dq/kˆ2;
DF1(mn+i+(j-1)*m,i+(j-1)*m)=-K;
DF3(i+(j-1)*m,i+(j-1)*m)=-2*p(i,j)*q(i,j);
DF3(i+(j-1)*m,mn+i+(j-1)*m)=-p(i,j)ˆ2;
DF3(mn+i+(j-1)*m,i+(j-1)*m)=2*p(i,j)*q(i,j);
DF3(mn+i+(j-1)*m,mn+i+(j-1)*m)=p(i,j)ˆ2;
b(mn+i+(j-1)*m)=-qold(i,j)/(1*delt);

end
end
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for i=1:m % bottom and top Neumann conditions
j=1;DF1(i+(j-1)*m,i+(j-1)*m)=3;
DF1(i+(j-1)*m,i+j*m)=-4;
DF1(i+(j-1)*m,i+(j+1)*m)=1;
j=n;DF1(i+(j-1)*m,i+(j-1)*m)=3;
DF1(i+(j-1)*m,i+(j-2)*m)=-4;
DF1(i+(j-1)*m,i+(j-3)*m)=1;
j=1;DF1(mn+i+(j-1)*m,mn+i+(j-1)*m)=3;
DF1(mn+i+(j-1)*m,mn+i+j*m)=-4;
DF1(mn+i+(j-1)*m,mn+i+(j+1)*m)=1;
j=n;DF1(mn+i+(j-1)*m,mn+i+(j-1)*m)=3;
DF1(mn+i+(j-1)*m,mn+i+(j-2)*m)=-4;
DF1(mn+i+(j-1)*m,mn+i+(j-3)*m)=1;

end
for j=2:n-1 %left and right Neumann conditions
i=1;DF1(i+(j-1)*m,i+(j-1)*m)=3;
DF1(i+(j-1)*m,i+1+(j-1)*m)=-4;
DF1(i+(j-1)*m,i+2+(j-1)*m)=1;
i=m;DF1(i+(j-1)*m,i+(j-1)*m)=3;
DF1(i+(j-1)*m,i-1+(j-1)*m)=-4;
DF1(i+(j-1)*m,i-2+(j-1)*m)=1;
i=1;DF1(mn+i+(j-1)*m,mn+i+(j-1)*m)=3;
DF1(mn+i+(j-1)*m,mn+i+1+(j-1)*m)=-4;
DF1(mn+i+(j-1)*m,mn+i+2+(j-1)*m)=1;
i=m;DF1(mn+i+(j-1)*m,mn+i+(j-1)*m)=3;
DF1(mn+i+(j-1)*m,mn+i-1+(j-1)*m)=-4;
DF1(mn+i+(j-1)*m,mn+i-2+(j-1)*m)=1;

end
DF=DF1+DF3;
F=(DF1+DF3/3)*v+b;
v=v-DF\F;
p=reshape(v(1:mn),m,n);q=reshape(v(mn+1:mn2),m,n);

end
contour(x,y,p’);drawnow;

end

Figure 8.22 shows contour plots of solutions of the Brusselator. In a contour plot, the
closed curves trace level sets of the variable p(x,y). In models, p and q represent chemical
concentrations which self-organize into the varied patterns shown in the plots. "

Reaction-diffusion equations with a Turing instability are routinely used to model pat-
tern formation in biology, including butterfly wing patterns, animal coat markings, fish
and shell pigmentation, and many other examples. Turing patterns have been found exper-
imentally in chemical reactions such as the CIMA (chlorite-iodide-malonic acid) starch
reaction. Models for glycolysis and the Gray-Scott equations for chemical reactions are
closely related to the Brusselator.

The use of reaction-diffusion equations to study pattern formation is just one direction
among several of great contemporary interest. Nonlinear partial differential equations are
used to model a variety of temporal and spatial phenomena throughout engineering and the
sciences. Another important class of problems is described by the Navier-Stokes equations,
which represent incompressible fluid flow. Navier-Stokes is used to model phenomena as
diverse as film coatings, lubrication, blood dynamics in arteries, air flow over an airplane
wing and the turbulence of stellar gas. Improving finite difference and finite element solvers
for linear and nonlinear partial differential equations stands as one of the most active areas
of research in computational science.
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Figure 8.22 Pattern formation in the Brusselator. Contour plots of solutions p(x,y) at

t = 2000 show Turing patterns. Parameters are Dp = 1,Dq = 8,C = 4.5 and (a) K = 7

(b) K = 8 (c) K = 9 (d) K = 10 (e) K = 11 (f ) K = 12. Settings for the finite differences are

h = k = 0.5,$t = 1.

8.4 Exercises

1. Show that for any constant c, the function u(x, t) = c is an equilibrium solution of Burgers’
equation ut + uux = Duxx .

2. Show that over an interval [xl,xr ] not containing 0, the function u(x, t) = x−1 is a
time-invariant solution of the Burgers’ equation ut + uux = − 1

2 uxx .

3. Show that the function u(x, t) in (8.68) is a solution of the Burgers’ equation with Dirichlet
boundary conditions (8.66).

4. Find all stable equilibrium solutions of Fisher’s equation (8.69) when
f (u) = u(u − 1)(2 − u).

5. Show that the Brusselator has an equilibrium solution at p ≡ C,q ≡ K/C.

6. For parameter settings Dp = 1,Dq = 8,C = 4.5 of the Brusselator, for what values of K is
the equilibrium solution p ≡ C,q ≡ K/C stable? See Computer Problems 5 and 6.

8.4 Computer Problems

1. Solve Burgers’ equation (8.63) on [0,1] with initial condition f (x) = sin 2πx and boundary
conditions l(t) = r(t) = 0, using step sizes (a) h = k = 0.1 and (b) h = k = 0.02. Plot the
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approximate solutions for 0 ≤ t ≤ 1. Which equilibrium solution does the solution approach as
time increases?

2. Solve Burgers’ equation on the interval [0,1] with homogeneous Dirichlet boundary conditions
and the initial condition given in (8.66) with parameters α = 4,β = 3, and D = 0.2. Plot the
approximate solution using step sizes h = 0.01,k = 1/16, and make a log–log plot of the
approximation error at x = 1/2, t = 1 as a function of k for k = 2−p,p = 4, . . . ,8.

3. Solve Fisher’s equation (8.69) with f (u) = u(u − 1)(2 − u) and homogeneous Neumann
boundary conditions, using initial condition (a) f (x) = 1/2 + cos2πx (b)
f (x) = 3/2 − cos2πx. Plot the approximate solution for 0 ≤ t ≤ 2 for step sizes
h = k = 0.05. Which equilibrium solution does the solution approach as time increases?

4. Solve Fisher’s equation with f (u) = u(u − 1)(2 − u) on a two-dimensional space domain.
Assume homogeneous Neumann boundary conditions, and the initial conditions of (8.73). Plot
the approximate solution for integer times t = 0, . . . ,5 for step sizes h = k = 0.05 and
$t = 0.05. Which equilibrium solution does the solution approach as time increases?

5. Solve the Brusselator equations for Dp = 1,Dq = 8,C = 4.5 and (a) K = 4 (b) K = 5 (c)
K = 6 (d) K = 6.5. Using homogeneous Neumann boundary conditions and initial conditions
p(x,y,0) = 1 + cosπx cosπy,q(x,y,0) = 2 + cos2πx cos2πy, estimate the least value T

for which |p(x,y, t) − C| < 0.01 for all t > T .

6. Plot contour plots of solutions p(x,y,2000) of the Brusselator for Dp = 1,Dq = 8,C = 4.5
and K = 7.2,7.4,7.6, and 7.8. Use step sizes h = k = 0.5,$t = 1. These plots fill in the range
between Figure 8.22.

Software and Further Reading

There is a rich literature on partial differential equations and their applications to science
and engineering. Recent textbooks with an applied viewpoint include Haberman [2004],
Logan [1994], Evans [2002], Strauss [1992], and Gockenbach [2002]. Many textbooks
provide deeper information about numerical methods for PDEs, such as finite difference
and finite element methods, including Strikwerda [1989], Lapidus and Pinder [1982], Hall
and Porsching [1990], and Morton and Mayers [1996]. Brenner and Scott [1994], Ames
[1992], Strang and Fix [1973] are primarily directed toward the Finite Element Method.

Matlab’s PDE toolbox is highly recommended. It has become extremely popular
as a companion in PDE and engineering mathematics courses. Maple has an analogous
package called PDEtools. Several stand-alone software packages have been developed
for numerical PDEs, for general use or targeting special problems. ELLPACK (Rice and
Boisvert [1984]) and PLTMG (Bank [1998]) are freely available packages for solving elliptic
partial differential equations in general regions of the plane. Both are available at Netlib.

Finite Element Method software includes freeware FEAST (Finite Element and Solu-
tion Tools), FreeFEM, and PETSc (Portable Extensible Toolkit for Scientific Computing)
and commercial software COMSOL, NASTRAN, and DIFFPACK, among many others.
The IMSL contains the routine DFPS2H for solving the Poisson equation on a rectangle,
and DFPS3H on a three-dimensional box. These methods are based on finite differences.

The NAG library contains several routines for finite difference and finite element meth-
ods. The program D03EAF solves the Laplace equation in two dimensions by means of an
integral equation method; D03EEF uses a seven-point finite difference formula and handles
many types of boundary conditions. The routines D03PCF and D03PFF handle parabolic
and hyperbolic equations, respectively.
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9
Random Numbers and
Applications
Brownian motion is a model of random behavior, pro-
posed by Robert Brown in 1827. His initial interest was
to understand the erratic movement of pollen particles
floating on the surface of water, buffeted by nearby
molecules.The model’s applications have far outgrown
the original context.

Financial analysts today think of asset prices in the
same way, as fickle entities buffeted by the conflict-
ing momenta of numerous investors. In 1973, Fischer
Black and Myron Scholes made a novel use of expo-
nential Brownian motion to provide accurate valuations

of stock options. Immediately recognized as an impor-
tant innovation, the Black–Scholes formula was pro-
grammed into some of the first portable calculators
designed for use on the trading floors on Wall Street.
This work was awarded the Nobel Prize in Economics
in 1997 and remains pervasive in financial theory and
practice.

Reality Check 9 on page 464 explores
Monte Carlo simulation and this famous formula.

The previous three chapters concerned deterministic models governed by differential
equations. Given proper initial and boundary conditions, the solution is mathematically

certain and can be determined with appropriate numerical methods to prescribed accuracy.
A stochastic model, on the other hand, includes uncertainty due to noise as part of its
definition.

Computational simulation of a stochastic system requires the generation of random
numbers to mimic the noise. This chapter begins with some fundamental facts about random
numbers and their use in simulation. The second section covers one of the most important
uses of random numbers, Monte Carlo simulation, and the third section introduces random
walks and Brownian motion. In the last section, the basic ideas of stochastic calculus are
covered, including many standard examples of stochastic differential equations (SDEs) that
have proved to be useful in physics, biology, and finance. The computational methods for
SDEs are based on the ODE solvers developed in Chapter 7, but extended to include noise
terms.
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Basic concepts of probability are occasionally needed in this chapter. These extra
prerequisites, such as expected value, variance, and independence of random variables, are
important in Sections 9.2–9.4.

9.1 RANDOM NUMBERS

Everyone has intuition about what random numbers are, but it is surprisingly difficult to
define the notion precisely. Nor is it easy to find simple and effective methods of produc-
ing them. Of course, with computers working according to prescribed, deterministic rules
assigned by the programmer, there is no such thing as a program that produces truly random
numbers. We will settle for producing pseudo-random numbers, which is simply a way of
saying that we will consider deterministic programs that work the same way every time and
that produce strings of numbers that look as random as possible.

The goal of a random number generator is for the output numbers to be independent and
identically distributed. By “independent,’’ we mean that each new number xn should not
depend on (be more or less likely due to) the preceding number xn−1, or in fact all preceding
numbers xn−1,xn−2, . . . . By “identically distributed,’’ we mean that if the histogram of xn

were plotted over many different repetitions of random number generation, it would look
the same as the histogram of xn−1. In other words, independent means that xn is independent
of xn−1,xn−2, etc., and identically distributed means the distribution of xn is independent
of n. The desired histogram, or distribution, may be a uniform distribution of real numbers
between 0 and 1, or it may be more sophisticated, such as a normal distribution.

Of course, the independence part of the definition of random numbers is at odds with
practical computer-based methods of random number generation, which produce completely
predictable and repeatable streams of numbers. In fact, repeatability can be extremely useful
for some simulation purposes. The trick is to make the numbers appear independent of one
another, even though the generation method may be anything but independent. The term
pseudo-random number is reserved for this situation—deterministically generated num-
bers that strive to be random in the sense of being independent and identically distributed.

The fact that highly dependent means are used to produce something purporting to be
independent explains why there is no perfect software-based, all-purpose random number
generator.As JohnVon Neumann said in 1951, “Anyone who considers arithmetical methods
of producing random digits is, of course, in a state of sin.’’The main hope is that the particular
hypothesis the user wants to test by using random numbers is insensitive to the dependencies
and deficiencies of the chosen generator.

Random numbers are representatives chosen from a fixed probability distribution.
There are many possible choices for the distribution. To keep prerequisites to a minimum,
we will restrict our attention to two possibilities: the uniform distribution and the normal
distribution.

9.1.1 Pseudo-random numbers

The simplest set of random numbers is the uniform distribution on the interval [0,1]. These
numbers correspond to putting on a blindfold and choosing numbers from the interval, with
no preference to any particular area of the interval. Each real number in the interval is
equally likely to be chosen. How can we produce a string of such numbers with a computer
program?

Here is a first try at producing uniform (pseudo-) random numbers in [0,1]. Pick a
starting integer x0 ̸= 0, called the seed. Then produce the sequence of numbers ui according
to the iteration
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xi = 13xi−1 (mod 31)

ui = xi

31
, (9.1)

that is, multiply the xi−1 by 13, evaluate modulo 31, and then divide by 31 to get the next
pseudo-random number. The resulting sequence will repeat only after running through all
30 nonzero numbers 1/31, . . . ,30/31. In other words, the period of this random number
generator is 30. There is nothing that appears random about this sequence of numbers. Once
the seed is chosen, it cycles through the 30 possible numbers in a predetermined order.
The earliest random number generators followed the same logic, although with a larger
period.

With x0 = 3 as random seed, here are the first 10 numbers generated by our method:

x u

8 0.2581
11 0.3548
19 0.6129
30 0.9677
18 0.5806
17 0.5484
4 0.1290
21 0.6774
25 0.8065
15 0.4839

We begin with 3 ∗ 13 = 39 → 8 (mod 31), so that the uniform random number is
8/31 ≈ 0.2581. The second random number is 8 ∗ 13 = 104 → 11 (mod 31), yielding
11/31 ≈ 0.3548, and so forth, as it runs through the 30 possible random numbers.

This is an example of the most basic type of random number generator.

DEFINITION 9.1 A linear congruential generator (LCG) has form

xi = axi−1 + b (mod m)

ui = xi

m
, (9.2)

for multiplier a, offset b, and modulus m. ❒

In the foregoing generator, a = 13,b = 0, and m = 31. We will keep b = 0 in the next
two examples. The conventional wisdom is that nonzero b adds little but extra complication
to the random number generator.

One application of random numbers is to approximate the average of a function by
substituting random numbers from the range of interest. This is the simplest form of the
Monte Carlo technique, which we will discuss in more detail in the next section.

! EXAMPLE 9.1 Approximate the area under the curve y = x2 in [0,1].
By definition, the mean value of a function on [a,b] is

1
b − a

∫ b

a
f (x) dx,
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so the area in question is exactly the mean value of f (x) = x2 on [0,1]. This mean value
can be approximated by averaging the function values at random points in the interval,
as shown in Figure 9.1. The function average

1
10

10∑

i=1

f (ui)

for the first 10 uniform random numbers generated by our method is 0.350, not too far from
the correct answer, 1/3. Using all 30 random numbers in the average results in the improved
estimate 0.328.

1

1

y

x

(a)

1

1

y

x

(b)

Figure 9.1 Averaging a function by using random numbers. (a) The first 10 random

numbers from elementary generator (9.1) with seed x0 = 3 give the average 0.350.

(b) Using all 30 gives the more accurate average 0.328.

"

We will call the application in Example 9.1 the Monte Carlo Type 1 problem, since it
reduced to a function average. Note that we have exhausted the 30 random numbers that
generator (9.1) can provide. If more accuracy is required, more numbers are needed. We
can stay with the LCG model, but the multiplier a and modulus m need to be increased.

Park and Miller [1998] proposed a linear congruential generator that is often called
the “minimal standard’’ generator because it is about as good as possible with very simple
code. This random number generator was used in Matlab version 4 in the 1990s.

Minimal standard random number generator

xi = axi−1 (mod m)

ui = xi

m
, (9.3)

where m = 231 − 1,a = 75 = 16807, and b = 0.

An integer of the form 2p − 1 that is a prime number, where p is an integer, is called
a Mersenne prime. Euler discovered this Mersenne prime in 1772. The repetition time of
the minimal standard random number generator is the maximum possible 231 − 2, meaning
that it takes on all nonzero integers below the maximum before repeating, as long as the
seed is nonzero. This is approximately 2 × 109 numbers, perhaps sufficient for the 20th
century, but not generally sufficient now that computers routinely execute that many clock
cycles per second.
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Figure 9.2 Monte Carlo calculation of area. From 10,000 random pairs in [0,1] × [0,1], the

ones that satisfy the inequality in Example 9.2 are plotted. The proportion of plotted random

pairs is an approximation to the area.

! EXAMPLE 9.2 Find the area of the set of points (x,y) that satisfy

4(2x − 1)4 + 8(2y − 1)8 < 1 + 2(2y − 1)3(3x − 2)2.

We will call this a Monte Carlo Type 2 problem. There is no clear way to describe
this area as the average value of a function of one variable, since we cannot solve for
y. However, given a candidate (x,y), we can easily check whether or not it belongs to
the set. We will equate the desired area with the probability that a given random pair
(x,y) = (ui,ui+1) belongs to the set and try to approximate that probability.

Figure 9.2 shows this idea carried out with 10,000 random pairs generated by the
Minimal Standard LCG. The proportion of pairs in the unit square 0 ≤ x,y ≤ 1 that satisfy
the inequality, and are plotted in the figure, is 0.547, which we will take as an approximation
to the area. "

Although we have made a distinction between two types of Monte Carlo problems,
there is no firm boundary between them. What they have in common is that they are both
computing the average of a function. This is explicit in the previous “type 1’’ example. In
the “type 2’’ example, we are trying to compute the average of the characteristic function
of the set, the function that takes the value 1 for points inside the set and 0 for points
outside. The main difference here is that unlike the function f (x) = x2 in Example 9.1, the
characteristic function of a set is discontinuous—there is an abrupt transition at the boundary
of the set. We can also easily imagine combinations of types 1 and 2. (See Computer
Problem 8.)

One of the most infamous random number generators is the randu generator, used on
many early IBM computers and ported from there to many others. Traces of it can be easily
found on the Internet with a search engine, so it is apparently still in use.

The randu generator

xi = axi−1 (mod m)

ui = xi

m
, (9.4)

where a = 65539 = 216 + 3 and m = 231.
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The random seed x0 ̸= 0 is chosen arbitrarily. The nonprime modulus was originally
selected to make the modulus operation as fast as possible, and the multiplier was selected
primarily because its binary representation was simple. The serious problem with this gener-
ator is that it flagrantly disobeys the independence postulate for random numbers. Notice that

a2 − 6a = (216 + 3)2 − 6(216 + 3)

= 232 + 6 · 216 + 9 − 6 · 216 − 18

= 232 − 9.

Therefore, a2 − 6a + 9 = 0 (mod m), so

xi+2 − 6xi+1 + 9xi = a2xi − 6axi + 9xi (mod m)

= 0 (mod m).

Dividing by m yields

ui+2 = 6ui+1 − 9ui (mod 1). (9.5)

The problem is not that ui+2 is predictable from the two previous numbers generated. Of
course, it will be predictable even from one previous number, because the generator is
deterministic. The problem lies with the small coefficients in the relation (9.5), which make
the correlation between the random numbers very noticeable. Figure 9.3(a) shows a plot
of 10,000 random numbers generated by randu and plotted in triples (ui,ui+1,ui+2).
One consequence of relation (9.5) is that all triples of random numbers will lie on one of
15 planes, as can be seen in the figure. Indeed, ui+2 − 6ui+1 + 9ui must be an integer,
and the only possibilities are the integers between −5, in case ui+1 is relatively large and
ui,ui+2 are small, and +9, in the opposite case. The planes ui+2 − 6ui+1 + 9ui = k, for
−5 ≤ k ≤ 9, are the 15 planes seen in Figure 9.3. Exercise 5 asks you to analyze another
well-known random number generator for a similar deficiency.
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Figure 9.3 Comparison of Two Random Number Generators. Ten thousand triples (ui , ui + 1, ui + 2)

are plotted for (a) randu and (b) the Minimal Standard generator.

The Minimal Standard LCG does not suffer from this problem, at least to the same
degree. Since m and a in (9.3) are relatively prime, relations between successive ui with
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small coefficients, like the one in (9.5), are much more difficult to come by, and any
correlations between three successive random numbers from this generator are much more
complicated. This can be seen in Figure 9.3(b), which compares a plot of 10,000 random
numbers generated by the Minimal Standard random number generator with a similar plot
from randu.

! EXAMPLE 9.3 Userandu to approximate the volume of the ball of radius 0.04 centered at (1/3,1/3,1/2).

Although the ball has a nonzero volume, a straightforward attempt to approximate
the volume withrandu comes up with 0. The Monte Carlo approach is to randomly generate
points in the three-dimensional unit cube and count the proportion of generated points that
lie in the ball as the approximate volume.

The point (1/3,1/3,1/2) lies midway between the planes 9x − 6y + z = 1 and
9x − 6y + z = 2, at a distance of 1/(2

√
118) ≈ 0.046 from each plane. Therefore, gener-

ating the three-dimensional point (x,y,z) = (ui,ui+1,ui+2) from randu can never result
in a point contained in the specified ball. Monte Carlo approximations of this innocent prob-
lem will be spectacularly unsuccessful because of the choice of random number generator.
Surprisingly, difficulties of this type went largely unnoticed during the 1960s and 1970s,
when this generator was heavily relied upon for computer simulations. "

Random numbers in current versions of Matlab are no longer generated by LCGs.
Starting with Matlab 5, a lagged Fibonacci generator, developed by G. Marsaglia et al.
[1991], has been used in the command rand. All possible floating point numbers between
0 and 1 are used. Matlab claims that the period of this method is greater than 21400, which
is far more than the total number of steps run by all Matlab programs since its creation.

Thus far, we have focused on generating pseudo-random numbers for the interval [0,1].
To generate a uniform distribution of random numbers in the general interval [a,b], we need
to stretch by b − a, the length of the new interval. Thus, each random number r generated
in [0,1] should be replaced by (b − a)r + a.

This can be done for each dimension independently. For example, to generate a uniform
random point in the rectangle [1,3] × [2,8] in the xy-plane, generate the pair r1, r2 of
uniform random numbers and then use (2r1 + 1,6r2 + 2) for the random point.

9.1.2 Exponential and normal random numbers

An exponential random variable V chooses positive numbers according to the probability
distribution function p(x) = ae−ax for a > 0. In other words, a histogram of exponential
random numbers r1, . . . , rn will tend toward p(x) as n → ∞.

Using a uniform random number generator from the previous section, it is fairly easy
to generate exponential random numbers. The cumulative distribution function is

P (x) = Prob(V ≤ x) =
∫ x

0
p(x)dx = 1 − e−ax.

The main idea is to choose the exponential random variable so that the Prob(V ≤ x) is
uniform between 0 and 1. Namely, given a uniform random number u, set

u = Prob(V ≤ x) = 1 − e−ax

and solve for x, yielding

x = − ln(1 − u)

a
. (9.6)
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Therefore, formula (9.6) generates exponential random numbers, using uniform random
numbers u as inputs.

This idea works in general. Let P (x) be the cumulative distribution function of the
random variable that needs to be generated. Let Q(x) = P −1(x) be the inverse function.
If U [0,1] denotes uniform random numbers from [0,1], then Q(U [0,1]) will generate the
required random variables. All that remains is to find ways to make evaluation of Q as
efficient as possible.

The standard normal, or Gaussian random variable N(0,1) chooses real numbers
according to the probability distribution function

p(x) = 1√
2π

e− x2
2 ,

the shape of the famous bell curve. The variable N(0,1) has mean 0 and variance 1.
More generally, the normal random variable N(µ,σ 2) = µ + σN(0,1) has mean µ and
variance σ 2. Since this variable is just a scaled version of the standard normal random
variable N(0,1), we will focus on methods of generating the latter.

Although we could directly apply the inverse of the cumulative distribution function
as just outlined, it turns out to be more efficient to generate two normal random numbers
at a time. The two-dimensional standard normal distribution has probability distribution
function p(x,y) = (1/2π)e−(x2+y2)/2, or p(r) = (1/2π)e−r2/2 in polar coordinates. Since
p(r) has polar symmetry, we need only generate the radial distance r according to p(r) and
then choose an arbitrary angle θ uniform in [0,2π ]. Since p(r) is an exponential distribution
for r2 with parameter a = 1/2, generate r by

r2 = − ln(1 − u1)

1/2

from formula (9.6), where u1 is a uniform random number. Then

n1 = r cos2πu2 =
√

−2ln(1 − u1)cos2πu2

n2 = r sin 2πu2 =
√

−2ln(1 − u1)sin 2πu2 (9.7)

is a pair of independent normal random numbers, where u2 is a second uniform random
number. Note that 1 − u1 can be replaced by u1 in the formula, since the distribution
U [0,1] is unchanged after subtraction from 1. This is the Box–Muller Method (Box and
Muller [1958]) for generating normal random numbers. Square root, log, cosine, and sine
evaluations are required for each pair.

A more efficient version of Box–Muller follows if u1 is generated in a different way.
Choose x1,x2 from U [0,1] and define u1 = x2

1 + x2
2 if the expression is less than 1. If

not, throw x1 and x2 away and start over. Note that u1 chosen in this way is U [0,1].
The advantage is that we can use u2 = arctan x2/x1, the angle made by the line segment
connecting the origin to the point (x1,x2), because clearly u2 is uniform on [0,2π ]. Since
cos2πu2 = x1/u1 and sin 2πu2 = x2/u1, formula (9.7) translates to

n1 = x1

√
−2ln(u1)

u1

n2 = x2

√
−2ln(u1)

u1
, (9.8)

where u1 = x2
1 + x2

2 , computed without the cosine and sine evaluations of (9.7).
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The revised Box–Muller Method is a rejection method, since some inputs are not
used. Comparing the area of the unit square [−1,1] × [−1,1] to the unit circle, rejection
will occur (4 − π)/4 ≈ 21% of the time. This is an acceptable price to pay to avoid the
sine and cosine evaluations.

There are more sophisticated methods for generating normal random numbers. See
Knuth [1997] for more details. Matlab’s randn command, for example, uses the “ziggu-
rat’’ algorithm of Marsaglia and Tsang [2000], essentially a very efficient way of inverting
the cumulative distribution function.

9.1 Exercises

1. Find the period of the linear congruential generator defined by (a) a = 2,b = 0,m = 5
(b) a = 4,b = 1,m = 9.

2. Find the period of the LCG defined by a = 4,b = 0,m = 9. Does the period depend on the
seed?

3. Approximate the area under the curve y = x2 for 0 ≤ x ≤ 1, using the LCG with
(a) a = 2,b = 0,m = 5 (b) a = 4,b = 1,m = 9.

4. Approximate the area under the curve y = 1 − x for 0 ≤ x ≤ 1, using the LCG with
(a) a = 2,b = 0,m = 5 (b) a = 4,b = 1,m = 9.

5. Consider the RANDNUM-CRAY random number generator, used on the Cray X-MP,
one of the first supercomputers. This LCG used m = 248,a = 224 + 3, and b = 0.
Prove that ui+2 = 6ui+1 − 9ui (mod 1). Is this worrisome? See Computer
Problems 9 and 10.

9.1 Computer Problems

1. Implement the Minimal Standard random number generator, and find the Monte Carlo
approximation of the volume in Example 9.3. Use 106 three-dimensional points with seed
x0 = 1. How close is your approximation to the correct answer?

2. Implement randu and find the Monte Carlo approximation of the volume in Example 9.3, as
in Computer Problem 1. Verify that no point (ui,ui+1,ui+2) enters the given ball.

3. (a) Using calculus, find the area bounded by the two parabolas P1(x) = x2 − x + 1/2 and
P2(x) = −x2 + x + 1/2. (b) Estimate the area as a Type 1 Monte Carlo simulation, by finding
the average value of P2(x) − P1(x) on [0,1]. Find estimates for n = 10i for 2 ≤ i ≤ 6.
(c) Same as (b), but estimate as a Type 2 Monte Carlo problem: Find the proportion of points in
the square [0,1] × [0,1] that lie between the parabolas. Compare the efficiency of the two
Monte Carlo approaches.

4. Carry out the steps of Computer Problem 3 for the subset of the first quadrant bounded by the
polynomials P1(x) = x3 and P2(x) = 2x − x2.

5. Use n = 104 pseudo-random points to estimate the interior area of the ellipses
(a) 13x2 + 34xy + 25y2 ≤ 1 in −1 ≤ x,y ≤ 1 and
(b) 40x2 + 25y2 + y + 9/4 ≤ 52xy + 14x in 0 ≤ x,y ≤ 1. Compare your estimate with the
correct areas (a) π/6 and (b) π/18, and report the error of the estimate. Repeat with n = 106

and compare results.
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6. Use n = 104 pseudo-random points to estimate the interior volume of the ellipsoid defined by
2 + 4x2 + 4z2 + y2 ≤ 4x + 4z + y, contained in the unit cube 0 ≤ x,y,z ≤ 1. Compare
your estimate with the correct volume π/24, and report the error. Repeat with n = 106 points.

7. (a) Use calculus to evaluate the integral
∫ 1

0

∫ √
x

x2 xy dy dx. (b) Use n = 106 pairs in the unit
square [0,1] × [0,1] to estimate the integral as a Type 1 Monte Carlo problem. (Average the
function that is equal to xy if (x,y) is in the integration domain and 0 if not.)

8. Use 106 random pairs in the unit square to estimate
∫

A xy dx dy, where A is the area described
by Example 9.2.

9. Implement the questionable random number generator from Exercise 5, and draw the plot
analogous to Figure 9.3.

10. Devise a Monte Carlo approximation problem that completely foils the RANDNUM-CRAY
generator of Exercise 5, following the ideas of Example 9.3.

9.2 MONTE CARLO SIMULATION

We have already seen examples of two types of Monte Carlo simulation. In this section,
we explore the range of problems that are suited for this technique and discuss some of the
refinements that make it work better, including quasi-random numbers. We will need to use
the language of random variables and expected values in this section.

9.2.1 Power laws for Monte Carlo estimation

We would like to understand the convergence rate of Monte Carlo simulation. At what rate
does the estimation error decrease as the number of points n used in the estimate grows?
This is similar to the convergence questions in Chapter 6 for the quadrature methods and
in Chapters 7, 8, and 9 for differential equation solvers. In the previous cases, they were
posed as questions about error versus step size. Cutting the step size is analogous to adding
more random numbers in Monte Carlo simulations.

Think of Type 1 Monte Carlo as the calculation of a function mean using random
samples, then multiplying by the volume of the integration region. Calculating a function
mean can be viewed as calculating the mean of a probability distribution given by that
function. We will use the notation E(X) for the expected value of the random variable X.
The variance of a random variable X is E[(X − E(X))2], and the standard deviation of
X is the square root of its variance. The error expected in estimating the mean will decrease
with the number n of random points, in the following way:

Type 1 or Type 2 Monte Carlo with pseudo-random numbers.

Error ∝ n− 1
2 (9.9)

To understand this formula, view the integral as the volume of the domain times the
mean value A of the function over the domain. Consider the identical random variables
Xi corresponding to a function evaluation at a random point. Then the mean value is the
expected value of the random variable Y = (X1 + ·· · + Xn)/n, or

E

[
X1 + ·· · + Xn

n

]
= nA/n = A,
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Convergence A Monte Carlo Type 1 estimate does something very similar to the

Composite Midpoint Method of Chapter 5. We found there that the error is proportional to

the step size h, which is roughly equivalent to 1/n when the number of function evaluations

is taken into account.This is more efficient than the square root power law of Monte Carlo.

However, Monte Carlo comes into its own with problems like Example 9.2. Although

convergence to the correct value is still slow, it is not clear how to set up the problem as a Type

1 problem, in order to apply Chapter 5 techniques.

and the variance of Y is

E

[(
X1 + ·· · + Xn

n
− A

)2
]

= 1
n2

∑
E[(Xi − A)2] = 1

n2 nσ 2 = σ 2

n
,

where σ is the original variance of each Xi . Therefore, the standard deviation of Y decreases
as σ/

√
n. This argument applies to both Type 1 and Type 2 Monte Carlo simulation.

! EXAMPLE 9.4 Find Type 1 and Type 2 Monte Carlo estimates, using pseudo-random numbers for the area
under the curve of y = x2 in [0,1].

This is an extension of the Type 1 Monte Carlo Example 9.1, where we pay attention
to the error as a function of the number n of random points. For each trial, we generate
n uniform random numbers x in [0,1] and find the average value of y = x2. The error
is the absolute value of the difference of the average value and the correct answer 1/3.
We average the error over 500 trials for each n and plot the results as the lower curve in
Figure 9.4.
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Figure 9.4 Mean error of Monte Carlo estimate. Estimation error in Example 9.4, as Type 1

(lower curve) and Type 2 (upper curve) Monte Carlo problems when pseudo-random numbers

are used. The power law dependence has exponent −1/2 for both types.

For Type 2 Monte Carlo, we generate uniform random pairs (x,y) in the unit square
[0,1] × [0,1] and track the proportion that satisfies y < x2. Again, the error is averaged
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over 500 trials and plotted as the upper curve in Figure 9.4. Although the type 2 error is
slightly greater than the type 1 error, both follow the square root power law (9.9). "

Is the randomness of the samples really required for a Type 2 Monte Carlo problem?
Why not use a rectangular, regular grid of samples to solve a problem like Example 9.2,
instead of random numbers? Of course, we would lose the ability to stop after an arbitrary
number n of samples, unless there was some random-like way to order them, to avoid huge
bias in the estimate. It turns out that there is a middle ground, which keeps the advantages
of the regular grid but orders the numbers so as to appear random. This is the topic of the
next section.

9.2.2 Quasi-random numbers

The idea of quasi-random numbers is to sacrifice the independence property of ran-
dom numbers when it is not really essential to the problem being solved. Sacrificing
independence means that quasi-random numbers are not only not random, but unlike
pseudo-random numbers, they do not pretend to be random. This sacrifice is made in the
hope of faster convergence to the correct value in a Monte Carlo setting. Sequences of
quasi-random numbers are designed to be self-avoiding rather than independent. That
is, the stream of numbers tries to efficiently fill in the gaps left by previous numbers
and to avoid clustering. The comparison with pseudo-random numbers is illustrated in
Figure 9.5.
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Figure 9.5 Comparison of pseudo-random and quasi-random numbers. (a) 2000 pairs of

pseudo-random numbers, produced by MATLAB’s rand. (b) 2000 pairs of quasi-random num-

bers, produced by Halton’s low-discrepancy sequences, base 2 in x-coordinate and base 3 in

y-coordinate.

There are many ways to produce quasi-random numbers. Perhaps the most popular
way goes back to a suggestion of Van der Corput in 1935, called a base-p low-discrepancy
sequence. We give the implementation due to Halton [1960]. Let p be a prime number,
for example, p = 2. Write the first n integers in base p arithmetic. Assuming that the ith
integer has representation bkbk−1 · · ·b2b1, we will assign the ith random number to be
0.b1b2 · · ·bk−1bk , again written in base p arithmetic. In other words, write the ith integer
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in base p, then reverse the digits, and put them on the other side of the decimal point to get
the ith uniform random number in [0,1]. Setting p = 2 gives the following list for the first
eight random numbers:

i (i)2 (ui)2 ui

1 1 .1 0.5
2 10 .01 0.25
3 11 .11 0.75
4 100 .001 0.125
5 101 .101 0.625
6 110 .011 0.375
7 111 .111 0.875
8 1000 .0001 0.0625

Setting p = 3 gives the Halton base-3 sequence:

i (i)3 (ui)3 ui

1 1 .1 0.3
2 2 .2 0.6
3 10 .01 0.1
4 11 .11 0.4
5 12 .21 0.7
6 20 .02 0.2
7 21 .12 0.5
8 22 .22 0.8

Matlab code for the Halton sequence is shown next. It is a simple and straightforward
version of the original low-discrepancy idea. For greater efficiency, it can be coded on the
bit level.

% Program 9.1 Quasi-random number generator
% Halton sequence in base p
% Input: prime number p, random numbers required n
% Output: array u of quasi-random numbers in [0,1]
% Example usage: halton(2,100)
function u=halton(p,n)
b=zeros(ceil(log(n)/log(p)),1); % largest number of digits
for j=1:n
i=1;
b(1)=b(1)+1; % add one to current integer
while b(i)>p-1+eps % this loop does carrying
b(i)=0; % in base p
i=i+1;
b(i)=b(i)+1;

end
u(j)=0;
for k=1:length(b(:)) % add up reversed digits
u(j)=u(j)+b(k)*pˆ(-k);

end
end

For any prime number, the Halton sequence will give a set of quasi-random numbers.
To generate a sequence of d-dimensional vectors, we can use a different prime for each
coordinate. It is important to remember that quasi-random numbers are not independent;
their usefulness lies in their self-avoiding property. For Monte Carlo problems, they are
much more efficient than pseudo-random numbers, as we shall see next.
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The reason for the use of quasi-random numbers is that they result in faster convergence
of Monte Carlo estimates. That means that as a function of n, the number of function
evaluations, the error decreases at a rate proportional to a larger negative power of n than
the corresponding rate for pseudo-random numbers. The following error formulas should be
compared with the corresponding formulas (9.9) for pseudo-random numbers (let d denote
the dimension of random numbers being generated):

Type 1 Monte Carlo with quasi-random numbers

Error ∝ (ln n)dn−1 (9.10)

Type 2 Monte Carlo with quasi-random numbers

Error ∝ n
− 1

2 − 1
2d (9.11)

The error is dominated by what happens at the discontinuities. In place of a proof, we
describe what happens in the case of the Type 2 examples we have encountered, where
the function is a characteristic function of a subset of d-dimensional space that has a
(d − 1)-dimensional boundary. In this case, the number of discontinuity points, along the
boundary of the set, is proportional to (n1/d)d−1. This follows from the fact that the bound-
ary is (d − 1)-dimensional, and there are on the order of n1/d grid points along each of
the d dimensions. These points “randomly’’ take on the values 0 or 1, depending on which
side of the boundary they lie on. Since the errors at all other points are much smaller, the
variance of the function evaluation is, on average,

n
d−1

d

n
= n− 1

d ,

and the standard deviation is the square root n
− 1

2d . By the same argument as in the pseudo-
random Monte Carlo case, when we are averaging over n points, the standard deviation
is cut by a factor of

√
n, leaving the standard deviation of the quasi-Monte Carlo method

to be

n−1/2d

n1/2 = n− 1
2 − 1

2d .

! EXAMPLE 9.5 Find a Monte Carlo estimate by using quasi-random numbers for the area under the curve
of y = x2 in [0,1].

This is a Type 1 Monte Carlo problem, where x-coordinates can be generated in
[0,1] to find the average value of f (x) = x2 as an approximation of the area. We use the
Halton sequence with prime number p = 2 to generate 105 quasi-random numbers. The
results, in comparison with the same strategy using pseudo-random numbers, are shown in
Figure 9.6. The quasi-random numbers are clearly superior, as previously predicted. "

! EXAMPLE 9.6 Find a quasi-random Monte Carlo estimate for the area in Example 9.2.

For various n, quasi-random samples in the unit square were generated by the Hal-
ton sequence. For multidimensional applications, it is convenient to use Halton sequences
of different prime numbers p for each coordinate. The area is a subset of a two-dimensional
space with a one-dimensional boundary, so d = 2. The proportion that satisfied the defining
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Figure 9.6 Mean error of Type 1 Monte Carlo estimate. Estimate of the integral of Exam-

ple 9.1. Circles represent error when pseudo-random numbers are used, squares correspond to

quasi-random. Note the power law dependence with exponent −1/2 and −1, respectively, for

pseudo- and quasi-random numbers.

condition in Example 9.2 was determined, and the error was calculated. The error was
averaged over 50 trials and plotted in Figure 9.7(a). The exponent of the power law for a
Type 2 Monte Carlo problem in dimension two is −1/2 − 1/(2d) = −1/2 − 1/4 = −3/4,
which is the approximate slope of the lower curve. The same calculation for pseudo-random
numbers, with a square root power law, is shown in the figure for comparison. "

! EXAMPLE 9.7 Find a quasi-random Monte Carlo estimate for the volume of the three-dimensional ball of
radius one in R3.

We proceed similarly to Example 9.6. Because the type 2 problem occurs in dimen-
sion three, the exponent of the power law is −1/2 − 1/6 = −2/3, which is approximately
the slope of the lower curve in Figure 9.7(b). "

9.2 Computer Problems

1. Carry out the Monte Carlo approximation in Computer Problem 9.1.3 with n = 10k

quasi-random numbers from the Halton sequence for k = 2,3,4, and 5. For part (c), use
halton(2,n) and halton(3,n) for the x and y coordinates, respectively.

2. Carry out the Monte Carlo approximation in Computer Problem 9.1.4 with quasi-random
numbers.

3. Carry out the Monte Carlo approximation in Computer Problem 9.1.5 with n = 104 and
n = 105 quasi-random points.

4. Carry out the Monte Carlo approximation in Computer Problem 9.1.6 with n = 104 and
n = 105 quasi-random points.

5. Compute Monte Carlo and quasi-Monte Carlo approximations of the volume of the
four-dimensional ball of radius 1 with n = 105 points. Compare with the exact volume π2/2.

6. One of the best-known Monte Carlo problems is the Buffon needle. If a needle is dropped on a
floor painted with black and white stripes, each the same width as the length of the needle, then
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Figure 9.7 Mean Error of Monte Carlo Type 2 estimate. Circles represent error when pseudo-

random numbers are used, squares for quasi-random. (a) Estimate of the area in Example 9.2, a

Type 2 Monte Carlo problem in dimension d = 2. The errors follow power laws with exponents

−1/2 and −3/4, respectively, for pseudo- and quasi-random numbers. (b) Estimate of the volume

of the three-dimensional ball of diameter 1, a Type 2 Monte Carlo problem in dimension d = 3.

The errors follow power laws with exponents −1/2 and −2/3.

the probability is 2/π that the needle will straddle both colors. (a) Prove this result
analytically. Consider the distance d of the needle’s midpoint to the nearest edge, and its angle
θ with the stripes. Express the probability as a simple integral. (b) Design a Monte Carlo Type
2 simulation that approximates the probability, and carry it out with n = 106 pseudo-random
pairs (d,θ).

7. (a) What proportion of 2 × 2 matrices with entries in the interval [0,1] have positive
determinant? Find the exact value, and approximate with a Monte Carlo simulation. (b) What
proportion of symmetric 2 × 2 matrices with entries in [0,1] have positive determinant? Find
the exact value and approximate with a Monte Carlo simulation.

8. Run a Monte Carlo simulation to approximate the proportion of 2 × 2 matrices with entries in
[−1,1] whose eigenvalues are both real.

9. What proportion of 4 × 4 matrices with entries in [0,1] undergo no row exchanges under
partial pivoting? Use a Monte Carlo simulation involving Matlab’s lu command to estimate
this probability.

9.3 DISCRETE AND CONTINUOUS BROWNIAN MOTION

Although previous chapters of this book have focused largely on principles that are important
for the mathematics of deterministic models, these models are only a part of the arsenal of
modern techniques. One of the most important applications of random numbers is to make
stochastic modeling possible.

We will begin with one of the simplest stochastic models, the random walk, also called
discrete Brownian motion. The basic principles that underlie this discrete model are essen-
tially the same for the more sophisticated models that follow, based on continuous Brownian
motion.



9.3 Discrete and Continuous Brownian Motion | 447

9.3.1 Random walks

A random walk Wt is defined on the real line by starting at W0 = 0 and moving a step
of length si at each integer time i, where the si are independent and identically distributed
random variables. Here, we will assume each si is +1 or −1 with equal probability 1/2.
Discrete Brownian motion is defined to be the random walk given by the sequence of
accumulated steps

Wt = W0 + s1 + s2 + ·· · + st ,

for t = 0,1,2, . . . Figure 9.8 illustrates a single realization of discrete Brownian motion.
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Figure 9.8 A single realization of a random walk. The path hits the boundary of the

(vertical) interval [−3,6] at the 12th step. Random walks escape through the top of this

interval one-third of the time, on average.

The following Matlab code carries out a random walk of 10 steps:

t=10;
w=0;
for i=1:t
if rand>1/2
w=w+1;

else
w=w-1;

end
end

Since a random walk is a probabilistic device, we will need to use some concepts from
elementary probability. For each t , the value of Wt is a random variable. Stringing together
a number of random variables {W0,W1,W2, . . .} is by definition a stochastic process.

The expected value of a single step si of the random walk Wt is (0.5)(1) + (0.5) ×
(−1) = 0, and the variance of si is E[(si − 0)2] = (0.5)(1)2 + (0.5)(−1)2 = 1. The
expected value of the random walk after an integer t steps is E(Wt) = E(s1 + ·· · + st ) =
E(s1) + ·· · + E(st ) = 0, and the variance is V (Wt) = V (s1 + ·· · + st ) = V (s1) + ·· · +
V (st ) = t , because variance is additive over independent random variables.

The mean and variance are statistical quantities that summarize information about a
probability distribution. The fact that the mean of Wt is 0 and the variance is t indicates
that if we compute n different realizations of the random variable Wt , then the

sample mean = Esample(Wt ) = W 1
t + ·· · + W n

t

n
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and

sample variance = Vsample(Wt ) = (W 1
t − Es)

2 + ·· · + (W n
t − Es)

2

n − 1

should approximate 0 and t , respectively. The sample standard deviation, defined
to be the square root of the sample variance, is also called the standard error of
the mean.

Many interesting applications of random walks are based on escape times, also called
first passage times. Let a,b be positive integers, and consider the first time the random walk
starting at 0 reaches the boundary of the interval [−b,a]. This is called the escape time
of the random walk. It can be shown (Steele [2001]) that the probability that the escape
happens at a (rather than −b) is exactly b/(a + b).

! EXAMPLE 9.8 Use a Monte Carlo simulation to approximate the probability that the random walk exits
the interval [−3,6] through the top boundary 6.

This should happen 1/3 of the time. We will compute the sample mean and the
error of the probability of escaping through a = 6 as a Type 2 Monte Carlo problem. We
run n random walks until escape, and record the proportion that reach 6 before −3. For
various values of n, we find the following table:

n top exits prob error
100 35 0.3500 0.0167
200 72 0.3600 0.0267
400 135 0.3375 0.0042
800 258 0.3225 0.0108

1600 534 0.3306 0.0027
3200 1096 0.3425 0.0092
6400 2213 0.3458 0.0124

The error is the absolute value of the difference between the estimate and the cor-
rect probability 1/3. The error decreases gradually as more random walks are used, but
irregularly, as the table shows. Figure 9.9 shows this error averaged over 50 trials. With
this averaging, the errors show the square root power law decrease that is characteristic of
Monte Carlo simulation. "

The expected length of the escape time from [−b,a] is known (Steele [2001]) to be
ab. We can use the same simulation to investigate the efficiency of Monte Carlo on this
problem.

! EXAMPLE 9.9 Use a Monte Carlo simulation to estimate the escape time for a random walk escaping the
interval [−3,6].
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Figure 9.9 Error of Monte Carlo estimation for escape problem. Estimation error versus

number of random walks for the probability of escaping [−3,6] by hitting 6 is shown in the

lower curve. The expected value of the probability is 1/3. The upper curve shows estimation

error for the escape time of the same problem. The expected value is 18 time steps. The

errors were averaged over 50 trials.

The expected value of the escape time is ab = 18. A sample calculation shows the
following table:

n average esc. time error
100 18.84 0.84
200 17.47 0.53
400 19.64 1.64
800 18.53 0.53

1600 18.27 0.27
3200 18.16 0.16
6400 18.05 0.05

Again, the error gradually decreases at an erratic rate. To see the square root power law
for the error, we must average over several trials for each n. The result of 50 trials is shown
in Figure 9.9. "

9.3.2 Continuous Brownian motion

In the previous section, we found that the standard random walk at t time steps has expected
value 0 and variance t . Imagine now that double the number of steps are taken per unit time.
If a step is taken every 1/2 time unit, the expected value of the random walk at time t is
still 0, but the variance is changed to

V (Wt) = V (s1 + ·· · + s2t ) = V (s1) + ·· · + V (s2t ) = 2t,

since 2t steps have been taken. In order to represent noise in a continuous model such
as a differential equation, a continuous version of the random walk is needed. Doubling
the number of steps per unit time is a good start, but to keep the variance fixed while we
increase the number of steps, we will need to reduce the (vertical) size of each step. If we
increase the number of steps by a factor k, we need to change the step height by a factor
1/

√
k to keep the variance the same as before. This is because multiplication of a random

variable by a constant changes the variance by the square of the constant.
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Figure 9.10 Discrete Brownian motion. (a) Random walk Wt of 10 steps. (b) Random walk W 25
t

using 25 times more steps than (a), but with step height 1/
√

25. The mean and variance of the

height at time t = 10 are identical (0 and 10, respectively) for processes (a) and (b).

Therefore, W k
t is defined to be the random walk that takes a step sk

i of horizontal length
1/k, and with step height ±1/

√
k with equal probability. Then the expected value at time t

is still

E(W k
t ) =

kt∑

i=1

E(sk
i ) =

kt∑

i=1

0 = 0,

and the variance is

V (W k
t ) =

kt∑

i=1

V (sk
i ) =

kt∑

i=1

[(
1√
k

)2

(.5) +
(

− 1√
k

)2

(.5)

]

= kt
1
k

= t . (9.12)

If we decrease the step size and step height of the random walk in this precise way as k

grows, the variance and standard deviation stays constant, independent of the number k

of steps per unit time. Figure 9.10(b) shows a realization of W k
t , where k = 25, so 250

individual steps were taken over 10 time units. The mean and variance at t = 10 are the
same as in Figure 9.10(a).

The limit W∞
t of this progression as k → ∞ yields continuous Brownian motion.

Now time t is a real number, and Bt ≡ W∞
t is a random variable for each t ≥ 0. Continuous

Brownian motion Bt has three important properties:

Property 1 For each t , the random variable Bt is normally distributed with mean 0 and variance t .

Property 2 For each t1 < t2, the normal random variable Bt2 − Bt1 is independent of the random vari-
able Bt1 , and in fact independent of all Bs,0 ≤ s ≤ t1.

Property 3 Brownian motion Bt can be represented by continuous paths.

The appearance of the normal distribution is a consequence of the Central Limit Theorem,
a deep fact about probability.

Computer simulation of Brownian motion is based on respecting these three properties.
Establish a grid of steps

0 = t0 ≤ t1 ≤ · · · ≤ tn
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on the t-axis, and start with B0 = 0. Property 2 says that the increment Bt1 − Bt0 is
a normal random variable, and its mean and variance are 0 and t1. Therefore, a realiza-
tion of the random variable Bt1 can be made by choosing from the normal distribution
N(0, t1) = √

t1 − t0N(0,1); in other words, by multiplying a standard normal random
number by

√
t1 − t0. To find Bt2 , we proceed similarly. The distribution of Bt2 − Bt1 is

N(0, t2 − t1) = √
t2 − t1N(0,1), so we choose a standard normal random number, multi-

ply by
√

t2 − t1, and add it to Bt1 to get Bt2 . In general, the increment of Brownian motion
is the square root of the time step multiplied by a standard normal random number.

In Matlab, we can write an approximation to Brownian motion by using the built-
in normal random number generator randn. Here we use step size $t = 1/25, as in
Figure 9.10(b).

k=250;
sqdelt=sqrt(1/25);
b=0;
for i=1:k
b=b+sqdelt*randn;

end

Escape time statistics for continuous Brownian motion are identical to those for random
walks. Let a,b be positive numbers (not necessarily integers), and consider the first time
that continuous Brownian motion starting at 0 reaches the boundary of the interval [−b,a].
This is called the escape time of Brownian motion from the interval. It can be shown that the
probability that the escape happens at a (rather than −b) is exactly b/(a + b). Moreover,
the expected value of the escape time is ab. Computer Problem 5 asks the reader to illustrate
these facts with Monte Carlo simulations.

9.3 Computer Problems

1. Design a Monte Carlo simulation to estimate the probability of a random walk reaching the top
a of the given interval [−b,a]. Carry out n = 10000 random walks. Calculate the error by
comparing with the correct answer. (a) [−2,5] (b) [−5,3] (c) [−8,3]

2. Calculate the mean escape time for the random walks in Computer Problem 1. Carry out
n = 10000 random walks. Calculate the error by comparing with the correct answer.

3. In a biased random walk, the probability of going up one unit is 0 < p < 1, and the
probability of going down one unit is q = 1 − p. Design a Monte Carlo simulation with
n = 10000 to find the probability that the biased random walk with p = 0.7 on the interval in
Computer Problem 1 reaches the top. Calculate the error by comparing with the correct answer
[(q/p)b − 1]/[(q/p)a+b − 1] for p ̸= q.

4. Carry out Computer Problem 3 for escape time. The mean escape time for the biased random
walk with p ̸= q is [b − (a + b)(1 − (q/p)b)/(1 − (q/p)a+b)]/[q − p].

5. Design a Monte Carlo simulation to estimate the probability that Brownian motion escapes
through the top of the given interval [−b,a]. Use n = 1000 Brownian motion paths of step size
$t = 0.01. Calculate the error by comparing with the correct answer b/(a + b). (a) [−2,5]
(b) [−2,π ] (c) [−8/3,3].

6. Calculate the mean escape time for Brownian motion for the intervals in Computer Problem 5.
Carry out n = 1000 Brownian motion paths of step size $t = 0.01. Calculate the error by
comparing with the correct answer.
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7. The Arcsine Law of Brownian motion holds that for 0 ≤ t1 ≤ t2, the probability that a path
does not cross zero in the time interval [t1, t2] is (2/π)arcsin

√
t1/t2. Carry out a Monte Carlo

simulation of this probability by using 10,000 paths with $t = 0.01, and compare with the
correct probability, for the time intervals: (a) 3 < t < 5 (b) 2 < t < 10 (c) 8 < t < 10.

9.4 STOCHASTIC DIFFERENTIAL EQUATIONS

Ordinary differential equations are deterministic models. Given an ODE and an appropriate
initial condition, there is a unique solution, meaning that the future evolution of the solution
is completely determined. Such omniscience is not always available to the modeler. For
many systems, although some parts may be easily modeled, other parts may appear to
move randomly—seemingly independently of the current system state. In such situations,
instead of abandoning the idea of a model, it is common to add a noise term to the differential
equation to represent the random effects. The result is called a stochastic differential equation
(SDE).

In this section, we discuss some elementary stochastic differential equations and explain
how to approximate solutions numerically. The solutions will be continuous stochastic pro-
cesses like Brownian motion. We begin with some necessary definitions and a brief intro-
duction to Ito calculus. For full details, the reader may consult Klebaner [1998], Oksendal
[1998], and Steele [2001].

9.4.1 Adding noise to differential equations

Solutions to ordinary differential equations are functions. Solutions to stochastic differential
equations, on the other hand, are stochastic processes.

DEFINITION 9.2 A set of random variables xt indexed by real numbers t ≥ 0 is called a continuous-time
stochastic process. ❒

Each instance, or realization of the stochastic process is a choice of the random variable
xt for each t , and is therefore a function of t .

Brownian motion Bt is a stochastic process. Any (deterministic) function f (t) can also
be trivially considered as a stochastic process, with variance V (f (t)) = 0. The solution of
the SDE initial value problem

{
dy = r dt + σdBt

y(0) = 0
, (9.13)

with constants r and σ , is the stochastic process y(t) = rt + σBt , although we need to
define some terms.

Notice that the SDE (9.13) is given in differential form, unlike the derivative form of
an ODE. That is because many interesting stochastic processes, like Brownian motion, are
continuous, but not differentiable. Therefore, the meaning of the SDE

dy = f (t,y) dt + g(t,y) dBt

is, by definition, the integral equation

y(t) = y(0) +
∫ t

0
f (s,y) ds +

∫ t

0
g(s,y) dBs ,

where we must still define the meaning of the last integral, called an Ito integral.
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Let a = t0 < t1 < · · · < tn−1 < tn = b be a grid of points on the interval [a,b]. The
Riemann integral is defined as a limit

∫ b

a
f (t) dt = lim

$t→0

n∑

i=1

f (t ′i )$ti ,

where $ti = ti − ti−1 and ti−1 ≤ t ′i ≤ ti . Similarly, the Ito integral is the limit

∫ b

a
f (t) dBt = lim

$t→0

n∑

i=1

f (ti−1)$Bi,

where $Bi = Bti − Bti−1 , a step of Brownian motion across the interval. While the t ′i in
the Riemann integral may be chosen at any point in the interval (ti−1, ti), the corresponding
point for the Ito integral is required to be the left endpoint of that interval.

Because f and Bt are random variables, so is the Ito integral I =
∫ b

a f (t) dBt . The
differential dI is a notational convenience; thus,

I =
∫ b

a
f dBt

is equivalent by definition to

dI = f dBt .

The differential dBt of Brownian motion Bt is called white noise.

! EXAMPLE 9.10 Solve the stochastic differential equation dy(t) = r dt + σ dBt with initial condition
y(0) = y0.

We are assuming that r and σ are constant real numbers. The (deterministic)
ordinary differential equation

y′(t) = r (9.14)

has solution y(t) = y0 + rt , a straight line as a function of time t . If r is positive, the
solution moves up with constant slope; if r is negative, the solution moves down.

Adding white noise σdBt for a constant real number σ to the right-hand side yields
the stochastic differential equation

dy(t) = r dt + σ dBt . (9.15)

Integrating both sides gives

y(t) − y(0) =
∫ t

0
dy =

∫ t

0
r ds +

∫ t

0
σ dBs = rt + σBt .

This confirms that the solution is the stochastic process

y(t) = y0 + rt + σBt , (9.16)

a combination of drift (the rt term) and the diffusion of Brownian motion.
Figure 9.11 shows two solutions of the SDE (9.15) alongside the unique solution

to the ODE (9.14). Strictly speaking, the latter is also a solution to (9.15), representing the
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Figure 9.11 Solutions to Example 9.10. A solution y(t) = rt of the ODE y′(t) = r is shown,

along with two different realizations of the solution process y(t) = rt + σ B(t) for (9.15). The

parameters are r = 1 and σ = 0.3.

realization that goes with all noise inputs zi = 0. This is a possible, but highly unlikely,
particular realization of the solution stochastic process. "

To solve SDEs analytically, we need to introduce the basic manipulation rule for
stochastic differentials, called the Ito formula.

Ito formula

If y = f (t,x), then

dy = ∂f

∂t
(t,x) dt + ∂f

∂x
(t,x) dx + 1

2
∂2f

∂x2 (t,x) dx dx, (9.17)

where the dx dx term is interpreted by using the identities dt dt = 0, dt dBt = dBt dt = 0,
and dBt dBt = dt.

The Ito formula is the stochastic analogue to the chain rule of conventional calculus.
Although it is expressed in differential form for ease of understanding, its meaning is no
more and no less than the equality of the Ito integral of both sides of the equation. It is
proved by referring the equation back to the definition of Ito integral (Oksendal [1998]).

! EXAMPLE 9.11 Prove that y(t) = B2
t is a solution of the SDE dy = dt + 2Bt dBt .

To use the Ito formula, write y = f (t,x), where x = Bt and f (t,x) = x2. Accord-
ing to (9.17),

dy = ft dt + fx dx + 1
2

fxx dx dx

= 0 dt + 2x dx + 1
2

2dx dx

= 2Bt dBt + dBt dBt

= 2Bt dBt + dt.

"
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Figure 9.12 Solution to the exponential Brownian motion SDE (9.19). The solution (9.18)

is plotted as a solid curve along with the Euler–Maruyama approximation, plotted as circles.

The dotted curve is the Brownian motion path for the corresponding realization. Parameters

are set to r = 0.1,σ = 0.3, and $t = 0.2.

! EXAMPLE 9.12 Show that geometric Brownian motion

y(t) = y0e(r− 1
2 σ 2)t+σBt (9.18)

satisfies the stochastic differential equation

dy = ry dt + σy dBt . (9.19)

Write y = f (t,x) = y0ex , where x = (r − 1
2 σ 2)t + σBt . By the Ito formula,

dy = y0ex dx + 1
2

y0ex dx dx,

where dx = (r − 1/2σ 2) dt + σ dBt . Using the differential identities from the Ito formula,
we obtain

dx dx = σ 2 dt.

Therefore,

dy = y0ex

(
r − 1

2
σ 2

)
dt + y0exσ dBt + 1

2
y0σ 2ex dt

= y0exr dt + y0exσ dBt

= ry dt + σy dBt .

"

Figure 9.12 shows a realization of geometric Brownian motion with constant drift
coefficient r and diffusion coefficient σ . This model is widely used in financial modeling.
In particular, geometric Brownian motion is the underlying model for the Black–Scholes
equations that are used to price financial derivatives.

Examples 9.11 and 9.12 are exceptions. Just as in the case of ODEs, relatively few SDEs
have closed-form solutions. More often, it is necessary to use numerical approximation
techniques.
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9.4.2 Numerical methods for SDEs

We can approximate a solution to an SDE in a way that is similar to the Euler Method from
Chapter 6. The Euler–Maruyama Method works by discretizing the time axis, just as Euler
does. We define the approximate solution path at a grid of points

a = t0 < t1 < t2 < · · · < tn = b

and will assign approximate y-values

w0 < w1 < w2 < · · · < wn

at the respective t points. Given the SDE initial value problem
{

dy(t) = f (t,y)dt + g(t,y)dBt

y(a) = ya
, (9.20)

we compute the solution approximately:

Euler–Maruyama Method

w0 = y0
for i = 0,1,2, . . .

wi+1 = wi + f (ti ,wi)($ti ) + g(ti ,wi)($Bi)

end
(9.21)

where

$ti = ti+1 − ti
$Bi = Bti+1 − Bti .

(9.22)

The crucial part is how to model the Brownian motion $Bi . Define N(0,1) to be
the standard random variable that is normally distributed with mean 0 and standard devi-
ation 1. Each random number $Bi is computed in accordance with the description in
Section 9.3.2 as

$Bi = zi

√
$ti , (9.23)

where zi is chosen from N(0,1). In Matlab, the zi can be generated by the randn com-
mand.Again, notice the departure from the deterministic ODE case. Each set of {w0, . . . ,wn}
we produce is an approximate realization of the solution stochastic process y(t), which
depends on the random numbers zi that were chosen. Since Bt is a stochastic process, each
realization will be different, and so will our approximations.

As a first example, we show how to apply the Euler–Maruyama Method to the expo-
nential Brownian motion SDE (9.19). The Euler–Maruyama Method has form

w0 = y0

wi+1 = wi + rwi($ti ) + σwi($Bi), (9.24)

according to (9.21). A correct realization (generated from the solution (9.18)) and the corre-
sponding Euler–Maruyama approximation are shown in Figure 9.12. By “corresponding,’’
we mean that the approximation used the same Brownian motion realization (also shown in
Figure 9.12) as the correct solution. Note the close agreement between the correct solution
and the approximating points, plotted as small circles every 0.2 time units.
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Figure 9.13 Solution to Langevin equation (9.25). The upper path is the solution approx-

imation for parameters r = 10,σ = 1, computed by the Euler–Maruyama Method. The dotted

path is the corresponding Brownian motion realization.

! EXAMPLE 9.13 Numerically solve the Langevin equation

dy = −ry dt + σ dBt , (9.25)

where r and σ are positive constants.

Contrary to the preceding examples, it is not possible to analytically derive the
solution to this equation in terms of simple processes. The solution of the Langevin equa-
tion is a stochastic process called the Ornstein–Uhlenbeck process. Figure 9.13 shows
one realization of the approximate solution. It was generated from an Euler–Maruyama
approximation, using the steps

w0 = y0

wi+1 = wi − rwi($ti ) + σ ($Bi) (9.26)

for i = 1, . . . ,n.
This SDE is used to model systems that tend to revert to a particular state, in

this case the state y = 0, in the presence of a noisy background. We can think of a
bowl containing a ping-pong ball that is in a car being driven over a rough road. The
ball’s distance y(t) from the center of the bowl might be modeled by the Langevin
equation. "

Next, we discuss the concept of order for SDE solvers. The idea is the same as for
ODE solvers, aside from the differences caused by the fact that a solution to an SDE is
a stochastic process, and each computed trajectory is only one realization of that process.
Each realization of Brownian motion will force a different realization of the solution y(t). If
we fix a point T > 0 on the t-axis, each solution path started at t = 0 gives us a random value
at T —that is, y(T ) is a random variable. Also, each computed solution path w(t), using
Euler–Maruyama, for example, gives us a random value at T , so that w(T ) is a random
variable as well. The difference between the values at time T , e(T ) = y(T ) − w(T ), is
therefore a random variable. The concept of order quantifies the expected value of the error
in a manner similar to that for ODE solvers.

DEFINITION 9.3 An SDE solver has order m if the expected value of the error is of mth order in the
step size; that is, if for any time T , E{|y(T ) − w(T )|} = O(($t)m) as the step size
$t → 0. ❒
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It is a surprise that unlike the ODE case where the Euler Method has order 1, the
Euler–Maruyama Method for SDEs has order m = 1/2. To build an order 1 method for
SDEs, another term in the “stochastic Taylor series’’ must be added to the method. Let

{
dy(t) = f (t,y)dt + g(t,y)dBt

y(0) = y0

be the SDE.

Milstein Method

w0 = y0
for i = 0,1,2, . . .

wi+1 = wi + f (ti ,wi)($ti ) + g(ti ,wi)($Bi)

+ 1
2 g(ti ,wi)

∂g

∂y
(ti ,wi)(($Bi)

2 − $ti )
(9.27)

end

The Milstein Method has order one. Note that the Milstein Method is identical to the
Euler–Maruyama Method if there is no y term in the diffusion part g(y, t) of the equation. In
case there is, Milstein will converge to the correct stochastic solution process more quickly
than Euler–Maruyama as the step size h goes to zero.

! EXAMPLE 9.14 Apply the Milstein Method to geometric Brownian motion.

The equation is

dy = ry dt + σy dBt (9.28)

with solution process

y = y0e(r− 1
2 σ 2)t+σBt . (9.29)

We discussed the Euler–Maruyama approximation previously. Using constant step size $t ,
the Milstein Method becomes

w0 = y0

wi+1 = wi + rwi$t + σwi$Bi + 1
2

σ 2wi(($Bi)
2 − $t). (9.30)

Applying the Euler–Maruyama Method and the Milstein Method with decreasing
step sizes $t results in successively improved approximations, as the following table shows:

$t Euler–Maruyama Milstein

2−1 0.169369 0.063864
2−2 0.136665 0.035890
2−3 0.086185 0.017960
2−4 0.060615 0.008360
2−5 0.048823 0.004158
2−6 0.035690 0.002058
2−7 0.024277 0.000981
2−8 0.016399 0.000471
2−9 0.011897 0.000242
2−10 0.007913 0.000122
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Convergence The orders of the methods introduced here for SDEs, 1/2 for Euler–

Maruyama and 1 for Milstein, would be considered low by ODE standards. Higher-order

methods can be developed for SDEs, but are much more complicated as the order grows.

Whether higher-order methods are needed in a given application depends on how the result-

ing approximate solutions are to be used. In the ODE case, the usual assumption is that the

initial condition and the equation are known with high accuracy. Then it makes sense to

calculate the solution as closely as possible to the same accuracy, and cheap higher-order

methods are called for. In many situations, the advantages of higher-order SDE solvers are not

so obvious; and if they come with added computational expense, these solvers may not be

warranted.

The two columns represent the average, over 100 realizations, of the error |w(T ) −
y(T )| at T = 8. Note that the realizations of w(t) and y(t) share the same Brownian motion
increments $Bi . The orders 1/2 for Euler–Maruyama and 1 for Milstein are clearly visible
in the table. Cutting the step size by a factor of 4 is required to reduce the error by a factor
of 2 with the Euler–Maruyama Method. For the Milstein Method, cutting the step size by
a factor of 2 achieves the same result. The data in the table is plotted on a log–log scale in
Figure 9.14. "

A disadvantage of the Milstein method is that the partial derivative appears in the
approximation method, which must be provided by the user. This is analogous to Taylor
methods for solving ordinary differential equations. For that reason, Runge–Kutta methods
were developed for ODEs, which trade these extra partial derivatives in the Taylor expansion
for extra function evaluations.

In the SDE context, the same trade can be made with the Milstein method, resulting in a
first-order method than requires evaluation of g(t,y) at two places on each step. A heuristic
derivation can be carried out by making the replacement

100
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Figure 9.14 Error in the Euler–Maruyama and Milstein Methods. Solution paths are com-

puted for the geometric Brownian motion equation (9.28) and are compared with the correct

answer given by (9.29). The absolute difference is plotted versus step size h for the two dif-

ferent methods. The Euler–Maruyama errors are plotted as circles, and the Milstein errors as

crosses. Note the slopes 1/2 and 1, respectively, on the log-log plot.
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∂g

∂y
(ti ,wi) ≈ g(ti ,wi + g(ti ,wi)

√
$ti ) − g(ti ,wi)

g(ti ,wi)
√

$ti

in the Milstein formula, which leads to the following method.

First-order stochastic Runge–Kutta Method

w0 = y0
for i = 0,1,2, . . .

wi+1 = wi + f (ti ,wi)$ti + g(ti ,wi)$Bi

+ 1
2
√

$ti

[
g(ti ,wi + g(ti ,wi)

√
$ti ) − g(ti ,wi)

][
($Bi)

2 − $ti

]

end

! EXAMPLE 9.15 Use the Euler–Maruyama Method, the Milstein Method, and the First-Order Stochastic
Runge-Kutta Method to solve the SDE

dy = −2e−2y dt + 2e−y dBt . (9.31)

This example has an interesting cautionary property that is worth discussing. We
can find an explicit solution, but it exists only for a finite time span. Using Ito’s formula
(9.17), we can show that y(t) = ln(2Bt + ey0) is a solution, as long as the quantity inside
the logarithm is positive. At the first time t when the Brownian motion realization causes
2Bt + ey0 to be negative, the solution stops existing.

The Euler–Maruyama Method for this equation is

w0 = y0

wi+1 = wi − 2e−2wi ($ti ) + 2e−wi ($Bi).

The Milstein Method is

w0 = y0

wi+1 = wi − 2e−2wi ($ti ) + 2e−wi ($Bi) − 2e−2wi

[
($Bi)

2 − $ti

]
.

The First-Order Stochastic Runge–Kutta Method is

w0 = y0

wi+1 = wi − 2e−2wi ($ti ) + 2e−wi ($Bi)

+ 1
2
√

$ti

[
2e−(wi+2e−wi

√
$ti ) − 2e−wi

][
($Bi)

2 − $ti

]
.

A Milstein Method solution on the interval 0 ≤ t ≤ 4 is shown in Figure 9.15. "
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1 2 3 4

1

2

3

y

x

Figure 9.15 Solution to equation (9.31). Correct solution is shown along with Milstein

approximation plotted as circles.

The stochastic processes we have seen up to now have had variances that increase
with t . The variance of Brownian motion, for example, is V (Bt ) = t . We finish the section
with a remarkable example for which the end of the realization is as predictable as the
beginning.

! EXAMPLE 9.16 Numerically solve the Brownian bridge SDE
⎧
⎨

⎩
dy = y1 − y

t1 − t
dt + dBt

y(t0) = y0

(9.32)

where y1 and t1 > t0 are given.

The solution of the Brownian bridge (9.32) is illustrated in Figure 9.16. Because the
target slope adaptively changes as the path is created, all realizations of the solution process
end at the desired point (t1,y1). The solution paths can be considered as stochastically
generated “bridges’’ between the two given points (t0,y0) and (t1,y1). "

1 2

(a)

3

1

2

3

4

y

x

Figure 9.16 Brownian bridge. Two realizations of the solution of (9.32). The endpoints are

(t0,y0) = (1,1) and (t1,y1) = (3,2).
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9.4 Exercises

1. Use Ito’s formula to show that the solutions of the SDE initial value problems

(a)

{
dy = Bt dt + t dBt

y(0) = c
(b)

{
dy = 2Bt dBt

y(0) = c

are (a) y(t) = tBt + c (b) y(t) = B2
t − t + c.

2. Use Ito’s formula to show that the solutions of the SDE initial value problems

(a)

{
dy = (1 − B2

t )e−2y dt + 2Bte
−y dBt

y(0) = 0
(b)

{
dy = Bt dt + 3

√
9y2 dBt

y(0) = 0

are (a) y(t) = ln(1 + B2
t ) (b) y(t) = 1

3 B3
t .

3. Use Ito’s formula to show that the solutions of the SDE initial value problems

(a)

{
dy = ty dt + et2/2 dBt

y(0) = 1
(b)

{
dy = 3(B2

t − t) dBt

y(0) = 0

are (a) y(t) = (1 + Bt)e
t2/2 (b) y(t) = B3

t − 3tBt .

4. Use Ito’s formula to show that the solutions of the SDE initial value problems

(a)

{
dy = − 1

2 y dt +
√

1 − y2 dBt

y(0) = 0
(b)

{
dy = y(1 + 2ln y) dt + 2yBt dBt

y(0) = 1

are (a) y(t) = sin Bt and (b) y(t) = eB2
t .

5. Use the Ito formula to show that the solution of equation (9.31) is ln(2Bt + ey0).

6. (a) Solve the ODE analogue of the Brownian bridge:
⎧
⎨

⎩
y′ = y1 − y

t1 − t
y(t0) = y0

(9.33)

Does the solution reach the point (t1,y1) as the Brownian bridge does? Answer the same
questions for the variants

(b)

⎧
⎨

⎩
y′ = y1 − y0

t1 − t0
y(t0) = y0

(c)

⎧
⎨

⎩
dy = y1 − y0

t1 − t0
dt + dBt

y(t0) = y0

9.4 Computer Problems

1. Use the Euler–Maruyama Method to find approximate solutions to the SDE initial value
problems of Exercise 1. Use initial condition y(0) = 0. Plot the correct solution (found by
keeping track of the Brownian motion Bt , using the same random increments) along with the
approximate solution on the interval [0,10], using step size h = 0.01. Plot the error on the
interval in a semilog plot.

2. Use the Euler–Maruyama Method to find approximate solutions to the SDE initial value
problems of Exercise 2. Use initial condition y(0) = 1. Plot the correct solution along with the
approximate solution on the interval [0,1], using step size h = 0.01. Plot the error on the
interval in a semilog plot.
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3. Apply the Euler–Maruyama Method with step size h = 0.01 to approximate solutions of
Exercise 3 on the interval [0,2]. Plot two realizations of the solution stochastic process.

4. Apply the Euler–Maruyama Method with step size h = 0.01 to approximate solutions of
Exercise 4 on the interval [0,1]. Plot two realizations of the solution stochastic
process.

5. Find Euler–Maruyama approximate solutions to
{

dy = Bt dt + 3
√

9y2 dBt

y(0) = 0

on the interval [0,1] for step sizes h = 0.1,0.01, and 0.001. For each step size, run 5000
realizations of the approximate solution, and find the average error at t = 1. Make a table of
the average error at t = 1 versus step size. Does the average error scale according to theory?

6. Use the Euler–Maruyama Method to solve the SDE initial value problem
dy = y dt + y dBt ,y(0) = 1. Plot the approximate solution and the correct solution
y(t) = e

1
2 t+Bt . Use a step size of h = 0.1 on the interval 0 ≤ t ≤ 2.

7. Use the Milstein Method to find approximate solutions to the SDE initial value problem of
Exercise 2(b). Plot the correct solution along with the approximate solution on the interval
[0,5], using step size h = 0.1. Plot the error on the interval, using a semilog plot.

8. Use the Milstein Method to find approximate solutions to the SDE initial value problem of
Exercise 4(a). Plot the correct solution along with the approximate solution on the interval
[0,5], using step size h = 0.1. Plot the error on the interval, using a semilog plot.

9. Use the First-Order Stochastic Runge–Kutta Method to find approximate solutions to the SDE
initial value problem of Exercise 2(b). Plot the correct solution along with the approximate
solution on the interval [0,5], using step size h = 0.1. Plot the error on the interval, using a
semilog plot.

10. Use the First-Order Stochastic Runge–Kutta Method to find approximate solutions to the SDE
initial value problem of Exercise 4(a). Plot the correct solution along with the approximate
solution on the interval [0,5], using step size h = 0.1. Plot the error on the interval, using a
semilog plot.

11. Find Milstein approximate solutions to
{

dy = Bt dt + 3
√

9y2 dBt

y(0) = 0
.

on the interval [0,1] for step sizes h = 0.1,0.01, and 0.001. For each step size, run 5000
realizations of the approximate solution, and find the average error at t = 1. Make a table of
the average error at t = 1 versus step size. Does the average error scale according to theory?

12. Perform a Monte Carlo estimate of y(1), where y(t) is the Euler–Maruyama solution of the
Langevin equation

{
dy = −ydt + dBt

y(0) = e
.

Average n = 1000 realizations with step size h = 0.01. Compare with the expected value of
y(1), which is 1.
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9 The Black–Scholes Formula
Monte Carlo simulation and stochastic differential equation models are heavily used in
financial calculations.Afinancial derivative is a financial instrument whose value is derived
from the value of another instrument. In particular, an option is the right, but not the
obligation, to complete a particular financial transaction.

A (European) call option is the right to buy one share of a security at a prearranged
price, called the strike price, at a future date, called the exercise date. Calls are commonly
purchased and sold by corporations to manage risk, and by individuals and mutual funds as
part of investment strategies. Our goal is to calculate the value of the call option.

For example, a $15 December call for ABC Corp. represents the right to buy one share
for $15 in December. Assume that the price of ABC on June 1 is $12. What is the value of
such a right? On the exercise date, the value of a $K call is definite. It is max(X − K,0),
where X is the current market price of the stock. That is because, if X > K , the right to
buy ABC at $K is worth $X − K; and if X < K , the right to buy at K is worthless, since
we can buy as much as we want at an even lower price. While the value of an option on the
exercise date is clear, the difficulty is valuing the call at some time prior to expiration.

In the 1960s, Fisher Black and Myron Scholes explored the hypothesis of geometric
Brownian motion,

dX = mX dt + σX dBt , (9.34)

as the stock model, where m is the drift, or growth rate, of the stock and σ is the diffusion
constant, or volatility. Both m and σ can be estimated from past stock price data. The
insight of Black and Scholes was to develop an arbitrage theory that replicates the option
through judicious balancing of stock holding and cash borrowing at the prevailing interest
rate r . The result of their argument was that the correct call value, with expiration date T

years into the future, is the present value of the expected option value at expiration time,
where the underlying stock price X(t) satisfies the SDE

dX = rX dt + σX dBt . (9.35)

That is, for a stock price X = X0 at time t = 0, the value of the call with expiration date
t = T is the expected value

C(X,T ) = e−rT E(max(X(T ) − K,0)) (9.36)

where X(t) is given by (9.35). The surprise in their derivation was the replacement of drift
m in (9.34) by the interest rate r in (9.35). In fact, the projected growth rate of the stock
turns out to be irrelevant to the option price! This follows from the no-arbitrage assumption,
a keystone of the Black–Scholes theory, that says that there are no risk-free gains available
in an efficient market.

Formula (9.36) depends on the expected value of the random variable X(T ), which is
only available through simulation. So, in addition to this insight, Black and Scholes [1973]
provided a closed-form expression for the call price, namely,

C(X,T ) = XN(d1) − Ke−rT N(d2), (9.37)

where N(x) = 1√
2π

∫ x
−∞ e−s2/2ds is the normal cumulative distribution function and

d1 = ln(X/K) + (r + 1
2 σ 2)T

σ
√

T
, d2 = ln(X/K) + (r − 1

2 σ 2)T

σ
√

T
.

Equation (9.37) is known as the Black–Scholes formula.
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Suggested activities:

Assume that one share of company ABC stock has a price of $12. Consider a European call
option with strike price $15 and exercise date six months from today, so that T = 0.5 years.
Assume that there is a fixed interest rate of r = 0.05 and that the volatility of the stock is
0.25 (i.e., 25 percent per year).

1. Perform a Monte Carlo simulation to compute the expected value in (9.36). Use the
Euler–Maruyama Method to approximate the solution of (9.35), with a step size of
h = 0.01 and initial value X0 = 12. Note that SDE (9.34) is not relevant to this calculation.
Carry out at least 10000 repetitions.

2. Compare your approximation in step 1 with the correct value from the Black–Scholes
formula (9.37). The function N(x) can be computed using the Matlab error function erf
as N(x) = (1 + erf (x/

√
2))/2.

3. Replace Euler–Maruyama with the Milstein Method, and repeat step 1. Compare the errors
of the two methods.

4. A (European) put differs from a call in that it represents the right to sell, not buy, at the
strike price. The value of a put is

P (X,T ) = e−rT E(max(K − X(T ),0)), (9.38)

using X(T ) from (9.35). Calculate the value through Monte Carlo simulation for the same
data as in step 1, using both Euler–Maruyama and Milstein Methods.

5. Compare your approximation in step 4 with the Black–Scholes formula for a put:

P (X,T ) = Ke−rT N(−d2) − XN(−d1). (9.39)

6. A down-and-out barrier option has a payout that is canceled if the stock crosses a given
level. Consider the barrier call with strike price K = $15 and barrier L = $10. The payoff
is max(X − K,0) if X(t) > L for 0 < t < T , and 0 otherwise. Design and carry out a
Monte Carlo simulation, using the geometric Brownian motion (9.35) and with (9.36)
modified for the barrier option payout. Compare with the correct value

V (X,T ) = C(X,T ) −
(

X

L

)1−2r/σ 2

C(L2/X,T ),

where C(X,T ) is the standard European call value with strike price K . See Wilmott et al.
[1995], McDonald [2005], and Hull [2008] for details on more exotic options, their pricing
formulas, and the role of Monte Carlo simulation in finance.

Software and Further Reading

The textbook Gentle [2003] is an introduction to the problem of generating random numbers.
Other classic sources in the field are Knuth [1997] and Neiderreiter [1992]. Comparison of
random number generation methods and a discussion of common evaluation criteria can be
found in Hellekalek [1998].

The randu problem is addressed in Marsaglia [1968]. The minimum standard genera-
tor was introduced in Park and Miller [1988]. Matlab’s random number generator is based
on the subtract-with-borrow methods described by Marsaglia and Zaman [1991]. Com-
prehensive sources for information on Monte Carlo and its applications include Fishman
[1996] and Rubenstein [1981].
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Modern textbooks on stochastic differential equations include Oksendal [1998] and
Klebaner [1998]. Proper study in this area requires a solid background in basic proba-
bility. The computational aspects of SDEs are comprehensively treated in Kloeden and
Platen [1992] and the more application-oriented handbook Kloeden et al. [1994]. The arti-
cle Higham [2001] is a very readable introduction that includes Matlab software for basic
algorithms. Steele [2001] is an introduction to stochastic differential equations illustrated
by numerous financial applications.



C H A P T E R

10
Trigonometric Interpolation
and the FFT
The digital signal processing (DSP) chip is the backbone
of advanced consumer electronics. Cellular phones,
CD and DVD controllers, automobile electronics, per-
sonal digital assistants, digital modems, cameras, and
televisions all make use of these ubiquitous devices.
The hallmark of the DSP chip is its ability to do
rapid digital calculations, including the fast Fourier
transform (FFT).

One of the most basic functions of DSP is to sepa-
rate desired input information from unwanted noise by

filtering. The ability to extract signals from a cluttered
background is an important part of the ongoing quest
to build reliable speech recognition software. It is also
a key element of pattern recognition devices, used by
soccer-playing robot dogs to turn sensory inputs into
usable data.

Reality Check 10 on page 492 describes
the Wiener filter, a fundamental building block of noise
reduction via DSP.

Not even the most optimistic trigonometry teacher of a half-century ago could have
envisioned the impact sines and cosines have had on modern technology. As we

learned in Chapter 4, trig functions of multiple frequencies are natural interpolating func-
tions for periodic data. The Fourier transform is almost unreasonably efficient at carrying
out the interpolation and is irreplaceable in the data-intensive applications of modern signal
processing.

The efficiency of trigonometric interpolation is bound up with the concept of orthogo-
nality. We will see that orthogonal basis functions make interpolation and least squares fitting
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of data much simpler and more accurate. The Fourier transform exploits this orthogonality
and provides an efficient means of interpolation with sines and cosines. The computational
breakthrough of Cooley and Tukey called the Fast Fourier Transform (FFT) means that the
DFT can be computed very cheaply.

This chapter covers the basic ideas of the Discrete Fourier Transform (DFT), including
a short introduction to complex numbers. The role of the DFT in trigonometric interpolation
and least squares approximation is featured and viewed as a special case of approximation
by orthogonal basis functions. This is the essence of digital filtering and signal processing.

10.1 THE FOURIER TRANSFORM

The French mathematician Jean Baptiste Joseph Fourier, after escaping the guillotine during
the French Revolution and going to war alongside Napoleon, found time to develop a
theory of heat conduction. To make the theory work, he needed to expand functions—
not in terms of polynomials, as Taylor series, but in a revolutionary way first developed
by Euler and Bernoulli—in terms of sine and cosine functions. Although rejected by the
leading mathematicians of the time due to a perceived lack of rigor, today Fourier’s methods
pervade many areas of applied mathematics, physics, and engineering. In this section, we
introduce the Discrete Fourier Transform and describe an efficient algorithm to compute it,
the Fast Fourier Transform.

10.1.1 Complex arithmetic

The bookkeeping requirements of trigonometric functions can be greatly simplified by
adopting the language of complex numbers. Every complex number has form z=a +bi,
where i =

√
−1. Each z is represented geometrically as a two-dimensional vector of

size a along the real (horizontal) axis, and size b along the imaginary (vertical) axis, as
shown in Figure 10.1. The complex magnitude of the number z = a + bi is defined to be
|z|=

√
a2 + b2 and is exactly the distance of the complex number from the origin in the

complex plane. The complex conjugate of a complex number z = a + bi is z =a −bi.

a + bi

a

b

θ

r

i

x

Figure 10.1 Representation of a complex number. The real and imaginary parts are a and

bi, respectively. The polar representation is a + bi = reiθ .

The celebrated Euler formula for complex arithmetic says eiθ = cosθ + i sin θ . The
complex magnitude of z = eiθ is 1, so complex numbers of this form lie on the unit circle
in the complex plane, as shown in Figure 10.2. Any complex number a + bi can be written
in its polar representation
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= i

e0 = 1 + 0ieiπ = –1 + 0i

y

x

iπ
2e

iπ
4e

Figure 10.2 Unit circle in the complex plane. Complex numbers of the form eiθ for some

angle θ have magnitude one and lie on the unit circle.

z = a + bi = reiθ , (10.1)

where r is the complex magnitude |z| =
√

a2 + b2 and θ = arctan b/a.
The unit circle in the complex plane corresponds to complex numbers of magnitude

r = 1. To multiply together the two numbers eiθ and eiγ on the unit circle, we could convert
to trigonometric functions and then multiply:

eiθ eiγ = (cosθ + i sin θ)(cosγ + i sin γ )

= cosθ cosγ − sin θ sin γ + i(sin θ cosγ + sin γ cosθ).

Recognizing the cos addition formula and the sin addition formula, we can rewrite this as

cos(θ + γ ) + i sin(θ + γ ) = ei(θ+γ ).

Equivalently, just add the exponents:

eiθ eiγ = ei(θ+γ ). (10.2)

Equation (10.2) shows that the product of two numbers on the unit circle gives a new
point on the unit circle whose angle is the sum of the two angles. The Euler formula
hides the trigonometry details, like the sine and cosine addition formulas, and makes the
bookkeeping much easier. This is the reason we introduce complex arithmetic into the
study of trigonometric interpolation. Although it can be done entirely in the real numbers,
the Euler formula has a profound simplifying effect.

We single out a special subset of magnitude 1 complex numbers. A complex number z

is an nth root of unity if zn = 1. On the real number line, there are only two roots of unity,
−1 and 1. In the complex plane, however, there are many. For example, i itself is a 4th root
of unity, because i4 = (−1)2 = 1.

An nth root of unity is called primitive if it is not a kth root of unity for any k < n.
By this definition, −1 is a primitive second root of unity and a nonprimitive fourth root
of unity. It is easy to check that for any integer n, the complex number ωn = e−i2π/n is a
primitive nth root of unity. The number ei2π/n is also a primitive nth root of unity, but we
will follow the usual convention of using the former for the basis of the Fourier transform.
Figure 10.3 shows a primitive eighth root of unity ω8 = e−i2π/8 and the other seven roots
of unity, which are powers of ω8.
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π/4ω4

ω3 ω = 

ω0 = ω8 = 1

ω5 ω7

ω6

ω2

y

x

i2π
8e

−

Figure 10.3 Roots of unity. The eight 8th roots of unity are shown. They are generated by

ω = e−2π/8, meaning that each is ωk for some integer k. Although ω and ω3 are primitive

8th roots of unity, ω2 is not, because it is also a 4th root of unity.

Here is a key identity that we will need later to simplify our computations of the Discrete
Fourier Transform. Let ω denote the nth root of unity ω = e−i2π/n where n > 1. Then

1 + ω + ω2 + ω3 + ·· · + ωn−1 = 0. (10.3)

The proof of this identity follows from the telescoping sum

(1 − ω)(1 + ω + ω2 + ω3 + ·· · + ωn−1) = 1 − ωn = 0. (10.4)

Since the first term on the left is not zero, the second must be. A similar method of proof
shows that

1 + ω2 + ω4 + ω6 + ·· · + ω2(n−1) = 0,

1 + ω3 + ω6 + ω9 + ·· · + ω3(n−1) = 0,

...

1 + ωn−1 + ω(n−1)2 + ω(n−1)3 + ·· · + ω(n−1)(n−1) = 0. (10.5)

The next one is different:

1 + ωn + ω2n + ω3n + ·· · + ωn(n−1) = 1 + 1 + 1 + 1 + ·· · + 1

= n. (10.6)

This information is collected into the following lemma.

LEMMA 10.1 Primitive roots of unity. Let ω be a primitive nth root of unity and k be an integer. Then

n−1∑

j=0

ωjk =
{

n if k/n is an integer
0 otherwise

.
#

Exercise 6 asks the reader to fill in the details of the proof.

10.1.2 Discrete Fourier Transform

Let x = [x0, . . . ,xn−1]T be a (real-valued) n-dimensional vector, and denote ω = e−i2π/n.
Here is the fundamental definition of this chapter.
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DEFINITION 10.2 The Discrete Fourier Transform (DFT) of x = [x0, . . . ,xn−1]T is the n-dimensional vector
y = [y0, . . . ,yn−1], where ω = e−i2π/n and

yk = 1√
n

n−1∑

j=0

xj ωjk. (10.7)

❒

For example, Lemma 10.1 shows that the DFT of x = [1,1, . . . ,1] is y = [√n,0, . . . ,0].
In matrix terms, this definition says

⎡

⎢⎢⎢⎢⎢⎣

y0
y1
y2
...

yn−1

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

a0 + ib0
a1 + ib1
a2 + ib2

...

an−1 + ibn−1

⎤

⎥⎥⎥⎥⎥⎦
= 1√

n

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

ω0 ω0 ω0 · · · ω0

ω0 ω1 ω2 · · · ωn−1

ω0 ω2 ω4 · · · ω2(n−1)

ω0 ω3 ω6 · · · ω3(n−1)

...
...

...
...

ω0 ωn−1 ω2(n−1) · · · ω(n−1)2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

x0
x1
x2
...

xn−1

⎤

⎥⎥⎥⎥⎥⎦
.

(10.8)

Each yk = ak + ibk is a complex number. The n × n matrix in (10.8) is called the Fourier
matrix

Fn = 1√
n

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

ω0 ω0 ω0 · · · ω0

ω0 ω1 ω2 · · · ωn−1

ω0 ω2 ω4 · · · ω2(n−1)

ω0 ω3 ω6 · · · ω3(n−1)

...
...

...
...

ω0 ωn−1 ω2(n−1) · · · ω(n−1)2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (10.9)

Except for the top row, each row of the Fourier matrix adds to zero, and the same is true
for the columns, since Fn is a symmetric matrix. The Fourier matrix has an explicit inverse

F −1
n = 1√

n

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

ω0 ω0 ω0 · · · ω0

ω0 ω−1 ω−2 · · · ω−(n−1)

ω0 ω−2 ω−4 · · · ω−2(n−1)

ω0 ω−3 ω−6 · · · ω−3(n−1)

...
...

...
...

ω0 ω−(n−1) ω−2(n−1) · · · ω−(n−1)2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (10.10)

and the inverse Discrete Fourier Transform of the vector y is x = F −1
n y. Checking that

(10.10) is the inverse of the matrix Fn requires Lemma 11.1 about nth roots of unity. See
Exercise 8.

Let z = eiθ = cosθ + i sin θ be a point on the unit circle. Then its reciprocal e−iθ =
cosθ − i sin θ is its complex conjugate. Therefore, the inverse DFT is the matrix of complex
conjugates of the entries of Fn:

F −1
n = F n. (10.11)

DEFINITION 10.3 The magnitude of a complex vector v is the real number ||v|| =
√

vT v. A square complex
matrix F is unitary if F

T
F = I . ❒
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A unitary matrix, like the Fourier matrix, is the complex version of a real orthogonal
matrix. If F is unitary, then ||Fv||2 = vT F

T
Fv = vT v = ||v||2. Thus, the magnitude of a

vector is unchanged upon multiplication on the left by F —or F −1 for that matter.
Applying the Discrete Fourier Transform is a matter of multiplying by the n × n matrix

Fn, and therefore requires O(n2) operations (specifically n2 multiplications and n(n − 1)

additions). The inverse Discrete Fourier Transform, which is applied by multiplication by
F −1

n , is also an O(n2) process. In Section 10.1.3, we develop a version of the DFT that
requires significantly fewer operations, called the Fast Fourier transform.

! EXAMPLE 10.1 Find the DFT of the vector x = [1,0,−1,0]T .

Let ω be the 4th root of unity, or ω = e−iπ/2 = cos(π/2) − i sin(π/2) = −i.
Applying the DFT, we get
⎡

⎢⎢⎣

y0
y1
y2
y3

⎤

⎥⎥⎦ = 1√
4

⎡

⎢⎢⎣

1 1 1 1
1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1
0

−1
0

⎤

⎥⎥⎦ = 1
2

⎡

⎢⎢⎣

1 1 1 1
1 −i −1 i

1 −1 1 −1
1 i −1 −i

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1
0

−1
0

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0
1
0
1

⎤

⎥⎥⎦ .

(10.12)

"

The Matlab commandfft carries out the DFT with a slightly different normalization,
so that Fnx is computed byfft(x)/sqrt(n). The inverse commandifft is the inverse
of fft. Therefore, F −1

n y is computed by the Matlab command ifft(y)*sqrt(n).
In other words, Matlab’s fft and ifft commands are inverses of one another, although
their normalization differs from the definition given here, which has the advantage that Fn

and F −1
n are unitary matrices.

Even if the vector x has components that are real numbers, there is no reason for the
components of y to be real numbers. But if the xj are real, the complex numbers yk have a
special property:

LEMMA 10.4 Let {yk} be the DFT of {xj }, where the xj are real numbers. Then (a) y0 is real, and
(b) yn−k = yk for k = 1, . . . ,n − 1. #

Proof. The reason for (a) is clear from (10.7), since y0 is the sum of the xj ’s divided
by

√
n. Part (b) follows from the fact that

ωn−k = e−i2π(n−k)/n = e−i2π ei2πk/n = cos(2πk/n) + i sin(2πk/n)

while

ωk = e−i2πk/n = cos(2πk/n) − i sin(2πk/n),

implying that ωn−k = ωk . From the definition of Fourier transform,

yn−k = 1√
n

n−1∑

j=0

xj (ωn−k)j

= 1√
n

n−1∑

j=0

xj (ωk)j

= 1√
n

n−1∑

j=0

xj (ωk)j = yk.
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Here we have used the fact that the product of complex conjugates is the conjugate of the
product. ❒

Lemma 10.4 has an interesting consequence. Let n be even and the x0, . . . ,xn−1
be real numbers. Then the DFT replaces them with exactly n other real num-
bers a0,a1,b1,a2,b2, . . . ,an/2, the real and imaginary parts of the Fourier transform
y0, . . . ,yn−1. For example, the n = 8 DFT has the form

F8

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0
x1
x2
x3
x4
x5
x6
x7

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
a1 + ib1
a2 + ib2
a3 + ib3
a4
a3 − ib3
a2 − ib2
a1 − ib1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0
...

y n
2 −1
y n

2
y n

2 −1
...

y1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10.13)

10.1.3 The Fast Fourier Transform

As mentioned in the last section, the Discrete Fourier Transform applied to an n-vector
in the traditional way requires O(n2) operations. Cooley and Tukey [1965] found a
way to accomplish the DFT in O(n logn) operations in an algorithm called the Fast
Fourier Transform (FFT). The popularity of the FFT for data analysis followed almost
immediately. The field of signal processing converted from primarily analog to digital
largely due to this algorithm. We will explain their method and show its superiority to the
naive DFT (10.8) through an operation count.

We can write the DFT Fnx as
⎡

⎢⎣
y0
...

yn−1

⎤

⎥⎦ = 1√
n

Mn

⎡

⎢⎣
x0
...

xn−1

⎤

⎥⎦ ,

where

Mn =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

ω0 ω0 ω0 · · · ω0

ω0 ω1 ω2 · · · ωn−1

ω0 ω2 ω4 · · · ω2(n−1)

ω0 ω3 ω6 · · · ω3(n−1)

...
...

...
...

ω0 ωn−1 ω2(n−1) · · · ω(n−1)2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Complexity The achievement of Cooley and Tukey to reduce the complexity of the

DFT from O(n2) operations to O(n logn) operations opened up a world of possibilities for

Fourier transform methods. A method that scales“almost linearly’’with the size of the problem

is very valuable. For example, there is a possibility of using it for real-time data, since analysis

can occur approximately at the same timescale that data are acquired. The development

of the FFT was followed a short time later with specialized circuitry for implementing it, now

represented by DSP chips for digital signal processing that are ubiquitous in electronic systems

for analysis and control.
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We will show how to compute z = Mnx recursively. To complete the DFT requires dividing
by

√
n, or y = Fnx = z/

√
n.

We start by showing how the n = 4 case works, to get the main idea across. The general
case will then be clear. Let ω = e−i2π/4 = −i. The Discrete Fourier Transform is

⎡

⎢⎢⎣

z0
z1
z2
z3

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

ω0 ω0 ω0 ω0

ω0 ω1 ω2 ω3

ω0 ω2 ω4 ω6

ω0 ω3 ω6 ω9

⎤

⎥⎥⎦

⎡

⎢⎢⎣

x0
x1
x2
x3

⎤

⎥⎥⎦ . (10.14)

Write out the matrix product, but rearrange the order of the terms so that the even-numbered
terms come first:

z0 = ω0x0 + ω0x2 + ω0(ω0x1 + ω0x3)

z1 = ω0x0 + ω2x2 + ω1(ω0x1 + ω2x3)

z2 = ω0x0 + ω4x2 + ω2(ω0x1 + ω4x3)

z3 = ω0x0 + ω6x2 + ω3(ω0x1 + ω6x3)

Using the fact that ω4 = 1, we can rewrite these equations as

z0 = (ω0x0 + ω0x2) + ω0(ω0x1 + ω0x3)

z1 = (ω0x0 + ω2x2) + ω1(ω0x1 + ω2x3)

z2 = (ω0x0 + ω0x2) + ω2(ω0x1 + ω0x3)

z3 = (ω0x0 + ω2x2) + ω3(ω0x1 + ω2x3)

Notice that each term in parentheses in the top two lines is repeated verbatim in the bottom
two lines. Define

u0 = µ0x0 + µ0x2

u1 = µ0x0 + µ1x2

and

v0 = µ0x1 + µ0x3

v1 = µ0x1 + µ1x3,

where µ = ω2 is a 2nd root of unity. Both u = (u0,u1)T and v = (v0,v1)T are essentially
DFTs with n = 2; more precisely,

u = M2

[
x0
x2

]

v = M2

[
x1
x3

]
.

We can write the original M4x as

z0 = u0 + ω0v0

z1 = u1 + ω1v1

z2 = u0 + ω2v0

z3 = u1 + ω3v1.
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In summary, the calculation of the DFT(4) has been reduced to a pair of DFT(2)s plus some
extra multiplications and additions.

Ignoring the 1/
√

n for a moment, DFT(n) can be reduced to computing two DFT(n/2)s
plus 2n − 1 extra operations (n − 1 multiplications and n additions). A careful count of the
additions and multiplications necessary yields Theorem 10.5.

THEOREM 10.5 Operation Count for FFT. Let n be a power of 2. Then the Fast Fourier Transform of size
n can be completed in n(2log2 n − 1) + 1 additions and multiplications, plus a division
by

√
n. #

Proof. Ignore the square root, which is applied at the end. The result is equivalent to
saying that the DFT(2m) can be completed in 2m(2m − 1) + 1 additions and multiplica-
tions. In fact, we saw above how a DFT(n), where n is even, can be reduced to a pair of
DFT(n/2)s. If n is a power of two—say, n = 2m—then we can recursively break down the
problem until we get to DFT(1), which is multiplication by the 1 × 1 identity matrix, tak-
ing zero operations. Starting from the bottom up, DFT(1) takes no operations, and DFT(2)
requires two additions and a multiplication: y0 = u0 + 1v0,y1 = u0 + ωv0, where u0 and
v0 are DFT(1)s (that is, u0 = y0 and v0 = y1).

DFT(4) requires two DFT(2)s plus 2 ∗ 4 − 1 = 7 further operations, for a total of
2(3) + 7 = 2m(2m − 1) + 1 operations, where m = 2. We proceed by induction: Assume
that this formula is correct for a given m. Then DFT(2m+1) takes two DFT(2m)s, which take
2(2m(2m − 1) + 1) operations, plus 2 · 2m+1 − 1 extras (to complete equations similar to
(10.15)), for a total of

2(2m(2m − 1) + 1) + 2m+2 − 1 = 2m+1(2m − 1 + 2) + 2 − 1

= 2m+1(2(m + 1) − 1) + 1.

Therefore, the formula 2m(2m − 1) + 1 operations is proved for the fast version of
DFT(2m), from which the result follows. ❒

The fast algorithm for the DFT can be exploited to make a fast algorithm for the inverse
DFT without further work. The inverse DFT is the complex conjugate matrix F n. To carry
out the inverse DFT of a complex vector y, just conjugate, apply the FFT, and conjugate
the result, because

F −1
n y = F ny = Fny. (10.15)

10.1 Exercises

1. Find the DFT of the following vectors: (a) [0,1,0,−1] (b) [1,1,1,1] (c) [0,−1,0,1]
(d) [0,1,0,−1,0,1,0,−1]

2. Find the DFT of the following vectors: (a) [3/4,1/4,−1/4,1/4] (b) [9/4,1/4,−3/4,1/4]
(c) [1,0,−1/2,0] (d) [1,0,−1/2,0,1,0,−1/2,0]

3. Find the inverse DFT of the following vectors: (a) [1,0,0,0] (b) [1,1,−1,1] (c) [1,−i,1, i]
(d) [1,0,0,0,3,0,0,0]

4. Find the inverse DFT of the following vectors: (a) [0,−i,0, i] (b) [2,0,0,0]
(c) [1/2,1/2,0,1/2] (d) [1,3/2,1/2,3/2]

5. (a) Write down all fourth roots of unity and all primitive fourth roots of unity. (b) Write down
all primitive seventh roots of unity. (c) How many primitive pth roots of unity exist for a prime
number p?
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6. Prove Lemma 10.1.

7. Find the real numbers a0,a1,b1,a2,b2, . . . ,an/2 as in (10.13) for the Fourier transforms in
Exercise 1.

8. Prove that the matrix in (10.10) is the inverse of the Fourier matrix Fn.

10.2 TRIGONOMETRIC INTERPOLATION

What does the Discrete Fourier transform actually do? In this section, we present an inter-
pretation of the output vector y of the Fourier transform as interpolating coefficients for
evenly spaced data in order to make its workings more understandable.

10.2.1 The DFT Interpolation Theorem

Let [c,d] be an interval and let n be a positive integer. Define $t = (d − c)/n and tj =
c + j$t for j = 0, . . . ,n − 1 to be evenly spaced points in the interval. For a given input
vector x to the Fourier transform, we will interpret the component xj as the j th component
of a measured signal. For example, we could think of the components of x as a series of
measurements, measured at the discrete, evenly spaced times tj , as shown in Figure 10.4.

t0 t1 t2 t3 t4 t5 t6 t7 1

x0 x1

x2

x3

x4

x5

x6 x7

y

t

–5

–10

0

5

Figure 10.4 The components of x viewed as a time series. The Fourier transform is a way

to compute the trigonometric polynomial that interpolates this data.

Let y = Fnx be the DFT of x. Since x is the inverse DFT of y, we can write an explicit
formula for the components of x from (10.10), remembering that ω = e−i2π/n:

xj = 1√
n

n−1∑

k=0

yk(ω−k)j = 1√
n

n−1∑

k=0

ykei2πkj/n =
n−1∑

k=0

yk
e

i2πk(tj −c)

d−c

√
n

. (10.16)

We can view this as interpolation of the points (tj ,xj ) by trigonometric basis functions where
the coefficients are yk . Theorem 10.6 is a simple restatement of (10.16), saying that data
points (tj ,xj ) are interpolated by basis functions ei2πk(t−c)/(d−c)/

√
n for k = 0, . . . ,n − 1,

with interpolation coefficients given by Fnx.

THEOREM 10.6 DFT Interpolation Theorem. Given an interval [c,d] and positive integer n, let tj = c +
j(d − c)/n for j = 0, . . . ,n − 1, and let x = (x0, . . . ,xn−1) denote a vector of n numbers.
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Define a⃗ + b⃗i = Fnx, where Fn is the Discrete Fourier Transform matrix. Then the complex
function

Q(t) = 1√
n

n−1∑

k=0

(ak + ibk)ei2πk(t−c)/(d−c)

satisfies Q(tj ) = xj for j = 0, . . . ,n − 1. Furthermore, if the xj are real, the real function

P (t) = 1√
n

n−1∑

k=0

(
ak cos

2πk(t − c)

d − c
− bk sin

2πk(t − c)

d − c

)

satisfies P (tj ) = xj for j = 0, . . . ,n − 1. #

In other words, the Fourier transform Fn transforms data {xj } into interpolation
coefficients.

The explanation for the last part of the theorem is that, using the Euler formula, we can
rewrite the interpolation function in (10.16) as

Q(t) = 1√
n

n−1∑

k=0

(ak + ibk)

(
cos

2πk(t − c)

d − c
+ i sin

2πk(t − c)

d − c

)
.

Separate the interpolating function Q(t) = P (t) + iI (t) into its real and imaginary parts.
Since the xj are real numbers, only the real part of Q(t) is needed to interpolate the xj . The
real part is

P (t) = Pn(t) = 1√
n

n−1∑

k=0

(
ak cos

2πk(t − c)

d − c
− bk sin

2πk(t − c)

d − c

)
. (10.17)

A subscript n identifies the number of terms in the trigonometric model. We will
sometimes call Pn an order n trigonometric function. Lemma 10.4 and the following
Lemma 10.7 can be used to simplify the interpolating function Pn(t) further:

LEMMA 10.7 Let t = j/n, where j and n are integers. Let k be an integer. Then

cos2(n − k)π t = cos2kπ t and sin 2(n − k)π t = −sin 2kπ t . (10.18)

#

In fact, the cosine addition formula yields cos2(n − k)πj/n= cos(2πj −2jkπ/n) =
cos(−2jkπ/n) and similarly for sine.

Lemma 10.7, together with Lemma 10.4, implies that the latter half of the trigonometric
expansion (10.17) is redundant. We can interpolate at the tj ’s by using only the first half of
the terms (except for a change of sign for the sine terms). By Lemma 10.4, the coefficients
from the latter half of the expansion are the same as those from the first half (except for a
change of sign for the sin terms). Thus, the changes of sign cancel one another out, and we
have shown that the simplified version of Pn is
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–1

1

0 1/4 2/4 3/4 1

x0

x1

x2

x3

x

t

Figure 10.5 Trigonometric interpolation. The input vector x is [1,0,−1,0]T . Formula (10.19)

gives the interpolating function to be P4(t) = cos 2π t.

Pn(t) = a0√
n

+ 2√
n

n/2−1∑

k=1

(
ak cos

2kπ(t − c)

d − c
− bk sin

2kπ(t − c)

d − c

)

+an/2√
n

cos
nπ(t − c)

d − c
.

To write this expression, we have assumed that n is even. The formula is slightly different
for n odd. See Exercise 5.

COROLLARY 10.8 For an even integer n, let tj = c + j(d − c)/n for j = 0, . . . ,n − 1, and let x =
(x0, . . . ,xn−1) denote a vector of n real numbers. Define a⃗ + b⃗i = Fnx, where Fn is the
Discrete Fourier Transform. Then the function

Pn(t) = a0√
n

+ 2√
n

n/2−1∑

k=1

(
ak cos

2kπ(t − c)

d − c
− bk sin

2kπ(t − c)

d − c

)

+an/2√
n

cos
nπ(t − c)

d − c
(10.19)

satisfies Pn(tj ) = xj for j = 0, . . . ,n − 1. #

! EXAMPLE 10.2 Find the trigonometric interpolant for Example 10.1.

The interval is [c,d] = [0,1]. Let x = [1,0,−1,0]T and compute its DFT
to be y = [0,1,0,1]T . The interpolating coefficients are ak + ibk = yk . Therefore,
a0 =a2 =0,a1 =a3 =1, and b0 = b1 = b2 = b3 = 0. According to (10.19), we only need
a0,a1,a2, and b1. A trigonometric interpolating function for x is given by

P4(t) = a0

2
+ (a1 cos2π t − b1 sin 2π t) + a2

2
cos4π t

= cos2π t .

The interpolation of the points (t,x), where t = [0,1/4,1/2,3/4] and x = [1,0,−1,0], is
shown in Figure 10.5. "

! EXAMPLE 10.3 Find the trigonometric interpolant for the temperature data from Example 4.6: x =
[−2.2,−2.8,−6.1,−3.9,0.0,1.1,−0.6,−1.1] on the interval [0,1].
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1t0 t1 t2 t3 t4 t5 t6 t7

y

t

–5

–10

0

5

Figure 10.6 Trigonometric interpolation of data from Example 4.6. The data

t = [0,1/8,2/8,3/8,4/8,5/8,6/8,7/8],x = [−2.2,−2.8,−6.1,−3.9,0.0,1.1,−0.6,−1.1] are

interpolated with the use of the Fourier transform with n = 8. The plot is made by

Program 10.1 with p = 100.

The Fourier transform output, accurate to four decimal places, is

y =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5.5154
−1.0528 + 3.6195i

1.5910 − 1.1667i

−0.5028 − 0.2695i

−0.7778
−0.5028 + 0.2695i

1.5910 + 1.1667i

−1.0528 − 3.6195i

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

According to formula (10.19), the interpolating function is

P8(t) = −5.5154√
8

− 1.0528√
2

cos2π t − 3.6195√
2

sin 2π t

+ 1.5910√
2

cos4π t + 1.1667√
2

sin 4π t

− 0.5028√
2

cos6π t + 0.2695√
2

sin 6π t

− 0.7778√
8

cos8π t

= − 1.95 − 0.7445cos2π t − 2.5594sin 2π t

+ 1.125cos4π t + 0.825sin 4π t

− 0.3555cos6π t + 0.1906sin 6π t

− 0.2750cos8π t . (10.20)

Figure 10.6 shows the data points and the trigonometric interpolating function. "

10.2.2 Efficient evaluation of trigonometric functions

Corollary 10.8 is a powerful statement about interpolation. Although it appears complicated
at first, there is another way to evaluate and plot the trigonometric interpolating polynomial
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in Figures 10.5 and 10.6, using the DFT to do all the work instead of plotting the sines and
cosines of (10.19). After all, we know from Theorem 10.6 that multiplying the vector x

of data points by Fn changes data to interpolation coefficients. Conversely, we can turn
interpolation coefficients into data points. Instead of evaluating (10.19), just invert the
DFT: Multiply the vector of interpolation coefficients {ak + ibk} by F −1

n .
Of course, if we follow the operation Fn by its inverse, F −1

n , we just get the original
data points back and gain nothing. Instead, we will let p ≥ n be a larger number. We plan
to view (10.19) as an order p trigonometric function and then invert the Fourier transform
to evaluate the curve at the p equally spaced points. We can take p large enough to get a
continuous-looking plot.

To view the coefficients of Pn(t) as the coefficients of an order p trigonometric poly-
nomial, notice that we can rewrite (10.19) as

Pp(t) =

√
p
n a0

√
p

+ 2√
p

p/2−1∑

k=1

(√
p

n
ak cos

2kπ(t − c)

d − c
−

√
p

n
bk sin

2kπ(t − c)

d − c

)

+

√
p
n an/2
√

p
cosnπ t (10.21)

where we set ak = bk = 0 for k = n
2 + 1, . . . , p

2 . We conclude from (10.21) that the way to
produce p points lying on the curve (10.19) at tj = c + j(d − c)/n for j = 0, . . . ,n − 1
is to multiply the Fourier coefficients by

√
p/n and then invert the DFT.

We write Matlab code to implement this idea. Roughly speaking, we want to
implement

F −1
p

√
p

n
Fnx

using Matlab’s commands fft and ifft, where

F −1
p = √

p · ifft and Fn = 1√
n

· fft.

Putting the pieces together, this corresponds to the following operations:

√
p · ifft[p]

√
p

n

1√
n

· fft[n] = p

n
· ifft[p] · fft[n]. (10.22)

Of course, F −1
p can only be applied to a length p vector, so we need to place the

degree n Fourier coefficients into a length p vector before inverting. The short program
dftinterp.m carries out these steps.

%Program 10.1 Fourier interpolation
%Interpolate n data points on [c,d] with trig function P(t)
% and plot interpolant at p (>=n) evenly spaced points.
%Input: interval [c,d], data points x, even number of data
% points n, even number p>=n
%Output: data points of interpolant xp
function xp=dftinterp(inter,x,n,p)
c=inter(1);d=inter(2);t=c+(d-c)*(0:n-1)/n; tp=c+(d-c)*(0:p-1)/p;
y=fft(x); % apply DFT
yp=zeros(p,1); % yp will hold coefficients for ifft
yp(1:n/2+1)=y(1:n/2+1); % move n frequencies from n to p
yp(p-n/2+2:p)=y(n/2+2:n); % same for upper tier
xp=real(ifft(yp))*(p/n); % invert fft to recover data
plot(t,x,’o’,tp,xp) % plot data points and interpolant



10.2 Trigonometric Interpolation | 481

Running the function dftinterp([0, 1], [−2.2 −2.8 −6.1 −3.9 0.0
1.1 −0.6 −1.1],8,100), for example, produces the p = 100 plotted points in
Figure 10.6 without explicitly using sines or cosines. A few comments on the code are
in order. The goal is to apply fft[n], followed by ifft[p], and then multiply by p/n.
After applying fft to the n values in x, the coefficients in the vector y are moved from
the n frequencies in Pn(t) to a vector yp holding p frequencies, where p ≥ n. There are
many higher frequencies among the p frequencies that are not used by Pn, which leads to
zero coefficients in those high frequencies, in positions n/2 + 2 to p/2 + 1. The upper half
of the entries in yp gives a recapitulation of the lower half, with complex conjugates and
in reverse order, following (10.13). After the DFT is inverted with the ifft command,
although theoretically the result is real, computationally there may be a small imaginary
part due to rounding. This is removed by applying the real command.

A particularly simple and useful case is c = 0,d = n. The data points xj are collected
at the integer interpolation nodes sj = j for j = 0, . . . ,n − 1. The points (j ,xj ) are inter-
polated by the trigonometric function

Pn(s) = a0√
n

+ 2√
n

n/2−1∑

k=1

(
ak cos

2kπ

n
s − bk sin

2kπ

n
s

)
+ an/2√

n
cosπs. (10.23)

In Chapter 11, we will use integer interpolation nodes exclusively, for compatibility with
the usual conventions for audio and image data compression algorithms.

10.2 Exercises

1. Use the DFT and Corollary 10.8 to find the trigonometric interpolating function for the
following data:

(a)

t x

0 0
1
4 1
1
2 0
3
4 −1

(b)

t x

0 1
1
4 1
1
2 −1
3
4 −1

(c)

t x

0 −1
1
4 1
1
2 −1
3
4 1

(d)

t x

0 1
1
4 1
1
2 1
3
4 1

2. Use (10.23) to find the trigonometric interpolating function for the following data:

(a)

t x

0 0
1 1
2 0
3 −1

(b)

t x

0 1
1 1
2 −1
3 −1

(c)

t x

0 1
1 2
2 4
3 1

(d)

t x

0 1
1 0
2 1
3 0

3. Find the trigonometric interpolating function for the following data:

(a)

t x

0 0
1
8 1
1
4 0
3
8 −1
1
2 0
5
8 1
3
4 0
7
8 −1

(b)

t x

0 1
1
8 2
1
4 1
3
8 0
1
2 1
5
8 2
3
4 1
7
8 0

(c)

t x

0 1
1
8 1
1
4 1
3
8 1
1
2 0
5
8 0
3
4 0
7
8 0

(d)

t x

0 1
1
8 −1
1
4 1
3
8 −1
1
2 1
5
8 −1
3
4 1
7
8 −1
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4. Find the trigonometric interpolating function for the following data:

(a)

t x

0 0
1 1
2 0
3 −1
4 0
5 1
6 0
7 −1

(b)

t x

0 1
1 2
2 1
3 0
4 1
5 2
6 1
7 0

(c)

t x

0 1
1 0
2 1
3 0
4 1
5 0
6 1
7 0

(d)

t x

0 −1
1 0
2 0
3 0
4 1
5 0
6 0
7 0

5. Find a version of (10.19) for the interpolating function in the case where n is odd.

10.2 Computer Problems

1. Find the order 8 trigonometric interpolating function P8(t) for the following data:

(a)

t x

0 0
1
8 1
1
4 2
3
8 3
1
2 4
5
8 5
3
4 6
7
8 7

(b)

t x

0 2
1
8 −1
1
4 0
3
8 1
1
2 1
5
8 3
3
4 −1
7
8 −1

(c)

t x

0 3
1 1
2 4
3 2
4 3
5 1
6 4
7 2

(d)

t x

1 1
2 −2
3 5
4 3
5 −2
6 −3
7 1
8 2

Plot the data points and P8(t).

2. Find the order 8 trigonometric interpolating function P8(t) for the following data:

(a)

t x

0 6
1
8 5
1
4 4
3
8 3
1
2 2
5
8 1
3
4 0
7
8 −1

(b)

t x

0 3
1
8 1
1
4 2
3
8 −1
1
2 −1
5
8 −2
3
4 3
7
8 0

(c)

t x

0 1
2 2
4 4
6 −1
8 0

10 1
12 0
14 2

(d)

t x

−7 2
−5 1
−3 0
−1 5

1 7
3 2
5 1
7 −4

Plot the data points and P8(t).

3. Find the order n = 8 trigonometric interpolating function for f (t) = et at the evenly
spaced points (j/8,f (j/8)) for j = 0, . . . ,7. Plot f (t), the data points, and the interpolating
function.

4. Plot the interpolating function Pn(t) on [0,1] in Computer Problem 3, along with the data
points and f (t) = et for (a) n = 16 (b) n = 32.
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5. Find the order 8 trigonometric interpolating function for f (t) = ln t at the evenly spaced points
(1 + j/8,f (1 + j/8)) for j = 0, . . . ,7. Plot f (t), the data points, and the interpolating
function.

6. Plot the interpolating function Pn(t) on [0,1] in Computer Problem 5, along with the data
points and f (t) = ln t for (a) n = 16 (b) n = 32.

10.3 THE FFT AND SIGNAL PROCESSING

The DFT Interpolation Theorem 10.6 is just one application of the Fourier transform. In this
section, we look at interpolation from a more general point of view, which will show how
to find least squares approximations by using trigonometric functions. These ideas form
the basis of modern signal processing. They will make a second appearance in Chapter 11,
applied to the Discrete Cosine Transform.

10.3.1 Orthogonality and interpolation

The deceptively simple interpolation result of Theorem 10.6 was made possible by the fact
that F −1

n = F
T
n = F n, making Fn a unitary matrix. We encountered the real version of this

definition in Chapter 4, where we called a matrix U orthogonal if U−1 = UT . Now we
study a particular form for an orthogonal matrix that will translate immediately into a good
interpolant.

THEOREM 10.9 Orthogonal Function Interpolation Theorem. Let f0(t), . . . ,fn−1(t) be functions of t

and t0, . . . , tn−1 be real numbers. Assume that the n × n matrix

A =

⎡

⎢⎢⎢⎣

f0(t0) f0(t1) · · · f0(tn−1)

f1(t0) f1(t1) · · · f1(tn−1)
...

...
...

fn−1(t0) fn−1(t1) · · · fn−1(tn−1)

⎤

⎥⎥⎥⎦
(10.24)

is a real n × n orthogonal matrix. If y = Ax, the function

F(t) =
n−1∑

k=0

ykfk(t)

interpolates (t0,x0), . . . , (tn−1,xn−1), that is F(tj ) = xj for j = 0, . . . ,n − 1. #

Proof. The fact y = Ax implies that

x = A−1y = AT y,

and it follows that

xj =
n−1∑

k=0

akj yk =
n−1∑

k=0

ykfk(tj )

for j = 0, . . . ,n − 1, which completes the proof. ❒
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! EXAMPLE 10.4 Let [c,d] be an interval and let n be an even positive integer. Show that the assumptions of
Theorem 10.9 are satisfied for tj = c + j(d − c)/n, j = 0, . . . ,n − 1, and

f0(t) =
√

1
n

f1(t) =
√

2
n

cos
2π(t − c)

d − c

f2(t) =
√

2
n

sin
2π(t − c)

d − c

f3(t) =
√

2
n

cos
4π(t − c)

d − c

f4(t) =
√

2
n

sin
4π(t − c)

d − c

...

fn−1(t) = 1√
n

cos
nπ(t − c)

d − c
.

The matrix is

A =
√

2
n

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
2

1√
2

· · · 1√
2

1 cos 2π
n · · · cos 2π(n−1)

n

0 sin 2π
n · · · sin 2π(n−1)

n
...

...
...

1√
2

1√
2

cosπ · · · 1√
2

cos(n − 1)π

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10.25)

Lemma 10.10 shows that the rows of A are pairwise orthogonal. "

LEMMA 10.10 Let n ≥ 1 and k, l be integers. Then

n−1∑

j=0

cos
2πjk

n
cos

2πj l

n
=

⎧
⎪⎨

⎪⎩

n if both (k − l)/n and (k + l)/n are integers
n
2 if exactly one of (k − l)/n and (k + l)/n is an integer
0 if neither is an integer

n−1∑

j=0

cos
2πjk

n
sin

2πj l

n
= 0

n−1∑

j=0

sin
2πjk

n
sin

2πj l

n
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if both (k − l)/n and (k + l)/n are integers
n
2 if (k − l)/n is an integer and (k + l)/n is not
−n

2 if (k + l)/n is an integer and (k − l)/n is not
0 if neither is an integer

#

The proof of this lemma follows from Lemma 10.1. See Exercise 5.
Returning to Example 10.4, let y = Ax. Theorem 10.9 immediately gives the interpo-

lating function
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F(t) = 1√
n

y0

+
√

2
n

y1 cos
2π(t − c)

d − c
+

√
2
n

y2 sin
2π(t − c)

d − c

+
√

2
n

y3 cos
4π(t − c)

d − c
+

√
2
n

y4 sin
4π(t − c)

d − c
...

+ 1√
n

yn−1 cos
nπ(t − c)

d − c
(10.26)

for the points (tj ,xj ), in agreement with (10.19).

! EXAMPLE 10.5 Use the basis functions of Example 10.4 to interpolate the data points x =
[−2.2,−2.8,−6.1,−3.9,0.0,1.1,−0.6,−1.1] from Example 10.3.

Computing the product of the 8 × 8 matrix A with x yields

Ax =
√

2
8

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
2

1√
2

1√
2

· · · 1√
2

1 cos2π 1
8 cos2π 2

8 · · · cos2π 7
8

0 sin 2π 1
8 sin 2π 2

8 · · · sin 2π 7
8

1 cos4π 1
8 cos4π 2

8 · · · cos4π 7
8

0 sin 4π 1
8 sin 4π 2

8 · · · sin 4π 7
8

1 cos6π 1
8 cos6π 2

8 · · · cos6π 7
8

0 sin 6π 1
8 sin 6π 2

8 · · · sin 6π 7
8

1√
2

1√
2

cosπ 1√
2

cos2π · · · 1√
2

cos7π

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2.2
−2.8
−6.1
−3.9

0.0
1.1

−0.6
−1.1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5.5154
−1.4889
−5.1188

2.2500
1.6500

−0.7111
0.3812

−0.7778

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The formula (10.26) gives the interpolating function,

P (t) = −1.95 − 0.7445cos2π t − 2.5594sin 2π t

+ 1.125cos4π t + 0.825sin 4π t

− 0.3555cos6π t + 0.1906sin 6π t

− 0.2750cos8π t,

in agreement with Example 10.3. "

10.3.2 Least squares fitting with trigonometric functions

Corollary 10.8 showed how the DFT makes it easy to interpolate n evenly spaced data
points on [0,1] by a trigonometric function of form

Pn(t) = a0√
n

+ 2√
n

n/2−1∑

k=1

(ak cos2kπ t − bk sin 2kπ t) + an/2√
n

cosnπ t . (10.27)

Note that the number of terms is n, equal to the number of data points. (As usual in this
chapter, we assume that n is even.) The more data points there are, the more cosines and
sines are added to help with the interpolation.
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Orthogonality In Chapter 4, we established the normal equations AT Ax = AT b

for solving least squares approximation to data by basis functions. The point of Theorem 10.9

is to find special cases that make the normal equations trivial, greatly simplifying the least

squares procedure.This leads to an extremely useful theory of so-called orthogonal functions.

Major examples include the Fourier transform in this chapter and the cosine transform in

Chapter 11.

As we found in Chapter 3, when the number of data points n is large, it becomes less
common to fit a model function exactly. In fact, a common application of a model is to
forget a few details (lossy compression) in order to simplify matters. A second reason to
move away from interpolation, discussed in Chapter 4, is the case where the data points
themselves are assumed to be inexact, so that rigorous enforcement of an interpolating
function is inappropriate.

In either of these situations, we are motivated to do a least squares fit with a function of
type (10.27). Since the coefficients ak and bk occur linearly in the model, we can proceed
with the same program described in Chapter 4, using the normal equations to solve for the
best coefficients. When we try this, we find a surprising result, which will send us right
back to the DFT.

Return to Theorem 10.9. Let n denote the number of data points xj , which we think
of as occurring at evenly spaced times tj = j/n in [0,1], for simplicity. We will introduce
the even positive integer m to denote the number of basis functions to use in the least
squares fit. That is, we will fit to the first m of the basis functions, f0(t), . . . ,fm−1(t). The
function used to fit the n data points will be

Pm(t) =
m−1∑

k=0

ckfk(t), (10.28)

where the ck are to be determined. When m = n, the problem is still interpolation. When
m < n, we have changed to the compression problem. In this case, we expect to match the
data points using Pm with minimum squared error.

The least squares problem is to find coefficients c0, . . . ,cm−1 such that the equality

m−1∑

k=0

ckfk(tj ) = xj

is met with as little error as possible. In matrix terms,

AT
mc = x, (10.29)

where Am is the matrix of the first m rows of A. Under the assumptions of Theorem 10.9,
AT

m has pairwise orthonormal columns. When we set up the normal equations

AmAT
mc = Amx

for c, AmAT
m is the identity matrix. Therefore, the least squares solution,

c = Amx, (10.30)

is easy to calculate. We have proved the following useful result, which extends
Theorem 10.9:
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THEOREM 10.11 Orthogonal Function Least Squares Approximation Theorem. Let m ≤ n be integers,
and assume that data (t0,x0), . . . , (tn−1,xn−1) are given. Set y = Ax, where A is an
orthogonal matrix of form (10.24). Then the interpolating polynomial for basis functions
f0(t), . . . ,fn−1(t) is

Fn(t) =
n−1∑

k=0

ykfk(t), (10.31)

and the best least squares approximation, using only the functions f0, . . . ,fm−1, is

Fm(t) =
m−1∑

k=0

ykfk(t). (10.32)

#

This is a beautiful and useful fact. It says that, given n data points, to find the best least
squares trigonometric function with m < n terms fitting the data, it suffices to compute the
actual interpolant with n terms and keep only the desired first m terms. In other words,
the interpolating coefficients Ax for x degrade as gracefully as possible when terms are
dropped from the highest frequencies. Keeping the m lowest terms in the n-term expansion
guarantees the best fit possible with m lowest frequency terms. This property reflects the
“orthogonality’’ of the basis functions.

The reasoning preceding Theorem 10.11 is easily adapted to prove something more
general. We showed how to find the least squares solution for the first m basis functions, but
in truth, the order was not relevant; we could have specified any subset of the basis functions.
The least squares solution is found simply by dropping all terms in (10.31) that are not
included in the subset. The version (10.32) is a “low-pass’’ filter, assuming that the lower
index functions go with lower “frequencies’’; but by changing the subset of basis functions
kept, we can pass any frequencies of interest simply by dropping the undesired coefficients.

Now we return to the trigonometric polynomial (10.27) and demonstrate how to fit an
order m version to n data points, where m < n. The basis functions used are the functions of
Example 10.4, which satisfy the assumptions of Theorem 10.9. Theorem 10.11 shows that,
whatever the interpolating coefficients, the coefficients of the best least squares approxi-
mation of order m are found by dropping all terms above order m. We have arrived at the
following application:

COROLLARY 10.12 Let [c,d] be an interval, let m<n be even positive integers, x =(x0, . . . ,xn−1) a
vector of n real numbers, and let tj =c + j(d − c)/n for j =0, . . . ,n − 1. Let
{a0,a1,b1,a2,b2, . . . ,an/2−1,bn/2−1,an/2}=Fnx be the interpolating coefficients for
x so that

xj = Pn(tj ) = a0√
n

+ 2√
n

n
2 −1∑

k=1

(
ak cos

2kπ(tj − c)

d − c
− bk sin

2kπ(tj − c)

d − c

)

+
a n

2√
n

cos
nπ(tj − c)

d − c

for j = 0, . . . ,n − 1. Then

Pm(t) = a0√
n

+ 2√
n

m
2 −1∑

k=1

(
ak cos

2kπ(t − c)

d − c
− bk sin

2kπ(t − c)

d − c

)
+

2a m
2√
n

cos
nπ(t − c)

d − c

is the best least squares fit of order m to the data (tj ,xj ) for j = 0, . . . ,n − 1. #
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Another way of appreciating the power of Theorem 10.11 is to compare it with the
monomial basis functions we have used previously for least squares models. The best least
squares parabola fit to the points (0,3), (1,3), (2,5) is y = x2 − x + 3. In other words,
the best coefficients for the model y = a + bx + cx2 for this data are a = 3,b = −1, and
c = 1 (in this case because the squared error is zero—this is the interpolating parabola).
Now let’s fit to a subset of the basis functions—say, change the model to y = a + bx. We
calculate the best line fit to be a = 8/3,b = 1. Note that the coefficients for the degree 1
fit have no apparent relation to their corresponding coefficients for the degree 2 fit. This
is exactly what doesn’t happen for trigonometric basis functions. An interpolating fit, or
any least squares fit to the form (10.28), explicitly contains all the information about lower
order least squares fits.

Because of the extremely simple answer DFT has for least squares, it is especially
simple to write a computer program to carry out the steps. Let m < n < p be integers,
where n is the number of data points, m is the order of the least squares trigonometric
model, and p governs the resolution of the plot of the best model. We can think of least
squares as “filtering out’’ the highest frequency contributions of the order n interpolant and
leaving only the lowest m frequency contributions. That explains the name of the following
Matlab function:

% Program 10.2 Least squares trigonometric fit
% Least squares fit of n data points on [0,1] with trig function
% where 2 <=m <=n. Plot best fit at p (>=n) points.
% Input: interval [c,d], data points x, even number m,
% even number of data points n, even number p>=n
% Output: filtered points xp
function xp=dftfilter(inter,x,m,n,p)
c=inter(1); d=inter(2);
t=c+(d-c)*(0:n-1)/n; % time points for data (n)
tp=c+(d-c)*(0:p-1)/p % time points for interpolant (p)
y=fft(x); % compute interpolation coefficients
yp=zeros(p,1); % will hold coefficients for ifft
yp(1:m/2)=y(1:m/2); % keep only first m frequencies
yp(m/2+1)=real(y(m/2+1)); % since m is even, keep cos term only
if(m<n) % unless at the maximum frequency,
yp(p-m/2+1)=yp(m/2+1); % add complex conjugate to

end % corresponding place in upper tier
yp(p-m/2+2:p)=y(n-m/2+2:n); % more conjugates for upper tier
xp=real(ifft(yp))*(p/n); % invert fft to recover data
plot(t,x,’o’,tp,xp) % plot data and least square approx

! EXAMPLE 10.6 Fit the temperature data from Example 10.3 by least squares trigonometric functions of
orders 4 and 6.

The point of Corollary 10.12 is that we can just interpolate the data points by
applying Fn and then chop off terms at will to get the least squares fit of lower orders. The
result from Example 10.3 was that

P8(t) = −1.95 − 0.7445cos2π t − 2.5594sin 2π t

+1.125cos4π t + 0.825sin 4π t

−0.3555cos6π t + 0.1906sin 6π t

−0.2750cos8π t . (10.33)
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Therefore, the least squares models of orders 4 and 6 are

P4(t) = −1.95 − 0.7445cos2π t − 2.5594sin 2π t + 1.125cos4π t

P6(t) = −1.95 − 0.7445cos2π t − 2.5594sin 2π t

+1.125cos4π t + 0.825sin 4π t − 0.3555cos6π t .

Figure 10.7 shows both least squares fits, generated by

dftfilter([0,1],[-2.2,-2.8,-6.1,-3.9,0.0,1.1,-0.6,-1.1],m,8,200)

1t0 t1 t2 t3 t4 t5 t6 t7

y

t

–5

–10

0

5

Figure 10.7 Least squares trigonometric fits for Example 10.6. Fits

for m = 4 (solid curve) and 6 (dashed curve) are shown. The input vec-

tor x is [−2.2,−2.8,−6.1,−3.9,0.0,1.1,−0.6,−1.1]T . The fit for m = 8 is

trigonometric interpolation, shown in Figure 10.6.

for m = 4 and 6, respectively. The m = 4 fit matches the explicit least squares fit to the
basis functions 1,cos2π t,sin 2π t,cos4π t carried out in Example 4.6 and plotted in Figure
4.5(b). "

The program dftfilter.m can be made more efficient. It computes the order n

interpolant and then ignores n − m coefficients. Of course, one look at the Fourier matrix
Fn shows that if we want to know only the first m Fourier coefficients of n data points, we
can multiply x by only the top m rows of Fn and leave it at that. In other words, it would
suffice to replace the n × n matrix Fn by an m × n submatrix. An improved version of
dftfilter.m would make use of this fact.

10.3.3 Sound, noise, and filtering

The dftfilter.m code of the last section is an introduction to the vast area of digital
signal processing. We are using the Fourier transform as a way to transfer the information
of a signal {x0, . . . ,xn−1} from the “time domain’’ to the “frequency domain,’’ where it is
easier to manipulate. When we finish changing what we want to change, we send the signal
back to the time domain by an inverse FFT.

If x represents an audio signal, this is helpful because of the way our hearing system
is constructed. The human ear contains structures that respond to frequencies, and so the
building blocks in the frequency domain are directly meaningful. We will illustrate this
by introducing some basic concepts of audio and signal processing and a few convenient
Matlab commands.
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An audio signal consists of a set of real numbers indexed by time. Each real number
represents a sound intensity. When an audio signal is played back, the speaker head is made
to vibrate so that the amplitude matches the signal, causing the surrounding air to vibrate
at the same frequencies. When the sound waves reach your ear, you perceive sound.

1
t

y

(a)

1
t

y

(b)

Figure 10.8 Sound curve along with filtered versions. First 1/32 second of

Hallelujah Chorus (256 points on black curve) along with filtered version (blue curve) with

(a) 64 basis functions, a 4:1 compression ratio and (b) 32 basis functions, an 8:1 compression

ratio.

Matlab provides an audio signal of the first 9 seconds of Handel’s Hallelujah Chorus
for us to sample. The curve in Figure 10.8 shows the first 28 = 256 values of the file, which
consists of sound intensities. The sampling rate of the music is 213 = 8192 Hz, meaning
that intensities are represented at the rate of 213 per second, evenly spaced. To access the
signal, type

>> load handel

which puts the variables Fs and y in the workspace. The former variable is the sampling
rate F s = 8192. The variable y is a length 73113 vector containing the sound signal. The
Matlab command

>> sound(y,Fs)

plays the signal on your computer speakers, if available, at the correct sampling rate Fs.
The Hallelujah Chorus data can be used to implement the filtering of Corollary 10.12.

Using dftfilter.m with the first n = 256 samples of the signal, and m = 64 and 32
basis functions, results in the blue curves of Figure 10.8. The reader may want to explore
filtering with other audio files.

One common audio file format is the .wav format. A stereo .wav file carries two
paired signals to be played from two different speakers. For example, using the Matlab
command

>> [y,Fs]=wavread(’castanets’)

will extract the stereo signal from the file castanets.wav and load it into Matlab as
an n × 2 matrix y, each column a separate sound signal. (The file castanets.wav is a
common audio test file and can be easily found by a web search.) The Matlab command
wavwrite reverses the process, creating a .wav file from simple sound signals.

Filtering is used in two ways. It can be used to match the original sound wave as closely
as possible with a simpler function. This is a form of compression. Instead of using 256
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Compression Filtering is a form of lossy compression. In the case of an audio signal,

the goal is to reduce the amount of data required to store or transmit the sound without

compromising the musical effect or spoken information the signal is designed to represent.

This is best done in the frequency domain, which means applying the DFT, manipulating the

frequency components, and then inverting the DFT.

numbers to store the wave, we could instead just store the lowest m frequency compo-
nents and then reconstruct the wave when needed by using Corollary 10.12. In Figure
10.8(a), we used m = 64 real numbers in place of the original 256, a 4:1 compression
ratio. Note that the compression is lossy, in that the original wave has not been reproduced
exactly.

The second major application of filtering is to remove noise. Given a music file where
the music or speech was corrupted by high-frequency noise (or hiss), eliminating the higher
frequency contributions may be important to enhancing the sound. Of course, so-called
low-pass filters are blunt hammers—a high-frequency part of the desired sound, possibly
in overtones not even obvious to the listener, may be deleted as well. The topic of filtering
is part of a vast literature on signal processing, and the reader is referred to Oppenheim and
Schafer [2009] for further study. In Reality Check 10, we investigate a filter of widespread
application called the Wiener filter.

10.3 Exercises

1. Find the best order 2 least squares approximation to the data in Exercise 10.2.1, using the basis
functions 1 and cos2π t .

2. Find the best order 3 least squares approximation to the data in Exercise 10.2.1, using the basis
functions 1,cos2π t , and sin 2π t .

3. Find the best order 4 least squares approximation to the data in Exercise 10.2.3, using the basis
functions 1,cos2π t , sin 2π t , and cos4π t .

4. Find the best order 4 least squares approximation to the data in Exercise 10.2.4, using the basis
functions 1,cos π

4 t , sin π
4 t , and cos π

2 t .

5. Prove Lemma 10.10. (Hint: Express cos2πjk/n as (ei2πjk/n + e−i2πjk/n)/2, and write
everything in terms of ω = e−i2π/n, so that Lemma 10.1 can be applied.)

10.3 Computer Problems

1. Find the least squares trigonometric approximating functions of orders m = 2 and 4 for the
following data points:

(a)

t y

0 3
1
4 0
1
2 −3
3
4 0

(b)

t y

0 2
1
4 0
1
2 5
3
4 1

(c)

t y

0 5
1 2
2 6
3 1

(d)

t y

1 −1
2 1
3 4
4 3
5 3
6 2

Using dftfilter.m, plot the data points and the approximating functions, as in Figure 10.7.
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2. Find the least squares trigonometric approximating functions of orders 4,6, and 8 for the
following data points:

(a)

t y

0 3
1
8 0
1
4 −3
3
8 0
1
2 3
5
8 0
3
4 −6
7
8 0

(b)

t y

0 1
1
8 0
1
4 −2
3
8 1
1
2 3
5
8 0
3
4 −2
7
8 1

(c)

t y

0 1
1
8 2
1
4 3
3
8 1
1
2 −1
5
8 −1
3
4 −3
7
8 0

(d)

t y

0 4.2
1
8 5.0
1
4 3.8
3
8 1.6
1
2 −2.0
5
8 −1.4
3
4 0.0
7
8 1.0

Plot the data points and the approximating functions, as in Figure 10.7.

3. Plot the least squares trigonometric approximation function of orders m = n/2,n/4, and n/8,
along with the vector x containing the first 214 sound intensity values from Matlab’s
handel sound file. (This covers about 2 seconds of audio. The Matlab code dftfilter
can be used with p = n. Make three separate plots.) Use the Matlab sound command to
compare the original with the approximation. What has been lost?

4. Download castanets.wav from an appropriate website, and form a vector containing the
signal at the first 214 sample times. Carry out the steps of Computer Problem 3 for each stereo
channel separately.

5. Gather 24 consecutive hourly temperature readings from a newspaper or website. Plot the data
points along with (a) the trigonometric interpolating function and least squares approximating
functions of order (b) m = 6 and (c) m = 12.

10 TheWiener Filter
Let c be a clean audio signal, and add a vector r of the same length to c. Is the resulting
signal x = c + r noisy? If r = c, we would not consider r noise, since the result would be
a louder, but still clean, version of c. By definition, noise is uncorrelated with the signal.
In other words, if r is noise, the expected value of the inner product cT r is zero. We will
exploit this lack of correlation next.

In a typical application, we are presented with a noisy signal x and asked to find c. The
signal c might be the value of an important system variable, being monitored in a noisy
environment. Or, as in our example below, c might be an audio sample that we want to
bring out of noise. In the middle of the 20th century, Norbert Wiener suggested looking
for the optimal filter for removing the noise from x, in the sense of least squares error. He
suggested finding a real, diagonal matrix / such that the Euclidean norm of

F −1/Fx − c

is as small as possible, where F denotes the Discrete Fourier Transform. The idea is to clean
up the signal x by applying the Fourier transform, operating on the frequency components
by multiplying by /, and then inverting the Fourier transform. This is called filtering in the
frequency domain, since we are changing the Fourier-transformed version of x rather than
x itself.
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To find the best diagonal matrix /, note that

||F −1/Fx − c||2 = ||/Fx − Fc||2
= ||/F(c + r) − Fc||2
= ||(/ − I )C + /R||2, (10.34)

where we set C = F c and R = Fr to be the Fourier transforms. Note also that the definition
of noise implies

C
T

R = Fc
T

Fr = cT F
T

Fr = cT r = 0.

We will use this as motivation to ignore the cross-terms in the norm, so that the squared
magnitude reduces to

(
(/ − I )C + /R

)T
((/ − I )C + /R) =

(
C

T
(/ − I ) + R

T
/

)
((/ − I )C + /R)

≈ C
T

(/ − I )2C + R
T

/2R

=
n∑

i=1

(φi − 1)2|Ci |2 + φ2
i |Ri |2. (10.35)

To find the diagonal entries φi that minimize this expression, differentiate with respect to
each φi separately to obtain

2(φi − 1)|Ci |2 + 2φi |Ri |2 = 0

for each i, or, solving for φi ,

φi = |Ci |2
|Ci |2 + |Ri |2

. (10.36)

This formula gives Wiener’s values for the entries of the diagonal matrix /, to minimize the
difference between the filtered version F −1/Fx and the clean signal c. The only problem
is that in typical cases, we don’t know C or R and must make some approximations to apply
the formula.

Your job is to investigate ways of putting together an approximation. Let X = Fx be
the Fourier transform. Again using the uncorrelatedness of signal and noise, approximate

|Xi |2 ≈ |Ci |2 + |Ri |2.

Then we can write the optimal choice as

φi ≈ |Xi |2 − |Ri |2
|Xi |2

(10.37)

and use our best knowledge of the noise level. For example, if the noise is uncorrelated
Gaussian noise (modeled by adding a normal random number independently to each sample
of the clean signal), we could replace |Ri |2 in (10.37) with the constant (pσ )2, where σ is
the standard deviation of the noise and p is a parameter near one to be chosen. Note that

n∑

i=1

|Ri |2 = R
T

R = rF
T

Fr = rT r =
n∑

i=1

r2
i .

In the following code, we add 50 percent noise to the Handel signal, and use p = 1.3
standard deviations to approximate Ri :
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load handel % y is clean signal
c=y(1:40000); % work with first 40K samples
p=1.3; % parameter for cutoff
noise=std(c)*.50; % 50 percent noise
n=length(c); % n is length of signal
r=noise*randn(n,1); % pure noise
x=c+r; % noisy signal
fx=fft(x);sfx=conj(fx).*fx; % take fft of signal, and
sfcapprox=max(sfx-n*(p*noise)ˆ2,0); % apply cutoff
phi=sfcapprox./sfx; % define phi as derived
xout=real(ifft(phi.*fx)); % invert the fft
% then compare sound(x) and sound(xout)

Suggested activities:

1. Run the code to form the filtered signal yf, and use Matlab’s sound command to
compare the input and output signals.

2. Compute the mean squared error (MSE) of the input (ys) and output (yf) by comparing
with the clean signal (yc).

3. Find the best value of the parameter p for 50 percent noise. Compare the value that
minimizes MSE to the one that sounds best to the ear.

4. Change the noise level to 10 percent, 25 percent, 100 percent, 200 percent, and repeat
Step 3. Summarize your conclusions.

5. Design a fair comparison of the Wiener filter with the low-pass filter described in Section
10.2, and carry out the comparison.

6. Download a .wav file of your choice, add noise, and carry out the aforementioned steps.

Software and Further Reading

Good sources for further reading on the Discrete Fourier Transform include Briggs [1995],
Brigham [1988], and Briggs and Henson [1995]. The original breakthrough of Cooley and
Tukey appeared in Cooley and Tukey [1965], and computational improvements that have
continued as the central place of the Fast Fourier Transform in modern signal processing
have been acknowledged (Winograd [1978], Van Loan [1992], and Chu and George [1999]).
The FFT is an important algorithm in its own right and, additionally, is used as a building
block in other algorithms because of its efficient implementation. For example, it is used by
Matlab to compute the Discrete Cosine Transform, defined in Chapter 11. Interestingly,
the divide-and-conquer strategy used by Cooley and Tukey was later successfully applied
to many other computational problems.

Matlab’s fft command is based on the “Fastest Fourier Transform in the West’’
(FFTW), developed in the 1990s at MIT (Frigo and Johnson [1998]). In case the size n is
not a power of two, the program breaks down the problem, using the prime factors of n, into
smaller “codelets’’ optimized for particular fixed sizes. More information on the FFTW,
including downloadable code, is available at http://www.fftw.org. IMSL provides
the forward transform FFTCF and inverse transform FFTCB, based on Netlib’s FFTPACK
(Swarztrauber [1982]), a package of Fortran subprograms for the Fast Fourier Transform,
optimized for use in parallel implementations.

http://www.fftw.org
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11
Compression
The increasingly rapid movement of information
around the world relies on ingenious methods of data
representation, which are in turn made possible by
orthogonal transformations.The JPEG format for image
representation is based on the Discrete Cosine Trans-
form developed in this chapter.The MPEG-1 and MPEG-
2 formats for TV and video data and the H.263 format
for video phones are also based on the DCT, but with
extra emphasis on compressing in the time dimension.

Sound files can be compressed into a variety
of different formats, including MP3, Advanced Audio

Coding (used by Apple’s iTunes and XM satellite radio),
Microsoft’s Windows Media Audio (WMA), and other
state-of-the-art methods. What these formats have in
common is that the core compression is done by a
variant of the DCT called the Modified Discrete Cosine
Transform.

Reality Check 11 on page 527 explores
implementation of the MDCT into a simple, working
algorithm to compress audio.

In Chapters 4 and 10, we observed the usefulness of orthogonality to represent and com-
press data. Here, we introduce the Discrete Cosine Transform (DCT), a variant of the

Fourier transform that can be computed in real arithmetic. It is currently the method of
choice for compression of sound and image files.

The simplicity of the Fourier transform stems from orthogonality, due to its represen-
tation as a complex unitary matrix. The Discrete Cosine Transform has a representation as
a real orthogonal matrix, and so the same orthogonality properties make it simple to apply
and easy to invert. Its similarity to the Discrete Fourier Transform (DFT) is close enough
that fast versions of the DCT exist, in analogy to the Fast Fourier Transform (FFT).

In this chapter, the basic properties of the DCT are explained, and the links to working
compression formats are investigated. The well-known JPEG format, for example, applies
the two-dimensional DCT to 8 × 8 pixel blocks of an image, and stores the results using
Huffman coding. The details of JPEG compression are investigated as a case study in
Sections 11.2–11.3.
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A modified version of the Discrete Cosine Transform, called the Modified Discrete
Cosine Transform (MDCT), is the basis of most modern audio compression formats. The
MDCT is the current gold standard for compression of sound files. We will introduce MDCT
and investigate its application for coding and decoding, which provides the core technology
of file formats such as MP3 and AAC (Advanced Audio Coding).

11.1 THE DISCRETE COSINE TRANSFORM

In this section, we introduce the Discrete Cosine Transform. This transform interpolates
data, using basis functions that are all cosine functions, and involves only real computations.
Its orthogonality characteristics make least squares approximations simple, as in the case
of the Discrete Fourier Transform.

11.1.1 One-dimensional DCT

Let n be a positive integer. The one-dimensional Discrete Cosine Transform of order n is
defined by the n × n matrix C whose entries are

Cij =
√

2√
n

ai cos
i(2j + 1)π

2n
(11.1)

for i,j = 0, . . . ,n − 1, where

ai ≡
{

1/
√

2 if i = 0,

1 if i = 1, . . . ,n − 1

or

C =
√

2
n

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
2

1√
2

· · · 1√
2

cos π
2n cos 3π

2n · · · cos (2n−1)π
2n

cos 2π
2n cos 6π

2n · · · cos 2(2n−1)π
2n

...
...

...

cos (n−1)π
2n cos (n−1)3π

2n · · · cos (n−1)(2n−1)π
2n

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11.2)

With two-dimensional images, the convention is to begin with 0 instead of 1. The notation
will be easier if we extend this convention to matrix numbering, as we have done in (11.1).
In this chapter, subscripts for n × n matrices will go from 0 to n − 1. For simplicity, we
will treat only the case where n is even in the following discussion.

DEFINITION 11.1 Let C be the matrix defined in (11.2). The Discrete Cosine Transform (DCT) of x =
[x0, . . . ,xn−1]T is the n-dimensional vector y = [y0, . . . ,yn−1]T , where

y = Cx. (11.3)

❒

Note that C is a real orthogonal matrix, meaning that its transpose is its inverse:

C−1 = CT =
√

2
n

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1√
2

cos π
2n · · · cos (n−1)π

2n

1√
2

cos 3π
2n · · · cos (n−1)3π

2n

...
...

...

1√
2

cos (2n−1)π
2n · · · cos (n−1)(2n−1)π

2n

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (11.4)
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The rows of an orthogonal matrix are pairwise orthogonal unit vectors. The orthogonality
of C follows from the fact that the columns of CT are the unit eigenvectors of the real
symmetric n × n matrix

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (11.5)

Exercise 6 asks the reader to verify this fact.
The fact that C is a real orthogonal matrix is what makes the DCT useful.

The Orthogonal Function Interpolation Theorem 10.9 applied to the matrix C implies
Theorem 11.2.

THEOREM 11.2 DCT Interpolation Theorem. Let x = [x0, . . . ,xn−1]T be a vector of n real numbers.
Define y = [y0, . . . ,yn−1]T = Cx, where C is the Discrete Cosine Transform matrix of
order n. Then the real function

Pn(t) = 1√
n

y0 +
√

2√
n

n−1∑

k=1

yk cos
k(2t + 1)π

2n

satisfies Pn(j) = xj for j = 0, . . . ,n − 1. #

Proof. Follows directly from Theorem 10.9. ❒

Theorem 11.2 shows that the n × n matrix C transforms n data points into n inter-
polation coefficients. Like the Discrete Fourier Transform, the Discrete Cosine Transform
gives coefficients for a trigonometric interpolation function. Unlike the DFT, the DCT uses
cosine terms only and is defined entirely in terms of real arithmetic.

! EXAMPLE 11.1 Use the DCT to interpolate the points (0,1), (1,0), (2,−1), (3,0).

It is helpful to notice, using elementary trigonometry, that the 4 × 4 DCT matrix
can be viewed as

C = 1√
2

⎡

⎢⎢⎢⎢⎢⎣

1√
2

1√
2

1√
2

1√
2

cos π
8 cos 3π

8 cos 5π
8 cos 7π

8

cos 2π
8 cos 6π

8 cos 10π
8 cos 14π

8

cos 3π
8 cos 9π

8 cos 15π
8 cos 21π

8

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎣

a a a a

b c −c −b

a −a −a a

c −b b −c

⎤

⎥⎥⎦ , (11.6)

where

a = 1
2

,b = 1√
2

cos
π

8
=

√
2 +

√
2

2
√

2
,c = 1√

2
cos

3π

8
=

√
2 −

√
2

2
√

2
. (11.7)

The order-4 DCT multiplied by the data x = (1,0,−1,0)T is
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Figure 11.1 DCT interpolation and least squares approximation. The data points are

( j, xj ), where x = [1,0,−1,0]. The DCT interpolating function P4 ( t) of (11.8) is shown as

a solid curve, along with the least squares DCT approximation function P3 ( t) of (11.9)

as a dotted curve.

⎡

⎢⎢⎣

a a a a

b c −c −b

a −a −a a

c −b b −c

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1
0

−1
0

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0
c + b

2a

c − b

⎤

⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎣

0√
2−

√
2+

√
2+

√
2

2
√

2

1
√

2−
√

2−
√

2+
√

2
2
√

2

⎤

⎥⎥⎥⎥⎥⎥⎦
≈

⎡

⎢⎢⎣

0.0000
0.9239
1.0000

−0.3827

⎤

⎥⎥⎦ .

According to Theorem 11.2 with n = 4, the function

P4(t) = 1√
2

[
0.9239cos

(2t + 1)π

8
+ cos

2(2t + 1)π

8
− 0.3827cos

3(2t + 1)π

8

]
(11.8)

interpolates the four data points. The function P4(t) is plotted as the solid curve in
Figure 11.1. "

11.1.2 The DCT and least squares approximation

Just as the DCT Interpolation Theorem 11.2 is an immediate consequence of Theorem 10.9,
the least squares result Theorem 10.11 shows how to find a DCT least squares approxi-
mation of the data, using only part of the basis functions. Because of the orthogonality
of the basis functions, this can be accomplished by simply dropping the higher frequency
terms.

Orthogonality The idea behind least squares approximation is that finding the

shortest distance from a point to a plane (or subspace in general) means constructing the

perpendicular from the point to the plane. This construction is carried out by the nor-

mal equations, as we saw in Chapter 4. In Chapters 10 and 11, this concept is applied to

approximate data as closely as possible with a relatively small set of basis functions, result-

ing in compression. The basic message is to choose the basis functions to be orthogonal, as

reflected in the rows of the DCT matrix. Then the normal equations become computationally

very simple (see Theorem 10.11).



11.1 The Discrete Cosine Transform | 499

THEOREM 11.3 DCT Least Squares Approximation Theorem. Let x = [x0, . . . ,xn−1]T be a vector
of n real numbers. Define y = [y0, . . . ,yn−1]T = Cx, where C is the Discrete Cosine
Transform matrix. Then, for any positive integer m ≤ n, the choice of coefficients
y0, . . . ,ym−1 in

Pm(t) = 1√
n

y0 +
√

2√
n

m−1∑

k=1

yk cos
k(2t + 1)π

2n

minimizes the squared approximation error
∑n−1

j=0(Pm(j) − xj )2 of the n data points. #

Proof. Follows directly from Theorem 10.11. ❒

Referring to Example 11.1, if we require the best least squares approximation to the
same four data points, but use the three basis functions

1,cos
(2t + 1)π

8
,cos

2(2t + 1)π

8

only, the solution is

P3(t) = 1
2

· 0 + 1√
2

[
0.9239cos

(2t + 1)π

8
+ cos

2(2t + 1)π

8

]
. (11.9)

Figure 11.1 compares the least squares solution P3 with the interpolating function P4.

! EXAMPLE 11.2 Use the DCT and Theorem 11.3 to find least squares fits to the data t = 0, . . . ,7 and x =
[−2.2,−2.8,−6.1,−3.9,0.0,1.1,−0.6,−1.1]T for m = 4,6, and 8.

Setting n = 8, we find that the DCT of the data is

y = Cx =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5.5154
−3.8345

0.5833
4.3715
0.4243

−1.5504
−0.6243
−0.5769

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

According to Theorem 11.2, the discrete cosine interpolant of the eight data points is

P8(t) = 1√
8

(−5.5154) + 1
2

[
− 3.8345cos

(2t + 1)π

16
+ 0.5833cos

2(2t + 1)π

16

+ 4.3715cos
3(2t + 1)π

16
+ 0.4243cos

4(2t + 1)π

16

− 1.5504cos
5(2t + 1)π

16
− 0.6243cos

6(2t + 1)π

16

− 0.5769cos
7(2t + 1)π

16

]
.

The interpolant P8 is plotted in Figure 11.2, along with the least squares fits P6 and
P4. The latter are obtained, according to Theorem 11.3, by keeping the first six, or first four
terms, respectively, of P8. "
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Figure 11.2 DCT interpolation and least squares approximation. The solid curve is

the DCT interpolant of the data points in Example 11.2. The dashed curve is the least

squares fit from the first six terms only, and the dotted curve represents four terms.

11.1 Exercises

1. Use the 2 × 2 DCT matrix and Theorem 11.2 to find the DCT interpolating function for the
data points.

(a)
t x

0 3
1 3

(b)
t x

0 2
1 −2

(c)
t x

0 3
1 1

(d)
t x

0 4
1 −1

2. Describe the m = 1 least squares DCT approximation in terms of the input data (0,x0), (1,x1).

3. Find the DCT of the following data vectors x, and find the corresponding interpolating
function Pn(t) for the data points (i,xi), i = 0, . . . ,n − 1 (you may state your answers in terms
of the b and c defined in (11.7)):

(a)

t x

0 1
1 0
2 1
3 0

(b)

t x

0 1
1 1
2 1
3 1

(c)

t x

0 1
1 0
2 0
3 0

(d)

t x

0 1
1 2
2 3
3 4

4. Find the DCT least squares approximation with m = 2 terms for the data in Exercise 3.

5. Carry out the trigonometry needed to establish equations (11.6) and (11.7).

6. (a) Prove the trigonometric formula cos(x + y) + cos(x − y) = 2cosx cosy for any x,y.
(b) Show that the columns of CT are eigenvectors of the matrix T in (11.5), and identify the
eigenvalues. (c) Show that the columns of CT are unit vectors.

7. Extend the DCT Interpolation Theorem 11.2 to the interval [c,d] as follows. Let n be a
positive integer and set $t = (d − c)/n. Use the DCT to produce a polynomial Pn(t) that
satisfies Pn(c + j$t ) = xj for j = 0, . . . ,n − 1.

11.1 Computer Problems

1. Plot the data from Exercise 3, along with the DCT interpolant and the DCT least squares
approximation with m = 2 terms.
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2. Plot the data along with the m = 4,6, and 8 DCT least squares approximations.

(a)

t x

0 3
1 5
2 −1
3 3
4 1
5 3
6 −2
7 4

(b)

t x

0 4
1 1
2 −3
3 0
4 0
5 2
6 −4
7 0

(c)

t x

0 3
1 −1
2 −1
3 3
4 3
5 −1
6 −1
7 3

(d)

t x

0 4
1 2
2 −4
3 2
4 4
5 2
6 −4
7 2

3. Plot the function f (t), the data points (j ,f (j)),j = 0, . . . ,7, and the DCT interpolation
function. (a) f (t) = e−t/4 (b) f (t) = cos π

2 t .

11.2 TWO-DIMENSIONAL DCT AND IMAGE COMPRESSION

The two-dimensional Discrete Cosine Transform is often used to compress small blocks of
an image, as small as 8 × 8 pixels. The compression is lossy, meaning that some information
from the block is ignored. The key feature of the DCT is that it helps organize the information
so that the part that is ignored is the part that the human eye is least sensitive to. More
precisely, the DCT will show us how to interpolate the data with a set of basis functions
that are in descending order of importance as far as the human visual system is concerned.
The less important interpolation terms can be dropped if desired, just as a newspaper editor
cuts a long story on deadline.

Later, we will apply what we have learned about the DCT to compress images. Using
the added tools of quantization and Huffman coding, each 8 × 8 block of an image can be
reduced to a bit stream that is stored with bit streams from the other blocks of the image. The
complete bit stream is decoded, when the image needs to be uncompressed and displayed,
by reversing the encoding process. We will describe this approach, called Baseline JPEG,
the default method for storing JPEG images.

11.2.1 Two-dimensional DCT

The two-dimensional Discrete Cosine Transform is simply the one-dimensional DCT
applied in two dimensions, one after the other. It can be used to interpolate or approximate
data given on a two-dimensional grid, in a straightforward analogy to the one-dimensional
case. In the context of image processing, the two-dimensional grid represents a block of
pixel values—say, grayscale intensities or color intensities.

In this chapter only, we will list the vertical coordinate first and the horizontal coordi-
nate second when referring to a two-dimensional point, as shown in Figure 11.3. The goal
is to be consistent with the usual matrix convention, where the i index of entry xij changes
along the vertical direction, and j along the horizontal. A major application of this section is
to pixel files representing images, which are most naturally viewed as matrices of numbers.

Figure 11.3 shows a grid of (s, t) points in the two-dimensional plane with assigned
values xij at each rectangular grid point (si, tj ). For concreteness, we will use the integer grid
si = {0,1, . . . ,n − 1} (remember, along the vertical axis) and tj = {0,1, . . . ,n − 1} along
the horizontal axis. The purpose of the two-dimensional DCT is to construct an interpolating
function F(s, t) that fits the n2 points (si, tj ,xij ) for i,j = 0, . . . ,n − 1. The 2D-DCT
accomplishes this in an optimal way from the point of view of least squares, meaning that
the fit degrades gracefully as basis functions are dropped from the interpolating function.
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x10 x11 x12 x13

x00 x01 x02 x03

Figure 11.3 Two-dimensional grid of data points. The 2D-DCT can be used to

interpolate function values on a square grid, such as pixel values of an image.

The 2D-DCT is the one-dimensional DCT applied successively to both horizontal and
vertical directions. Consider the matrix X consisting of the values xij , as in Figure 11.3. To
apply the 1D-DCT in the horizontal s-direction, we first need to transpose X, then multiply
by C. The resulting columns are the 1D-DCT’s of the rows of X. Each column of CXT

corresponds to a fixed ti . To do a 1D-DCT in the t-direction means moving across the rows;
so, again, transposing and multiplying by C yields

C(CXT )T = CXCT . (11.10)

DEFINITION 11.4 The two-dimensional Discrete Cosine Transform (2D-DCT) of the n × n matrix X is the
matrix Y = CXCT , where C is defined in (11.1). ❒

! EXAMPLE 11.3 Find the 2D Discrete Cosine Transform of the data in Figure 11.4(a).

From the definition and (11.6), the 2D-DCT is the matrix

Y = CXCT =

⎡

⎢⎢⎣

a a a a

b c −c −b

a −a −a a

c −b b −c

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1 1 1 1
1 0 0 1
1 0 0 1
1 1 1 1

⎤

⎥⎥⎦

⎡

⎢⎢⎣

a b a c

a c −a −b

a −c −a b

a −b a −c

⎤

⎥⎥⎦

=

⎡

⎢⎢⎣

3 0 1 0
0 0 0 0
1 0 −1 0
0 0 0 0

⎤

⎥⎥⎦ . (11.11)

"

The inverse of the 2D-DCT is easy to express in terms of the DCT matrix C. Since
Y = CXCT and C is orthogonal, the X is recovered as X = CT YC.

DEFINITION 11.5 The inverse two-dimensional Discrete Cosine Transform of the n × n matrix Y is the
matrix X = CT YC. ❒

As we have seen, there is a close connection between inverting an orthogonal transform
(like the 2D-DCT) and interpolation. The goal of interpolation is to recover the original
data points from functions that are constructed with the interpolating coefficients that came
out of the transform. Since C is an orthogonal matrix, C−1 = CT . The inversion of the
2D-DCT can be written as a fact about interpolation, X = CT YC, since in this equation the
xij are being expressed in terms of products of cosines.
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(b)

Figure 11.4 Two-dimensional data for Example 11.3. (a) The 16 data points ( i, j, xij ).

(b) Values of the least squares approximation (11.14) at the grid points.

To write a useful expression for the interpolating function, recall the definition of C

in (11.1) ,

Cij =
√

2√
n

ai cos
i(2j + 1)π

2n
(11.12)

for i,j = 0, . . . ,n − 1, where

ai ≡
{

1/
√

2 if i = 0,

1 if i = 1, . . . ,n − 1
.

According to the rules of matrix multiplication, the equation X = CT YC translates to

xij =
n−1∑

k=0

n−1∑

l=0

CT
ikyklClj

=
n−1∑

k=0

n−1∑

l=0

CkiyklClj

= 2
n

n−1∑

k=0

n−1∑

l=0

yklakal cos
k(2i + 1)π

2n
cos

l(2j + 1)π

2n
. (11.13)

This is exactly the interpolation statement we were looking for.

THEOREM 11.6 2D-DCT Interpolation Theorem. Let X = (xij ) be a matrix of n2 real numbers. Let Y =
(ykl) be the two-dimensional Discrete Cosine Transform of X. Define a0 = 1/

√
2 and

ak = 1 for k > 0. Then the real function

Pn(s, t) = 2
n

n−1∑

k=0

n−1∑

l=0

yklakal cos
k(2s + 1)π

2n
cos

l(2t + 1)π

2n

satisfies Pn(i,j) = xij for i,j = 0, . . . ,n − 1. #

Returning to Example 11.3, the only nonzero interpolation coefficients are y00 = 3,

y02 = y20 = 1, and y22 = −1. Writing out the interpolation function in the Theorem 11.6
yields
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P4(s, t) = 2
4

[
1
2

y00 + 1√
2

y02 cos
2(2t + 1)π

8
+ 1√

2
y20 cos

2(2s + 1)π

8

+y22 cos
2(2s + 1)π

8
cos

2(2t + 1)π

8

]

= 1
2

[
1
2

(3) + 1√
2

(1)cos
2(2t + 1)π

8
+ 1√

2
(1)cos

2(2s + 1)π

8

+(−1)cos
2(2s + 1)π

8
cos

2(2t + 1)π

8

]

= 3
4

+ 1

2
√

2
cos

(2t + 1)π

4
+ 1

2
√

2
cos

(2s + 1)π

4

− 1
2

cos
(2s + 1)π

4
cos

(2t + 1)π

4
.

Checking the interpolation, we get, for example,

P4(0,0) = 3
4

+ 1
4

+ 1
4

− 1
4

= 1

and

P4(1,2) = 3
4

− 1
4

− 1
4

− 1
4

= 0,

agreeing with the data in Figure 11.4. The constant term y00/n of the interpolation function is
called the “DC’’ component of the expansion (for “direct current’’). It is the simple average
of the data; the nonconstant terms contain the fluctuations of the data about this average
value. In this example, the average of the 12 ones and 4 zeros is y00/4 = 3/4.

Least squares approximations with the 2D-DCT are done in the same way as with
the 1D-DCT. For example, implementing a low-pass filter would mean simply deleting
the “high-frequency’’ components, those whose coefficients have larger indices, from the
interpolating function. In Example 11.3, the best least squares fit to the basis functions

cos
i(2s + 1)π

8
cos

j(2t + 1)π

8

for i + j ≤ 2 is given by dropping all terms that do not satisfy i + j ≤ 2. In this case, the
only nonzero “high-frequency’’ term is the i = j = 2 term, leaving

P2(s, t) = 3
4

+ 1

2
√

2
cos

(2t + 1)π

4
+ 1

2
√

2
cos

(2s + 1)π

4
. (11.14)

This least squares approximation is shown in Figure 11.4(b).
Defining the DCT matrix C in Matlab can be done through the code fragment

for i=1:n
for j=1:n
C(i,j)=cos((i-1)*(2*j-1)*pi/(2*n));

end
end
C=sqrt(2/n)*C;
C(1,:)=C(1,:)/sqrt(2);

Alternatively, if Matlab’s Signal Processing Toolbox is available, the one-dimensional
DCT of a vector x can be computed as

>> y=dct(x);
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To carry out the 2D-DCT of a matrix X, we fall back on equation (11.10), or

>> Y=C*X*C’

If Matlab’s dct is available, the command

>> Y=dct(dct(X’)’)

computes the 2D-DCT with two applications of the 1D-DCT.

11.2.2 Image compression

The concept of orthogonality, as represented in the Discrete Cosine Transform, is crucial
to performing image compression. Images consist of pixels, each represented by a number
(or three numbers, for color images). The convenient way that methods like the DCT
can carry out least squares approximation makes it easy to reduce the number of bits
needed to represent the pixel values, while degrading the picture only slightly, and perhaps
imperceptibly to human viewers.

Figure 11.5(a) shows a grayscale rendering of a 256 × 256 array of pixels. The grayness
of each pixel is represented by one byte, a string of 8 bits representing 0 = 00000000
(black) to 255 = 11111111 (white). We can think of the information shown in the figure as a
256 × 256 array of integers. Represented in this way, the picture holds (256)2 = 216 = 64K
bytes of information.

(b)(a)

Figure 11.5 Grayscale image. (a) Each pixel in the 256 × 256 grid is represented by

an integer between 0 and 255. (b) Crude compression—each 8 × 8 square of pixels is

colored by its average grayscale value.

Matlab imports grayscale or RGB (Red-Green-Blue) values of images from standard
image formats. For example, given a grayscale image file picture.jpg, the command

>> x = imread(’picture.jpg’);

puts the matrix of grayscale values into the double precision variable x. If the JPEG file is a
color image, the array variable will have a third dimension to index the three colors. We will
restrict attention to gray scale to begin our discussion; extension to color is straightforward.

An m × n matrix of grayscale values can be rendered by Matlab with the commands

>> imagesc(x);colormap(gray)

while an m × n × 3 matrix of RGB color is rendered with the imagesc(x) command
alone. A common formula for converting a color RGB image to gray scale is

Xgray = 0.2126R + 0.7152G + 0.0722B, (11.15)

or in Matlab code,
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Figure 11.6 Example of 8 × 8 block. (a) Grayscale view (b) Grayscale pixel values (c) Grayscale pixel

values minus 128.

>> x=double(x);
>> r=x(:,:,1);g=x(:,:,2);b=x(:,:,3);
>> xgray=0.2126*r+0.7152*g+0.0722*b;
>> xgray=uint8(xgray);
>> imagesc(xgray);colormap(gray)

Note that we have converted the default Matlab data type uint8, or unsigned inte-
gers, to double precision reals before we do the computation. It is best to convert back to
uint8 type before rendering the picture with imagesc.

Figure 11.5(b) shows a crude method of compression, where each 8 × 8 pixel block is
replaced by its average pixel value. The amount of data compression is considerable—there
are only (32)2 = 210 blocks, each now represented by a single integer—but the resulting
image quality is poor. Our goal is to compress less harshly, by replacing each 8 × 8 block
with a few integers that better carry the information of the original image.

To begin, we simplify the problem to a single 8 × 8 block of pixels, as shown in
Figure 11.6(a). The block was taken from the center of the subject’s left eye in Figure 11.5.
Figure 11.6(b) shows the one-byte integers that represent the grayscale intensities of the
64 pixels. In Figure 11.6(c), we have subtracted 256/2 = 128 from the pixel numbers to
make them approximately centered around zero. This step is not essential, but better use of
the 2D-DCT will result because of this centering.

To compress the 8 × 8 pixel block shown, we will transform the matrix of grayscale
pixel values

X =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−18 40 48 54 42 31 6 17
38 40 36 33 37 43 31 13
18 −10 −4 −6 −9 17 34 16

−26 −94 −106 −103 −90 −17 18 31
−21 −79 2 31 −126 −99 −11 36
−33 −57 25 79 −113 −98 −6 22
−16 −107 −128 −109 −128 −98 4 7

35 1 −45 −61 −59 −21 11 31

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.16)

and rely on the 2D-DCT’s ability to sort information according to its importance to the
human visual system. We calculate the 2D-DCT of X to be
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Y = C8XCT
8 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−121 −66 127 −65 27 98 7 −25
200 22 −124 34 −36 −62 5 6
113 43 −32 55 −25 −75 −21 12
−10 35 −69 −131 28 54 −4 −24
−14 −18 16 1 −5 −27 14 −6

−124 −74 47 60 −1 −16 −8 13
81 35 −57 −54 −7 6 1 −16

−16 11 5 −15 11 12 −1 9

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(11.17)

after rounding to the nearest integer for simplicity. This rounding adds a small amount of
extra error and is not strictly necessary, but again it will help the compression. Note that
due to the larger amplitudes, there is a tendency for more of the information to be stored
in the top left part of the transform matrix Y , compared with the lower right. The lower
right represents higher frequency basis functions that are often less important to the visual
system. Nevertheless, because the 2D-DCT is an invertible transform, the information in Y

can be used to completely reconstruct the original image, up to the rounding.
The first compression strategy we try will be a form of low-pass filtering. As discussed

in the last section, least squares approximation with the 2D-DCT is just a matter of dropping
terms from the interpolation function P8(s, t). For example, we can cut off the contribution
of functions with relatively high spatial frequency by setting all ykl = 0 for k + l ≥ 7
(recall that we continue to number matrix entries as 0 ≤ k, l ≤ 7). After low-pass filtering,
the transform coefficients are

Ylow =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−121 −66 127 −65 27 98 7 0
200 22 −124 34 −36 −62 0 0
113 43 −32 55 −25 0 0 0
−10 35 −69 −131 0 0 0 0
−14 −18 16 0 0 0 0 0

−124 −74 0 0 0 0 0 0
81 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11.18)

To reconstruct the image, we apply the inverse 2D-DCT as CT
8 YlowC8 and get the grayscale

pixel values shown in Figure 11.7. The image in part (a) is similar to the original in
Figure 11.6(a), but different in detail.
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Figure 11.7 Result of low-pass filtering. (a) Filtered image (b) Grayscale pixel values, after

transforming and adding 128 (c) Inverse transformed data.
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How much have we compressed the information from the 8 × 8 block? The original
picture can be reconstructed (losslessly, except for the integer rounding) by inverse trans-
forming the 2D-DCT (11.17) and adding back the 128. In doing the low-pass filtering with
matrix (11.17), we have cut the storage requirements approximately in half, while retaining
most of the qualitative visual aspects of the block.

11.2.3 Quantization

The idea of quantization will allow the effects of low-pass filtering to be achieved in a more
selective way. Instead of completely ignoring coefficients, we will retain low-accuracy
versions of some coefficients at a lower storage cost. This idea exploits the same aspects of
the human visual system—that it is less sensitive to higher spatial frequencies. The main
idea is to assign fewer bits to store information about the lower right corner of the transform
matrix Y , instead of throwing it away.

Quantization modulo q

Quantization: z = round
(

y

q

)

Dequantization: y = qz (11.19)

Here, “round’’ means “to the nearest integer.’’ The quantization error is the difference
between the input y and the output y after quantizing and dequantizing. The maximum
error of quantization modulo q is q/2.

! EXAMPLE 11.4 Quantize the numbers −10,3, and 65 modulo 8.

The quantized values are −1,0, and 8. Upon dequantizing, the results are −8,0,
and 64. The errors are | − 2|, |3|, and |1|, respectively, each less than q/2 = 4. "

Returning to the image example, the number of bits allowed for each frequency can be
chosen arbitrarily. Let Q be an 8 × 8 matrix called the quantization matrix. The entries
qkl,0 ≤ k, l ≤ 7 will regulate how many bits we assign to each entry of the transform
matrix Y . Replace Y by the compressed matrix

YQ =
[

round
(

ykl

qkl

)]
,0 ≤ k, l ≤ 7. (11.20)

The matrix Y is divided entrywise by the quantization matrix. The subsequent rounding is
where the loss occurs, and makes this method a form of lossy compression. Note that the
larger the entry of Q, the more is potentially lost to quantization.

As a first example, linear quantization is defined by the matrix

qkl = 8p(k + l + 1) for 0 ≤ k, l ≤ 7 (11.21)

for some constant p, called the loss parameter. Thus,

Q = p

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 16 24 32 40 48 56 64
16 24 32 40 48 56 64 72
24 32 40 48 56 64 72 80
32 40 48 56 64 72 80 88
40 48 56 64 72 80 88 96
48 56 64 72 80 88 96 104
56 64 72 80 88 96 104 112
64 72 80 88 96 104 112 120

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In Matlab, the linear quantization matrix can be defined by Q=p*8./hilb(8);
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The loss parameter p is a knob that can be turned to trade bits for visual accuracy.
The smaller the loss parameter, the better the reconstruction will be. The resulting set of
numbers in the matrix YQ represents the new quantized version of the image.

To decompress the file, the YQ matrix is dequantized by reversing the process, which
is entrywise multiplication by Q. This is the lossy part of image coding. Replacing the
entries ykl by dividing by qkl and rounding, and then reconstructing by multiplying by qkl ,
one has potentially added error of size qkl/2 to ykl . This is the quantization error. The larger
the qkl , the larger the potential error in reconstructing the image. On the other hand, the
larger the qkl , the smaller the integer entries of YQ, and the fewer bits will be needed to
store them. This is the trade-off between image accuracy and file size.

In fact, quantization accomplishes two things: Many small contributions from higher
frequencies are immediately set to zero by (11.20), and the contributions that remain nonzero
are reduced in size, so that they can be transmitted or stored by using fewer bits. The resulting
set of numbers are converted to a bit stream with the use of Huffman coding, discussed in
the next section.

Next, we demonstrate the complete series of steps for compression of a matrix of pixel
values in Matlab. The output of Matlab’s imread command is an m × n matrix of 8-bit
integers for a grayscale photo, or three such matrices for a color photo. (The three matrices
carry information for red, green, and blue, respectively; we discuss color in more detail
below.) An 8-bit integer is called a uint8, to distinguish it from a double, as studied
in Chapter 0, which requires 64 bits of storage. The command double(x) converts the
uint8 number x into the double format, and the command uint8(x) does the reverse
by rounding x to the nearest integer between 0 and 255.

The following four commands carry out the conversion, centering, transforming, and
quantization of a square n × n matrixX ofuint8 numbers, such as the 8 × 8 pixel matrices
considered above. Denote by C the n × n DCT matrix.

>> Xd=double(X);
>> Xc=Xd-128;
>> Y=C*Xc*C’;
>> Yq=round(Y./Q);

At this point the resulting Yq is stored or transmitted. To recover the image requires undoing
the four steps in reverse order:

>> Ydq=Yq.*Q;
>> Xdq=C’*Ydq*C;
>> Xe=Xdq+128;
>> Xf=uint8(Xe);

After dequantization, the inverse DCT transform is applied, the offset 128 is added back,
and the double format is converted back to a matrix Xf of uint8 integers.

When linear quantization is applied to (11.17) with p = 1, the resulting coefficients are

YQ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−15 −4 5 −2 1 2 0 0
13 1 −4 1 −1 −1 0 0
5 1 −1 1 0 −1 0 0
0 1 −1 −2 0 1 0 0
0 0 0 0 0 0 0 0

−3 −1 1 1 0 0 0 0
1 1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11.22)

The reconstructed image block, formed by dequantizing and inverse-transforming YQ,
is shown in Figure 11.8(a). Small differences can be seen in comparison with the original
block, but it is more faithful than the low-pass filtering reconstruction.
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(a) (b) (c)

Figure 11.8 Result of linear quantization. Loss parameter is (a) p = 1 (b) p = 2 (c) p = 4.

After linear quantization with p = 2, the quantized transform coefficients are

YQ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−8 −2 3 −1 0 1 0 0
6 0 −2 0 0 −1 0 0
2 1 0 1 0 −1 0 0
0 0 −1 −1 0 0 0 0
0 0 0 0 0 0 0 0

−1 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11.23)

and after linear quantization with p = 4, the quantized transform coefficients are

YQ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 −1 1 −1 0 1 0 0
3 0 −1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11.24)

Figure 11.8 shows the result of linear quantization for the three different values of loss
parameter p. Notice that the larger the value of the loss parameter p, the more entries of the
matrix YQ are zeroed by the quantization procedure, the smaller are the data requirements
for representing the pixels, and the less faithfully the original image has been reconstructed.

Next, we quantize all 32 × 32 = 1024 blocks of the image in Figure 11.5. That is, we
carry out 1024 independent versions of the previous example. The results for loss parameter
p = 1,2, and 4 are shown in Figure 11.9. The image has begun to deteriorate significantly
by p = 4.

We can make a rough calculation to quantify the amount of image compression due
to quantization. The original image uses a pixel value from 0 to 255, which is one byte,
or 8 bits. For each 8 × 8 block, the total number of bits needed without compression is
8(8)2 = 512 bits.

Now, assume that linear quantization is used with loss parameter p = 1. Assume that
the maximum entry of the transform Y is 255. Then the largest possible entries of YQ, after
quantization by Q, are
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(a) (c)(b)

Figure 11.9 Result of linear quantization for all 1024 8 × 8 blocks. Loss parameters are

(a) p = 1 (b) p = 2 (c) p = 4.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

32 16 11 8 6 5 5 4
16 11 8 6 5 5 4 4
11 8 6 5 5 4 4 3
8 6 5 5 4 4 3 3
6 5 5 4 4 3 3 3
5 5 4 4 3 3 3 2
5 4 4 3 3 3 2 2
4 4 3 3 3 2 2 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since both positive and negative entries are possible, the number of bits necessary to store
each entry is

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 6 5 5 4 4 4 4
6 5 5 4 4 4 4 4
5 5 4 4 4 4 4 3
5 4 4 4 4 4 3 3
4 4 4 4 4 3 3 3
4 4 4 4 3 3 3 3
4 4 4 3 3 3 3 3
4 4 3 3 3 3 3 3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The sum of these 64 numbers is 249, or 249/64 ≈ 3.89 bits/pixel, which is less than one-half
the number of bits (512, or 8 bits/pixel) needed to store the original pixel values of the 8 × 8
image matrix. The corresponding statistics for other values of p are shown in the following
table:

p total bits bits/pixel
1 249 3.89
2 191 2.98
4 147 2.30

As seen in the table, the number of bits necessary to represent the image is reduced by
a factor of 2 when p = 1, with little recognizable change in the image. This compression
is due to quantization. In order to compress further, we can take advantage of the fact that
many of the high-frequency terms in the transform are zero after quantization. This is most
efficiently done by using Huffman and run-length coding, introduced in the next section.

Linear quantization with p = 1 is close to the default JPEG quantization. The quan-
tization matrix that provides the most compression with the least image degradation has
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been the subject of much research and discussion. The JPEG standard includes an appendix
called “Annex K: Examples and Guidelines,’’ which contains a Q based on experiments
with the human visual system. The matrix

QY = p

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.25)

is widely used in currently distributed JPEG encoders. Setting the loss parameter p = 1
should give virtually perfect reconstruction as far as the human visual system is con-
cerned, while p = 4 usually introduces noticeable defects. To some extent, the visual quality
depends on the pixel size: If the pixels are small, some errors may go unnoticed.

So far, we have discussed grayscale images only. It is fairly easy to extend application to
color images, which can be expressed in the RGB color system. Each pixel is assigned three
integers, one each for red, green, and blue intensity. One approach to image compression is
to repeat the preceding processing independently for each of the three colors, treating each
as if it were gray scale, and then to reconstitute the image from its three colors at the end.

Although the JPEG standard does not take a position on how to treat color, the method
often referred to as Baseline JPEG uses a more delicate approach. Define the luminance
Y = 0.299R + 0.587G + 0.114B and the color differences U = B − Y and V = R − Y .
This transforms the RGB color data to the YUV system. This is a completely reversible
transform, since the RGB values can be found as B = U + Y ,R = V + Y , and G = (Y −
0.299R − 0.114B)/(0.587). Baseline JPEG applies the DCT filtering previously discussed
independently to Y ,U , and V , using the quantization matrix QY from Annex K for the
luminance variable Y and the quantization matrix

QC =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.26)

for the color differences U and V . After reconstructing Y ,U , and V , they are put back
together and converted back to RGB to reconstitute the image.

Because of the less important roles of U and V in the human visual system, more
aggressive quantization is allowed for them, as seen in (11.26). Further compression can
be derived from an array of additional ad hoc tricks—for example, by averaging the color
differences and treating them on a less fine grid.

11.2 Exercises

1. Find the 2D-DCT of the following data matrices X, and find the corresponding interpolating
function P2(s, t) for the data points (i,j ,xij ), i,j = 0,1:

(a)

[
1 0
0 0

]

(b)

[
1 0
1 0

]

(c)

[
1 1
1 1

]

(d)

[
1 0
0 1

]
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2. Find the 2D-DCT of the data matrix X, and find the corresponding interpolating function
Pn(s, t) for the data points (i,j ,xij ), i,j = 0, . . . ,n − 1.

(a)

⎡

⎢⎢⎢⎣

1 0 −1 0
1 0 −1 0
1 0 −1 0
1 0 −1 0

⎤

⎥⎥⎥⎦
(b)

⎡

⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎥⎦

(c)

⎡

⎢⎢⎢⎣

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎤

⎥⎥⎥⎦
(d)

⎡

⎢⎢⎢⎣

3 3 3 3
3 −1 −1 3
3 3 3 3
3 −1 −1 3

⎤

⎥⎥⎥⎦

3. Find the least squares approximation, using the basis functions 1,cos (2s+1)π
8 ,cos (2t+1)π

8 for
the data in Exercise 2.

4. Use the quantization matrix Q =
[

10 20
20 100

]

to quantize the matrices that follow. State the

quantized matrix, the (lossy) dequantized matrix, and the matrix of quantization errors.

(a)

[
24 24
24 24

]

(b)

[
32 28
28 45

]

(c)

[
54 54
54 54

]

11.2 Computer Problems

1. Find the 2D-DCT of the data matrix X.

(a)

⎡

⎢⎢⎢⎣

−1 1 −1 1
−2 2 −2 2
−3 3 −3 3
−4 4 −4 4

⎤

⎥⎥⎥⎦
(b)

⎡

⎢⎢⎢⎣

1 2 −1 −2
−1 −2 1 2

1 2 −1 −2
−1 −2 1 2

⎤

⎥⎥⎥⎦

(c)

⎡

⎢⎢⎢⎣

1 3 1 −1
2 1 0 1
1 −1 2 3
3 2 1 0

⎤

⎥⎥⎥⎦
(d)

⎡

⎢⎢⎢⎣

−3 −2 −1 0
−2 −1 0 1
−1 0 1 2

0 1 2 3

⎤

⎥⎥⎥⎦

2. Using the 2D-DCT from Computer Problem 1, find the least squares low-pass filtered
approximation to X by setting all transform values Ykl = 0 for k + l ≥ 4.

3. Obtain a grayscale image file of your choice, and use the imread command to import into
Matlab. Crop the resulting matrix so that each dimension is a multiple of 8. If necessary,
converting a color RGB image to gray scale can be accomplished by the standard formula
(11.15).

(a) Extract an 8 × 8 pixel block, for example, by using the Matlab command
xb=x(81:88,81:88). Display the block with the imagesc command.

(b) Apply the 2D-DCT.

(c) Quantize by using linear quantization with p = 1,2, and 4. Print out each YQ.
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(d) Reconstruct the block by using the inverse 2D-DCT, and compare with the original. Use
Matlab commands colormap(gray) and imagesc(X,[0 255]).

(e) Carry out (a)–(d) for all 8 × 8 blocks, and reconstitute the image in each case.

4. Carry out the steps of Computer Problem 3, but quantize by the JPEG-suggested matrix
(11.25) with p = 1.

5. Obtain a color image file of your choice. Carry out the steps of Computer Problem 3 for colors
R, G, and B separately, using linear quantization, and recombine as a color image.

6. Obtain a color image, and transform the RGB values to luminance/color difference
coordinates. Carry out the steps of Computer Problem 3 for Y , U , and V separately by using
JPEG quantization, and recombine as a color image.

11.3 HUFFMAN CODING

Lossy compression for images requires making a trade of accuracy for file size. If the
reductions in accuracy are small enough to be unnoticeable for the intended purpose of the
image, the trade may be worthwhile. The loss of accuracy occurs at the quantization step,
after transforming to separate the image into its spatial frequencies. Lossless compression
refers to further compression that may be applied without losing any more accuracy, simply
due to efficient coding of the DCT-transformed, quantized image.

In this section, we discuss lossless compression. As a relevant application, there are
simple, efficient methods for turning the quantized DCT transform matrix from the last
section into a JPEG bit stream. Finding out how to do this will take us on a short tour of
basic information theory.

11.3.1 Information theory and coding

Consider a message consisting of a string of symbols. The symbols are arbitrary; let us
assume that they come from a finite set. In this section, we consider efficient ways to
encode such a string in binary digits, or bits. The shorter the string of bits, the easier and
cheaper it will be to store or transmit the message.

! EXAMPLE 11.5 Encode the message ABAACDAB as a binary string.

Since there are four symbols, a convenient binary coding might associate two bits
with each letter. For example, we could choose the correspondence

A 00
B 01
C 10
D 11

Then the message would be coded as

(00)(01)(00)(00)(10)(11)(00)(01).

With this code, a total of 16 bits is required to store or transmit the message. "

It turns out that there are more efficient coding methods. To understand them, we
first have to introduce the idea of information. Assume that there are k different symbols,
and denote by pi the probability of the appearance of symbol i at any point in the string.



11.3 Huffman Coding | 515

The probability might be known a priori, or it may be estimated empirically by dividing the
number of appearances of symbol i in the string by the length of the string.

DEFINITION 11.7 The Shannon information, or Shannon entropy of the string is I = −
k∑

i=1
pi log2 pi .

❒

The definition is named after C. Shannon of Bell Laboratories, who did seminal work on
information theory in the middle of the 20th century. The Shannon information of a string
is considered an average of the number of bits per symbol that is needed, at minimum,
to code the message. The logic is as follows: On average, if a symbol appears pi of the
time, then one expects to need − log2 pi bits to represent it. For example, a symbol that
appears 1/8 of the time could be represented by one of the − log2(1/8) = 3-bit symbols
000,001, . . . ,111, of which there are 8. To find the average bits per symbol over all symbols,
we should weight the bits per symbol i by its probability pi . This means that the average
number of bits/symbol for the entire message is the sum I in the definition.

! EXAMPLE 11.6 Find the Shannon information of the string ABAACDAB.

The empirical probabilities of appearance of the symbols A,B,C,D are p1 =
4/8 = 2−1,p2 = 2/8 = 2−2,p3 = 1/8 = 2−3,p4 = 2−3, respectively. The Shannon infor-
mation is

−
4∑

i=1

pi log2 pi = 1
2

1 + 1
4

2 + 1
8

3 + 1
8

3 = 7
4

.
"

Thus, Shannon information estimates that at least 1.75 bits/symbol are needed to
code the string. Since the string has length 8, the optimal total number of bits should
be (1.75)(8) = 14, not 16, as we coded the string earlier.

In fact, the message can be sent in the predicted 14 bits, using the method known as
Huffman coding. The goal is to assign a unique binary code to each symbol that reflects
the probability of encountering the symbol, with more common symbols receiving shorter
codes.

The algorithm works by building a tree from which the binary code can be read. Begin
with two symbols with the smallest probability, and consider the “combined’’ symbol,
assigning to it the combined probability. The two symbols form one branching of the tree.
Then repeat this step, combining symbols and working up the branches of the tree, until
there is only one symbol group left, which corresponds to the top of the tree. Here, we first
combined the least probable symbols C and D into a symbol CD with probability 1/4. The
remaining probabilities are A (1/2), B (1/4), and CD (1/4). Again, we combine the two
least likely symbols to get A (1/2), BCD (1/2). Finally, combining the remaining two gives
ABCD (1). Each combination forms a branch of the Huffman tree:

A(1/2)
0

B(1/4)
10

C(1/8)
110

D(1/8)
111
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Once the tree is completed, the Huffman code for each symbol can be read by traversing
the tree from the top, writing a 0 for a branch to the left and a 1 for a branch to the right, as
shown above. For example, A is represented by 0, and C is represented by two rights and a
left, 110. Now the string of letters ABAACDAB can be translated to a bit stream of length 14:

(0)(10)(0)(0)(110)(111)(0)(10).

The Shannon information of the message provides a lower bound for the bits/symbol of the
binary coding. In this case, the Huffman code has achieved the Shannon information bound
of 14/8 = 1.75 bits/symbol. Unfortunately, this is not always possible, as the next example
shows.

! EXAMPLE 11.7 Find the Shannon information and a Huffman coding of the message ABRA CADABRA.

The empirical probabilities of the six symbols are

A 5/12
B 2/12
R 2/12
C 1/12
D 1/12
__ 1/12

.

Note that the space has been treated as a symbol. The Shannon information is

−
6∑

i=1

pi log2 pi = − 5
12

log2
5

12
− 2

1
6

log2
1
6

− 3
1
12

log2
1

12
≈ 2.28 bits/symbol.

This is the theoretical minimum for the average bits/symbol for coding the message
ABRA CADABRA. To find the Huffman coding, proceed as already described. We begin by
combining the symbols D and __, although any two of the three with probability 1/12 could
have been chosen for the lowest branch. The symbol A comes in last, since it has highest
probability. One Huffman coding is displayed in the diagram.

A(5/12)
0

B(1/6)
100

R(1/6)
101

C(1/12)
110

D(1/12)
1110

__(1/12)
   1111

Note that A has a short code, due to the fact that it is a popular symbol in the
message. The coded binary sequence for ABRA CADABRA is

(0)(100)(101)(0)(1111)(110)(0)(1110)(0)(100)(101)(0),

which has length 28 bits. The average for this coding is 28/12 = 2 1
3 bits/symbol, slightly

larger than the theoretical minimum previously calculated. Huffman codes cannot always
match the Shannon information, but they often come very close. "

The secret of a Huffman code is the following: Since each symbol occurs only at the
end of a tree branch, no complete symbol code can be the beginning of another symbol
code. Therefore, there is no ambiguity when translating the code back into symbols.
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11.3.2 Huffman coding for the JPEG format

This section is devoted to an extended example of Huffman coding in practice. The
JPEG image compression format is ubiquitous in modern digital photography. It makes
a fascinating case study due to the juxtaposition of theoretical mathematics and engineering
considerations.

The binary coding of transform coefficients for a JPEG image file uses Huffman coding
in two different ways, one for the DC component (the (0,0) entry of the transform matrix)
and another for the other 63 entries of the 8 × 8 matrix, the so-called AC components.

DEFINITION 11.8 Let y be an integer. The size of y is defined to be

L =
{

floor(log2 |y|) + 1 if y ̸= 0
0 if y = 0

.
❒

Huffman coding for JPEG has three ingredients: a Huffman tree for the DC components,
another Huffman tree for the AC components, and an integer identifier table. The first part
of the coding for the entry y = y00 is the binary coding for the size of y, from the following
Huffman tree for DC components, called the DPCM tree, for Differential Pulse Code
Modulation.

0

21 3 4 5
6

7
8

9
10

11 12

Again, the tree is to be interpreted by coding a 0 or 1 when going down a branch to the
left or right, respectively. The first part is followed by a binary string from the following
integer identifier table:

L entry binary
0 0 - -
1 −1,1 0,1
2 −3,−2,2,3 00,01,10,11
3 −7,−6,−5,−4,4,5,6,7 000,001,010,011,100,101,110,111
4 −15,−14,…,−8,8,…,14,15 0000,0001,……0111,1000,……,1110,1111
5−31,−30,…,−16,16,…,30,31 00000,00001,……,01111,10000……,11110,11111
6−63,−62,…,−32,32,…,62,63000000,000001,…,011111,100000,…,111110,111111
...

...
...

As an example, the entry y00 = 13 would have size L = 4. According to the DPCM
tree, the Huffman code for 4 is (101). The table shows that the extra digits for 13 are (1101),
so the concatenation of the two parts, 1011101, would be stored for the DC component.

Since there are often correlations between the DC components of nearby 8 × 8 blocks,
only the differences from block to block are stored after the first block. The differences are
stored, moving from left to right, using the DPCM tree.
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For the remaining 63 AC components of the 8 × 8 block, Run Length Encoding
(RLE) is used as a way to efficiently store long runs of zeros. The conventional order for
storing the 63 components is the zigzag pattern

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 5 6 14 15 27 28
2 4 7 13 16 26 29 42
3 8 12 17 25 30 41 43
9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54
20 22 33 38 46 51 55 60
21 34 37 47 50 56 59 61
35 36 48 49 57 58 62 63

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11.27)

Instead of coding the 63 numbers themselves, a zero run–length pair (n,L) is coded, where
n denotes the length of a run of zeros, and L represents the size of the next nonzero entry.
The most common codes encountered in typical JPEG images, and their default codings
according to the JPEG standard, are shown in the Huffman tree for AC components.

(0, 1) (0, 2)

(3, 1) (4, 1)

(0, 6) (1, 3)
(5, 1) (6, 1)

(0, 7) (2, 2)

(1, 4) (3, 2)

(8, 1) (9, 1)

(10, 1)

(7, 1)

(0, 5) (1, 2)
(2, 1)

(0, 3)

(1, 1)
EOB   (0, 4)

In the bit stream, the Huffman code from the tree (which only identifies the size of
the entry) is immediately followed by the binary code identifying the integer, from the
previous table. For example, the sequence of entries −5, 0,0,0,2 would be represented
as (0,3) −5 (3,2) 2, where (0,3) means no zeros followed by a size 3 number, and (3,2)

represents 3 zeros followed by a size 2 number. From the Huffman tree, we find that (0,3)

codes as (100), and (3,2) as (111110111). The identifier for −5 is (010) and for 2 is (10),
from the integer identifier table. Therefore, the bit stream used to code −5,0,0,0,2 is
(100)(010)(111110111)(10).

The preceding Huffman tree shows only the most commonly occurring JPEG run-length
codes. Other useful codes are (11,1) = 1111111001, (12,1) = 1111111010, and (13,1) =
11111111000.

! EXAMPLE 11.8 Code the quantized DCT transform matrix in (11.24) for a JPEG image file.

The DC entry y00 = −4 has size 3, coded as (100) by the DPCM tree, and extra
bits (011) from the integer identifier table. Next, we consider the AC coefficient string.
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According to (11.27), the AC coefficients are ordered as −1,3,1,0,1,−1,−1, seven zeros,
1, four zeros, −1, three zeros, −1, and the remainder all zeros. The run-length encoding
begins with −1, which has size 1 and so contributes (0,1) from the run-length code. The
next number 3 has size 2 and contributes (0,2). The zero run-length pairs are

(0,1) −1 (0,2) 3 (0,1) 1 (1,1) 1 (0,1) −1 (0,1) −1

(7,1) 1 (4,1) −1 (3,1) −1 EOB.

Here, EOB stands for “end-of-block’’ and means that the remainder of the entries consists
of zeros. Next, we read the bit representatives from the Huffman tree on page 518 and the
integer identifier table. The bit stream that stores the 8 × 8 block from the photo in Figure
11.8 (c) is listed below, where the parentheses are included only for human readability:

(100)(011)

(00)(0)(01)(11)(00)(1)(1100)(1)(00)(0)(00)(0)

(11111010)(1)(111011)(0)(111010)(0)(1010)

The pixel block in Figure 11.8(c), which is a reasonable approximation of the original
Figure 11.6(a), is exactly represented by these 54 bits. On a per-pixel basis, this works out
to 54/64 ≈ 0.84 bits/pixel. Note the superiority of this coding to the bits/pixel achieved by
low-pass filtering and quantization alone. Given that the pixels started out as 8-bit integers,
the 8 × 8 image has been compressed by more than a factor of 9:1. "

Decompressing a JPEG file consists of reversing the compression steps. The JPEG
reader decodes the bit stream to run-length symbols, which form 8 × 8 DCT transform
blocks that in turn are finally converted back to pixel blocks with the use of the inverse DCT.

11.3 Exercises

1. Find the probability of each symbol and the Shannon information for the messages.
(a) BABBCABB (b) ABCACCAB (c) ABABCABA

2. Draw a Huffman tree and use it to code the messages in Exercise 1. Compare the Shannon
information with the average number of bits needed per symbol.

3. Draw a Huffman tree and convert the message, including spaces and punctuation marks, to a
bit stream by using Huffman coding. Compare the Shannon information with the average
number of bits needed per symbol. (a) AY CARUMBA! (b) COMPRESS THIS MESSAGE
(c) SHE SELLS SEASHELLS BY THE SEASHORE

4. Translate the transformed, quantized image components (a) (11.22) and (b) (11.23) to bit
streams, using JPEG Huffman coding.

11.4 MODIFIED DCT AND AUDIO COMPRESSION

We return to the problem of one-dimensional signals and discuss state-of-the-art approaches
to audio compression. Although one might think that one dimension is easier to handle than
two, the challenge is that the human auditory system is very sensitive in the frequency
domain, and unwanted artifacts introduced by compression and decompression are even
more readily detected. For that reason, it is common for sound compression methods to
make use of sophisticated tricks designed to hide the fact that compression has occurred.
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First we introduce DCT4, a new version of the Discrete Cosine Transform, and the
so-called Modified Discrete Cosine Transform (MDCT). The MDCT is represented by a
matrix that is not square and so, unlike the DCT and DCT4, is not invertible. However,
when applied on overlapping windows, it can be used to completely reconstruct the original
data stream. More importantly, it can be combined with quantization to carry out lossy
compression with minimal degradation of sound quality. The MDCT is at the core of most
of the current widely supported sound compression formats, such as MP3,AAC, and WMA.

11.4.1 Modified Discrete Cosine Transform

We begin with a slightly different form of the DCT introduced earlier. There are four
different versions of the DCT that are commonly used—we used version DCT1 for image
compression in the previous section. Version DCT4 is most popular for sound compression.

DEFINITION 11.9 The Discrete Cosine Transform (version 4) (DCT4) of x = (x0, . . . ,xn−1)T is the
n-dimensional vector

y = Ex,

where E is the n × n matrix

Eij =
√

2
n

cos
(i + 1

2 )(j + 1
2 )π

n
. (11.28)

❒

Just as in the DCT1, the matrix E in DCT4 is a real orthogonal matrix: It is square and
its columns are pairwise orthogonal unit vectors. The latter follows from the fact that the
columns of E are the unit eigenvectors of the real symmetric n × n matrix

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 3

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (11.29)

Exercise 6 asks the reader to verify this fact.
Next, we note two important facts about the columns of the DCT4 matrix. Treat n as

fixed, and consider not only the n columns in DCT4, but the column vectors defined by
(11.28) for all positive and negative integers j .

LEMMA 11.10 Denote by cj the j th column of the (extended) DCT4 matrix (11.28). Then (a) cj = c−1−j

for all integers j (the columns are symmetric around j = − 1
2 ), and (b) cj = −c2n−1−j for

all integers j (the columns are antisymmetric around j = n − 1
2 ). #

Proof. To prove part (a) of the lemma, write j = − 1
2 + (j + 1

2 ) and −1 − j = − 1
2 −

(j + 1
2 ). Using equation (11.28) yields

cj = c− 1
2 +(j+ 1

2 ) =
√

2
n

cos
(i + 1

2 )(j + 1
2 )π

n
=

√
2
n

cos
(i + 1

2 )(−j − 1
2 )π

n
= c− 1

2 −(j+ 1
2 ) = c−1−j

for i = 0, . . . ,n − 1.
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For the proof of (b), set r = n − 1
2 − j . Then j = n − 1

2 − r and 2n − 1 − j = n −
1
2 + r , and we must show that cn− 1

2 −r + cn− 1
2 +r = 0. By the cosine addition formula,

cn− 1
2 −r =

√
2
n

cos
(2i + 1)(n − r)π

2n

=
√

2
n

cos
2i + 1

2
π cos

(2i + 1)rπ

2n
+

√
2
n

sin
2i + 1

2
π sin

(2i + 1)rπ

2n

cn− 1
2 +r =

√
2
n

cos
(2i + 1)(n + r)π

2n

=
√

2
n

cos
2i + 1

2
π cos

(2i + 1)rπ

2n
−

√
2
n

sin
2i + 1

2
π sin

(2i + 1)rπ

2n

for i = 0, . . . ,n − 1. Since cos 1
2 (2i + 1)π = 0 for all integers i, the sum cn− 1

2 −r +
cn− 1

2 +r = 0, as claimed. ❒

We will use the DCT4 matrix E to build the Modified Discrete Cosine Transform.
Assume that n is even. We are going to create a new matrix, using the columns c n

2
, . . . ,c 5

2 n−1.
Lemma 11.10 shows that for any integer j , the column cj can be expressed as one of the
columns of DCT4—that is, one of the cj for 0 ≤ i ≤ n − 1, as shown in Figure 11.10, up
to a possible sign change.

... ... ... ... ... ...c3 c2 c1 c0 c0 c1 c2

... ... ... ... ... ...c2c− 4 c−3 c−2 c−1 c0 c1

−c0 −c0 −c1

c2n−1 c2n

cn−1 −cn−1

cn−1 cn c2n+1

Figure 11.10 Illustration of Lemma 11.10. The columns c0, . . . , cn – 1 make up the n × n DCT4

matrix. For integers j outside that range, the column defined by cj in equation (11.28) still cor-

responds to one of the n columns of DCT4, shown directly below it in the Figure. This illustrates

Lemma 11.10.

DEFINITION 11.11 Let n be an even positive integer. The Modified Discrete Cosine Transform (MDCT) of
x = (x0, . . . ,x2n−1)T is the n-dimensional vector

y = Mx, (11.30)

where M is the n × 2n matrix

Mij =
√

2
n

cos
(i + 1

2 )(j + n
2 + 1

2 )π

n
(11.31)

for 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ 2n − 1. ❒

Note the major difference from the previous forms of the DCT: The MDCT of a length
2n vector is a length n vector. For this reason, the MDCT is not directly invertible, but we
will see later that the same effect will be achieved by overlapping the length 2n vectors.

Comparing with Definition 11.9 allows us to write the MDCT matrix M in terms of
the DCT4 columns and then simplify, using Lemma 11.10:

M =
[
c n

2
· · ·c 5

2 n−1

]

=
[
c n

2
· · ·cn−1|cn · · ·c 3

2 n−1|c 3
2 n · · ·c2n−1|c2n · · ·c 5

2 n−1

]
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=
[
c n

2
· · ·cn−1| − cn−1 · · · − c n

2
| − c n

2 −1 · · · − c0| − c0 · · · − c n
2 −1

]
. (11.32)

For example, the n = 4 MDCT matrix is

M = [c2c3|c4c5|c6c7|c8c9] = [c2c3| − c3 − c2| − c1 − c0| − c0 − c1]

To simplify notation, let A and B denote the left and right halves of the DCT4 matrix, so
that E = [A|B]. Define the permutation matrix formed by reversing the columns of the
identity matrix, left for right:

R =

⎡

⎢⎢⎣

1
·

·
·

1

⎤

⎥⎥⎦ .

The permutation matrix R reverses columns right for left when multiplying a matrix on
the right. When multiplying on the left, it reverses rows top to bottom. Note that R is
a symmetric orthogonal matrix, since R−1 = RT = R. Now (11.32) can be written more
simply as

M = (B| − BR| − AR| − A), (11.33)

where AR and BR are versions of A and B in which the order of the columns has been
reversed, left for right.

The action of MDCT can be expressed in terms of DCT4. Let

x =

⎡

⎢⎢⎣

x1
x2
x3
x4

⎤

⎥⎥⎦

be a 2n-vector, where each xi is a length n/2 vector (remember that n is even). Then, by
the characterization of M in (11.33),

Mx = Bx1 − BRx2 − ARx3 − Ax4

= [A|B]
[ −Rx3 − x4

x1 − Rx2

]
= E

[ −Rx3 − x4
x1 − Rx2

]
, (11.34)

where E is the n × n DCT4 matrix and Rx2 and Rx3 represent x2 and x3 with their entries
reversed top to bottom. This is very helpful—we can express the output of M in terms of
an orthogonal matrix E.

Since the n × 2n matrix M of the MDCT is not a square matrix, it is not invertible.
However, two adjacent MDCT’s can have rank 2n in total, and working together, can
reconstruct the input x-values perfectly, as we now show.

The “inverse’’ MDCT is represented by the 2n × n matrix N = MT , which has trans-
posed entries

Nij =
√

2
n

cos
(j + 1

2 )(i + n
2 + 1

2 )π

n
. (11.35)

It is not an actual inverse, although it is as close as it can be for a rectangular matrix. By
transposing (11.33), we have

N =

⎡

⎢⎢⎣

BT

−RBT

−RAT

−AT

⎤

⎥⎥⎦ , (11.36)

using our earlier notation E = [A|B] for the Discrete Cosine Transform DCT4. We know
that since E is an orthogonal matrix,
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AT A = I

BT B = I

AT B = BT A = 0,

where I denotes the n × n identity matrix.
Now we are ready to calculate NM, to see in what sense N inverts the MDCT matrix

M . Let x be partitioned into four parts, as before. According to (11.34) and (11.36), the
orthogonality of A and B, and the fact that R2 = I , we have

NM

⎡

⎢⎢⎣

x1
x2
x3
x4

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

BT

−RBT

−RAT

−AT

⎤

⎥⎥⎦ [A(−Rx3 − x4) + B(x1 − Rx2)]

=

⎡

⎢⎢⎣

x1 − Rx2
−Rx1 + x2
x3 + Rx4
Rx3 + x4

⎤

⎥⎥⎦ . (11.37)

In audio compression algorithms, MDCT is applied to vectors of data that overlap. The
reason is that any artifacts due to the ends of the vectors will occur with a fixed frequency,
because of the constant vector length. The auditory system is even more sensitive to periodic
errors than the visual system; after all, an error of fixed frequency is a tone of that frequency,
which the ear is designed to pick up. Assume that the data will be presented in overlapped
fashion. Let

Z1 =

⎡

⎢⎢⎣

x1
x2
x3
x4

⎤

⎥⎥⎦ and Z2 =

⎡

⎢⎢⎣

x3
x4
x5
x6

⎤

⎥⎥⎦

be two 2n-vectors for an even integer n, where each xi is a length n/2 vector. The vectors
Z1 and Z2 overlap by half of their length. Since (11.37) shows that

NMZ1 =

⎡

⎢⎢⎣

x1 − Rx2
−Rx1 + x2

x3 + Rx4
Rx3 + x4

⎤

⎥⎥⎦ and NMZ2 =

⎡

⎢⎢⎣

x3 − Rx4
−Rx3 + x4

x5 + Rx6
Rx5 + x6

⎤

⎥⎥⎦ , (11.38)

we can reconstruct the n-vector [x3,x4] exactly by averaging the bottom half of NMZ1
and the top half of NMZ2:

[
x3
x4

]
= 1

2
(NMZ1)n,...,2n−1 + 1

2
(NMZ2)0,...,n−1. (11.39)

This equality is how N is used to decode the signal after being coded by M .
This result is summarized in Theorem 11.12.

THEOREM 11.12 Inversion of MDCT through overlapping. Let M be the n × 2n MDCT matrix, and
N = MT . Let u1,u2,u3 be n-vectors, and set

v1 = M

[
u1
u2

]
and v2 = M

[
u2
u3

]
.
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Then the n-vectors w1,w2,w3,w4 defined by
[

w1
w2

]
= Nv1 and

[
w3
w4

]
= Nv2

satisfy u2 = 1
2 (w2 + w3). #

This is exact reconstruction. Theorem 11.12 is customarily used with a long signal
of concatenated n-vectors [u1,u2, . . . ,um]. The MDCT is applied to adjacent pairs to get
a transformed signal (v1,v2, . . . ,vm−1). Now the lossy compression comes in. The vi are
frequency components, so we can choose to keep certain frequencies and de-emphasize
others. We will take up this direction in the next section.

After shrinking the content of the vi by quantization or other means, (u2, . . . ,um−1) can
be decompressed by Theorem 11.12. Note that we cannot recover u1 and um; they should
either be unimportant parts of the signal or padding that is added beforehand.

! EXAMPLE 11.9 Use the overlapped MDCT to transform the signal x = [1,2,3,4,5,6]. Then invert the
transform to reconstruct the middle section [3,4].

We will overlap the vectors [1,2,3,4] and [3,4,5,6]. Let n = 2 and set

E2 =
[

cos π
8 cos 3π

8

cos 3π
8 cos 9π

8

]

=
[

b c

c −b

]
.

Note that our definitions of b and c have changed slightly from (11.7) to be compatible with
the MDCT. Applying the 2 × 4 MDCT gives

v1 = M

⎡

⎢⎢⎣

1
2
3
4

⎤

⎥⎥⎦ = E2

[−R(3) − 4
1 − R(2)

]
= E2

[−7
−1

]
=

[−7b − c

b − 7c

]
=

[−6.8498
−1.7549

]

v2 = M

⎡

⎢⎢⎣

3
4
5
6

⎤

⎥⎥⎦ = E2

[−R(5) − 6
3 − R(4)

]
= E2

[−11
−1

]
=

[−11b − c

b − 11c

]
=

[−10.5454
−3.2856

]
.

The transformed signal is represented by

[v1|v2] =
[ −6.8498 −10.5454

−1.7549 −3.2856

]
.

To invert the MDCT, define A and B by

E2 =
[
A |

|B
]

=
[

b |
| c

c |
|−b

]

and calculate

[
w1
w2

]
= Nv1 =

⎡

⎢⎢⎣

BT v1
−RBT v1
−RAT v1

−AT v1

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

c −b

−c b

−b −c

−b −c

⎤

⎥⎥⎦

[ −7b − c

b − 7c

]
=

⎡

⎢⎢⎣

−1
1
7
7

⎤

⎥⎥⎦

[
w3
w4

]
= Nv2 =

⎡

⎢⎢⎣

BT v2
−RBT v2
−RAT v2

−AT v2

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

c −b

−c b

−b −c

−b −c

⎤

⎥⎥⎦

[ −11b − c

b − 11c

]
=

⎡

⎢⎢⎣

−1
1

11
11

⎤

⎥⎥⎦ ,
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Figure 11.11 Bit quantization. Illustration of (11.39). (a) 2 bits (b) 3 bits.

where we have used the fact b2 + c2 = 1. The result of Theorem 11.12 is that we can recover
the overlap [3,4] by

u2 = 1
2

(w2 + w3) = 1
2

([
7
7

]
+

[ −1
1

])
=

[
3
4

]
. "

The definition and use of MDCT is less direct than the use of the DCT, discussed
earlier in the chapter. Its advantage is that it allows overlapping of adjacent vectors in an
efficient way. The effect is to average contributions from two vectors, reducing artifacts
from abrupt transitions seen at boundaries. As in the case of DCT, we can filter or quantize
the transform coefficients before reconstructing the signal in order to improve or com-
press the signal. Next, we show how the MDCT can be used for compression by adding a
quantization step.

11.4.2 Bit quantization

Lossy compression of audio signals is achieved by quantizing the output of a signal’s
MDCT. In this section, we will expand on the quantization used for image compression,
to allow more control over the number of bits used to represent the lossy version of the
signal.

Start with the open interval of real numbers (−L,L).Assume that the goal is to represent
a number in (−L,L) by b bits, and that we are willing to live with a little error. We
will use one bit for the sign and quantize to a binary integer of b − 1 bits. The formula
follows:

b-bit quantization of (−L,L)

Quantization: z = round
(

y

q

)
, where q = 2L

2b − 1
Dequantization: y = qz (11.40)

As an example, we show how to represent the numbers in the interval (−1,1) by 4 bits.
Set q = 2(1)/(24 − 1) = 2/15, and quantize by q. The number y = −0.3 is represented by

−0.3
2/15

= −9
4

−→ −2 −→ −010,

and the number y = 0.9 is represented by

0.9
2/15

= 27
4

= 6.75 −→ 7 −→ +111.

Dequantization reverses the process. The quantized version of −0.3 is dequantized as

(−2)q = (−2)(2/15) = −4/15 ≈ −0.2667
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and the quantized version of 0.9 as

(7)q = (7)(2/15) = 14/15 ≈ 0.9333.

In both cases, the quantization error is 1/30.

! EXAMPLE 11.10 Quantize the MDCT output of Example 11.9 to 4-bit integers. Then dequantize, invert the
MDCT, and find the quantization error.

All transform entries lie in the interval (−12,12). Using L = 12, four-bit quanti-
zation requires q = 2(12)/(24 − 1) = 1.6. Then

v1 =
[ −6.8498

−1.7549

]
−→

[
round(−6.8948

1.6 )

round(−1.7549
1.6 )

]

−→
[ −4

−1

]
−→ −100

−001

and

v2 =
[ −10.5454

−3.2856

]
−→

[
round(−10.5454

1.6 )

round(−3.2856
1.6 )

]

−→
[ −7

−2

]
−→ −111

−010
.

The transform variables v1,v2 can be stored as four 4-bit integers, for a total of 16 bits.
Dequantization with q = 1.6 is

[ −4
−1

]
−→

[ −6.4
−1.6

]
= v̄1

and
[ −7

−2

]
−→

[ −11.2
−3.2

]
= v̄2.

Applying the inverse MDCT yields

[
w1
w2

]
= Nv̄1 =

⎡

⎢⎢⎣

−0.9710
0.9710
6.5251
6.5251

⎤

⎥⎥⎦ ,

[
w3
w4

]
= Nv̄2 =

⎡

⎢⎢⎣

−1.3296
1.3296

11.5720
11.5720

⎤

⎥⎥⎦ ,

and the reconstructed signal

u2 = 1
2

(w2 + w3) = 1
2

([
6.5251
6.5251

]
+

[ −1.3296
1.3296

])
=

[
2.5977
3.9274

]
.

The quantization error is the difference between the original and reconstructed signals:
∣∣∣∣

[
2.5977
3.9274

]
−

[
3
4

]∣∣∣∣ =
[

0.4023
0.0726

]
. "

Coding of audio files is usually done by using a preset allocation of bits for prescribed
frequency ranges. Reality Check 11 guides the reader through construction of a complete
codec, or code–decode protocol, that uses the MDCT along with bit quantization.
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11.4 Exercises

1. Find the MDCT of the input. Express the answer in terms of b = cosπ/8 and c = cos3π/8.
(a) [1,3,5,7] (b) [−2,−1,1,2] (c) [4,−1,3,5]

2. Find the MDCT of the two overlapping length 4 windows of the given input, as in
Example 11.9. Then reconstruct the middle section, using the inverse MDCT.
(a) [−3,−2,−1,1,2,3] (b) [1,−2,2,−1,3,0] (c) [4,1,−2,−3,0,3]

3. Quantize each real number in (−1,1) to 4 bits, and then dequantize and compute the
quantization error. (a) 2/3 (b) 0.6 (c) 3/7

4. Repeat Exercise 3, but quantize to 8 bits.

5. Quantize each real number in (−4,4) to 8 bits, and then dequantize and compute the
quantization error. (a) 3/2 (b) −7/5 (c) 2.9 (d) π

6. Show that the DCT4 n × n matrix is an orthogonal matrix for each even integer n.

7. Reconstruct the middle section of the data in Exercise 2 after quantizing to 4 bits in (−6,6).
Compare with the correct middle section.

8. Reconstruct the middle section of the data in Exercise 2 after quantizing to 6 bits in (−6,6).
Compare with the correct middle section.

9. Explain why the n-dimensional column vector ck defined by (11.28) for any integer k can be
expressed in terms of a column ck′ for 0 ≤ k′ ≤ n − 1. Express c5n and c6n in this way.

10. Find an upper bound for the quantization error (the error caused by quantization, followed by
dequantization) when converting a real number to a b-bit integer in the interval (−L,L).

11.4 Computer Problems

1. Write a Matlab program to accept as input a vector, apply the MDCT to each of the length 2n

windows, and reconstruct the overlapped length n sections, as in Example 11.9. Demonstrate
that it works on the following input signals. (a) n = 4,x = [1 2 3 4 5 6 7 8 9 10 11 12]
(b) n = 4,xi = cos(iπ/6) for i = 0, . . . ,11 (c) n = 8,xi = cos(iπ/10) for i = 0, . . . ,63

2. Adapt your program from Computer Problem 1 to apply b-bit quantization before
reconstructing the overlaps. Then reconstruct the examples from that problem, and compute
the reconstruction errors by comparing with the original input.

11 A Simple Audio Codec
Efficient transmission and storage of audio files is a key part of modern communications,
and the part played by compression is crucial. In this Reality Check, you will put together
a bare-bones compression–decompression protocol based on the ability of the MDCT to
split the audio signal into its frequency components and the bit quantization method of
Section 11.4.2.

The MDCT is applied to an input window of 2n signal values and provides an output
of n frequency components that approximate the data (and together with the next window,
interpolates the latter n input points). The compression part of the algorithm consists of
coding the frequency components after quantization to save space, as demonstrated in
Example 11.10.
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In common audio storage formats, the way the bits are allocated to the various frequency
components during quantization is based on psychoacoustics, the science of human sound
perception. Techniques such as frequency masking, the empirical fact that the ear can
handle only one dominant sound in each frequency range at a given time, are used to decide
which frequency components are most and least important to preserve. More quantization
bits are allocated to more important components. Most competitive methods are based on
the MDCT and differ on how the psychoacoustic factors are treated. In our description, we
will take a simplified approach that ignores most psychoacoustic factors and relies simply
on importance filtering, the tendency to apportion more bits to frequency components of
greater magnitude.

We begin with the reconstruction of a pure tone. Setting n = 32, the bottom frequency
tone catalogued by the MDCT is 64 Hz, at the lower edge of perceptible frequencies for the
human ear. A pure 64-Hz tone is represented by x(t) = cos2π(64)t , where t is measured in
seconds. If Fs is the number of samples per second, then 1/Fs,2/Fs, . . . ,Fs/Fs represent
one second worth of points in time. The Matlab commands

Fs=8192;
x=cos(2*pi*64*(1:Fs)/Fs);
sound(x,Fs)

play one second of a 64-Hz tone. The sampling frequency Fs of 8192 = 213 bytes/sec is
quite common, corresponding to 216 = 65536 bits/sec, referred to as a 64Kb/sec sampling
rate for an audio file. (Higher quality files are often sampled at two or three times this rate,
at 128 or 192 Kbs.)

Higher pitch tones are obtained by replacing 64 by an integer multiple 64f . Setting
f = 2 or 4 gives higher octave versions. Setting f = 7 plays a 448-Hz tone, just far enough
from concert A (440 Hz) that if you have friends with perfect pitch, it should drive them to
distraction in short order.

The Matlab code fragment shown next applies the MDCT and quantizes, followed by
an immediate dequantization and inverse MDCT on the overlapped segments, as described
in Section 11.4. In this way, the effect of the quantization error that accompanies lossy
compression can be examined.

n=32; % length of window
nb=127; % number of windows; must be > 1
b=4; L=5; % quantization information
q=2*L/(2ˆb-1); % b bits on interval [-L, L]
for i=1:n % form the MDCT matrix
for j=1:2*n
M(i,j)= cos((i-1+1/2)*(j-1+1/2+n/2)*pi/n);

end
end
M=sqrt(2/n)*M;
N=M’; % inverse MDCT
Fs=8192;f=7; % Fs=sampling rate
x=cos((1:4096)*pi*64*f/4096); % test signal
sound(x,Fs) % Matlab’s sound command
out=[];
for k=1:nb % loop over windows
x0=x(1+(k-1)*n:2*n+(k-1)*n)’;
y0=M*x0;
y1=round(y0/q); % transform components quantized
y2=y1*q; % and dequantized
w(:,k)=N*y2; % invert the MDCT
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if(k>1)
w2=w(n+1:2*n,k-1);w3=w(1:n,k);
out=[out;(w2+w3)/2]; % collect the reconstructed signal

end
end
pause(1)
sound(out,Fs) % play the reconstructed tone

The code plays the original 1/2-second tone (448 Hz), followed by the reconstructed
tone. Compare the effect of changing the number of bits that represent the transform com-
ponents, given by variable b in the code.

Suggested activities:

1. How is the output of the MDCT different for odd integer values of f , compared with even
values? Explain why the number of bits needed to make the reconstructed sound similar to
the original differs for odd versus even f .

2. Add a “window function’’ to the code. The window function scales the input signal x

smoothly to zero at each end of the window, counteracting the problem that the signal is not
exactly periodic. A common choice is to replace xi with xihi , where

hi =
√

2sin
(i − 1

2 )π

2n

for a length 2n window. To undo the window function, multiply the inverse MDCT outputs
w2 and w3 componentwise by the same hi ; this uses the orthogonality of sine, since the
window function is now offset by 1/4 period. Compare the effect of the window function
on the number of bits necessary to reconstruct the tone well.

3. Introduce importance sampling. Make a new test tone that is a combination of pure tones.
Modify the code so that each of the 32 frequency components of y has its own number bk of
bits for quantization. Propose a method that makes bk larger if the contributions |yk| are
larger, on average. Count the number of bits required to hold the signal, and refine your
proposal.

4. Build two separate subprograms, a coder and a decoder. The coder should write a file (or
Matlab variable) of bits representing the quantized output of the MDCT and print the
number of bits used. The decoder should load the file written by the coder and reconstruct
the signal.

5. Download a .wav file with the Matlab wavread command, or download another audio
file of your choice. (Alternatively, handel can be used. If you use a stereo file, you will
need to work with each channel separately.) Propose and implement a method to determine
the best allocation of bits, as represented by the bk . Use the coder to compress the audio file
and the decoder to decompress. Compare sound quality of different results, where differing
amounts of compression have been accomplished.

6. Investigate further tricks the sound industry uses to make compression more effective. For
example, in the case of a stereo audio file, is there a better approach than treating the
channels s1 and s2 separately? Why might it be advantageous to compress (s1 + s2)/2 and
(s1 − s2)/2 instead?
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Software and Further Reading

For good practical introductions to data compression, see Nelson and Gailly [1995], Storer
[1988], and Sayood [1996]. General references on image and sound compression are
Bhaskaran and Konstandtinides [1995]. Rao and Yip [1990] is a good source for infor-
mation on the Discrete Cosine Transform. The seminal article on Huffman coding is
Huffman [1952].

We have introduced the baseline JPEG standard (Wallace [1991]) for image compres-
sion. The full standard is available in Pennebaker and Mitchell [1993]. The recently intro-
duced JPEG-2000 standard (Taubman and Marcellin [2002]) allows wavelet compression
in place of DCT.

Most protocols for sound compression are based on the Modified Discrete Cosine
Transform (Wang and Vilermo [2003], Malvar [1992]). More specific information can be
found on the individual formats like MP3 (shorthand for MPEG audio layer 3, see Hacker
[2000]), AAC (Advanced Audio Coding, used in Apple iTunes and QuickTime video, and
XM satellite radio), and the open-source audio format Ogg-Vorbis.



C H A P T E R

12
Eigenvalues and Singular
Values
The World Wide Web makes vast amounts of informa-
tion easily accessible to the casual user—so vast, in
fact, that navigation with a powerful search engine
is essential. Technology has also provided miniatur-
ization and low-cost sensors, making great quanti-
ties of data available to researchers. How can access
to large amounts of information be exploited in an
efficient way?

Many aspects of search technology, and knowl-
edge discovery in general, benefit from treatment as an

eigenvalue or singular value problem. Numerical meth-
ods to solve these high-dimensional problems gen-
erate projections to distinguished lower dimensional
subspaces. This is exactly the simplification that com-
plex data environments most need.

Reality Check 12 on page 549 explores
what has been called the largest ongoing eigenvalue
computation in the world, used by one of the well-
known web search providers.

Computational methods for locating eigenvalues are based on the fundamental idea
of power iteration, a type of fixed-point iteration for eigenspaces. A sophisticated

version of the idea, called the QR Algorithm, is the standard algorithm for determining all
eigenvalues of typical matrices.

The singular value decomposition reveals the basic structure of a matrix and is heavily
used in statistical applications to find relations between data. In this chapter, we survey
methods for finding the eigenvalues and eigenvectors of a square matrix, and the singular
values and singular vectors of a general matrix.

12.1 POWER ITERATION METHODS

There is no direct method for computing eigenvalues. The situation is analogous to root-
finding, in that all feasible methods depend on some type of iteration. To begin the section,
we consider whether the problem might be reducible to root-finding.
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Appendix A shows a method for calculating eigenvalues and eigenvectors of an m × m

matrix. This approach, based on finding the roots of the degree m characteristic polynomial,
works well for 2 × 2 matrices. For larger matrices, the procedure requires a rootfinder of
the type studied in Chapter 1.

The difficulty of this approach to finding eigenvalues becomes clear if we recall the
example of the Wilkinson polynomial of Chapter 1. There we found that very small changes
in the coefficients of a polynomial can change the roots of the polynomial by arbitrarily
large amounts. In other words, the condition number of the input/output problem taking
coefficients to roots can be extremely large. Because our calculation of the coefficients of
the characteristic polynomial will be subject to errors on the order of machine roundoff
or larger, calculation of eigenvalues by this approach is susceptible to large errors. This
difficulty is serious enough to warrant eliminating the method of finding roots of the char-
acteristic polynomial as a pathway to the accurate calculation of eigenvalues.

A simple example of poor accuracy for this method follows from the existence of the
Wilkinson polynomial. If we are trying to find the eigenvalues of the matrix

A =

⎡

⎢⎢⎢⎣

1 0 · · · 0
0 2

...
...

. . .
...

0 0 · · · 20

⎤

⎥⎥⎥⎦
, (12.1)

we will calculate the coefficients of the characteristic polynomial P (x) = (x − 1)

(x − 2) · · ·(x − 20) and use a rootfinder to find the roots. However, as shown in Chapter 1,
some of the roots of the machine version of P (x) are far from the roots of the true version
of P (x), which are the eigenvalues of A.

This section introduces methods based on multiplying high powers of the matrix times
a vector, which usually will turn into an eigenvector as the power is raised. We will refine
the idea later, but it is the main thrust of the most sophisticated methods.

12.1.1 Power Iteration

The motivation behind Power Iteration is that multiplication by a matrix tends to move
vectors toward the dominant eigenvector direction.

Conditioning The large errors that the “characteristic polynomial method’’ are sub-

ject to are not the fault of the rootfinder. A perfectly accurate rootfinder would fare no

better. When the polynomial is multiplied out to determine its coefficients for entry into the

rootfinder, the coefficients will, in general,be subject to errors on the order of machine epsilon.

The rootfinder will then be asked to find the roots of the slightly wrong polynomial, which,

as we have seen, can have disastrous consequences. There is no general fix to this problem.

The only way to fight the problem would be to increase the size of the mantissa representing

floating point numbers, which would have the effect of lowering machine epsilon. If machine

epsilon could be made lower than 1/cond(P ), then accuracy could be assured for the eigen-

values. Of course, this is not really a solution, but just another step in an unwinnable arms race.

If higher precision computing is used, we can always extend the Wilkinson polynomial to a

higher degree to find an even higher condition number.
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DEFINITION 12.1 Let A be an m × m matrix.Adominant eigenvalue of A is an eigenvalue λ whose magnitude
is greater than all other eigenvalues of A. If it exists, an eigenvector associated to λ is called
a dominant eigenvector. ❒

The matrix

A =
[

1 3
2 2

]

has a dominant eigenvalue of 4 with eigenvector [1,1]T , and an eigenvector that is smaller
in magnitude, −1, with associated eigenvector [−3,2]T . Let us observe the result of mul-
tiplying the matrix A times a “random’’ vector, say [−5,5]T :

x1 = Ax0 =
[

1 3
2 2

][ −5
5

]
=

[
10

0

]

x2 = A2x0 =
[

1 3
2 2

][
10

0

]
=

[
10
20

]

x3 = A3x0 =
[

1 3
2 2

][
10
20

]
=

[
70
60

]

x4 = A4x0 =
[

1 3
2 2

][
70
60

]
=

[
250
260

]
= 260

[ 25
26
1

]

Multiplying a random starting vector repeatedly by the matrix A has resulted in moving the
vector very close to the dominant eigenvector of A. This is no coincidence, as can be seen
by expressing x0 as a linear combination of the eigenvectors

x0 = 1
[

1
1

]
+ 2

[ −3
2

]

and reviewing the calculation in this light:

x1 = Ax0 = 4
[

1
1

]
− 2

[ −3
2

]

x2 = A2x0 = 42
[

1
1

]
+ 2

[ −3
2

]

x3 = A3x0 = 43
[

1
1

]
− 2

[ −3
2

]

x4 = A4x0 = 44
[

1
1

]
+ 2

[ −3
2

]

= 256
[

1
1

]
+ 2

[ −3
2

]
.

The point is that the eigenvector corresponding to the eigenvalue that is largest in magnitude
will dominate the calculation after several steps. In this case, the eigenvalue 4 is largest,
and so the calculation moves closer and closer to an eigenvector in its direction [1,1]T .

To keep the numbers from getting out of hand, it is necessary to normalize the vector
at each step. One way to do this is to divide the current vector by its length prior to each
step. The two operations, normalization and multiplication by A constitute the method of
Power Iteration.

As the steps deliver improved approximate eigenvectors, how do we find approxi-
mate eigenvalues? To pose the question more generally, assume that a matrix A and an
approximate eigenvector are known. What is the best guess for the associated eigenvalue?
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Convergence Power Iteration is essentially a fixed-point iteration with normaliza-

tion at each step. Like FPI, it converges linearly, meaning that during convergence, the error

decreases by a constant factor on each iteration step. Later in this section, we will encounter a

quadratically convergent variant of Power Iteration called Rayleigh Quotient Iteration.

We will appeal to least squares. Consider the eigenvalue equation xλ = Ax, where x is
an approximate eigenvector and λ is unknown. Looked at this way, the coefficient matrix is
the n × 1 matrix x. The normal equations say that the least squares answer is the solution
of xT xλ = xT Ax, or

λ = xT Ax

xT x
, (12.2)

known as the Rayleigh quotient. Given an approximate eigenvector, the Rayleigh quo-
tient is the best approximate eigenvalue. Applying the Rayleigh quotient to the normalized
eigenvector adds an eigenvalue approximation to Power Iteration.

Power Iteration

Given initial vector x0.

for j = 1,2,3, . . .

uj−1 = xj−1/||xj−1||2
xj = Auj−1
λj = uT

j−1Auj−1

end
uj = xj /||xj ||2

To find the dominant eigenvector of the matrix A, begin with an initial vector. Each
iteration consists of normalizing the current vector and multiplying by A. The Rayleigh
quotient is used to approximate the eigenvalue. The Matlab norm command makes this
simple to implement, as shown in the following code:

% Program 12.1 Power Iteration
% Computes dominant eigenvector of square matrix
% Input: matrix A, initial (nonzero) vector x, number of steps k
% Output: dominant eigenvalue lam, eigenvector u
function [lam,u]=powerit(A,x,k)
for j=1:k

u=x/norm(x); % normalize vector
x=A*u; % power step
lam=u’*x; % Rayleigh quotient

end
u=x/norm(x);

12.1.2 Convergence of Power Iteration

We will prove the convergence of Power Iteration under certain conditions on the eigen-
values. Although these conditions are not completely general, they serve to show why the
method succeeds in the clearest possible case. Later, we will assemble successively more
sophisticated eigenvalue methods, built on the basic concept of Power Iteration, that cover
more general matrices.

THEOREM 12.2 Let A be an m × m matrix with real eigenvalues λ1, . . . ,λm satisfying |λ1| > |λ2| ≥ |λ3| ≥
· · · ≥ |λm|. Assume that the eigenvectors of A span Rm. For almost every initial vector,
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Power Iteration converges linearly to an eigenvector associated to λ1 with convergence rate
constant S = |λ2/λ1|. #

Proof. Let v1, . . . ,vn be the eigenvectors that form a basis of Rn, with correspond-
ing eigenvalues λ1, . . . ,λn, respectively. Express the initial vector in this basis as x0 =
c1v1 + ·· · + cnvn for some coefficients ci . The phrase “for almost every initial vector’’
means we can assume that c1,c2 ̸= 0. Applying Power Iteration yields

Ax0 = c1λ1v1 + c2λ2v2 + ·· · + cnλnvn

A2x0 = c1λ2
1v1 + c2λ2

2v2 + ·· · + cnλ2
nvn

A3x0 = c1λ3
1v1 + c2λ3

2v2 + ·· · + cnλ3
nvn

...

with normalization at each step. As the number of steps k → ∞, the first term on the
right-hand side will dominate, no matter how the normalization is done, because

Akx0

λk
1

= c1v1 + c2

(
λ2

λ1

)k

v2 + ·· · + cn

(
λn

λ1

)k

vn.

The assumption that |λ1| > |λi | for i > 1 implies that all but the first term on the right
will converge to zero with convergence rate S ≤ |λ2/λ1|, and exactly that rate, as long as
c2 ̸= 0. As a result, the method converges to a multiple of the dominant eigenvector v1,
with eigenvalue λ1. ❒

The term “almost every’’ in the theorem’s conclusion means that the set of initial
vectors x0 for which the iteration fails is a set of lower dimension in Rm. Specifically, the
iteration will succeed at the specified rate if x0 is not contained in the union of the dimension
m − 1 planes spanned by {v1,v3, . . . ,vm} and {v2,v3, . . . ,vm}.

12.1.3 Inverse Power Iteration

Power Iteration is limited to locating the eigenvalue of largest magnitude (absolute value).
If Power Iteration is applied to the inverse of the matrix, the smallest eigenvalue can be
found.

LEMMA 12.3 Let the eigenvalues of the m × m matrix A be denoted by λ1,λ2, . . . ,λm. (a) The eigenvalues
of the inverse matrix A−1 are λ−1

1 ,λ−1
2 , . . . ,λ−1

m , assuming that the inverse exists. The
eigenvectors are the same as those of A. (b) The eigenvalues of the shifted matrix A − sI

are λ1 − s,λ2 − s, . . . ,λm − s and the eigenvectors are the same as those of A. #

Proof. (a) Av = λv implies that v = λA−1v, and therefore, A−1v = (1/λ)v. Note
that the eigenvector is unchanged. (b) Subtract sIv from both sides of Av = λv. Then
(A − sI )v = (λ − s)v is the definition of eigenvalue for (A − sI ), and again the same
eigenvector can be used. ❒

According to Lemma 12.3, the largest magnitude eigenvalue of the matrix A−1 is the
reciprocal of the smallest magnitude eigenvalue of A. Applying Power Iteration to the
inverse matrix, followed by inverting the resulting eigenvalue of A−1, gives the smallest
magnitude eigenvalue of A.
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To avoid explicit calculation of the inverse of A, we rewrite the application of Power
Iteration to A−1, namely,

xk+1 = A−1xk (12.3)

as the equivalent

Axk+1 = xk, (12.4)

which is then solved for xk+1 by Gaussian elimination.
Now we know how to find the largest and smallest eigenvalues of a matrix. In other

words, for a 100 × 100 matrix, we are 2 percent finished. How do we find the other 98
percent?

One approach is suggested by Lemma 12.3(b). We can make any of the other eigen-
values small by shifting A by a value close to the eigenvalue. If we happen to know that
there is an eigenvalue near 10 (say, 10.05), then A − 10I has an eigenvalue λ = 0.05.
If it is the smallest magnitude eigenvalue of A − 10I , then the Inverse Power Iteration
xk+1 = (A − 10I )−1xk will locate it. That is, the Inverse Power Iteration will converge to
the reciprocal 1/(.05) = 20, after which we invert to .05 and add the shift back to get 10.05.
This trick will locate the eigenvalue that is smallest after the shift—which is another way
of saying the eigenvalue nearest to the shift. To summarize, we write

Inverse Power Iteration

Given initial vector x0 and shift s

for j = 1,2,3, . . .

uj−1 = xj−1/||xj−1||2
Solve (A − sI )xj = uj−1
λj = uT

j−1xj

end
uj = xj /||xj ||2

To find the eigenvalue of A nearest to the real number s, apply Power Iteration to
(A − sI )−1 to get the largest magnitude eigenvalue b of (A − sI )−1. The power iterations
should be done by Gaussian elimination on (A − sI )yk+1 = xk . Then λ = b−1 + s is the
eigenvalue of A nearest to s. The eigenvector associated to λ is given directly from the
calculation.

% Program 12.2 Inverse Power Iteration
% Computes eigenvalue of square matrix nearest to input s
% Input: matrix A, (nonzero) vector x, shift s, steps k
% Output: dominant eigenvalue lam, eigenvector of inv(A-sI)
function [lam,u]=invpowerit(A,x,s,k)
As=A-s*eye(size(A));
for j=1:k
u=x/norm(x); % normalize vector
x=As\u; % power step
lam=u’*x; % Rayleigh Quotient

end
lam=1/lam+s; u=x/norm(x);

! EXAMPLE 12.1 Assume that A is a 5 × 5 matrix with eigenvalues −5,−2,1/2,3/2,4. Find the eigenvalue
and convergence rate expected when applying (a) Power Iteration (b) Inverse Power Iteration
with shift s = 0 (c) Inverse Power Iteration with shift s = 2.

(a) Power Iteration with a random initial vector will converge to the largest magni-
tude eigenvalue −5, with convergence rate S = |λ2|/|λ1| = 4/5. (b) Inverse Power Iteration
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(with no shift) will converge to the smallest, 1/2, because its reciprocal 2 is larger than the
other reciprocals −1/5,−1/2,2/3, and 1/4. The convergence rate will be the ratio of the
two largest eigenvalues of the inverse matrix, S = (2/3)/2 = 1/3. (c) The Inverse Power
Iteration with shift s = 2 will locate the eigenvalue nearest to 2, which is 3/2. The reason is
that, after shifting the eigenvalues to −7,−4,−3/2,−1/2, and 2, the largest of the recip-
rocals is −2. After inverting to get −1/2 and adding back the shift s = 2, we get 3/2. The
convergence rate is again the ratio (2/3)/2 = 1/3. "

12.1.4 Rayleigh Quotient Iteration

The Rayleigh quotient can be used in conjunction with Inverse Power Iteration. We know
that it converges to the eigenvector associated to the eigenvalue with the smallest distance
to the shift s, and that convergence is fast if this distance is small. If at any step along
the way an approximate eigenvalue were known, it could be used as the shift s, to speed
convergence.

Using the Rayleigh quotient as the updated shift in Inverse Power Iteration leads to
Rayleigh Quotient Iteration (RQI).

Rayleigh Quotient Iteration

Given initial vector x0.

for j = 1,2,3, . . .

uj−1 = xj−1/||xj−1||
λj−1 = uT

j−1Auj−1

Solve (A − λj−1I )xj = uj−1
end
uj = xj /||xj ||2

% Program 12.3 Rayleigh Quotient Iteration
% Input: matrix A, initial (nonzero) vector x, number of steps k
% Output: eigenvalue lam and eigenvector u
function [lam,u]=rqi(A,x,k)
for j=1:k
u=x/norm(x); % normalize
lam=u’*A*u; % Rayleigh quotient
x=(A-lam*eye(size(A)))\u; % inverse power iteration

end
u=x/norm(x);
lam=u’*A*u; % Rayleigh quotient

While Inverse Power Iteration converges linearly, Rayleigh Quotient Iteration is
quadratically convergent for simple (nonrepeated) eigenvalues and will converge cubi-
cally if the matrix is symmetric. This means that very few steps are needed to converge to
machine precision for this method. After convergence, the matrix A − λj−1I is singular
and no more steps can be performed. As a result, trial and error should be used with Program
12.3 to stop the iteration just before this occurs. Note that the complexity has grown for RQI.
Inverse Power Iteration requires only one LU factorization; but for RQI, each step requires
a new factorization, since the shift has changed. Even so, Rayleigh Quotient Iteration is the
fastest converging method we have presented in this section on finding one eigenvalue at
a time. In the next section, we discuss ways to find all eigenvalues of a matrix in the same
calculation. The basic engine will remain Power Iteration—it is only the organizational
details that will become more sophisticated.
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12.1 Exercises

1. Find the characteristic polynomial and the eigenvalues and eigenvectors of the following
symmetric matrices:

(a)

[
3.5 −1.5

−1.5 3.5

]

(b)

[
0 2
2 0

]

(c)

[
−0.2 −2.4
−2.4 1.2

]

(d)

[
136 −48
−48 164

]

2. Find the characteristic polynomial and the eigenvalues and eigenvectors of the following
matrices:

(a)

[
7 9

−6 −8

]

(b)

[
2 6
1 3

]

(c)

[
2.2 0.6

−0.4 0.8

]

(d)

[
32 45

−18 −25

]

3. Find the characteristic polynomial and the eigenvalues and eigenvectors of the following
matrices:

(a)

⎡

⎢⎣
1 0 1
0 3 −2
0 0 2

⎤

⎥⎦ (b)

⎡

⎢⎣
1 0 − 1

3

0 1 2
3

−1 1 1

⎤

⎥⎦ (c)

⎡

⎢⎣
− 1

2 − 1
2 − 1

6

−1 0 1
3

− 1
2

1
2

1
2

⎤

⎥⎦

4. Prove that a square matrix and its transpose have the same characteristic polynomial, and
therefore the same set of eigenvalues.

5. Assume that A is a 3 × 3 matrix with the given eigenvalues. Decide to which eigenvalue
Power Iteration will converge, and determine the convergence rate constant S. (a) {3,1,4}
(b) {3,1,−4} (c) {−1,2,4} (d) {1,9,10}

6. Assume that A is a 3 × 3 matrix with the given eigenvalues. Decide to which eigenvalue
Power Iteration will converge, and determine the convergence rate constant S. (a) {1,2,7}
(b) {1,1,−4} (c) {0,−2,5} (d) {8,−9,10}

7. Assume that A is a 3 × 3 matrix with the given eigenvalues. Decide to which eigenvalue
Inverse Power Iteration with the given shift s will converge, and determine the
convergence rate constant S. (a) {3,1,4}, s = 0 (b) {3,1,−4}, s = 0 (c) {−1,2,4}, s = 0
(d) {1,9,10}, s = 6

8. Assume that A is a 3 × 3 matrix with the given eigenvalues. Decide to which eigenvalue
Inverse Power Iteration with the given shift s will converge, and determine the
convergence rate constant S. (a) {3,1,4}, s = 5 (b) {3,1,−4}, s = 4 (c) {−1,2,4}, s = 1
(d) {1,9,10}, s = 8

9. Let A =
[

1 2
4 3

]

. (a) Find all eigenvalues and eigenvectors of A. (b) Apply three steps of

Power Iteration with initial vector x0 = (1,0). At each step, approximate the eigenvalue by the
current Rayleigh quotient. (c) Predict the result of applying Inverse Power Iteration with shift
s = 0 (d) with shift s = 3.

10. Let A =
[

−2 1
3 0

]

. Carry out the steps of Exercise 9 for this matrix.

11. If A is a 6 × 6 matrix with eigenvalues −6,−3,1,2,5,7, which eigenvalue of A will the
following algorithms find? (a) Power Iteration (b) Inverse Power Iteration with shift s = 4
(c) Find the linear convergence rates of the two computations. Which converges faster?
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12.1 Computer Problems

1. Using the supplied code (or code of your own) for the Power Iteration method, find the
dominant eigenvector of A, and estimate the dominant eigenvalue by calculating a Rayleigh
quotient. Compare your conclusions with the corresponding part of Exercise 5.

(a)

⎡

⎢⎣
10 −12 −6
5 −5 −4

−1 0 3

⎤

⎥⎦ (b)

⎡

⎢⎣
−14 20 10
−19 27 12

23 −32 −13

⎤

⎥⎦

(c)

⎡

⎢⎣
8 −8 −4

12 −15 −7
−18 26 12

⎤

⎥⎦ (d)

⎡

⎢⎣
12 −4 −2
19 −19 −10

−35 52 27

⎤

⎥⎦

2. Using the supplied code (or code of your own) for the Inverse Power Iteration method,
verify your conclusions from Exercise 7, using the appropriate matrix from Computer
Problem 1.

3. For the Inverse Power Iteration method, verify your conclusions from Exercise 8, using the
appropriate matrix from Computer Problem 1.

4. Apply Rayleigh Quotient Iteration to the matrices in Computer Problem 1. Try different
starting vectors until all three eigenvalues are found.

12.2 QR ALGORITHM

The goal of this section is to develop methods for finding all eigenvalues at once. We begin
with a method that works for symmetric matrices, and later supplement it to work in general.
Symmetric matrices are easiest to handle because their eigenvalues are real and their unit
eigenvectors form an orthonormal basis of Rm (see Appendix A). This motivates applying
Power Iteration with m vectors in parallel, where we actively work at keeping the vectors
orthogonal to one another.

12.2.1 Simultaneous iteration

Assume that we begin with m pairwise orthogonal initial vectors v1, . . . ,vm. After one step
of Power Iteration applied to each vector, Av1, . . . ,Avm are no longer guaranteed to be
orthogonal to one another. In fact, under further multiplications by A, they all would prefer
to converge to the dominant eigenvector, according to Theorem 12.2.

To avoid this, we re-orthogonalize the set of m vectors at each step. The simultaneous
multiplication by A of the m vectors is efficiently written as the matrix product

A [v1| · · · |vm] .

As we found in Chapter 4, the orthogonalization step can be viewed as factoring the resulting
product as QR. If the elementary basis vectors are used as initial vectors, then the first step
of Power Iteration followed by re-orthogonalization is AI = Q1R1, or

⎡

⎢⎢⎣A

⎡

⎢⎢⎣

1
0
...

0

⎤

⎥⎥⎦

∣∣∣∣∣∣∣∣
A

⎡

⎢⎢⎣

0
1
...

0

⎤

⎥⎥⎦

∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣
A

⎡

⎢⎢⎣

0
0
...

1

⎤

⎥⎥⎦

⎤

⎥⎥⎦ =
[
q1

1| · · · |q1
m

]

⎡

⎢⎢⎢⎢⎣

r1
11 r1

12 · · · r1
1m

r1
22

...
. . .

...

r1
mm

⎤

⎥⎥⎥⎥⎦
. (12.5)
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The q1
i for i = 1, . . . ,m are the new orthogonal set of unit vectors in the Power Iteration

process. Next, we repeat the step:

AQ1 =
[
Aq1

1|Aq1
2| · · · |Aq1

m

]

=
[
q2

1|q2
2| · · · |q2

m

]

⎡

⎢⎢⎢⎢⎣

r2
11 r2

12 · · · r2
1m

r2
22

...
. . .

...

r2
mm

⎤

⎥⎥⎥⎥⎦

= Q2R2. (12.6)

In other words, we have developed a matrix form of Power Iteration that searches for all m

eigenvectors of a symmetric matrix simultaneously.

Normalized Simultaneous Iteration

Set Q0 = I

for j = 1,2,3, . . .

AQj = Qj+1Rj+1
end

At the j th step, the columns of Qj are approximations to the eigenvectors of A, and

the diagonal elements r
j
11, . . . , r

j
mm are approximations to the eigenvalues. In Matlab code,

this algorithm, which we will call Normalized Simultaneous Iteration (NSI), can be written
very compactly.

% Program 12.4 Normalized Simultaneous Iteration
% Computes eigenvalues/vectors of symmetric matrix
% Input: matrix A, number of steps k
% Output: eigenvalues lam and eigenvector matrix Q
function [lam,Q]=nsi(A,k)
[m,n]=size(A);
Q=eye(m,m);
for j=1:k

[Q,R]=qr(A*Q); % QR factorization
end
lam=diag(Q’*A*Q); % Rayleigh quotient

An even more compact way to implement Normalized Simultaneous Iteration is avail-
able. Set Q0 = I . Then NSI proceeds as follows:

AQ0 = Q1R1

AQ1 = Q2R2

AQ2 = Q3R3

...

· (12.7)

Consider the similar iteration Q0 = I , and

A0 ≡ AQ0 = Q1R′
1

A1 ≡ R′
1Q1 = Q2R′

2

A2 ≡ R′
2Q2 = Q3R′

3
... (12.8)
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which we will call the unshifted QR algorithm. The only difference is that A is not needed
after the first step; it is replaced by the current Rk . Comparing (12.7) and (12.8) shows that
we could choose Q1 = Q1 and R1 = R′

1 in (12.7). Furthermore, since

Q2R2 = AQ1 = Q1R′
1Q1 = Q1R′

1Q1 = Q1Q2R′
2, (12.9)

we could choose Q2 = Q1Q2 and R2 = R′
2 in (12.7). In fact, if we have chosen Qk−1 =

Q1 · · ·Qk−1 and Rj−1 = R′
j−1, then

Qj Rj = AQj−1 = AQ1 · · ·Qj−1

= Q2R2Q2 · · ·Qj−1

= Q2Q3R3Q3 · · ·Qj−1

= Q1Q2Q3Q4R4Q4 · · ·Qj−1

= ·· · = Q1 · · ·Qj Rj , (12.10)

and we may define Qj = Q1 · · ·Qj and Rj = R′
j in (12.7).

Therefore, the unshifted QR algorithm does the same calculations as Normalized Simulta-
neous Iteration, with slightly different notation. Note also that

Aj−1 = Qj Rj = Qj Rj Qj QT
j = Qj Aj QT

j , (12.11)

so that all Aj are similar matrices and have the same set of eigenvalues.

% Program 12.5 Unshifted QR Algorithm
% Computes eigenvalues/vectors of symmetric matrix
% Input: matrix A, number of steps k
% Output: eigenvalues lam and eigenvector matrix Qbar
function [lam,Qbar]=unshiftedqr(A,k)
[m,n]=size(A);
Q=eye(m,m);
Qbar=Q; R=A;
for j=1:k

[Q,R]=qr(R*Q); % QR factorization
Qbar=Qbar*Q; % accumulate Q’s

end
lam=diag(R*Q); % diagonal converges to eigenvalues

THEOREM 12.4 Assume that A is a symmetric m × m matrix with eigenvalues λi satisfying |λ1| >

|λ2| > · · · > |λm|. The unshifted QR algorithm converges linearly to the eigenvectors and
eigenvalues of A.As j → ∞, Aj converges to a diagonal matrix containing the eigenvalues
on the main diagonal and Qj = Q1 · · ·Qj converges to an orthogonal matrix whose columns
are the eigenvectors. #

A proof of Theorem 12.4 can be found in Golub and Van Loan [1996]. Normalized
Simultaneous Iteration, essentially the same algorithm, converges under the same condi-
tions. Note that the unshifted QR algorithm may fail even for symmetric matrices if the
hypotheses of the theorem are not met. See Exercise 5.

Although unshifted QR is an improved version of Power Iteration, the conditions
required by Theorem 12.4 are strict, and a couple of improvements are needed to make
this eigenvalue finder work more generally—for example, in the case of nonsymmetric
matrices. One problem, which also occurs for symmetric matrices, is that unshifted QR is
not guaranteed to work in the case of a tie for dominant eigenvector. An example of this is

A =
[

0 1
1 0

]
,
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which has eigenvalues 1 and −1. Another form of “tie’’ occurs when the eigenvalues are
complex. The eigenvalues of the nonsymmetric matrix

A =
[

0 1
−1 0

]

are i and −i, both of complex magnitude 1. Nothing in the definition of the unshifted QR
algorithm allows for the computation of complex eigenvalues. Furthermore, unshifted QR
does not make use of the trick of Inverse Power Iteration. We found that Power Iteration
could be sped up considerably with this trick, and we want to find a way to apply the idea
to our new implementation. These refinements are applied next, after introducing the goal
of the QR algorithm, which is to reduce the matrix A to its real Schur form.

12.2.2 Real Schur form and the QR algorithm

The way the QR algorithm finds eigenvalues of a matrix A is to locate a similar matrix
whose eigenvalues are obvious. An example of the latter is real Schur form.

DEFINITION 12.5 A matrix T has real Schur form if it is upper triangular, except possibly for 2 × 2 blocks
on the main diagonal. ❒

For example, a matrix of the form
⎡

⎢⎢⎢⎢⎣

x x x x x
x x x x

x x x
x x x

x

⎤

⎥⎥⎥⎥⎦

has real Schur form. According to Exercise 6, the eigenvalues of a matrix in this form are
the eigenvalues of the diagonal block—diagonal entries when the block is 1 × 1, or the
eigenvalues of the 2 × 2 block in that case. Either way, the eigenvalues of the matrix are
quickly calculated.

The value of the definition is that every square matrix with real entries is similar to
one of this form. This is the conclusion of the following theorem, proved in Golub and Van
Loan [1996]:

THEOREM 12.6 Let A be a square matrix with real entries. Then there exists an orthogonal matrix Q and a
matrix T in real Schur form such that A = QT T Q. #

The so-called Schur factorization of the matrix A is an “eigenvalue-revealing factor-
ization,’’meaning that if we can perform it, we will know the eigenvalues and eigenvectors.

The full QR algorithm iteratively moves an arbitrary matrix A toward its Schur fac-
torization by a series of similarity transformations. We will proceed in two stages. First
we will install the inverse power iteration idea with shifts and add the idea of deflation to
develop the shifted QR algorithm. Then we will develop an improved version that allows
for complex eigenvalues.

The shifted version is straightforward to write. Each step consists of applying the shift,
completing a QR factorization, and then taking the shift back. In symbols,

A0 − sI = Q1R1

A1 = R1Q1 + sI . (12.12)
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Note that

A1 − sI = R1Q1

= QT
1 (A0 − sI )Q1

= QT
1 A0Q1 − sI

implies that A1 is similar to A0 and so has the same eigenvalues. We repeat this step,
generating a sequence Ak of matrices, all similar to A = A0.

What are good choices for the shift s? This leads us to the concept of deflation for
eigenvalue calculations. We will choose the shift to be the bottom right entry of the matrix
Ak . This will cause the iteration, as it converges to real Schur form, to move the bottom
row to a row of zeros, except for the bottom right entry. After this entry has converged to an
eigenvalue, we deflate the matrix by eliminating the last row and column. Then we proceed
to find the rest of the eigenvalues.

A first try at the shifted QR algorithm is given in the Matlab code shown in
Program 12.6. At each step, we apply a shifted QR step, and then check the bottom row. If
all entries are small except the diagonal entry ann, we declare that entry to be an eigenvalue
and deflate by ignoring the last row and last column for the rest of the computation. This
program will succeed under the hypotheses of Theorem 12.4. Complex eigenvalues, or real
eigenvalues of equal magnitude, will cause problems, which we will solve in a more sophis-
ticated version later. Exercise 7 illustrates the shortcomings of this preliminary version of
the QR algorithm.

% Program 12.6 Shifted QR Algorithm, preliminary version
% Computes eigenvalues of matrices without equal size eigenvalues
% Input: matrix a
% Output: eigenvalues lam
function lam=shiftedqr0(a)
tol=1e-14;
m=size(a,1);lam=zeros(m,1);
n=m;
while n>1

while max(abs(a(n,1:n-1)))>tol
mu=a(n,n); % define shift mu
[q,r]=qr(a-mu*eye(n));
a=r*q+mu*eye(n);

end
lam(n)=a(n,n); % declare eigenvalue
n=n-1; % decrement n
a=a(1:n,1:n); % deflate

end
lam(1)=a(1,1); % 1x1 matrix remains

Finally, to allow for the calculation of complex eigenvalues, we must allow for the
existence of 2 × 2 blocks on the diagonal of the real Schur form. The improved version
of the shifted QR algorithm given in Program 12.7 tries to iterate the matrix to a 1 × 1
diagonal block in the bottom right corner; if it fails (after a user-specified number of tries),
it declares a 2 × 2 block, finds the pair of eigenvalues, and then deflates by 2. This improved
version will converge to real Schur form for most, but not all, input matrices. To round up
a final few holdouts, as well as make the algorithm more efficient, we will develop upper
Hessenberg form in the next section.

% Program 12.7 Shifted QR Algorithm, general version
% Computes real and complex eigenvalues of square matrix
% Input: matrix a
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% Output: eigenvalues lam
function lam=shiftedqr(a)
tol=1e-14;kounttol=500;
m=size(a,1);lam=zeros(m,1);
n=m;
while n>1

kount=0;
while max(abs(a(n,1:n-1)))>tol & kount<kounttol

kount=kount+1; % keep track of number of qr’s
mu=a(n,n); % shift is mu
[q,r]=qr(a-mu*eye(n));
a=r*q+mu*eye(n);

end
if kount<kounttol % have isolated 1x1 block

lam(n)=a(n,n); % declare eigenvalue
n=n-1;
a=a(1:n,1:n); % deflate by 1

else % have isolated 2x2 block
disc=(a(n-1,n-1)-a(n,n))ˆ2+4*a(n,n-1)*a(n-1,n);
lam(n)=(a(n-1,n-1)+a(n,n)+sqrt(disc))/2;
lam(n-1)=(a(n-1,n-1)+a(n,n)-sqrt(disc))/2;
n=n-2;
a=a(1:n,1:n); % deflate by 2

end
end
if n>0;lam(1)=a(1,1);end % only a 1x1 block remains

Even in its general form, the shifted QR algorithm fails for the following example:

A =

⎡

⎢⎢⎣

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎤

⎥⎥⎦ (12.13)

Matrices like this one, with a repeated complex eigenvalue, may not be moved into real
Schur form by shifted QR. The extra assistance needed for these more difficult examples is
to replace A by a similar matrix in upper Hessenberg form, which is the focus of the next
section.

12.2.3 Upper Hessenberg form

Efficiency of the QR algorithm increases considerably if we first put A into upper Hessenberg
form. The idea is to apply similarity transformations, before beginning the QR iteration,
that put as many zeros into A as possible while preserving all eigenvalues. In addition,
upper Hessenberg form will eliminate the final difficulty with the version of QR algorithm
we have developed—convergence to multiple complex eigenvalues—by ensuring that the
QR iteration will always proceed to 1 × 1 or 2 × 2 blocks.

DEFINITION 12.7 The m × n matrix A is in upper Hessenberg form if aij = 0 for i > j + 1. ❒

A matrix of the form
⎡

⎢⎢⎢⎢⎣

x x x x x
x x x x x

x x x x
x x x

x x

⎤

⎥⎥⎥⎥⎦
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is upper Hessenberg. There is a finite algorithm for putting matrices in upper Hessenberg
form by similarity transformations.

THEOREM 12.8 Let A be a square matrix. There exists an orthogonal matrix Q such that A = QBQT and
B is in upper Hessenberg form. #

We will construct B by using the Householder reflectors of Section 4.3.3, where they
were used to construct the QR factorization. However, there is a major difference: Now we
care about multiplication by the reflector H on the left and right of the matrix, since we
want to end up with a similar matrix with identical eigenvalues. Because of this, we must
be less aggressive about the zeros we can install into A.

Define x to be the n − 1 vector consisting of all but the first entry of the first column
of A. Let Ĥ1 be the Householder reflector that moves x to (±||x||,0, . . . ,0). (As noted
in Chapter 4, we should choose the sign as −sign(x1) to avoid cancellation problems in
practice, but the theory holds for either choice.) Let H1 be the orthogonal matrix formed by
inserting Ĥ1 into the bottom (n − 1) × (n − 1) corner of the n × n identity matrix. Then
we have

H1A =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0
0
0
0

Ĥ1

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

x x x x x
x x x x x
x x x x x
x x x x x
x x x x x

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

x x x x x
x x x x x
0 x x x x
0 x x x x
0 x x x x

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Before we can evaluate our success in putting zeros in the matrix, we need to finish the
similarity transformation by multiplying by H−1

1 on the right. Recall that Householder
reflectors are symmetric orthogonal matrices, so that H−1

1 = H T
1 = H1. Thus,

H1AH1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

x x x x x
x x x x x
0 x x x x
0 x x x x
0 x x x x

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0
0
0
0

Ĥ1

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

x x x x x
x x x x x
0 x x x x
0 x x x x
0 x x x x

⎤

⎥⎥⎥⎥⎥⎥⎦
.

The zeros made in H1A are not changed in the matrix H1AH1. However, note that if we
would have tried to eliminate all but one nonzero in the first column, as we did in the QR
factorization of the last section, we would have failed to keep the zeros when multiplying
on the right. In fact, there is no finite algorithm that computes a similarity transformation
between an arbitrary matrix and an upper triangular matrix. If there were, this chapter would
be much shorter, since we could read off the eigenvalues of the arbitrary matrix from the
diagonal of the similar, upper triangular matrix.

The next step in achieving upper Hessenberg form is to repeat the previous step, using
for x the (n − 2)-dimensional vector consisting of the lower n − 2 entries of the second
column. Let Ĥ2 be the (n − 2) × (n − 2) Householder reflector for the new x, and define
H2 to be the identity matrix with Ĥ2 in the bottom corner. Then

H2(H1AH1) =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0

0 0 Ĥ2

0 0

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

x x x x x
x x x x x
0 x x x x
0 x x x x
0 x x x x

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

x x x x x
x x x x x
0 x x x x
0 0 x x x
0 0 x x x

⎤

⎥⎥⎥⎥⎥⎥⎦
,
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and further, check that like H1, multiplication on the right by H2 does not adversely affect
the zeros already obtained. If n = 5, then after one more step, we obtain the 5 × 5 matrix

H3H2H1AH T
1 H T

2 H T
3 = H3H2H1A(H3H2H1)T = QAQT

in upper Hessenberg form. Since the matrix is similar to A, it has the same eigenvalues and
multiplicities as A. In general, for an n × n matrix A, n − 2 Householder steps are needed
to put A into upper Hessenberg form.

! EXAMPLE 12.2 Put

⎡

⎣
2 1 0
3 5 −5
4 0 0

⎤

⎦ into upper Hessenberg form.

Let x = [3,4]. Earlier, we found the Householder reflector

Ĥ1x =
[

0.6 0.8
0.8 −0.6

][
3
4

]
=

[
5
0

]
.

Therefore,

H1A =

⎡

⎣
1 0 0
0 0.6 0.8
0 0.8 −0.6

⎤

⎦

⎡

⎣
2 1 0
3 5 −5
4 0 0

⎤

⎦ =

⎡

⎣
2 1 0
5 3 −3
0 4 −4

⎤

⎦

and

A′ ≡ H1AH1 =

⎡

⎣
2 1 0
5 3 −3
0 4 −4

⎤

⎦

⎡

⎣
1 0 0
0 0.6 0.8
0 0.8 −0.6

⎤

⎦ =

⎡

⎣
2.0 0.6 0.8
5.0 −0.6 4.2
0.0 −0.8 5.6

⎤

⎦ .

The result is a matrix A′ that is in upper Hessenberg form and is similar to A. "

Next we implement the preceding strategy and build an algorithm for finding Q, using
Householder reflections:

% Program 12.8 Upper Hessenberg form
% Input: matrix a
% Output: Hessenberg form matrix a and reflectors v
% Usage: [a,v]=hessen(a) yields similar matrix a of
% Hessenberg form and a matrix v whose columns hold
% the v’s defining the Householder reflectors.
function [a,v]=hessen(a)
[m,n]=size(a);
v=zeros(m,m);
for k=1:m-2
x=a(k+1:m,k);
v(1:m-k,k)=-sign(x(1)+eps)*norm(x)*eye(m-k,1)-x;
v(1:m-k,k)=v(1:m-k,k)/norm(v(1:m-k,k));
a(k+1:m,k:m)=a(k+1:m,k:m)-2*v(1:m-k,k)*v(1:m-k,k)’*a(k+1:m,k:m);
a(1:m,k+1:m)=a(1:m,k+1:m)-2*a(:,k+1:m)*v(1:m-k,k)*v(1:m-k,k)’;

end

One advantage of upper Hessenberg form for eigenvalue computations is that only 2 × 2
blocks can occur along the diagonal during the QR algorithm, eliminating the difficulty
caused by repeated complex eigenvalues of the previous section.
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! EXAMPLE 12.3 Find the eigenvalues of the matrix (12.13).

For

A =

⎡

⎢⎢⎣

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎤

⎥⎥⎦ ,

the similar matrix with upper Hessenberg form given by Householder reflectors is

A′ =

⎡

⎢⎢⎣

0 1 0 0
−1 0 0 0

0 0 0 −1
0 0 1 0

⎤

⎥⎥⎦ ,

where A′ = QAQT and

Q =

⎡

⎢⎢⎣

1 0 0 0
0 0 0 1
0 0 −1 0
0 1 0 0

⎤

⎥⎥⎦ .

The matrix A′ is already in real Schur form. Its eigenvalues are the eigenvalues of the two
2 × 2 matrices along the main diagonal, which are repeated pairs of {i,−i}. "

Thus, we finally have a complete method for finding all eigenvalues of an arbitrary
square matrix A. The matrix is first put into upper Hessenberg form with the use of a
similarity transformation (Program 12.8), and then the shifted QR algorithm is applied
(Program 12.7). The Matlab eig command provides accurate eigenvalues based on this
progression of calculations.

There are many alternative techniques to accelerate convergence of the QR algorithm
that are not covered here. The QR algorithm is designed for full matrices. For large sparse
systems, alternative methods will usually be more efficient; see Saad [2003].

12.2 Exercises

1. Put the following matrices in upper Hessenberg form:

(a)

⎡

⎢⎣
1 0 1
1 1 0
1 0 0

⎤

⎥⎦ (b)

⎡

⎢⎣
0 0 1
0 1 0
1 0 0

⎤

⎥⎦ (c)

⎡

⎢⎣
2 1 0
4 1 1
3 0 1

⎤

⎥⎦ (d)

⎡

⎢⎣
1 1 0
2 3 1
2 1 0

⎤

⎥⎦

2. Put the matrix

⎡

⎢⎢⎢⎣

1 0 2 3
−1 0 5 2

2 −2 0 0
2 −1 2 0

⎤

⎥⎥⎥⎦
into upper Hessenberg form.

3. Show that a symmetric matrix in Hessenberg form is tridiagonal.

4. Call a square matrix stochastic if the entries of each column add to one. Prove that a stochastic
matrix (a) has an eigenvalue equal to one, and (b) all eigenvalues are, at most, one in absolute
value.
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5. Carry out Normalized Simultaneous Iteration with the following matrices, and explain how it
fails:

(a)

[
0 1
1 0

]

(b)

[
0 1

−1 0

]

6. (a) Show that the determinant of a matrix in real Schur form is the product of the determinants
of the 1 × 1 and 2 × 2 blocks on the main diagonal. (b) Show that the eigenvalues of a matrix
in real Schur form are the eigenvalues of the 1 × 1 and 2 × 2 blocks on the main diagonal.

7. Decide whether the preliminary version of the QR algorithm finds the correct eigenvalues,
both before and after changing to Hessenberg form.

(a)

⎡

⎢⎣
1 0 0
0 0 1
0 1 0

⎤

⎥⎦ (b)

⎡

⎢⎣
0 0 1
0 1 0
1 0 0

⎤

⎥⎦

8. Decide whether the general version of the QR algorithm finds the correct eigenvalues, both
before and after changing to Hessenberg form, for the matrices in Exercise 7.

12.2 Computer Problems

1. Apply the shifted QR algorithm (preliminary version shiftedqr0) with tolerance 10−14

directly to the following matrices:

(a)

⎡

⎢⎣
−3 3 5

1 −5 −5
6 6 4

⎤

⎥⎦ (b)

⎡

⎢⎣
3 1 2
1 3 −2
2 2 6

⎤

⎥⎦

(c)

⎡

⎢⎣
17 1 2

1 17 −2
2 2 20

⎤

⎥⎦ (d)

⎡

⎢⎣
−7 −8 1
17 18 −1
−8 −8 2

⎤

⎥⎦

2. Apply the shifted QR algorithm method directly to find all eigenvalues of the following
matrices:

(a)

⎡

⎢⎣
3 1 −2
4 1 1

−3 0 3

⎤

⎥⎦ (b)

⎡

⎢⎣
1 5 4
2 −4 −3
0 −2 4

⎤

⎥⎦

(c)

⎡

⎢⎣
1 1 −2
4 2 −3
0 −2 2

⎤

⎥⎦ (d)

⎡

⎢⎣
5 −1 3
0 6 1
3 3 −3

⎤

⎥⎦

3. Apply the shifted QR algorithm method directly to find all eigenvalues of the following
matrices:

(a)

⎡

⎢⎣
−1 1 3

3 3 −2
−5 2 7

⎤

⎥⎦ (b)

⎡

⎢⎣
7 −33 −15
2 26 7

−4 −50 −13

⎤

⎥⎦

(c)

⎡

⎢⎣
8 0 5

−5 3 −5
10 0 13

⎤

⎥⎦ (d)

⎡

⎢⎣
−3 −1 1

5 3 −1
−2 −2 0

⎤

⎥⎦
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4. Repeat Computer Problem 3, but precede the application of the QR iteration with reduction to
upper Hessenberg form. Print the Hessenberg form and the eigenvalues.

5. Apply the QR algorithm directly to find all real and complex eigenvalues of the following
matrices:

(a)

⎡

⎢⎣
4 3 1

−5 −3 0
3 2 1

⎤

⎥⎦ (b)

⎡

⎢⎣
3 2 0

−4 −2 1
2 1 0

⎤

⎥⎦

(c)

⎡

⎢⎣
7 2 −4

−8 0 7
2 −1 −2

⎤

⎥⎦ (d)

⎡

⎢⎣
11 4 −2

−10 0 5
4 1 2

⎤

⎥⎦

6. Use the QR algorithm to find the eigenvalues. In each matrix, all eigenvalues have equal
magnitude, so Hessenberg may be needed. Compare the results of QR algorithm before and
after reduction to Hessenberg form.

(a)

⎡

⎢⎢⎢⎣

−5 −10 −10 5
4 16 11 −8

12 13 8 −4
22 48 28 −19

⎤

⎥⎥⎥⎦
(b)

⎡

⎢⎢⎢⎣

7 6 6 −3
−26 −20 −19 10

0 −1 0 0
−36 −28 −24 13

⎤

⎥⎥⎥⎦

(c)

⎡

⎢⎢⎢⎣

13 10 10 −5
−20 −16 −15 8
−12 −9 −8 4
−30 −24 −20 11

⎤

⎥⎥⎥⎦

12 How Search Engines Rate Page Quality
Web search engines such as Google.com distinguish themselves by the quality of their
returns to search queries. We will discuss a rough approximation of Google’s method for
judging the quality of web pages by using knowledge of the network of links that exists on
the web.

When a web search is initiated, there is a rather complex series of tasks that are carried
out by the search engine. One obvious task is word-matching, to find pages that contain
the query words, in the title or body of the page. Another key task is to rate the pages
that are identified by the first task, to help the user wade through the possibly large set of
choices. For very specific queries, there may be only a few text matches, all of which can be
returned to the user. (In the early days of the web, there was a game to try to discover search
queries that resulted in exactly one hit.) In the case of very specific queries, the quality of the
returned pages is not so important, since no sorting may be necessary. The need for a quality
ranking becomes apparent for more general queries. For example, the Google query “new
automobile’’ returns several million pages, beginning with automobile buying services, a
reasonably useful outcome. How is the ranking determined?

The answer to this question is that Google.com assigns a nonnegative real number,
called the page rank, to each web page that it indexes. The page rank is computed by Google
in what is one of the world’s largest ongoing Power Iterations for determining eigenvectors.
Consider a graph as in Figure 12.1, where each of n nodes represents a web page, and a
directed edge from node i to node j means that page i contains a web link to page j . Let
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Figure 12.1 A network of web pages and links. Each directed edge from one page

to another means that the first page contains at least one link to the second.

A denote the adjacency matrix, an n × n matrix whose ij th entry is 1 if there is a link from
node i to node j , and 0 otherwise. For the graph in Figure 12.1, the adjacency matrix is

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The inventors of Google imagined a surfer on a network of n pages, who currently sits
at page i with probability pi . Next, the surfer either moves to a random page (with fixed
probability q, often approximately 0.15) or, with probability 1 − q, clicks randomly on a
link from the current page i. The probability that the surfer moves from page i to page j

after the click is q/n + (1 − q)Aij /ni , where Aij is the entry of the adjacency matrix A

and ni is the sum of the ith row of A (in effect, the number of links on page i).
Since the time is arbitrary, the probability of being at node j is the sum of this expression

over all i, and it is independent of time; that is,

pj =
∑

i

(
qpi

n
+ (1 − q)

pi

ni
Aij

)
,

which is equivalent in matrix terms to the eigenvalue equation

p = Gp, (12.14)



12.2 QR Algorithm | 551

where p = (pi) is the vector of n probabilities of being at the n pages, and G is the matrix
whose ij entry is q/n + Aji(1 − q)/nj. We will call G the google matrix. Each column of
the matrix G sums to one, so it is a stochastic matrix and, according to Exercise 12.2.4,
has largest eigenvalue equal to one. The eigenvector p corresponding to eigenvalue 1 is
the set of steady-state probabilities of the pages, which are by definition the page ranks
of the n pages. (This is the steady-state solution of the Markov process defined by GT .
The original idea to measure influence by steady-state probabilities goes back to Pinski and
Narin [1976]. The jump probability q was added by Brin and Page [1998], the originators
of Google.)

We will illustrate the definition of page rank with the example shown in Figure 12.1.
Set q = 0.15. The principal eigenvector (corresponding to dominant eigenvalue 1) of the
google matrix G is

p =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0268
0.0299
0.0299
0.0268
0.0396
0.0396
0.0396
0.0396
0.0746
0.1063
0.1063
0.0746
0.1251
0.1163
0.1251

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The eigenvector has been normalized, by dividing by the sum of all entries, to have sum
equal to one, as probabilities should. The eigenvector with this normalization contains
the page ranks. The page rank is highest for nodes 13 and 15, followed by node 14 and
nodes 10 and 11. Note that the page rank does not simply depend on the “in-rank,’’ or
number of inward-pointing links to the page, but is more sophisticated at assigning ratings
of importance. Although nodes 10 and 11 have the most inward-pointing links, the fact
that they point to 13 and 15 transfers their authority down the line. This is the idea behind
“google-bombing,’’the practice of artificially inflating the importance of a site by convincing
high-traffic sites to link to it.

Keep in mind that in defining page rank this way, we are using the word “importance,’’
although no one really knows what that means. The page rank is a self-referential way of
assigning importance that will probably suffice until a better method is found.

Suggested activities:

1. Prove that the google matrix G is a stochastic matrix.

2. Construct the matrix G for the network shown, and verify the given dominant eigenvector p.

3. Change the jump probability q to (a) 0 and (b) 0.5. Describe the resulting changes in the
page rank. What is the purpose of the jump probability?

4. Suppose that Page 7 in the network wanted to improve its page rank, compared with its
competitor Page 6—say, by persuading Pages 2 and 12 to more prominently display its
links to Page 7. Model this by replacing A27 and A12,7 by 2 in the adjacency matrix. Does
this strategy succeed? What other changes in relative page ranks do you see?
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5. Study the effect of removing Page 10 from the network. (All links to and from Page 10 are
deleted.) Which page ranks increase, and which decrease?

6. Design your own network, compute page ranks, and analyze according to the preceding
questions.

12.3 SINGULAR VALUE DECOMPOSITION

The image of the unit sphere in Rm under an m × m matrix is an ellipsoid. This interesting
fact underlies the singular value decomposition, which has many applications in matrix
analysis in general and especially for compression purposes. Figure 12.2 is an illustration
of the ellipse that corresponds to the matrix

A =
[

3 0
0 1

2

]
. (12.15)

Figure 12.2 The image of the unit circle under a 2 × 2 matrix. The unit circle in R2

is mapped to the ellipse with semimajor axes (3, 0) and (0,1/2) by matrix A in (12.15).

In Figure 12.2, think of taking the vector v corresponding to each point on the unit
circle, multiplying by A, and then plotting the endpoint of the resulting vector Av. The
result is the ellipse shown. In order to describe the ellipse, it helps to use an orthonormal
set of vectors to define the basis of a coordinate system.

We will see in Theorem 12.11 that for every m × n matrix A, there are orthonormal
sets {u1, . . . ,um} and {v1, . . . ,vn}, together with nonnegative numbers s1 ≥ · · · ≥ sn ≥ 0,
satisfying

Av1 = s1u1

Av2 = s2u2
...

Avn = snun. (12.16)

The vectors are visualized in Figure 12.3. The vi are called the right singular vectors of
the matrix A, the ui are the left singular vectors of A, and the si are the singular values
of A. (The terminology for these vectors is a bit strange, but the reasons will become clear
shortly.)

This useful fact immediately explains why a 2 × 2 matrix maps the unit circle into an
ellipse. We can think of the vi’s as the basis of a rectangular coordinate system on which
A acts in a simple way: It produces the basis vectors of a new coordinate system, the ui’s,
with some stretching quantified by the scalars si . The stretched basis vectors siui are the
semimajor axes of the ellipse, as shown in Figure 12.3.
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x

y

x

y

A
v2 v1

s1u1

s2u2

Figure 12.3 The ellipse associated to a matrix. Every 2 × 2 matrix A can be viewed

in the following simple way: There is a coordinate system {v1,v2} for which A sends

v1 → s1u1 and v2 → s2u2 , where {u1,u2} is another coordinate system and s1,s2 are

nonnegative numbers. This picture extends to Rm for an m × m matrix.

! EXAMPLE 12.4 Find the singular values and singular vectors for the matrix (12.15) represented in
Figure 12.2.

Clearly, the matrix stretches by 3 in the x-direction and shrinks by a factor of 1/2
in the y-direction. The singular vectors and values of A are

A

[
1
0

]
= 3

[
1
0

]

A

[
0
1

]
= 1

2

[
0
1

]
. (12.17)

The vectors 3(1,0) and 1
2 (0,1) form the semimajor axes of the ellipse. The right singular

vectors are [1,0], [0,1], and the left singular vectors are [1,0], [0,1]. The singular values
are 3 and 1/2. "

! EXAMPLE 12.5 Find the singular values and singular vectors of

A =

⎡

⎣
0 − 1

2
3 0
0 0

⎤

⎦ . (12.18)

This is a slight variation on Example 12.4. The matrix exchanges the x- and y-axes,
with some changing of scale, and adds a z-axis, along which nothing happens. The singular
vectors and values of A are

Av1 = A

[
1
0

]
= 3

⎡

⎣
0
1
0

⎤

⎦ = s1u1

Av2 = A

[
0
1

]
= 1

2

⎡

⎣
−1

0
0

⎤

⎦ = s2u2. (12.19)

The right singular vectors are [1,0], [0,1], and the left singular vectors are
[0,1,0], [−1,0,0]. The singular values are 3,1/2. Notice that we always require the si

to be a nonnegative number, and any necessary negative signs are absorbed in the ui

and vi . "

There is a standard way to keep track of this information, in a matrix factorization
of the m × n matrix A. Form an m × m matrix U whose columns are the left singular



554 | CHAPTER 12 Eigenvalues and Singular Values

vectors ui , an n × n matrix V whose columns are the right singular vectors vi , and a diagonal
m × n matrix S whose diagonal entries are the singular values si . Then the singular value
decomposition (SVD) of the m × n matrix A is

A = USVT . (12.20)

Example 12.5 has the SVD representation
⎡

⎣
0 − 1

2
3 0
0 0

⎤

⎦ =

⎡

⎣
0 −1 0
1 0 0
0 0 1

⎤

⎦

⎡

⎣
3 0
0 1

2
0 0

⎤

⎦
[

1 0
0 1

]
. (12.21)

Since U and V are square matrices with orthonormal columns, they are orthogonal matrices.
Note that we had to add a third column u3 to U to complete the basis of R3. Finally, the
terminology can be explained. The ui (vi) are the left (right) singular vectors because they
appear on that side in the matrix representation (12.20).

12.3.1 Finding the SVD in general

We have shown two simple examples of the SVD. To show that the SVD exists for a general
matrix A, we need the following lemma:

LEMMA 12.10 Let A be an m × n matrix. The eigenvalues of AT A are nonnegative. #

Proof. Let v be a unit eigenvector of AT A, and AT Av = λv. Then

0 ≤ ||Av||2 = vT AT Av = λvT v = λ. ❒

For an m × n matrix A, the n × n matrix AT A is symmetric, so its eigenvectors
are orthogonal and its eigenvalues are real. Lemma 12.10 shows that the eigenvalues
are nonnegative real numbers and so should be expressed as s2

1 ≥ · · · ≥ s2
n , where the

corresponding orthonormal set of eigenvectors is {v1, . . . ,vn}. This already gives us
two-thirds of the SVD. Use the following directions to find the ui for 1 ≤ i ≤ m:

If si ̸= 0, define ui by the equation siui = Avi .
If si = 0, choose ui as an arbitrary unit vector subject to being orthogonal to

u1, . . . ,ui−1.

The reader should check that this choice implies that u1, . . . ,um are pairwise orthogonal
unit vectors, and therefore another orthonormal basis of Rm. In fact, u1, . . . ,um forms an
orthonormal set of eigenvectors of AAT . (See Exercise 4.) Summarizing, we have proved
the following Theorem:

THEOREM 12.11 Let A be an m × n matrix. Then there exist two orthonormal bases {v1, . . . ,vn} of Rn,
and {u1, . . . ,um} of Rm, and real numbers s1 ≥ · · · ≥ sn ≥ 0 such that Avi = siui for 1 ≤
i ≤ min{m,n}. The columns of V = [v1| . . . |vn], the right singular vectors, are the set of
orthonormal eigenvectors of AT A; and the columns of U = [u1| . . . |um], the left singular
vectors, are the set of orthonormal eigenvectors of AAT . #

The SVD is not unique for a given matrix A. In the defining equation Av1 = s1u1, for
example, replacing v1 by −v1 and u1 by −u1 does not change the equality, but changes the
matrices U and V .

We conclude from this theorem that the image of the unit sphere of vectors is an ellipsoid
of vectors, centered at the origin, with semimajor axes siui . Figure 12.3 shows that the unit
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circle of vectors is mapped into an ellipse with axes {s1u1, s2u2}. To find where Ax goes
for a vector x, we can write x = a1v1 + a2v2 (where a1v1 (a2v2) is the projection of x onto
the direction v1 (v2)), and then Ax = a1s1u1 + a2s2u2.

The matrix representation (12.20) follows directly from Theorem 12.11. Define S to
be an m × n diagonal matrix whose entries are s1 ≥ · · · ≥ smin{m,n} ≥ 0. Define U to be the
matrix whose columns are u1, . . . ,um, and V to be the matrix whose columns are v1, . . . ,vn.
Notice that USV T vi = siui for i = 1, . . . ,m. Since the matrices A and USV T agree on the
basis v1, . . . ,vn, they are identical m × n matrices.

! EXAMPLE 12.6 Find the singular values and singular vectors of the 2 × 2 matrix

A =
[

0 1
0 −1

]
. (12.22)

The eigenvalues of

AT A =
[

0 0
0 2

]
,

arranged in decreasing size, are v1 = [0,1], s2
1 = 2; and v2 = [1,0], s2

2 = 0. The singular
values are

√
2 and 0. According to the preceding directions, u1 is defined by

√
2u1 = Av1 =

[
1

−1

]

u1 =
[

1/
√

2
−1/

√
2

]
,

and u2 = [1/
√

2,1/
√

2] is chosen to be orthogonal to u1. The SVD is
[

0 1
0 −1

]
=

[ √
2/2

√
2/2

−
√

2/2
√

2/2

][ √
2 0
0 0

][
0 1
1 0

]
. (12.23)

Pursuant to the nonuniqueness comment following the Theorem 12.11, another perfectly
good SVD for this matrix is

[
0 1
0 −1

]
=

[ −
√

2/2
√

2/2√
2/2

√
2/2

][ √
2 0
0 0

][
0 −1
1 0

]
. (12.24)

The image of the unit circle under A is the line segment y[1,−1], where y ranges from
−1 to 1. So the action of A is to flatten the unit circle to a one-dimensional ellipse with
semimajor axes

√
2[

√
2/2,−

√
2/2] and 0. "

Matlab’s command for the singular value decomposition is svd, and

>>[u,s,v]=svd(a)

will return all three matrices of the factorization.

12.3.2 Special case: symmetric matrices

Finding the SVD of a symmetric m × m matrix is simply a matter of finding the eigenvalues
and eigenvectors. Theorem A.5 of Appendix A guarantees that there is an orthonormal set
of eigenvectors. Since eigenvectors map to themselves (with a scaling λ, which is the
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eigenvalue), satisfying equation (12.16) is easy: Just order the eigenvalues in decreasing
magnitude

|λ1| ≥ |λ2| ≥ |λ3| ≥ · · · ≥ |λm|, (12.25)

and use them for the singular values s1 ≥ s2 ≥ · · · . For the vi , use the unit eigenvectors in
the order corresponding to the eigenvalues in (12.25), and use

ui =
{ +vi if λi ≥ 0

−vi if λi < 0
. (12.26)

The sign change in (12.26) makes up for any minus sign lost by taking absolute values
in (12.25).

! EXAMPLE 12.7 Find the singular values and singular vectors of

A =
[

0 1
1 3

2

]
. (12.27)

The eigenvalue/eigenvector pairs are 2, [1,2]T and − 1
2 , [−2,1]T . We define the

vi from the unit eigenvectors and the ui from (12.26):

Av1 = A

⎡

⎣
1√
5

2√
5

⎤

⎦ = 2

⎡

⎣
1√
5

2√
5

⎤

⎦ = s1u1

Av2 = A

⎡

⎣
2√
5

− 1√
5

⎤

⎦ = 1
2

⎡

⎣
− 2√

5
1√
5

⎤

⎦ = s2u2. (12.28)

The SVD is

[
0 1
1 3

2

]
=

⎡

⎣
1√
5

− 2√
5

2√
5

1√
5

⎤

⎦
[

2 0
0 1

2

]⎡

⎣
1√
5

2√
5

2√
5

− 1√
5

⎤

⎦ . (12.29)

Note that we had to change the sign to define u2, as prescribed in (12.26). "

12.3 Exercises

1. Find the SVD of the following symmetric matrices by hand calculation, and describe
geometrically the action of the matrix on the unit circle:

(a)

[
−3 0

0 2

]

(b)

[
0 0
0 3

]

(c)

[
3
2 − 1

2

− 1
2

3
2

]

(d)

[
− 3

2
1
2

1
2 − 3

2

]

(e)

[
0.75 1.25
1.25 0.75

]

2. Find the SVD of the following matrices by hand calculation:

(a)

[
3 0
4 0

]

(b)

[
6 −2
8 3

2

]

(c)

[
0 1
0 0

]

(d)

[
−4 −12
12 11

]

(e)

[
0 −2

−1 0

]
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3. The SVD is not unique. How many different SVDs exist for Example 12.4? List them.

4. (a) Prove that the ui as defined in Theorem 12.11 are eigenvectors of AAT . (b) Prove that the
ui are unit vectors. (c) Prove that they form an orthonormal basis of Rm.

12.4 APPLICATIONS OF THE SVD

In this section, we gather some useful properties of the SVD and indicate some of their
widespread uses. For example, the SVD turns out to be the best means of finding the rank
of a matrix. The determinant and inverse of a square matrix, if it exists, can be found
from the SVD. Perhaps the most useful applications of the SVD follow from the low rank
approximation property.

12.4.1 Properties of the SVD

Assume in the following that A = USV T is the singular value decomposition. The rank of
an m × n matrix A is the number of linearly independent rows (or equivalently, columns).

Property 1 The rank of the matrix A = USV T is the number of nonzero entries in S.

Proof. Since U and V T are invertible matrices, rank(A) = rank(S), and the latter is
the number of nonzero diagonal entries. ❒

Property 2 If A is an n × n matrix, |det(A)| = s1 · · ·sn.

Proof. Since UT U = I and V T V = I , the determinants of U and V T are 1 or −1,
due to the fact that the determinant of a product equals the product of the determinants.
Property 2 follows from the factorization A = USV T . ❒

Property 3 If A is an invertible m × m matrix, then A−1 = V S−1UT .

Proof. By Property 1, S is invertible, meaning all si > 0. Now Property 3 fol-
lows from the fact that if A1,A2, and A3 are invertible matrices, then (A1A2A3)−1 =
A−1

3 A−1
2 A−1

1 . ❒

For example, the SVD

[
0 1
1 3

2

]
=

[ 1√
5

− 2√
5

2√
5

1√
5

][
2 0
0 1

2

][ 1√
5

2√
5

2√
5

− 1√
5

]

from (12.29) shows that the inverse matrix is

[
0 1
1 3

2

]−1

=
[ 1√

5
2√
5

2√
5

− 1√
5

][ 1
2 0
0 2

][ 1√
5

2√
5

− 2√
5

1√
5

]

=
[

− 3
2 1
1 0

]
. (12.30)
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Property 4 The m × n matrix A can be written as the sum of rank-one matrices

A =
r∑

i=1

siuiv
T
i , (12.31)

where r is the rank of A, and ui and vi are the ith columns of U and V , respectively.

Proof.

A = USV T = U

⎡

⎢⎢⎢⎢⎢⎣

s1
. . .

sr

⎤

⎥⎥⎥⎥⎥⎦
V T

= U

⎛

⎜⎜⎜⎜⎝

⎡

⎢⎢⎢⎢⎣

s1
⎤

⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎣

s2

⎤

⎥⎥⎥⎥⎦
+ ·· · +

⎡

⎢⎢⎢⎢⎣
sr

⎤

⎥⎥⎥⎥⎦

⎞

⎟⎟⎟⎟⎠
V T

= s1u1vT
1 + s2u2vT

2 + ·· · + srurvT
r

❒

Property 4 is the low rank approximation property of the SVD. The best least squares
approximation to A of rank p ≤ r is provided by retaining the first p terms of (12.31).

! EXAMPLE 12.8 Find the best rank-one approximation of the matrix
[

0 1
1 3

2

]
.

Writing out (12.31) yields

[
0 1
1 3

2

]
=

⎡

⎣
1√
5

− 2√
5

2√
5

1√
5

⎤

⎦
[

2 0
0 1

2

]⎡

⎣
1√
5

2√
5

2√
5

− 1√
5

⎤

⎦

=

⎡

⎣
1√
5

− 2√
5

2√
5

1√
5

⎤

⎦
([

2 0
0 0

]
+

[
0 0
0 1

2

])⎡

⎣
1√
5

2√
5

2√
5

− 1√
5

⎤

⎦

= 2

⎡

⎣
1√
5

2√
5

⎤

⎦
[

1√
5

2√
5

]
+ 1

2

[
− 2√

5
1√
5

][
2√
5

− 1√
5

]

=
[ 2

5
4
5

4
5

8
5

]

+
[

− 2
5

1
5

1
5 − 1

10

]

. (12.32)

Notice how the original matrix is separated into a larger contribution plus a smaller contribu-
tion, because of the different sizes of the singular values. The best rank-one approximation
of the matrix is given by the first rank-one matrix

[ 2
5

4
5

4
5

8
5

]

,

while the second matrix provides small corrections. This is the main idea behind the dimen-
sion reduction and compression applications of the SVD. "
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The next two sections introduce two closely related uses for the SVD. In dimension
reduction, the focus is on the approximation of a large collection of multidimensional
vectors by a collection of vectors spanning fewer dimensions. The other application is
lossy compression, reducing the amount of information needed to approximately represent
a matrix. Both applications rely on Property 4 concerning low rank approximation.

12.4.2 Dimension reduction

The idea is to project data into a lower dimension. Assume that a1, . . . ,an comprise a
collection of m-dimensional vectors. In data-rich applications, m is far less than n. The goal
of dimension reduction is to replace a1, . . . ,an with n vectors that span p < m dimensions,
while minimizing the error associated with doing so. Usually we begin with set of vectors
with mean zero. If not, we can subtract the mean to achieve this and add it back later.

The SVD gives a straightforward way to carry out the dimension reduction. Consider
the data vectors as columns of an m × n matrix A = [a1| · · · |an], and calculate the singular
value decomposition A = USV T . Let ej denote the j th elementary basis vector (all zeros
except for j th entry 1). Then Aej = aj . Using the rank-p approximation

A ≈ Ap =
p∑

i=1

siuiv
T
i

of Property 4, we can project aj into the p-dimensional space spanned by the columns
u1, . . . ,up of U by

aj = Aej ≈ Apej . (12.33)

Since multiplying a matrix times ej just picks out the j th column, we can more efficiently
describe our finding as the following:

The space ⟨u1, . . . ,up⟩ spanned by the left singular vectors u1, . . . ,up is the best-
approximating dimension-p subspace to a1, . . . ,an in the sense of least squares, and the
orthogonal projections of the columns ai of A into this space are the columns of Ap. In
other words, the projection of a collection of vectors a1, . . . ,an to their best least squares
p-dimensional subspace is precisely the best rank-p approximation matrix Ap.

! EXAMPLE 12.9 Find the best one-dimensional subspace fitting the data vectors [3,2], [2,4], [−2,−1],
[−3,−5].

The four data vectors, shown in Figure 12.4(a), point approximately along the
same one-dimensional subspace. We want to find this subspace, the one that minimizes
the sum of squared errors from projecting the vectors into that subspace, and then find the
projected vectors.

Use the data vectors as columns of the data matrix

A =
[

3 2 −2 −3
2 4 −1 −5

]
,

and find its SVD, which is

[
0.5886 −0.8084
0.8084 0.5886

][
8.2809 0 0 0

0 1.8512 0 0

]
⎡

⎢⎢⎣

0.4085 0.5327 −0.2398 −0.7014
−0.6741 0.3985 0.5554 −0.2798

0.5743 −0.1892 0.7924 −0.0801
0.2212 0.7223 0.0780 0.6507

⎤

⎥⎥⎦ ,

to four decimal places. The best one-dimensional subspace, shown as a dotted line in
Figure 12.4(b), is spanned by u1 = [0.5886,0.8084]. Reducing to a subspace of dimension
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(a) (b)

Figure 12.4 Dimension reduction by SVD. (a) Four data vectors to be projected to

best one-dimensional subspace. (b) The dotted line represents the best subspace. The

arrowheads show the orthogonal projections down to the subspace.

p = 1 means setting s2 = 0 and reconstituting the matrix. In other words, A1 = US1V T ,
where

S1 =
[

8.2809 0 0 0
0 0 0 0

]
.

Thus, the columns of

A1 =
[

1.9912 2.5964 −1.1689 −3.4188
2.7346 3.5657 −1.6052 −4.6951

]
(12.34)

are the four projected vectors corresponding to the original four data vectors. They are
shown in Figure 12.4(b). "

12.4.3 Compression

Property 4 can also be used to compress the information in a matrix. Note that each term in
the rank-one expansion of Property 4 is specified by using two vectors ui,vi and one more
number si . If A is an n × n matrix, we can attempt lossy compression of A by throwing
away the terms at the end of the sum in Property 4, the ones with smaller si . Each term in
the expansion requires 2n + 1 numbers to store or transmit.

For example, if n = 8, the matrix is specified by 64 numbers, but we could transmit
or store the first term in the expansion by using only 2n + 1 = 17 numbers. If most of the
information is captured by the first term—for example, if the first singular value is much
larger than the rest—there may be a 75 percent savings in space by working this way.

As an example, return to the 8 × 8 pixel block shown in Figure 11.6. After subtracting
128 to center the pixel values around 0, the matrix is given in equation (11.16). The singular
values of this 8 × 8 matrix are as follows:

387.78
216.74
83.77
62.69
34.75
21.47
10.50
4.35



12.4 Applications of the SVD | 561

(a) (b) (c)

Figure 12.5 Result of compression and decompression by SVD. Number of singular

values retained: (a) p = 1 (b) p = 2 (c) all.

The original block is shown in Figure 12.5(c), along with the compressed versions
in (a) and (b). Figure 12.5(a) corresponds to replacing the matrix with the first term in

the expansion of Property 4, the best rank-one approximation of the pixel value matrix.
As remarked previously, this achieves approximately 4:1 compression. In Figure 12.5(b),
two terms are used, for an approximate compression ratio of 2:1. (Of course, we are sim-
plifying the discussion here by going without quantization tricks. It would help to carry
the coefficients corresponding to smaller singular values with less precision, as done in
Chapter 11.)

The grayscale photo in Figure 11.5 is a 256 × 256 pixel image. We can also apply
Property 4 to the entire matrix, after subtracting 128 from each pixel entry. The 256 singular
values of the matrix vary in size from 8108 to 0.46. Figure 12.6 shows the reconstructed
image that results from keeping p of the terms of the rank-one expansion in Property 4. For
p = 8, only 8(2(256) + 1) = 4104 numbers need to be stored, compared with (256)2 =
65536 original pixel values, about a 16:1 compression ratio. In Figure 12.6(c), where 32
terms are kept, the compression ratio is approximately 4:1.

12.4.4 Calculating the SVD

If A is a real symmetric matrix, the SVD reduces to the eigenvalue computation discussed
earlier in the chapter. In this case, the unit eigenvectors form an orthogonal basis. If we
define a matrix V to hold the unit eigenvectors as columns, then AV = US expresses
the eigenvector equation, where S is a diagonal matrix holding the absolute values of the

(a) (b) (c)

Figure 12.6 Result of compression and decompression by SVD. Number of singular

values retained: (a) p = 8 (b) p = 16 (c) p = 32.



562 | CHAPTER 12 Eigenvalues and Singular Values

eigenvalues and U is the same as V , but with the sign of column switched if the eigenvalue
is negative, as discussed in (12.26). Since U and V are orthogonal matrices,

A = USVT

is a singular value decomposition of A.
For a general, nonsymmetric m × n matrix A, there are two distinct computational

approaches for determining the SVD. The first and most obvious method is to form AT A

and to find its eigenvalues. According to Theorem 12.11, this reveals the columns vi

of V , and by normalizing the vectors Avi = siui , we get both the singular values and
the columns of U .

This method is not recommended, however, for all but simple examples. If the condition
number of A is large, then the condition number of AT A, often of magnitude the square
of the condition number of A, may become prohibitively large, and digits of accuracy may
be lost.

Fortunately, there is an alternative method of finding the eigenvectors of AT A that
avoids forming the matrix product. Consider the matrix

B =
[

0 AT

A 0

]
. (12.35)

Notice that B is a symmetric (m + n) × (m + n) matrix (check its transpose). Therefore,
it has real eigenvalues and a basis of eigenvectors. Let [v,w] denote a (m + n)-vector that
is an eigenvector of B. Then

[
AT w

Av

]
=

[
0 AT

A 0

][
v

w

]
= λ

[
v

w

]
,

or Av = λw. Multiplying on the left by AT yields

AT Av = λAT w = λ2v, (12.36)

showing that w is an eigenvector of AT A with corresponding eigenvalue λ2. Note that we
can determine the eigenvalues and eigenvectors of AT A in this way without ever forming
the matrix AT A.

Therefore, the second and preferred method for computing singular values and singular
vectors begins with putting the symmetric matrix B into upper Hessenberg form. Because of
the symmetry, upper Hessenberg is equivalent to tridiagonal. Then methods like the shifted
QR algorithm can be applied to find the eigenvalues, which are the squares of the singular
values, and the eigenvectors, whose n top entries are the singular vectors vi . Although this
approach seems to double the size of the matrix, it avoids increasing the condition number
unnecessarily, and there are more efficient ways to implement this idea (which we will not
pursue here) that avoid the need for extra storage.

12.4 Computer Problems

1. Use Matlab’s svd command to find the best rank-one approximation of the following
matrices:

(a)

[
1 2
2 3

]

(b)

[
1 4
2 3

]

(c)

⎡

⎢⎣
1 2 4
1 3 3
0 0 1

⎤

⎥⎦ (d)

⎡

⎢⎣
1 5 3
2 −3 2

−3 1 1

⎤

⎥⎦
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2. Find the best rank-two approximation to the following matrices:

(a)

⎡

⎢⎣
1 2 4
1 3 3
0 0 1

⎤

⎥⎦ (b)

⎡

⎢⎣
2 −2 4
1 −1 2

−3 3 −6

⎤

⎥⎦ (c)

⎡

⎢⎣
1 5 3
2 −3 2

−3 1 1

⎤

⎥⎦

3. Find the best least squares approximating line for the following vectors, and the projections of
the vectors onto the one-dimensional subspace:

(a)

[
1
4

]

,

[
1
5

]

,

[
2
4

]

(b)

[
2
0

]

,

[
4
1

]

,

[
3
2

]

(c)

⎡

⎢⎣
1
2
4

⎤

⎥⎦ ,

⎡

⎢⎣
2
3
5

⎤

⎥⎦ ,

⎡

⎢⎣
2
1
6

⎤

⎥⎦ ,

⎡

⎢⎣
1
1
3

⎤

⎥⎦

4. Find the best least squares approximating plane for the following three-dimensional vectors,
and the projections of the vectors onto the subspace:

(a)

⎡

⎢⎣
1
2
4

⎤

⎥⎦ ,

⎡

⎢⎣
2
3
5

⎤

⎥⎦ ,

⎡

⎢⎣
2
1
6

⎤

⎥⎦ ,

⎡

⎢⎣
1
1
3

⎤

⎥⎦ (b)

⎡

⎢⎣
2
3
1

⎤

⎥⎦ ,

⎡

⎢⎣
−1

4
0

⎤

⎥⎦ ,

⎡

⎢⎣
7

−2
1

⎤

⎥⎦ ,

⎡

⎢⎣
1
1
0

⎤

⎥⎦

5. Write a Matlab program that uses the matrix of (12.35) to compute the singular values of a
matrix. Use the upper Hessenberg code given earlier, and use shifted QR to solve the
resulting eigenvalue problem. Apply your method to find the singular values of the following
matrices:

(a)

[
3 0
4 0

]

(b)

[
6 −2
8 3

2

]

(c)

[
0 1
0 0

]

(d)

[
−4 −12
12 11

]

(e)

[
0 −2

−1 0

]

6. Continuing Computer Problem 5, add code to find the full SVD of the matrices.

7. Use the code developed in Computer Problem 6 to find the full SVD of the following matrices,
and compare your results with Matlab’s svd command (your answer should agree up to the
choice of minus signs in ui,vi):

(a)

⎡

⎢⎣
1 3 0
4 5 0
2 5 3

⎤

⎥⎦ (b)

[
1 0 2 4
1 1 1 3

]

(c)

⎡

⎢⎢⎢⎣

0 1 3
1 3 1
2 −1 3
0 1 −1

⎤

⎥⎥⎥⎦
(d)

⎡

⎢⎢⎢⎣

0 1 3 1
−1 1 1 0

0 1 3 −1
2 −1 −1 2

⎤

⎥⎥⎥⎦

8. Import a photo, using Matlab’s imread command. Use the SVD to create 8:1, 4:1, and 2:1
compressed versions of the photo. If the photo is in color, compress each of the RGB colors
separately.

Software and Further Reading

The modern era of eigenvalue calculation was initiated by Wilkinson [1965], and the QR
algorithm and upper Hessenberg form were already present in Wilkinson and Reinsch
[1971]. Other influential references on eigenvalue calculations are Stewart [1973], Par-
lett [1998], Golub and Van Loan [1996], and the revealing articles Parlett [2000] and
Watkins [1982].

Lapack (Anderson et al. [1990]) provides routines for reductions to upper Hessenberg
form and for the symmetric and nonsymmetric eigenvalue problem. These routines are
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descended from the Eispack package (Smith et al. [1970]) developed in the 1960s. Netlib’s
DGEHRD reduces a real matrix to upper Hessenberg form by using Householder reflectors,
and DHSEQR implements the QR algorithm for calculating eigenvalues and the Schur form
for a real upper Hessenberg matrix. NAG provides F08NEF and F08PEF, respectively, for
the same two operations. There are analogous programs for complex matrices.

Saad [2003] and Bai et al. [2000] consider state-of-the-art methods for large eigenvalue
problems. Cuppen [1981] introduced the divide-and-conquer method for the tridiagonal
symmetric eigenvalue problem. Arpack is a suite for Arnoldi iteration for large sparse
problems, and Parpack is an extension for parallel processors.

Algorithms for the singular value decomposition include Lapack’s original DGESVD,
and the divide-and-conquer method DGESDD that is preferable for large matrices. Complex
versions are also available.



C H A P T E R

13
Optimization
The discovery of the double helix structure of DNA
in 1953 has led, a half century later, to a nearly com-
plete sequencing of the human genome.The sequence
holds instructions for folding strings of amino acids
into individual proteins that perform the activities of
life, but written in a coded language. This informa-
tion now awaits translation, so that it can be directed
toward a detailed understanding of physiological func-
tion. A host of potential applications, including gene
therapy and rational drug design, may promote the
early prevention, diagnosis, and cure of disease.

The folding of amino acids into functional proteins
depends crucially on Van der Waals forces, the micro-
scopic attraction and repulsion between unbound
atoms. Atomic cluster models, where these forces are
modeled by the Lennard-Jones potential, are studied
for minimum energy configurations, bringing the prob-
lem into the realm of optimization.

Reality Check 13 on page 580 applies
the optimization techniques of the chapter to solve this
energy minimization problem.

Optimization refers to finding the maximum or minimum of a real-valued function,
called the objective function. Since locating the maximum of a function f (x) is

equivalent to locating the minimum of −f (x), it suffices to consider minimization alone in
developing computational methods.

Some optimization problems call for a minimum of the objective function subject to
several equality and inequality constraints. For example, although x1 is the global mini-
mum of the function in Figure 13.1, x2 would be the minimum subject to the constraint
x ≥ 0. In particular, the field of linear programming considers problems where the objective
function and constraints are linear. In this chapter, we will keep things simple and consider
unconstrained optimization only.

Methods for unconstrained optimization fall into two groups, depending on whether
derivatives of the objective function f (x) are used. If an algebraic function is known for
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Figure 13.1 The minimization problem for f (x) = 5x4 + 3x3 − 4x2 − x + 2. The

solution of the unconstrained minimization problem minx f (x) is x1.

f (x), in most cases the derivatives can be easily determined by hand or computer algebra.
Derivative information should be used if possible, but there are several reasons why it
might not be available. In particular, the objective function may be too complicated, too
high dimensional, or not known in a form that may be differentiated.

13.1 UNCONSTRAINED OPTIMIZATION WITHOUT DERIVATIVES

In this section, the assumption is made that the objective function f (x) can be evaluated
for any input x, but that the derivative f ′(x) (or partial derivatives if f is a function of
several variables) is not available. We will discuss three methods for optimizing without
derivatives: Golden Section Search, Successive Parabolic Interpolation, and the Nelder–
Mead Method. The first two apply only to functions f (x) of one scalar variable, while
Nelder–Mead can search through several dimensions.

13.1.1 Golden Section Search

Golden Section Search is an efficient method for finding a minimum of a function f (x) of
one variable, once a bracketing interval is known.

DEFINITION 13.1 The continuous function f (x) is called unimodal on the interval [a,b] if there is exactly
one relative minimum or maximum on [a,b], and f is strictly decreasing or increasing at
all other points. ❒

Aunimodal function either increases to a relative maximum in [a,b] and then decreases
as x moves from a to b, or decreases to a relative minimum and then increases.

Assume that f is unimodal and has a relative minimum on [a,b]. Choose two points
x1 and x2 inside the interval, so that a < x1 < x2 < b, as shown in Figure 13.2 for the case
[a,b] = [0,1]. We will replace the original interval by a new, smaller interval that contin-
ues to bracket a relative minimum, according to the following rule: If f (x1) ≤ f (x2),
then retain the interval [a,x2] at the next step. If f (x1) > f (x2), retain the interval
[x1,b].
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1

1x1 x2
x

y

(a)

1

1x1g x2g g
x

y

(b)

Figure 13.2 Golden Section Search. (a) Evaluate the objective function at two points

x1, x2 within the current interval [0,1]. If f (x1) ≤ f (x2), then the new interval will be

[0,x2]. (b) In the next step, set g = x2 and repeat the same comparison with x1g and

x2g.

Note that in either case the new interval contains a relative minimum of the unimodal
function f . For example, if f (x1) < f (x2), as shown in Figure 13.2, then because of the
unimodal assumption, the minimum must be to the left of x2. This is because f must
decrease to the left of the minimum, so f (x1) < f (x2) means that x2 must be to the right of
the minimum. Likewise, f (x1) > f (x2) implies that [x1,b] contains the minimum. Since
the new interval is smaller than the previous interval [a,b], progress has been made toward
locating the minimum. This basic step is then repeated until the interval containing the
minimum is as small as desired. The method is reminiscent of the Bisection Method for
locating roots.

Next we discuss how x1 and x2 should be placed in the interval [a,b]. In each step,
we would like to reduce the length of the interval as much as possible, using as little work
as possible. The way of doing this is shown in Figure 13.3 for the interval [a,b] = [0,1].
Accept two criteria for the choice of x1 and x2: (a) Make them symmetric with respect to the
interval (since we have no information about which side of the interval the minimum lies
in), and (b) choose them such that no matter which choice is made for the new interval, both
x1 and x2 are used in the next step. That is, require (a) x1 = 1 − x2, and (b) x1 = x2

2 . As
shown in Figure 13.3, if the new interval is [0,x2], criterion (b) ensures that the original x1
will be the “x2’’ for the next interval; therefore, only one new function evaluation, namely,
f (x1g), will be necessary. Likewise, if the new interval is [x1,1], then x2 will become the
new “x1.’’ This ability to reuse function evaluations means that after the first step, only a
single evaluation of the objective function is needed per step.

Criteria (a) and (b) together imply that x2
2 + x2 − 1 = 0. The positive solution of this

quadratic equation is x2 = g = (
√

5 − 1)/2. To start the method, the objective function f

must be known to be unimodal on [a,b], and then f is evaluated at the interior points x1
and x2, where a < x1 = a + (1 − g)(b − a) < x2 = a + g(b − a) < b. Note that x1 and
x2 are set at exactly 1 − g and g of the way between a and b. The new interval is chosen
as has been shown and this basic step is repeated. The new interval has length g times the
previous interval, so after k steps the current interval has length gk(b − a). The midpoint
of the final interval is correct within an uncertainty of one-half of the length of the final
interval, gk(b − a)/2. We have proved the following theorem:

THEOREM 13.2 After k steps of Golden Section Search with starting interval [a,b], the midpoint of the final
interval is within gk(b − a)/2 of the minimum, where g = (

√
5 − 1)/2 ≈ 0.618. #
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0 1x1 x2

0 x1g x2g g

Figure 13.3 Choice of proportions in Golden Section Search. The ratio of the top

segment to the bottom segment is 1/g = (1 +
√

5) / 2, the golden section. The points

x1 and x2 are chosen exactly, so that no matter whether the new interval is [0,x2] or

[x1,1], one point can be reused as a new interior point, reducing the number of new

objective function evaluations to one per step.

Golden Section Search

Given f unimodal with minimum in [a,b]

for i = 1,2,3, . . .

g = (
√

5 − 1)/2
iff (a + (1 − g)(b − a)) < f (a + g(b − a))

b = a + g(b − a)

else
a = a + (1 − g)(b − a)

end
end

The final interval [a,b] contains a minimum.

Matlab code for Golden Section Search requires one function evaluation per step after
step one, as mentioned before.

% Program 13.1 Golden Section Search for minimum of f(x)
% Start with unimodal f(x) and minimum in [a,b]
% Input: function f, interval [a,b], number of steps k
% Output: approximate minimum y
function y=gss(f,a,b,k)
g=(sqrt(5)-1)/2;
x1 = a+(1-g)*(b-a);
x2 = a+g*(b-a);
f1=f(x1);f2=f(x2);
for i=1:k
if f1 < f2 % if f(x1) < f(x2), replace b with x2
b=x2; x2=x1; x1=a+(1-g)*(b-a);
f2=f1; f1=f(x1); % single function evaluation

else % otherwise, replace a with x1
a=x1; x1=x2; x2=a+g*(b-a);
f1=f2; f2=f(x2); % single function evaluation

end
end
y=(a+b)/2;



13.1 Unconstrained Optimization without Derivatives | 569

Convergence According to Theorem 13.2,Golden Section Search converges linearly

to the minimum with linear convergence rate g ≈ 0.618. It is interesting to notice the many

similarities of this method to the Bisection Method of Chapter 1 for finding roots. Although

they solve different problems, both are globally convergent, meaning that if started with

the right conditions (unimodality on [a,b] for Golden Section Search, and f (a)f (b) < 0 for

bisection), they are both guaranteed to converge to a solution. Neither requires derivative

information. Both require one function evaluation per step and both are linearly convergent.

Bisection is slightly faster,with linear convergence rate K = 0.5 < g = 0.618.They both belong

to the valuable category of “slow, but sure’’ methods.

! EXAMPLE 13.1 Use Golden Section Search to find the minimum of f (x) = x6 − 11x3 + 17x2 − 7x + 1
on the interval [0,1].

Figure 13.2 shows the first two steps of the method. On the first step, x1 = 1 − g

and x2 = g, where g = (
√

5 − 1)/2. Since f (x1) < f (x2), the interval [0,1] is replaced
with [0,g]. The new x1,x2 are the previous x1g,x2g, respectively. On the second step, again
f (x1) < f (x2), so the interval [0,g] is replaced with [0,x2]. The first 15 steps are shown
in the following table:

step a x1 x2 b

0 0.0000 0.3820 0.6180 1.0000
1 0.0000 0.2361 0.3820 0.6180
2 0.0000 0.1459 0.2361 0.3820
3 0.1459 0.2361 0.2918 0.3820
4 0.2361 0.2918 0.3262 0.3820
5 0.2361 0.2705 0.2918 0.3262
6 0.2705 0.2918 0.3050 0.3262
7 0.2705 0.2837 0.2918 0.3050
8 0.2705 0.2786 0.2837 0.2918
9 0.2786 0.2837 0.2868 0.2918

10 0.2786 0.2817 0.2837 0.2868
11 0.2817 0.2837 0.2849 0.2868
12 0.2817 0.2829 0.2837 0.2849
13 0.2829 0.2837 0.2841 0.2849
14 0.2829 0.2834 0.2837 0.2841
15 0.2834 0.2837 0.2838 0.2841

After 15 steps, we can say that the minimum is between 0.2834 and 0.2838. "

13.1.2 Successive parabolic interpolation

In Golden Section Search, no use is made of the function evaluations f (x1) and f (x2),
except to compare them. A decision is made on how to proceed, no matter how much larger
one is than the other. In this section, we describe a new method that is less wasteful of the
function values; it uses them to build a local model of the function f .

The local model chosen is a parabola, which we know from Chapter 3 is uniquely
determined by three points. Begin with three points r,s, t in the vicinity of the minimum,
as shown in Figure 13.4. Evaluate the objective function f at the three points and draw the
parabola through them. Divided differences give
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Figure 13.4 Successive Parabolic Interpolation. (a) A parabola is drawn through the

three current points r, s, t, and the minimum x of the parabola is used to replace the

current s. (b) The step is repeated with the new r, s, t.

r f (r)

d1
s f (s) d3

d2
t f (t)

where d1 = (f (s) − f (r))/(s − r),d2 = (f (t) − f (s))/(t − s), and d3 = (d2 − d1)/

(t − r). Therefore, we can express the parabola as

P (x) = f (r) + d1(x − r) + d3(x − r)(x − s). (13.1)

Setting the derivative of P (x) = 0 to find the minimum of the parabola yields the formula

x = r + s

2
− (f (s) − f (r))(t − r)(t − s)

2[(s − r)(f (t) − f (s)) − (f (s) − f (r))(t − s)] (13.2)

for the new approximation for the minimum. In SPI, the new x may replace the least
recent or least optimal of r,s, t , and the step is repeated as needed. There is no guarantee of
convergence for SPI, unlike the case of Golden Section Search. However, it is usually faster
when it does converge, because it uses the function evaluation information more wisely.

Successive Parabolic Interpolation

Start with approximate minima r,s, t

for i = 1,2,3, . . .

x = r + s

2
− (f (s) − f (r))(t − r)(t − s)

2[(s − r)(f (t) − f (s)) − (f (s) − f (r))(t − s)]
t = s

s = r

r = x

end

In the following Matlab code, the minimum of the parabola replaces the least recent
of the three current points:

% Program 13.2 Successive Parabolic Interpolation
% Input: function f, initial guesses r,s,t, steps k
% Output: approximate minimum x
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function x=spi(f,r,s,t,k)
x(1)=r;x(2)=s;x(3)=t;
fr=f(r);fs=f(s);ft=f(t);
for i=4:k+3
x(i)=(r+s)/2-(fs-fr)*(t-r)*(t-s)/(2*((s-r)*(ft-fs)

-(fs-fr)*(t-s)));
t=s;s=r;r=x(i);
ft=fs;fs=fr;fr=f(r); % single function evaluation
end

! EXAMPLE 13.2 Use Successive Parabolic Interpolation to find the minimum of f (x) = x6 − 11x3 +
17x2 − 7x + 1 on the interval [0,1].

Using starting points r = 0, s = 0.7, t = 1, we compute the following steps:

step x f (x)

0 1.00000000000000 1.00000000000000
0 0.70000000000000 0.77464900000000
0 0.00000000000000 1.00000000000000
1 0.50000000000000 0.39062500000000
2 0.38589683548538 0.20147287814500
3 0.33175129602524 0.14844165724673
4 0.23735573316721 0.14933737764402
5 0.28526617269372 0.13172660338164
6 0.28516942161639 0.13172426136234
7 0.28374069464218 0.13170646451792
8 0.28364647631123 0.13170639859035
9 0.28364826437569 0.13170639856301

10 0.28364835832962 0.13170639856295
11 0.28364835808377 0.13170639856295
12 0.28364833218729 0.13170639856295

We conclude that the minimum is near xmin = 0.2836483. Note that after 12 steps we have
far outdone the accuracy of Golden Section Search with fewer function evaluations. We
have used no derivative information about the objective function, although we have used
the knowledge of the precise values of f , while GSS needed only to know comparisons
between values.

Note also from the table a curiosity near the end. As discussed in Chapter 1,
functions are very flat near relative maxima and minima. Since numbers within 10−7 of
xmin give the same minimum function value, we cannot go beyond this accuracy while
using IEEE double precision, no matter how many steps we can afford to run. Since minima
typically occur where derivatives of the function are zero, this difficulty is not the fault of
the optimization method, but endemic to floating point computation.

The progression from GSS to SPI is similar to that from the Bisection Method
to the Secant Method and Inverse Quadratic Interpolation. Building a local model for the
function and acting as if it were the objective function helps to speed convergence. "

13.1.3 Nelder–Mead search

For a function of more than one variable, the methods become more sophisticated.
Nelder–Mead search tries to roll a polyhedron downhill to the lowest possible level. For
this reason, it is also called the downhill simplex method. It uses no derivative information
about the objective function.
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Assume that the function to be minimized is a function of n variables f . The method
begins with n + 1 initial guess vectors x1, . . . ,xn+1 belonging to Rn that together form the
vertices of an n-dimensional simplex. For example, if n = 2, the three initial guesses form
the vertices of a triangle in the plane.

The vertices of the simplex are tested and put into ascending order according to their
function values y1 < y2 < · · · < yn+1 = yh. The simplex vector xh = xn+1 that is least
optimal is replaced according to the flowchart shown in Figure 13.5. First we define the
centroid x of the face of the simplex that omits xh.Then we test the function value yr = f (xr)

of the reflection point xr = 2x − xh, as shown in Figure 13.5(a). If the new value yr lies
in the range y1 < yr < yn, we replace the worst point xn with xr , sort the vertices by their
function values, and repeat the step.

x1 x2

xh

xic

xr

xoc

xr

xe

(a)

Accept xic

Shrink

Shrink

Accept xoc

Accept xe

Accept xr

yr < yn
?

yr < yh
?

yoc < y1
?

ye < y1
?

yoc < y1
?

yr < y1
?

Accept xr

(b)

No

Yes No

Yes

No

Yes No

Yes

No

Yes

No

Yes

Figure 13.5 Nelder–Mead search. (a) Points along the line connecting the highest

function point xh and the centroid x are tested. (b) A flowchart describing one step of

the method.

In case yr is lower than the current minimum y1, an extrapolation attempt is made,
using xe = 3x − 2xh, to see whether we should move even further in this direction. The
better of xe and xr is accepted for the step. On the other hand, in case yr is greater
than yn (the current maximum once xn+1 is ignored), a further test is made, either
at the outside contraction point xoc = 1.5x − 0.5xh or at the inside contraction point
xic = 0.5x + 0.5xh, as shown in the figure. Failure to show improvement at either one
of these points means that no progress is being made by branching out and that the method
should look more locally for the optimum. It accomplishes this by shrinking the sim-
plex by a factor of 2 in the direction of the current minimum x1 before going to the
next step. The Matlab code follows. The function f should be defined in the variables
x(1),x(2),...,x(n).
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% Program 13.3 Nelder-Mead Search
% Input: function f, best guess xbar (column vector),
% initial search radius rad and number of steps k
% Output: matrix x whose columns are vertices of simplex,
% function values y of those vertices
function [x,y]=neldermead(f,xbar,rad,k)
n=length(xbar);
x(:,1)=xbar; % each column of x is a simplex vertex
x(:,2:n+1)=xbar*ones(1,n)+rad*eye(n,n);
for j=1:n+1
y(j)=f(x(:,j)); % evaluate obj function f at each vertex

end
[y,r]=sort(y); % sort the function values in ascending order
x=x(:,r); % and rank the vertices the same way
for i=1:k
xbar=mean(x(:,1:n)’)’; % xbar is the centroid of the face
xh=x(:,n+1); % omitting the worst vertex xh
xr = 2*xbar - xh; yr = f(xr);
if yr < y(n)
if yr < y(1) % try expansion xe
xe = 3*xbar - 2*xh; ye = f(xe);
if ye < yr % accept expansion
x(:,n+1) = xe; y(n+1) = f(xe);

else % accept reflection
x(:,n+1) = xr; y(n+1) = f(xr);

end
else % xr is middle of pack, accept reflection
x(:,n+1) = xr; y(n+1) = f(xr);

end
else % xr is still the worst vertex, contract
if yr < y(n+1) % try outside contraction xoc
xoc = 1.5*xbar - 0.5*xh; yoc = f(xoc);
if yoc < yr % accept outside contraction
x(:,n+1) = xoc; y(n+1) = f(xoc);

else % shrink simplex toward best point
for j=2:n+1
x(:,j) = 0.5*x(:,1)+0.5*x(:,j); y(j) = f(x(:,j));

end
end

else % xr is even worse than the previous worst
xic = 0.5*xbar+0.5*xh; yic = f(xic);
if yic < y(n+1) % accept inside contraction
x(:,n+1) = xic; y(n+1) = f(xic);

else % shrink simplex toward best point
for j=2:n+1
x(:,j) = 0.5*x(:,1)+0.5*x(:,j); y(j) = f(x(:,j));

end
end

end
end
[y,r] = sort(y); % resort the obj function values
x=x(:,r); % and rank the vertices the same way

end

The code implements the flowchart in Figure 13.5(b). The number of iteration steps is
required as an input. Computer Problem 8 asks the reader to rewrite the code with a stopping
criterion based on a user-given error tolerance. A common stopping criterion is to require
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Figure 13.6 Surface plot of two-dimensional function. Graph of

z = 5x4 + 4x2y − xy3 + 4y4 − x . Minimum is found by the Nelder-Mead method to

occur at ≈ ( 0.4923, − 0.3643).

both that the simplex has reduced in size to within a small distance tolerance and that the
maximum spread of the function values at the vertices is within a small tolerance. Matlab
implements the Nelder–Mead Method in its fminsearch command.

! EXAMPLE 13.3 Locate the minimum of the function f (x,y) = 5x4 + 4x2y − xy3 + 4y4 − x, using the
Nelder-Mead Method.

The function is shown in Figure 13.6. We define the function f of two variables by

>> f=@(x) 5*x(1)ˆ4+4*x(1)ˆ2*x(2)-x(1)*x(2)ˆ3+4*x(2)ˆ4-x(1)

and run 60 steps of the Nelder-Mead Method in Program 13.3 with the command

>> [x,y]=neldermead(f,[1;1],1,60)

x =

0.492307778751573 0.492307773822840 0.492307807617628
-0.364285558245531 -0.364285542189284 -0.364285562179872

y =

-0.457521622634071 -0.457521622634070 -0.457521622634069

We used the vector [x,y] = [1,1] as the starting guess and an initial radius of 1, but a
wide range of choices will work. After 60 steps the simplex has shrunk to a triangle whose
vertices are the three columns in the output vector x. To four correct decimal places, the
minimum of −0.4575 occurs at the point [x,y] = [0.4923,−0.3643]. "
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13.1 Exercises

1. Prove that the functions are unimodal on some intervals and find the absolute minimum and
where it occurs. (a) f (x) = ex + e−x (b) f (x) = x6 (c) f (x) = 2x4 + x (d) f (x) = x − ln x

2. Find the absolute minimum in the given intervals and at which x it occurs.
(a) f (x) = cosx, [3,4] (b) f (x) = 2x3 + 3x2 − 12x + 3, [0,2]
(c) f (x) = x3 + 6x2 + 5, [−5,5] (d) f (x) = 2x + e−x, [−5,5]

13.1 Computer Problems

1. Plot the function y = f (x), and find a length-one starting interval on which f is unimodal
around each relative minimum. Then apply Golden Section Search to locate each of the
function’s relative minima to within five correct digits.
(a) f (x) = 2x4 + 3x2 − 4x + 5 (b) f (x) = 3x4 + 4x3 − 12x2 + 5
(c) f (x) = x6 + 3x4 − 2x3 + x2 − x − 7 (d) f (x) = x6 + 3x4 − 12x3 + x2 − x − 7

2. Apply Successive Parabolic Interpolation to the functions in Computer Problem 1. Locate the
minima to within five correct digits.

3. Find the point on the hyperbola y = 1/x closest to the point (2,3) in two different ways: (a) by
Newton’s Method applied to find a critical point (b) by Golden Section Search on the square of
the distance between a point on the conic and (2,3).

4. Find the point on the ellipse 4x2 + 9y2 = 4 farthest from (1,5), using methods (a) and (b) of
Computer Problem 3.

5. Use the Nelder–Mead Method to find the minimum of
f (x,y) = e−x2y2 + (x − 1)2 + (y − 1)2. Try various initial conditions, and compare
answers. How many correct digits can you obtain by using this method?

6. Apply the Nelder–Mead Method to find the minima of the following functions to six correct
decimal places (each function has two minima):
(a) f (x,y) = x4 + y4 + 2x2y2 + 6xy − 4x − 4y + 1
(b) f (x,y) = x6 + y6 + 3x2y2 − x2 − y2 − 2xy

7. Apply the Nelder–Mead Method to find the minimum of the Rosenbrock function
f (x,y) = 100(y − x2)2 + (x − 1)2.

8. Rewrite Program 13.3 to accommodate a stopping criterion for Nelder–Mead based on a
user-specified error tolerance. Demonstrate by finding the minima of the objective functions in
Computer Problem 6 to six correct decimal places.

13.2 UNCONSTRAINED OPTIMIZATION WITH DERIVATIVES

Derivatives contain information about the rates of increase and decrease of a function, and
in the case of partial derivatives, also the directions of fastest increase and decrease. If such
information is available about the objective function, then it can be exploited to find the
optimum more efficiently.
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13.2.1 Newton’s Method

If the function is continuously differentiable and the derivative can be evaluated, then the
optimization problem can be expressed as a root-finding problem. Let us begin in one
dimension, where the translation is simplest.

At a minimum x∗ of a continuously differentiable function f (x), the first deriva-
tive must be zero. The methods of Chapter 1 can be used to solve the resulting equation
f ′(x) = 0. If the objective function is unimodal and has a minimum on an interval, then
starting Newton’s Method with an initial guess close to the minimum x∗ will result in
convergence to x∗. Newton’s Method applied to f ′(x) = 0 becomes the iteration

xk+1 = xk − f ′(xk)

f ′′(xk)
. (13.3)

While Newton’s Method (13.3) will find points at which f ′(x) = 0, in general, such
points need not be minima. It is important to have a reasonably close initial guess for the
optimum and to check the points for their optimality once located.

For optimization of a function f (x1, . . . ,xn) by this method, Newton’s Method in
several variables is used. As in the one-dimensional case, we want to set the derivative to
zero and solve. We thus have

∇f = 0, (13.4)

where

∇f =
[

∂f

∂x1
(x1, . . . ,xn), . . . ,

∂f

∂xn
(x1, . . . ,xn)

]

denotes the gradient of f .
Newton’s Method for vector-valued functions from Chapter 2 allows (13.4) to be

solved. Setting F(x) = ∇f (x), the iterative step of Newton’s Method will set xk+1 =
xk + v, where v is the solution of DF(xk)v = −F(xk). The Jacobian matrix DF of the
gradient is

Hf = DF =

⎡

⎢⎢⎣

∂2f
∂x1∂x1

· · · ∂2f
∂x1∂xn

...
...

∂2f
∂xn∂x1

· · · ∂2f
∂xn∂xn

⎤

⎥⎥⎦ , (13.5)

which is the Hessian matrix of f . The Newton step is therefore

{
Hf (xk)v = −∇f (xk)

xk+1 = xk + v
. (13.6)

! EXAMPLE 13.4 Locate the minimum of the function f (x,y) = 5x4 + 4x2y − xy3 + 4y4 − x, using
Newton’s Method.

The function is shown in Figure 13.6. The gradient is ∇f = (20x3 + 8xy −
y3 − 1,4x2 − 3xy2 + 16y3), and the Hessian is

Hf (x,y) =
[

60x2 + 8y 8x − 3y2

8x − 3y2 −6xy + 48y2

]
.
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Applying 10 steps of Newton’s Method (13.6) gives the results:

step x y f (x,y)

0 1.00000000000000 1.00000000000000 11.00000000000000
1 0.64429530201342 0.63758389261745 1.77001867827422
2 0.43064034542956 0.39233298702231 0.10112006537534
3 0.33877971433352 0.19857714160717 −0.17818585977225
4 0.50009733696780 −0.44771929519763 −0.42964065053918
5 0.49737350571430 −0.37972645728644 −0.45673719664708
6 0.49255000651877 −0.36497753746514 −0.45752009007757
7 0.49230831759106 −0.36428704569173 −0.45752162262701
8 0.49230778672681 −0.36428555993321 −0.45752162263407
9 0.49230778672434 −0.36428555992634 −0.45752162263407

10 0.49230778672434 −0.36428555992634 −0.45752162263407

Newton’s Method has converged within computer accuracy to the minimum value near
−0.4575. Note another feature of minimization using Newton’s Method: We have achieved
machine accuracy in the solution, unlike the one-dimensional case of Successive Parabolic
Interpolation. The reason is that we are no longer working with the objective function,
but have recast the problem solely as a root-finding problem involving the gradient. Since
∇f has a simple root at the optimum, there is no difficulty getting forward error close to
machine epsilon. "

Newton’s Method is often the method of choice if it is possible to compute the Hessian.
In two-dimensional problems, the Hessian is commonly available. In high dimension n, it
may be just feasible to compute the gradient, an n-dimensional vector, at each point, but
infeasible to construct the n × n Hessian. The next two methods are usually slower than
Newton’s Method, but require only the gradient to be computed at various points.

13.2.2 Steepest Descent

The fundamental idea behind Steepest Descent, also called Gradient Search, is to search
for a minimum of the function by moving in the direction of steepest decline from the
current point. Since the gradient ∇f points in the direction of steepest growth of f , the
opposite direction −∇f is the line of steepest descent. How far should we go along this
direction? Now that we have reduced the problem to minimizing along a line, let one of the
one-dimensional methods decide how far to go. After the new minimum along the line of
steepest descent is located, repeat the process, starting at that point. That is, find the gradient
at the new point, and do a one-dimensional minimization in the new direction.

The Steepest Descent algorithm is an iterative loop.

Steepest Descent

for i = 0,1,2, . . .

v = ∇f (xi)

Minimize f (x − sv) for scalar s = s∗

xi+1 = xi − s∗v

end

We will apply Steepest Descent to the objective function of Example 13.3.
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! EXAMPLE 13.5 Locate the minimum of the function f (x,y) = 5x4 + 4x2y − xy3 + 4y4 − x, using
Steepest Descent.

We follow the preceding steps, using Successive Parabolic Interpolation as the
one-dimensional minimizer. The results for 25 steps are as follows:

step x y f (x,y)

0 1.00000000000000 −1.00000000000000 11.00000000000000
5 0.40314579518113 −0.27992088271756 −0.41964888830651

10 0.49196895085112 −0.36216404374206 −0.45750680523754
15 0.49228284433776 −0.36426635686172 −0.45752161934016
20 0.49230786417532 −0.36428539567277 −0.45752162263389
25 0.49230778262142 −0.36428556578033 −0.45752162263407

Convergence is slower compared with the Newton Method, for a good reason. Newton’s
Method is solving an equation and is using the first and second derivatives (including the
Hessian). Steepest Descent is actually minimizing by following the downhill direction and
is using only first derivative information. "

13.2.3 Conjugate Gradient Search

In Chapter 2, the Conjugate Gradient Method was used to solve symmetric positive–definite
matrix equations. Now we will return to the method, viewed from a different direction.

Solving Ax = w when A is symmetric and positive-definite is equivalent to finding
the minimum of a paraboloid. In two dimensions, for example, the solution of the linear
system

[
a b

b c

][
x1
x2

]
=

[
e

f

]
(13.7)

is the minimum of the paraboloid

f (x1,x2) = 1
2

ax2
1 + bx1x2 + 1

2
cx2

2 − ex1 − f x2. (13.8)

The reason is that the gradient of f is

∇f = [ax1 + bx2 − e,bx1 + cx2 − f ].
The gradient is zero at the minimum, which gives the previous matrix equation. Positive-
definiteness means the paraboloid is concave up.

The key observation is that the residual r = w − Ax of the linear system (13.7) is
−∇f (x), the direction of steepest descent of the function f at the point x. Suppose we
have chosen a search direction, denoted by the vector d . To minimize f in (13.8) along that
direction is to find the α that minimizes the function h(α) = f (x + αd). We will set the
derivative to zero to find the minimum:

0 = ∇f · d

= (A(x + αd) − (e,f )T ) · d

= (αAd − r)T d.

This implies that

α = rT d

dT Ad
= rT r

dT Ad
,

where the last equality follows from Theorem 2.16 on the Conjugate Gradient Method.
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We conclude from this calculation that we could alternatively solve for the minimum
of a paraboloid by using the Conjugate Gradient Method, but replacing

ri = −∇f

and

αi = α that minimizes f (xi−1 + αdi−1).

In fact, in looking at it this way, notice that we have expressed conjugate gradient completely
in terms of f . No mention of the matrix A remains. We can run the algorithm in this form
for general f . Near regions where f has a parabolic shape, the method will move toward
the bottom very quickly. The new algorithm has the following steps:

Conjugate Gradient Search

Let x0 be the initial guess and set d0 = r0 = −∇f .

for i = 1,2,3, . . .

αi = α that minimizes f (xi−1 + αdi−1)

xi = xi−1 + αidi−1
ri = −∇f (xi)

βi = rT
i ri

rT
i−1ri−1

di = ri + βidi−1
end

We will try out the new method on a familiar example.

! EXAMPLE 13.6 Locate the minimum of the function f (x,y) = 5x4 + 4x2y − xy3 + 4y4 − x, using
Conjugate Gradient Search.

We follow the preceding steps, using Successive Parabolic Interpolation as the
one-dimensional minimizer. The results for 20 steps are as follows:

step x y f (x,y)

0 1.00000000000000 -1.00000000000000 .11.00000000000000
5 0.46038657599935 −0.38316114029860 −0.44849953420621

10 0.49048892807181 −0.36106561127830 −0.45748477171484
15 0.49243714956128 −0.36421661473526 −0.45752147604312
20 0.49231477751583 −0.36429817275371 −0.45752162206984

The subject of unconstrained optimization is vast, and the methods of this chapter
represent only the tip of the iceberg. Trust region methods form local models, as Suc-
cessive Parabolic Interpolation or Conjugate Gradient Search do, but allow use of them
only within a specified region that narrows as the search progresses. The routine fminunc
of the Matlab Optimization Toolbox is an example of a trust region method. Simulated
annealing is a stochastic method that attempts to progress lower on the objective function,
but will accept an upward step with a small, positive probability, in order to avoid conver-
gence to a nonoptimal local minima. Genetic algorithms and evolutionary computation
in general propose entirely new approaches to optimization and are still being actively
explored.

Constrained optimization takes as a goal the minimization of an objective function
subject to a set of constraints. The most common subset of these problems, linear program-
ming, has been solved by the simplex method since its development in the mid-20th century,
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although new and often faster algorithms based on interior point methods have emerged
fairly recently. Quadratic and nonlinear programming problems require more sophisticated
methods. Consult the references for entry points into this literature. "

13.2 Computer Problems

1. Use Newton’s Method to find the minimum of f (x,y) = e−x2y2 + (x − 1)2 + (y − 1)2. Try
various initial conditions, and compare answers. How many correct digits can you obtain with
this method?

2. Apply Newton’s Method to find the minima of the following functions to six correct decimal
places (each function has two minima):
(a) f (x,y) = x4 + y4 + 2x2y2 + 6xy − 4x − 4y + 1
(b) f (x,y) = x6 + y6 + 3x2y2 − x2 − y2 − 2xy

3. Find the minimum of the Rosenbrock function f (x,y) = 100(y − x2)2 + (x − 1)2 by
(a) Newton’s Method and (b) Steepest Descent. Use starting guess (2,2). After how many
steps does the solution stop improving? Explain the difference in accuracy that is
achieved.

4. Use the Steepest Descent to find the minima of the functions in Computer Problem 2.

5. Use Conjugate Gradient Search to find the minima of the functions in Computer Problem 2.

6. Find the minima to five correct digits by Conjugate Gradient Search:
(a) f (x,y) = x4 + 2y4 + 3x2y2 + 6x2y − 3xy2 + 4x − 2y

(b) f (x,y) = x6 + x2y4 + y6 + 3x + 2y

13 Molecular Conformation and Numerical Optimization
The function of a protein follows its form: The knobs and creases of the molecular shapes
enable the bindings and blockings that are integral to their roles. The forces that govern the
conformation, or folding, of amino acids into proteins are due to bonds between individual
atoms and to weaker intermolecular interactions between unbound atoms such as electro-
static and Van der Waals forces. For densely packed molecules such as proteins, the latter
are especially important.

One current approach to predicting the conformations of the proteins is to find the
minimum potential energy of the total configuration of amino acids. The Van der Waals
forces are modeled by the Lennard-Jones potential

U(r) = 1
r12 − 2

r6 ,

where r denotes the distance between two atoms. Figure 13.7 shows the energy well that
is defined by the potential. The force is attractive for distances r > 1, but turns strongly
repulsive when atoms try to come closer than r = 1. For a cluster of atoms with posi-
tions (x1,y1, z1), . . . , (xn,yn,zn), the objective function to be minimized is the sum of the
pairwise Lennard-Jones potentials

U =
∑

i<j

(
1

r12
ij

− 2

r6
ij

)
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over all pairs of atoms, where

rij =
√

(xi − xj )2 + (yi − yj )2 + (zi − zj )2

denotes the distance between atoms i and j . The variables in the optimization problem are
the rectangular coordinates of the atoms.

1 2 3
x

y

Figure 13.7 The Lennard-Jones potential U(r) = r−12 − 2r−6. The energy minimum is −1,

achieved at r = 1.

There are translational and rotational symmetries to consider: The total energy does not
change if the cluster is moved in a straight line or rotated. To deal with the symmetries, we
will limit the possible configurations by fixing the first atom at the origin v1 = (0,0,0) and
requiring the second atom to lie on the z-axis at v2 = (0,0, z2). The remaining position vari-
ables (x3,y3, z3), . . . , (xn,yn,zn) are left to be arranged in a configuration that minimizes
the potential energy U .

With the help of Figure 13.7, it is simple to arrange four or fewer atoms at the lowest
possible Lennard-Jones energy. Note that the minimum of the single potential has the value
−1 at r = 1. Thus, two atoms can sit exactly one unit from another, so that the energy is
exactly at the bottom of the trough. Three atoms can sit in a triangle whose side is the same
common distance, and a fourth atom can be placed at the same distance from the three
vertices, say, above the triangle, creating an equilateral tetrahedron. The total energy U

for the n = 2, 3, and 4 cases is −1 times the number of interactions, or −1, −3, and −6,
respectively.

Placement of the fifth atom, however, is not so obvious. There is no point equidistant
from the tetrahedron vertices of the n = 4 case, and a new technique is needed—numerical
optimization.

Suggested activities:

1. Write a function file that returns the potential energy. Apply Nelder–Mead to find the
minimal energy for n = 5. Try several initial guesses until you are convinced you have the
absolute minimum. How many steps are required?

2. Use the Matlab command plot3 to plot the five atoms in the minimum energy
configuration as circles, and connect all circles with line segments to view the conformed
molecule.

3. Extend the function in Step 1 so that it returns f and the gradient vector ∇f . Apply
Gradient Search for the n = 5 case. Find the minimum energy as before.
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4. If the Matlab Optimization Toolbox is available, apply the command fminunc, using
only the objective function f .

5. Apply fminunc, using f and ∇f .

6. Apply the previous methods to n = 6. Rank the methods according to reliability and
efficiency.

7. Determine and plot minimum-energy conformations for larger n. Information on
minimum-energy Lennard-Jones clusters for n up to several hundred is posted at several
Internet sites, so your answers can be readily checked.

The protein folding problem has become a hotbed of multidisciplinary optimization
research. Simulated annealing and powerful quasi-Newton Methods are often used to pre-
dict conformation of complicated molecules, with ever more realistic modeling of the inter-
molecular forces. The Protein Data Bank http://www.rcsb.org/pdb is a useful
worldwide archive of structural data on biological macromolecules. Extensive lists of exper-
imentally measured atom positions are available there for use in testing and validation of
hypotheses concerning the forces and energy minimization.

Software and Further Reading

Introductory texts on optimization include Dennis and Schnabel [1987], Nocedal and
Wright [1999], and Griva et al. [2008]. The useful guide Moré and Wright [1987]
contains references to many software packages designed particularly for optimization.
A large set of test problems of varying types are found in Floudas et al. [1999]. The
Optimization Technology Center run by Northwestern University and the Argonne National
Lab http://www.ece.northwestern.edu/OTC has many links to available
software.

The opt directory of Netlib contains a number of freely available optimization
routines, including: hooke (derivative-free unconstrained optimization, via Hooke and
Jeeves Method), praxis (unconstrained optimization, without requiring derivatives),
and tn (Newton Method for unconstrained or simple-bound optimization). WNLIB
by Chapman and Naylor includes routines for unconstrained and constrained nonlinear
optimization based on conjugate-gradient and conjugate-directions algorithms (as well as
a general simulated annealing routine).

The Matlab Optimization Toolbox includes routines for a variety of constrained and
unconstrained nonlinear optimization problems. The TOMLAB Optimization Environment
offers a broad variety of nonlinear optimization tools based on Matlab toolboxes. It has a
unified input–output format, an optional GUI, and automatic handling of derivatives. The
optimization listings at mathtools.net include many solvers written in Matlab and
other languages.

http://www.rcsb.org/pdb
http://www.ece.northwestern.edu/OTC


Appendix A: Matrix Algebra

We begin with a short review of the basic definitions in matrix algebra.

A.1 MATRIX FUNDAMENTALS

A vector is an array of numbers

u =

⎡

⎢⎢⎢⎣

u1
u2
...

un

⎤

⎥⎥⎥⎦
.

If the list contains n numbers, it is called an n-dimensional vector. We will often make
a distinction between the foregoing vertically arranged array, or column vector, and a
horizontally arranged array

u = [u1, . . . ,un]

called a row vector. An m × n matrix is an m × n array of numbers having the form

A =

⎡

⎢⎣
a11 · · · a1n

...
...

am1 · · · amn

⎤

⎥⎦ .

Each (horizontal) row of A can be considered as a row vector of A, and each (vertical)
column as a column vector.

Matrix–vector multiplication makes a vector out of a matrix and a vector. The matrix–
vector product is defined as

Au =

⎡

⎢⎣
a11 · · · a1n

...
...

am1 · · · amn

⎤

⎥⎦

⎡

⎢⎢⎢⎣

u1
u2
...

un

⎤

⎥⎥⎥⎦
=

⎡

⎢⎣
a11u1 + a12u2 + ·· · + a1nun

...

am1u1 + am2u2 + ·· · + amnun

⎤

⎥⎦ . (A.1)

Note that in order to multiply an m × n matrix by a d-dimensional vector, it is required that
n = d .

In matrix–matrix multiplication, an m × n matrix is multiplied by an n × p matrix
to yield an m × p matrix as the product. Multiplying matrices can be expressed in terms
of matrix–vector multiplication. Let C be an n × p matrix written in terms of its column
vectors

C =
[

c1| · · · |cp

]
.

Then the matrix–matrix product of A and C is

AC = A
[

c1| · · · |cp

]
=

[
Ac1| · · · |Acp

]
.
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A system of m linear equations in n unknowns can be written in matrix form as

⎡

⎢⎣
a11 · · · a1n

...
...

am1 · · · amn

⎤

⎥⎦

⎡

⎢⎢⎢⎣

x1
x2
...

xn

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

b1
b2
...

bn

⎤

⎥⎥⎥⎦
,

which we call a matrix equation.
The n × n identity matrix In is the matrix with Iii = 1 for 1 ≤ i ≤ n and Iij = 0 for

i ̸= j . The identity matrix serves as the identity for the operation of matrix multiplication,
as AIn = InA = A for each n × n matrix A. For an n × n matrix A, the inverse A−1 of A is
an n × n matrix satisfying AA−1 = A−1A = In. If A has an inverse, it is called invertible;
a noninvertible matrix is called singular.

The transpose of an m × n matrix A is the matrix AT whose entries are AT
ij = Aji .

The rule for the transpose of a product is (AB)T = BT AT .
There are two important ways to multiply two vectors together. Let

u =

⎡

⎢⎣
u1
...

un

⎤

⎥⎦ and v =

⎡

⎢⎣
v1
...

vn

⎤

⎥⎦ .

The inner product uT v transposes u to a row vector; then ordinary matrix multiplication
gives

uT v = u1v1 + ·· · + unvn.

Thus the product of 1 × n by n × 1 yields a 1 × 1 matrix, or real number, as the result. Two
column vectors are orthogonal if uT v = 0. The outer product uvT multiplies an n × 1
column by a 1 × n row. Ordinary matrix multiplication gives an n × n matrix result

uvT =

⎡

⎢⎢⎢⎣

u1v1 u1v2 · · · u1vn

u2v1 u2v2 · · · u2vn

...
...

unv1 · · · · · · unvn

⎤

⎥⎥⎥⎦
.

An outer product is a rank-one matrix.
Each matrix product AB can be represented as the sum of outer products of the columns

of A with the rows of B. More precisely,

Outer product sum rule

Let A and B be m × p and p × n matrices, respectively. Then

AB =
p∑

i=1

aib
T
i

where ai is the ith column of A and bT
i is the ith row of B.

The case n = 1 is sometimes called the “alternate form of matrix-vector multiplication.’’
For example,

⎡

⎣
1 2 3
4 5 6
7 8 9

⎤

⎦

⎡

⎣
−3

1
2

⎤

⎦ =

⎡

⎣
1
4
7

⎤

⎦[ −3
]
+

⎡

⎣
2
5
8

⎤

⎦[
1

]
+

⎡

⎣
3
6
9

⎤

⎦[
2

]
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illustrates why, when viewed as a linear transformation, the range of a matrix is equivalent
to its column space.

Because of the high computational complexity of computing the matrix inverse, it is
avoided or minimized whenever possible. One trick that helps is the Sherman–Morrison
formula. Assume that the inverse of an n × n matrix A is already known, and that the
inverse of the modified matrix A + uvT is needed, where u and v are n-vectors.

THEOREM A.1 (Sherman–Morrison Formula) If vT A−1u ̸= −1, then A + uvT is invertible and

(A + uvT )−1 = A−1 − A−1uvT A−1

1 + vT A−1u
. #

The Sherman–Morrison formula is proved by multiplying A + uvT times the expres-
sion in the formula. The matrix A + uvT is called a rank-one update of A, since uvT is
a rank-one matrix. (See the discussion of Broyden’s Method in Chapter 2 for an impor-
tant application of the Sherman–Morrison formula. Elementary facts about matrices can be
found in linear algebra texts such as Strang [2005] and Lay [2005].)

A.2 BLOCK MULTIPLICATION

Matrix multiplication can be done blockwise, a fact that will be very helpful in Chapter 12. If
two matrices are divided into blocks whose sizes are compatible with matrix multiplication,
then the matrix product can be carried out by matrix multiplication of the blocks. For
example, the product of two 3 × 3 matrices can be carried out in the following blocks:

AB =

⎡

⎢⎣
x x x

x x x

x x x

⎤

⎥⎦

⎡

⎢⎣
x x x

x x x

x x x

⎤

⎥⎦ =
[

A11 A12

A21 A22

][
B11 B12

B21 B22

]

=
[

A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]

Here A11 and B11 are 1 × 1 matrices, A12 and B12 are 1 × 2 matrices, and so forth. For
example,

⎡

⎢⎣
1 2 3
0 1 3
2 2 4

⎤

⎥⎦

⎡

⎢⎣
2 4 1
1 0 1
3 1 2

⎤

⎥⎦ =

⎡

⎢⎢⎢⎣

1 · 2 +
[
2 3

][
1
3

]
1
[
4 1

]
+

[
2 3

][
0 1
1 2

]

[
0
2

]
2 +

[
1 3
2 4

][
1
3

] [
0
2

][
4 1

]
+

[
1 3
2 4

][
0 1
1 2

]

⎤

⎥⎥⎥⎦

=

⎡

⎢⎣
13 7 9
10 3 7
18 12 12

⎤

⎥⎦ .

Doing the multiplication blockwise gives the same result as doing it without blocks. This
alternative way of looking at matrix multiplication is not meant to reduce computations,
but to assist with bookkeeping, especially with eigenvalue computations in Chapter 12.

The only necessary compatibility required of the blocks is that the column groupings
of A must exactly match the row groupings of B. In the preceding example, the first column
of A is in one group, and the last two columns are in another. For matrix B, the first row is
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in one group and the last two rows are in another. As another example, we can multiply the
3 × 5 matrix A and the 5 × 2 matrix B in the following blocks:

⎡

⎢⎣
x x x x x

x x x x x

x x x x x

⎤

⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

x x

x x

x x

x x

x x

⎤

⎥⎥⎥⎥⎥⎥⎦

=
[

A11 A12 A13

A21 A22 A23

]⎡

⎢⎣
B11 B12

B21 B22

B31 B32

⎤

⎥⎦

=
[

A11B11 + A12B21 + A13B31 A11B12 + A12B22 + A13B32

A21B11 + A22B21 + A23B31 A21B12 + A22B22 + A23B32

]

In this case, the three groups of columns of A are matched by the three groups of rows of B.
On the other hand, the groupings of rows of A and columns of B do not need to match; they
may be done arbitrarily.

A.3 EIGENVALUES AND EIGENVECTORS

We begin with a short review of the basic concepts of eigenvalues and eigenvectors.

DEFINITION A.2 Let A be an m × m matrix and x a nonzero m-dimensional real or complex vector. If
Ax = λx for some real or complex number λ, then λ is called an eigenvalue of A and x is
the corresponding eigenvector. ❒

For example, the matrix A =
[

1 3
2 2

]
has an eigenvector

[
1
1

]
, and corresponding

eigenvalue 4.
Eigenvalues are the roots λ of the characteristic polynomial det(A − λI ). If λ is an

eigenvalue of A, then any nonzero vector in the nullspace of A − λI is an eigenvector
corresponding to λ. For this example,

det(A − λI ) = det
[

1 − λ 3
2 2 − λ

]
= (λ − 1)(λ − 2) − 6 = (λ − 4)(λ + 1), (A.2)

so the eigenvalues are λ = 4,−1. The eigenvectors corresponding to λ = 4 are found in the
nullspace of

A − 4I =
[ −3 3

2 −2

]
(A.3)

and so consist of all nonzero multiples of
[

1
1

]
. Similarly, the eigenvectors corresponding

to λ = −1 are all nonzero multiples of
[

3
−2

]
.

DEFINITION A.3 The m × m matrices A1 and A2 are similar, denoted A1 ∼ A2, if there exists an invertible
m × m matrix S such that A1 = SA2S−1. ❒
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Similar matrices have identical eigenvalues, because their characteristic polynomials
are identical:

A1 − λI = SA2S−1 − λI = S(A2 − λI )S−1 (A.4)

implies that

det(A1 − λI ) = (det S)det(A2 − λI )det S−1 = det(A2 − λI ). (A.5)

If a matrix A has eigenvectors that form a basis for Rm, then A is similar to a diagonal
matrix, and A is called diagonalizable. In fact, assume that Axi = λixi for i = 1, . . . ,m,
and define the matrix

S = [ x1 · · · xm ].

Then you can check that the matrix equation

AS = S

⎡

⎢⎣
λ1

. . .

λm

⎤

⎥⎦ (A.6)

holds. The matrix S is invertible because its columns span Rm. Therefore, A is similar to
the diagonal matrix containing its eigenvalues.

Not all matrices are diagonalizable, even in the 2 × 2 case. In fact, all 2 × 2 matrices
are similar to one of the following three types:

A1 =
[

a 0
0 b

]

A2 =
[

a 1
0 a

]

A3 =
[

a −b

b a

]
.

Remember that eigenvalues are identical for similar matrices. A matrix is similar to a matrix
of form A1 if there are two eigenvectors that span R2; a matrix is similar to a matrix of
form A2 if there is a repeated eigenvalue with only one dimensional space of eigenvectors;
and to A3 if it has a complex pair of eigenvalues.

A.4 SYMMETRIC MATRICES

For a symmetric matrix, all eigenvectors are orthogonal to one another, and together they
span the underlying space. In other words, symmetric matrices always have an orthonormal
basis of eigenvectors.

DEFINITION A.4 A set of vectors is orthonormal if the elements of the set are unit vectors that are pairwise
orthogonal. ❒

In terms of dot products, orthonormality of the set {w1, . . . ,wm} means wT
i wj = 0 if

i ̸= j , and wT
i wi = 1, for 1 ≤ i,j ≤ m. For example, the sets {(1,0,0), (0,1,0), (0,0,1)}

and {(
√

2/2,
√

2/2), (
√

2/2,−
√

2/2)} are orthonormal sets.
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THEOREM A.5 Assume that A is a symmetric m × m matrix with real entries. Then the eigenvalues are
real numbers, and the set of unit eigenvectors of A is an orthonormal set {w1, . . . ,wm} that
forms a basis of Rm. #

! EXAMPLE A.1 Find the eigenvalues and eigenvectors of

A =
[

0 1
1 3

2

]
. (A.7)

Calculating as before, the eigenvalue/eigenvector pairs are 2, (1,2)T and
−1/2, (−2,1)T . Note that as the theorem promises, the eigenvectors are orthogonal. The
corresponding orthonormal basis of unit eigenvectors is

⎧
⎨

⎩

⎡

⎣
1√
5

2√
5

⎤

⎦ ,

⎡

⎣
− 2√

5
1√
5

⎤

⎦

⎫
⎬

⎭ .
"

The following theorem will be helpful for studying iterative methods in Chapter 2:

DEFINITION A.6 The spectral radius ρ(A) of a square matrix A is the maximum magnitude of its eigenvalues.
❒

THEOREM A.7 If the n × n matrix A has spectral radius ρ(A) < 1, and b is arbitrary, then, for any vec-
tor x0, the iteration xk+1 = Axk + b converges. In fact, there exists a unique x∗ such that
limk→∞ xk = x∗ and x∗ = Ax∗ + b. #

Moreover, if b = 0, then x∗ is either the zero vector or an eigenvector of A with
eigenvalue 1. The latter is ruled out because of the spectral radius, leading to the following
fact that is useful in Chapter 8:

COROLLARY A.8 If the n × n matrix A has spectral radius ρ(A) < 1, then, for any initial vector x0, the
iteration xk+1 = Axk converges to 0. #

A.5 VECTOR CALCULUS

In this section, the derivatives of scalar-valued and vector-valued functions are defined, and
the product rules involving them are collected for later use.

Let f (x1, . . . ,xn) be a scalar-valued function of n variables. The gradient of f is the
vector-valued function

∇f (x1, . . . ,xn) =
[
fx1 , . . . ,fxn

]
,

where the subscripts denote partial derivatives of f with respect to that variable.
Let

F(x1, . . . ,xn) =

⎡

⎢⎣
f1(x1, . . . ,xn)

...

fn(x1, . . . ,xn)

⎤

⎥⎦
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be a vector-valued function of n variables. The Jacobian of F is the matrix

DF(x1, . . . ,xn) =

⎡

⎢⎣
∇f1

...

∇fn

⎤

⎥⎦ .

Now we can state the product rules for two typical products in matrix algebra. Both
have straightforward proofs when they are written in components and the single-variable
product rule is applied. Let u(x1, . . . ,xn) and v(x1, . . . ,xn) be vector-valued functions, and
let A(x1, . . . ,xn) be an n × n matrix function. The dot product uT v is a scalar function.
The first formula shows how to take its gradient. The matrix vector product Av is a vector
whose Jacobian is expressed in the second rule.

Vector dot product rule

∇(uT v) = vT Du + uT Dv

Matrix/vector product rule

D(Av) = A · Dv +
n∑

i=1

viDai,

where ai denotes the ith column of A.



Appendix B: Introduction to MATLAB

Matlab is a general-purpose computing environment that is ideally suited for imple-
menting mathematical and numerical methods. It is used as a high-powered calculator for
small problems and as a full-featured programming language for large problems. A helpful
feature of Matlab is its long list of high-quality library functions that can make complicated
calculations short, precise, and easy to write in high-level code.

This section contains a brief introduction to Matlab’s commands and features. Much
more detailed accounts can be found in Matlab’s help facilities, the Matlab User’s Guide,
in books such as Sigmon [2002], Hahn [2002], and on websites devoted to the package.

B.1 STARTING MATLAB

On PC-based systems, Matlab is started by clicking the appropriate icon and ended by
clicking on File/Exit. On Unix-based systems, type Matlab at the system prompt:

$ matlab

Then type

>> exit

to exit.
Type the command

>> a=5

followed by the return key. Matlab will echo the information back to you. Type the
additional commands

>> b=3
>> c=a+b
>> c=a*b
>> d=log(c)
>> who

to get an idea of how Matlab works. You may include a semicolon after a statement to
suppress echoing of the value. The who command gives a list of all variables you have
defined.

Matlab has an extensive online help facility. Type help log for information on the
log command. The PC version of Matlab has a Help menu that contains descriptions and
usage suggestions on all commands.

To erase the value of the variable a, type clear a. Typing clear will erase all
previously defined variables. To recover a previous command, use the up cursor key. If you
run out of room on the current command line, end the line with three periods and a return;
then resume typing on the next line.

To save values of variables for your next login, type save, then load on your
next login to Matlab. For a transcript of part or all of the Matlab session, type
diary filename to start logging, and diary off to end. Use a filename of your
choice for filename. This is helpful for submitting your work for an assignment. The
diary command produces a file that can be viewed or printed once your Matlab session
is over.

Matlab normally performs all computations in IEEE double precision, about 16
decimal digits of accuracy. The numeric display format can be changed with the format
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statement. Typing format longwill change the way numbers are displayed until further
notice. For example, the number 1/3 will be displayed differently depending on the current
format:

format short 0.3333
format short e 3.3333E-001
format long 0.33333333333333
format long e 3.333333333333333E-001
format bank 0.33
format hex 3fd5555555555555

More control over formatting output is given by the fprintf command. The commands

>> x=0:0.1:1;
>> y=x.ˆ2;
>> fprintf(’%8.5f %8.5f \n’,[x;y])

print the table

0.00000 0.00000
0.10000 0.01000
0.20000 0.04000
0.30000 0.09000
0.40000 0.16000
0.50000 0.25000
0.60000 0.36000
0.70000 0.49000
0.80000 0.64000
0.90000 0.81000
1.00000 1.00000

B.2 GRAPHICS

To plot data, express the data as vectors in the X and Y directions. For example, the
commands

>> a=[0.0 0.4 0.8 1.2 1.6 2.0];
>> b=sin(a);
>> plot(a,b)

will draw a piecewise-linear approximation to the graph of y = sin x on 0 ≤ x ≤ 2, as
shown in Figure B.1(a). In this case, a and b are 6-dimensional vectors, or 6-element
arrays. The font of the axis numbers can be set to 16-point, for example, by the command
set(gca,’FontSize’,16). A shorter way to define the vector a is the command

>> a=0:0.4:2;

This command defines a to be a vector whose entries begin at 0, increment by 0.4, and end
at 2, identical to the previous longer definition. A more accurate version of one entire cycle
of the sine curve results from

>> a=0:0.02:2*pi;
>> b=sin(a);
>> plot(a,b)

and is shown in Figure B.1(b).
To draw the graph of y = x2 on 0 ≤ x ≤ 2, one could use

>> a=0:0.02:2;
>> b=a.ˆ2;
>> plot(a,b)
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Figure B.1 MATLAB figures. (a) Piecewise-linear plot of f (x) = sin x , with x increment of

0.4. (b) Another piecewise plot looks smooth because the x increment is 0.02.

The “.’’ character preceding the power operator may be unexpected. It causes the power
operator to be vectorized, that is, to square each entry of the vector a. As we will see in
the next section, Matlab treats every variable as a matrix. Omitting the period in this
instance would mean multiplying the 101 × 1 matrix a by itself, under the rules of matrix
multiplication, which is impossible. If you ask Matlab to do this, it will complain. In
general, Matlab interprets an operation preceded by a period to mean that the operation
should be applied entry-wise, not as matrix multiplication.

There are more advanced techniques for plotting graphs. Matlab will choose axis
scaling automatically if it is not specified, as in Figure B.1. To choose the axis scaling
manually, use the axis command. For example, following a plot with the command

>> v=[-1 1 0 10]; axis(v)

sets the graphing window to [−1,1] × [0,10]. The grid command draws a grid behind
the plot.

Use the command plot(x1,y1,x2,y2,x3,y3) to plot three curves in the same
graph window, where xi, yi are pairs of vectors of the same lengths. Type help plot
to see the choices of solid, dotted, and dashed line types and various symbol types (circles,
dots, triangles, squares, etc.) for plots. Semilog plots are available through the semilogy
and semilogx commands.

The subplot command splits the graph window into multiple parts. The statement
subplot(abc) breaks the window into an a × b grid and uses the c box for the plot. For
example,

>> subplot(121),plot(x,y)
>> subplot(122),plot(x,z)

plots the first graph on the left side of the screen and the second on the right. The figure
command opens up new plot windows and moves among them, if you need to view several
different plots at once.

Three-dimensional surface plots are drawn with the command mesh. For example, the
function z = sin(x2 + y2) on the domain [−1,1] × [−2,2] can be graphed by

>> [x,y]=meshgrid(-1:0.1:1,-2:0.1:2);
>> z=sin(x.ˆ2+y.ˆ2);
>> mesh(x,y,z)

The vector x created by meshgrid is 41 rows of the 21-vector -1:0.1:1, and similarly,
y is 21 columns of the column vector -2:0.1:2. The graph produced by this code is
shown in Figure B.2. Replacing mesh with surf plots a colored surface over the mesh.
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Figure B.2 Three-dimensional MATLAB plot. The mesh command is used to plot surfaces.

B.3 PROGRAMMING IN MATLAB

More sophisticated results can be achieved by writing programs in the Matlab language.
A script file is a file containing a list of Matlab commands. The filename of a script file has
a suffix of .m, so such files are sometimes called m-files. For example, you might use your
favorite editor, or the Matlab editor if available, to create the file cubrt.m, containing
the following lines:

% The program cubrt.m finds a cube root by iteration
y=1;
n=15;
z=input(’Enter z:’);
for i = 1:n
y = 2*y/3 + z/(3*yˆ2)

end

To run the program, typecubrt at the Matlab prompt. The reason that this code converges
to the cube root will become evident from our study of Newton’s Method in Chapter 1.
Notice that the semicolon was dropped from the line that defines the new y by iteration.
This allows you to see the progression of approximants as they approach the cube root.

With the graphics ability of Matlab, we can analyze the data from the cube root
algorithm. Consider the program cubrt1.m:

% The program cubrt1.m finds cube roots and displays its progress
y(1)=1;
n=15;
z=input(’Enter z:’);
for i = 1:n-1
y(i+1) = 2*y(i)/3 + z/(3*y(i)ˆ2);

end
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plot(1:n,y)
title(’Iterative method for cube roots’)
xlabel(’Iteration number’)
ylabel(’Approximate cube root’)

Run the foregoing program with z = 64. When finished, type the commands

>> e=y-4;
>> plot(1:n,e)
>> semilogy(1:n,e)

The first command subtracts the correct cube root 4 from each entry of the vector y. This
remainder is the error e at each step of the iteration. The second command plots the error,
and the third plots the error in a semilog plot, using logarithmic units in the y-direction.

Creating a script file to hold Matlab code is preferred if the calculation will take more
than a few lines. A script file can call other script files, including itself. (Typing ⟨cntl⟩-C
will usually abort runaway Matlab processes.)

B.4 FLOW CONTROL

The for loop was introduced in the previous cube root program. Matlab has a number
of commands to control the flow of a program. A number of these, including while loops
and if and break statements, will be familiar to anyone with knowledge of a high-level
programming language. For example,

n=5;
for i=1:n
for j=1:n
a(i,j)=1/(i+j-1);

end
end
a

creates and displays the 5 × 5 Hilbert matrix. The semicolon avoids repeated printing of
partial results, and the final a displays the final result. Note that each for must be matched
with an end. It is a good idea, though not required by Matlab, to indent loops for greater
readability.

The while command works similarly:

n=5;i=1;
while i<=n
j=1;
while j<=n
a(i,j)=1/(i+j-1);
j=j+1;

end
i=i+1;

end
a

This produces the same result as the double for loop.
The if statement is used to make flow decisions, and the break command provides

an exit jump out of the next inner loop. Both are illustrated as follows:

% To compute the nth derivative of sin(x) at x=0
n=input(’Enter n, negative number to quit:)
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if n<=0,break,end
r=rem(n,4) % rem is the remainder function
if r==0
y=0

elseif r==1
y=1

elseif r==2
y=0

else
y=-1

end
y

The logical operators & and | stand for AND, OR, respectively. The error command stops
execution of the m-file and reports information to the user.

B.5 FUNCTIONS

In addition to built-in library functions like sin and exp, Matlab allows the definition
of user-defined functions. The command

>> f=@(x) exp(sin(2*x))

creates a function with input x and output f (x) = esin 2x . After defining f as above, the
command

>> f(0)

returns the correct result esin 2(0) = 1. Moreover, the definition with @ assigns a function
handle to f that can be passed to another function. If we create another function

>> firstderiv=@(f,x,h) (f(x+h)-f(x-h))/(2*h)

with three inputs f,x,h, the command

>> firstderiv(f,0,0.0001)

returns an approximation to the derivative at 0. Here, we have used the user-defined function
handle f as an input to the user-defined Matlab function firstderiv.

A Matlab function may have several inputs and several outputs. An example of a
vector-valued function of several variables having three inputs and three outputs is the
following function that converts rectangular to spherical coordinates:

>> rec2sph=@(x,y,z) [sqrt(xˆ2+yˆ2+zˆ2) acos(z/sqrt(xˆ2+yˆ2+zˆ2))...
atan2(y,x)]

This method of defining functions is useful when the function can be defined on one
line. For more complicated examples, Matlab allows a second way to define a function,
through a special m-file. The syntax of the first line must be adhered to, as in the following
example, where the filename is cubrtf.m:

function y=cubrtf(x)
% Approximates the cube root of x
% Input real number x, output its cube root
y=1;
n=15;
for i = 1:n
y = 2*y/3 + x/(3*yˆ2)

end
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Here, we have transferred the script-file version of the cube root approximator to a Matlab
function. The function can be evaluated by

>> c=cubrtf(8)

Note that a Matlab function differs from a script m-file in the first line. The filename, with
the .m omitted, should agree with the function name in the first line. Variables in a function
file are local by default, but can be made global with the global command.

Combining the two above approaches, a previously defined Matlab function, such
as an m-file function, can be assigned a function handle by prefixing with the @ sign. The
function handle can then be passed into another function. For example,

>> firstderiv(@cubrtf,1,0.0001)

returns the approximation 0.3333 for the derivative of x1/3 at x = 1.
A more complicated function can use several variables as inputs and several as outputs.

For example, here is a function that calls the existing Matlab functions mean and std
and collects both in an array:

function [m,sigma]=stat(x)
% Returns sample mean and standard deviation of input vector x
m=mean(x);
sigma=std(x);

If this file stat.m resides in your Matlab path, typing stat(x), where x is a vector,
will return the mean and standard deviation of the entries of the vector.

The nargin command provides the number of input arguments to a function. With
this command, the work of a function can change, depending on how many arguments are
presented to it. An example of nargin is given in Program 0.1 on nested multiplication.

An example of a piecewise-defined function is

h(x) =

⎧
⎨

⎩

x + 2 for x ≤ −1
1 for − 1 < x ≤ 0
cosx for x > 0.

The function h(x) can be represented by the creating the Matlab function file h.m
containing

function y=h(x)
p1=(x<=-1);
p2=(x>-1).*(x<=0);
p3=(x>0);
y=p1.*(x+2)+p2.*1+p3.*cos(x);

Here we are making use of Boolean evaluation of the conditional expressions as 1 if true and
0 if false. We are also using the period preceding arithmetic operations to vectorize them,
allowing the input x to be a vector of numbers. Now h can be passed to other Matlab
functions via its function handle @h. For example,

>> ezplot(@h,[-3 3])

plots the piecewise function h, and

>> fzero(@h,1)

finds a root of h(x) near 1. Should the result of

>> firstderiv(@h,-1,0.0001)

be trusted?
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B.6 MATRIX OPERATIONS

The key to Matlab ’s power and versatility is the sophistication of its variables’ data
structure. Each variable in Matlab is an m × n matrix of double precision floating point
numbers. A scalar is simply the special case of a 1 × 1 matrix. The syntax

>> A=[1 2 3
4 5 6]

or

>> A=[1 2 3;4 5 6]

defines a 2 × 3 matrix A. The command B=A’ creates a 3 × 2 matrix B that is the transpose
of A. Matrices of the same size can be added and subtracted with the + and − operators.
The command size(A) returns the dimensions of the matrix A, and length(A) returns
the maximum of the two dimensions.

Matlab provides many commands that allow matrices to be easily built. For example,
zeros(m,n) produces a matrix full of zeros of size m × n. If A is a matrix, then
zeros(size(A)) produces a matrix of zeros of the same size as A. The commands
ones(m,n) and eye(m,n) (for the identity matrix) work essentially the same way. For
example,

>> A=[eye(2) zeros(2,2);zeros(2,2) eye(2)]

is a convoluted, but accurate way to construct the 4 × 4 identity matrix.
The colon operator can be used to extract a submatrix from a matrix. For example,

>> b=A(1:3,2)

assigns to b the first three entries of the second column of A. The command

>> b=A(:,2)

assigns to b the entire second column of A, and

>> B=A(:,1:3)

assigns to B the submatrix consisting of the first three columns of A.
The m × n matrixA and the n × p matrixB can be multiplied by the commandC=A*B.

If the matrices have inappropriate sizes, Matlab will refuse to do the operation and return
an error message.

B.7 ANIMATION AND MOVIES

The field of differential equations includes the study of dynamic systems, or “things that
move.’’ Matlab makes animation easy, and these aspects are exploited in Chapter 6 to
follow solutions that are changing with time.

The sample Matlab program bounce.m given next shows a tennis ball bouncing
from wall to wall in a unit square. The first set command sets up parameters of the current
figure (gca), including the axis limits 0 ≤ x,y ≤ 1. The cla command clears the figure
window, and axis square equalizes the units in the x and y directions.

Next, the line command is used to define a line object called ball, along with its
properties. The erase parameter set to xor means that each time the ball is drawn, its
previous position is erased. The four if statements in the while loop cause the ball to
reverse velocity when it hits one of the four walls. The loop also contains a set command
that updates the current x and y coordinates of the line object ball, by setting its xdata
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and ydata attributes, respectively. The drawnow command draws all defined objects to
the current figure window. The speed of the moving ball can be adjusted with the pause
command and through the step sizes hx0 and hy0. The while loop is infinite and can be
interrupted by ⟨cntl⟩-C. Here is the program in its entirety:

%bounce.m
% Illustrates Matlab animation using the drawnow command
% Usage: Save this file in bounce.m, then type "bounce"
set(gca,’XLim’,[0 1],’YLim’,[0 1],’Drawmode’,’fast’, ...

’Visible’,’on’);
cla
axis square
ball = line(’color’,’r’,’Marker’,’o’,’MarkerSize’,10, ...

’LineWidth’,2,’erase’,’xor’,’xdata’,[],’ydata’,[]);
hx0=.005;hy0=.0039;hx=hx0;hy=hy0;
xl=.02;xr=.98;yb=xl;yt=xr;x=.1;y=.1;
while 1 == 1

if x < xl
hx= hx0;

end
if x > xr

hx = -hx0;
end
if y < yb

hy = hy0;
end
if y > yt

hy = -hy0;
end
x=x+hx;y=y+hy;
set(ball,’xdata’,x,’ydata’,y);drawnow;pause(0.01)

end

Using the file MakeQTMovie.m, it is straightforward to make QuickTime movies in
Matlab. Each frame of the movie will be a single Matlab figure. To begin the process of
making a movie, acquire the file MakeQTMovie.m from the Internet. This file was written
by Malcolm Slaney of Interval Research and is free to download and distribute. Place the
file so that it can be found by Matlab, either in your current working directory or your search
path. Then the example code segment

MakeQTMovie(’start’,’filename.mov’)
for i=1:n
(plot a figure)
MakeQTMovie(’addfigure’)

end
MakeQTMovie(’finish’)

will capture the n still figures and place them into a QuickTime movie file named
filename.mov.



Answers to Selected Exercises
CHAPTER 0

0.1 Exercises

1. (a) P (x) = 1 + x(1 + x(5 + x(1 + x(6)))),P (1/3) = 2.

(b) P (x) = 1 + x(−5 + x(5 + x(4 + x(−3)))),P (1/3) = 0

(c) P (x) = 1 + x(0 + x(−1 + x(1 + x(2)))),P (1/3) = 77/81

3. P (x) = 1 + x2(2 + x2(−4 + x2(1))),P (1/2) = 81/64

5. (a) 5 (b) 41/4

7. n multiplications and 2n additions

0.1 Computer Problems

1. Correct answer from Q is 51.01275208275, error = 4.76 × 10−12

0.2 Exercises

1. (a) 1000000 (b) 10001 (c) 1001111 (d) 11100011

3. (a) 1010.1 (b) 0.01 (c) 0.101 (d) 1100.1100 (e) 110111.0110 (f) 0.00011

5. 11.0010010000111

7. (a) 85 (b) 93/8 (c) 70/3 (d) 20/3 (e) 20/7 (f ) 48/7 (g) 283/120 (h) 8

0.3 Exercises

1. (a) 1.0000 . . .0000 × 2−2 (b) 1.0101 . . .0101 × 2−2

(c) 1.0101 . . .0101 × 2−1 (d) 1.11001100 . . .11001101 × 2−1

3. 1 ≤ k ≤ 50

5. (a) 2ϵmach (b) 4ϵmach

7. (a) 4020000000000000 (b) 4035000000000000 (c) 3fc0000000000000 (d) 3fd5555555555555
(e) 3fe5555555555555 (f ) 3fb999999999999a (g) bfb999999999999a (h) bfc999999999999a

9. (a) Note that (7/3 − 4/3) − 1 = ϵmach in double precision. (b) No, (4/3 − 1/3) − 1 = 0.

11. No, associative law fails.

13. (a) 2, represented by 010 . . .0 (b) 2−511, represented by 0010 . . .0 (c) 0, represented by 10 . . .0

15. (a) 2−50 (b) 0 (c) 2−50

0.4 Exercises

1. (a) Loss of significance near x = 2πn,n integer. Rewrite as −1/(1 + secx) (b) Loss of significance near x = 0.
Rewrite as 3 − 3x + x2 (c) Loss of significance near x = 0. Rewrite as 2x/(x2 − 1)

3. x1 = −(b +
√

b2 + 4 × 10−12)/2, x2 = (2 × 10−12)/(b +
√

b2 + 4 × 10−12)
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0.4 Computer Problems

1. (a)
x original revised

0.10000000000000 −0.49874791371143 −0.49874791371143
0.01000000000000 −0.49998749979096 −0.49998749979166
0.00100000000000 −0.49999987501429 −0.49999987499998
0.00010000000000 −0.49999999362793 −0.49999999875000
0.00001000000000 −0.50000004133685 −0.49999999998750
0.00000100000000 −0.50004445029084 −0.49999999999987
0.00000010000000 −0.51070259132757 −0.50000000000000
0.00000001000000 0 −0.50000000000000
0.00000000100000 0 −0.50000000000000
0.00000000010000 0 −0.50000000000000
0.00000000001000 0 −0.50000000000000
0.00000000000100 0 −0.50000000000000
0.00000000000010 0 −0.50000000000000
0.00000000000001 0 −0.50000000000000

(b)
x original revised

0.10000000000000 2.71000000000000 2.71000000000000
0.01000000000000 2.97010000000001 2.97010000000000
0.00100000000000 2.99700100000000 2.99700100000000
0.00010000000000 2.99970000999905 2.99970001000000
0.00001000000000 2.99997000008379 2.99997000010000
0.00000100000000 2.99999700015263 2.99999700000100
0.00000010000000 2.99999969866072 2.99999970000001
0.00000001000000 2.99999998176759 2.99999997000000
0.00000000100000 2.99999991515421 2.99999999700000
0.00000000010000 3.00000024822111 2.99999999970000

x original revised
0.00000000001000 3.00000024822111 2.99999999997000
0.00000000000100 2.99993363483964 2.99999999999700
0.00000000000010 3.00093283556180 2.99999999999970
0.00000000000001 2.99760216648792 2.99999999999997

3. 6.127 × 10−13

5. 2.23322 × 10−10

0.5 Exercises

1. (a) f (0)f (1) = −2 < 0 implies f (c) = 0 for some c in (0,1) by the Intermediate Value Theorem.
(b) f (0)f (1) = −9 < 0 implies f (c) = 0 for some c in (0,1) (c) f (0)f (1/2) = −1/2 < 0 implies f (c) = 0 for
some c in (0,1/2).

3. (a) c = 2/3 (b) c = 1/
√

2 (c) c = 1/(e − 1)

5. (a) P (x) = 1 + x2 + 1/2x4 (b) P (x) = 1 − 2x2 + 2/3x4 (c) P (x) = x − x2/2 + x3/3 − x4/4 + x5/5
(d) P (x) = x2 − x4/3

7. (a) P (x) = (x − 1) − (x − 1)2/2 + (x − 1)3/3 − (x − 1)4/4 (b) P (0.9) = −0.1053583, P (1.1) = 0.0953083
(c) error bound = 0.000003387 for x = 0.9, 0.000002 for x = 1.1 (d) Actual error ≈ 0.00000218 at x = 0.9,
0.00000185 at x = 1.1

9.
√

1 + x = 1 + x/2 ± x2/8. For x = 1.02,
√

1.02 ≈ 1.01 ± 0.00005. Actual value is
√

1.02 = 1.0099505, error
= 0.0000495
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CHAPTER 1

1.1 Exercises

1. (a) [2,3] (b) [1,2] (c) [6,7]
3. (a) 2.125 (b) 1.125 (c) 6.875

5. (a) [2,3] (b) 33 steps

1.1 Computer Problems

1. (a) 2.080084 (b) 1.169726 (c) 6.776092

3. (a) Intervals [−2,−1], [−1,0], [1,2], roots −1.641784,−0.168254,1.810038 (b) Intervals
[−2,−1], [−0.5,0.5], [0.5,1.5], roots −1.023482,0.163822,0.788941 (c) Intervals
[−1.7,−0.7], [−0.7,0.3], [0.3,1.3], roots −0.818094,0,0.506308

5. (a) [1,2], 27 steps, 1.25992105 (b) [1,2], 27 steps, 1.44224957 (c) [1,2], 27 steps, 1.70997595

7. first root −17.188498, determinant correct to 2 places; second root 9.708299, determinant correct to 3 places.

9. H = 635.5mm

1.2 Exercises

1. (a) −
√

3,
√

3 (b) 1,2 (c) (5 ±
√

17)/2

3. Check by substitution.

5. B, D

7. (a) loc. convergent (b) divergent (c) divergent

9. (a) 0 is locally convergent, 1 is divergent (b) 1/2 is locally convergent, 3/4 is divergent

11. (a) For example, x = x3 + ex,x = (x − ex)1/3, and x = ln(x − x3); (b) For example, x = 9x2 + 3/x3,
x = 1/9 − 1/(3x4), and x = (x5 − 9x6)/3

13. (a) 0.3,−1.3 (b) 0.3 (c) slower

15. All converge to
√

5. From faster to slowest: (B), (C), (A).

17. g(x) = √
(1 − x)/2 is locally convergent to 1/2, and g(x) = −√

(1 − x)/2 is locally convergent to −1.

19. g(x) = (x + A/x2)/2 converges to A1/3.

21. (a) Substitute and check (b) |g′(r)| > 1 for all three fixed points r

23. g′(r2) > 1

27. (a) x = x − x3 implies x = 0 (b) If 0 < xi < 1, then xi+1 = xi − x3
i = xi(1 − x2

i ) < xi , and 0 < xi+1 < xi < 1.
(c) The bounded monotonic sequence xi converges to a limit L, which must be a fixed point. Therefore L = 0.

29. (a) c < −2 (b) c = −4

31. The open interval (−5/4,5/4) of initial guesses converge to the fixed point 1/4; the two initial guesses −5/4,5/4 lead
to −5/4.

33. (a) Choose a = 0 and |b| < 1, c arbitrary. (b) Choose a = 0 and |b| > 1, c arbitrary.

1.2 Computer Problems

1. (a) 1.76929235 (b) 1.67282170 (c) 1.12998050

3. (a) 1.73205081 (b) 2.23606798

5. fixed point is r = 0.641714 and S = |g′(r)| ≈ 0.959

7. (a) 0 < x0 < 1 (b) 1 < x0 < 2 (c) x0 > 2.2, for example
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1.3 Exercises

1. (a) FE = 0.01, BE = 0.04 (b) FE = 0.01 BE = 0.0016 (c) FE = 0.01, BE = 0.000064 (d) FE = 0.01,
BE = 0.342

3. (a) 2 (b) FE = 0.0001, BE = 5 × 10−9

5. BE = |a| FE

7. (b) (−1)j (j − 1)!(20 − j)!

1.3 Computer Problems

1. (a) m = 3 (b) xa = −2.0735 × 10−8,FE = 2.0735 × 10−8, BE = 0

3. (a) xa = FE = 0.000169, BE = 0 (b) Terminates after 13 steps, xa = −0.00006103

5. Predicted root = r + $r = 4 + 4610−6/6 = 4.0006826, actual root = 4.0006825

1.4 Exercises

1. (a) x1 = 2,x2 = 18/13 (b) x1 = 1,x2 = 1 (c) x1 = −1,x2 = −2/3

3. (a) r = −1,ei+1 = 5
2 e2

i ; r = 0,ei+1 = 2e2
i ; r = 1,ei+1 = 2

3 ei (b) r = −1/2,ei+1 = 2e2
i ; r = 1,ei+1 = 2/3ei

5. r = 0, Newton’s Method; r = 1/2, Bisection Method

7. No, 2/3

9. xi+1 = (xi + A/xi)/2

11. xi+1 = (n − 1)xi/n + A/(nxn−1
i )

13. (a) 0.75 × 10−12 (b) 0.5 × 10−18

1.4 Computer Problems

1. (a) 1.76929235 (b) 1.67282170 (c) 1.12998050

3. (a) r = −2/3,m = 3 (b) r = 1/6,m = 2

5. r = 3.2362 m

7. −1.197624, quadratic conv.; 0, linear conv., m = 4; 1.530134, quadratic conv.

9. 0.857143, quadratic conv., M = 2.414; 2, linear conv., m = 3,S = 2/3

11. initial guess = 1.75, solution V = 1.70 L

13. (a) 3/4 (c) f (x) fails to be differentiable at x = 3/4.

1.5 Exercises

1. (a) x2 = 8/5,x3 = 1.742268 (b) x2 = 1.578707,x3 = 1.66016 (c) x2 = 1.092907,x3 = 1.119357

3. (a) x3 = −1/5,x4 = −0.11996018 (b) x3 = 1.757713,x4 = 1.662531 (c) x3 = 1.139481,x4 = 1.129272

7. From fastest to slowest, (B), (D), (A), and (C), which does not converge (b) Newton’s Method will converge faster.

1.5 Computer Problems

1. (a) 1.76929235 (b) 1.67282170 (c) 1.12998050

3. (a) 1.76929235 (b) 1.67282170 (c) 1.12998050

5. fzero converges to the non-root zero, same as Bisection Method
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CHAPTER 2

2.1 Exercises

1. (a) [4,2] (b) [5,−3] (c) [1,3]
3. (a) [1/3,1,1] (b) [2,−1/2,−1]
5. Approximately 27 times longer.

7. Approximately 61 seconds.

2.1 Computer Problems

1. (a) [1,1,2] (b) [1,1,1] (c) [−1,3,2]

2.2 Exercises

1. (a)

[
1 0
3 1

][
1 2
0 −2

]

(b)

[
1 0
2 1

][
1 3
0 −4

]

(c)

[
1 0

−5/3 1

][
3 −4
0 −14/3

]

3. (a) [−2,1] (b) [−1,1]
5. [1,−1,1,−1]
7. 5 min., 33 sec.

9. 300

2.3 Exercises

1. (a) 7 (b) 8

3. (a) FE = 2, BE = 0.0002, EMF = 20001 (b) FE = 1, BE = 0.0001, EMF = 20001 (c) FE = 1,
BE = 2.0001, EMF = 1 (d) FE = 3, BE = 0.0003, EMF = 20001 (e) FE = 3.0001, BE = 0.0002, EMF = 30002.5

5. (a) RFE = 3, RBE = 3/7, EMF = 7 (b) RFE = 3, RBE = 1/7, EMF = 21 (c) RFE = 1, RBE = 1/7,
EMF = 7 (d) RFE = 2, RBE = 6/7, EMF = 7/3 (e) 21

7. 137/60

13. (a)

[
1
1

]

(b)

⎡

⎢⎣
1

−1
1

⎤

⎥⎦

15. LU =

⎡

⎢⎣
1 0 0

0.1 1 0
0 −5000 1

⎤

⎥⎦

⎡

⎢⎣
10 20 1
0 −0.01 5.9
0 0 29501

⎤

⎥⎦, largest multiplier = 5000

2.3 Computer Problems

Answers given to Computer Problems in this section are illustrative only; results will vary slightly with implementation
details.

1.
n FE EMF cond(A)

(a) 6 5.35 × 10−10 3.69 × 106 7.03 × 107

(b) 10 1.10 × 10−3 9.05 × 1012 1.31 × 1014
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3.

n FE EMF cond(A)

100 4.62 × 10−12 3590 9900
200 4.21 × 10−11 23010 39800
300 7.37 × 10−11 50447 89700
400 1.20 × 10−10 55019 159600
500 2.56 × 10−10 91495 249500

5. n ≥ 13

2.4 Exercises

1. (a)

[
0 1
1 0

][
1 3
2 3

]

=
[

1 0
1
2 1

][
2 3
0 3

2

]

(b)

[
1 0
0 1

][
2 4
1 3

]

=
[

1 0
1
2 1

][
2 4
0 1

]

(c)

[
0 1
1 0

][
1 5
5 12

]

=
[

1 0
1
5 1

][
5 12
0 13

5

]

(d)

[
0 1
1 0

][
0 1
1 0

]

=
[

1 0
0 1

][
1 0
0 1

]

3. (a) [−2,1] (b) [−1,1,1]

5.

⎡

⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0

⎤

⎥⎥⎥⎥⎥⎦

7.

⎡

⎢⎢⎢⎣

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

⎤

⎥⎥⎥⎦

9. (a)

⎡

⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

1 0 0 1
−1 1 0 1
−1 −1 1 1
−1 −1 −1 1

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

1 0 0 0
−1 1 0 0
−1 −1 1 0
−1 −1 −1 1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

1 0 0 1
0 1 0 2
0 0 1 4
0 0 0 8

⎤

⎥⎥⎥⎦

(b) P = I ,L is lower triangular with all non-diagonal entries −1, the nonzero entries of U are uii = 1 for 1 ≤ i ≤ n − 1,
and uin = 2i−1 for 1 ≤ i ≤ n.

2.5 Exercises

1. (a) Jacobi [u2,v2] = [7/3,17/6] Gauss-Seidel [u2,v2] = [47/18,119/36] (b) Jacobi [u2,v2,w2] = [1/2,1,1/2]
Gauss-Seidel [u2,v2,w2] = [1/2,3/2,3/4] (c) Jacobi [u2,v2,w2] = [10/9,−2/9,2/3] Gauss-Seidel
[u2,v2,w2] = [43/27,14/81,262/243]

3. (a) [u2,v2] = [59/16,213/64] (b) [u2,v2,w2] = [9/8,39/16,81/64] (c) [u2,v2,w2] = [1,1/2,5/4]

2.5 Computer Problems

1. n = 100, 36 steps, BE = 4.58 × 10−7; n = 100000, 48 steps, BE = 2.70 × 10−6

5. (a) 21 steps, BE = 4.78 × 10−7 (b) 16 steps, BE = 1.55 × 10−6

2.6 Exercises

1. (a) xT Ax = x2
1 + 3x2

2 > 0 for x ̸= 0
(b) xT Ax = (x1 + 3x2)2 + x2

2 > 0 for x ̸= 0
(c) x2

1 + 2x2
2 + 3x2

3 > 0 for x ̸= 0
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3. (a) R =
[

1 0
0

√
3

]

(b) R =
[

1 3
0 1

]

(c) R =

⎡

⎢⎣
1 0 0
0

√
2 0

0 0
√

3

⎤

⎥⎦

5. (a) R =
[

1 2
0 2

]

(b) R =
[

2 −1
0 1/2

]

(c) R =
[

5 1
0 5

]

(d) R =
[

1 −2
0 1

]

7. (a) [2,−1] (b) [3,1]
9. xT Ax = (x1 + 2x2)2 + (d − 4)x2

2 . If d > 4, the expressions can be 0 only if 0 = x2 = x1 + 2x2, which implies
x1 = x2 = 0.

11. d > 1

13. (a) [3,−1] (b) [−1,1]
15. α1 = 1/A,x1 = b/A,r1 = b − Ab/A = 0

2.6 Computer Problems

1. (a) [2,2] (b) [3,−1]
3. (a) [−4,60,−180,140] (b) [−8,504,−7560,46200,−138600,216216,−168168,51480]

2.7 Exercises

1. (a)

[
3u2 0
v3 3uv2

]

(b)

[
v cosuv ucosuv

veuv ueuv

]

(c)

[
2u 2v

2(u − 1) 2v

]

(d)

⎡

⎢⎣
2u 1 −2w

vw cosuvw uw cosuvw uv cosuvw

vw4 uw4 4uvw3

⎤

⎥⎦

3. (a) (1/2,±
√

3/2) (b) (±2/
√

5,±2/
√

5) (c) (4(1 +
√

6)/5,±
√

3 + 8
√

6/5)

5. (a) x1 = [0,1],x2 = [0,0] (b) x1 = [0,0],x2 = [0.8,0.8] (c) x1 = [8,4],x2 = [9.0892,−12.6103]

2.7 Computer Problems

1. (a) (1/2,±
√

3/2) (b) (±2/
√

5,±2/
√

5) (c) (4(1 +
√

6)/5,±
√

3 + 8
√

6/5)

3. ±[0.50799200040795,0.86136178666199]
5. (a) [1,1,1], [1/3,1/3,1/3] (b) [1,2,3], [17/9,22/9,19/9]
7. (a) 11 steps give the root (1/2,

√
3/2) to 15 places (b) 13 steps give the root (2/

√
5,2/

√
5) to 15 places

(c) 14 steps give the root (4(1 +
√

6)/5,
√

3 + 8
√

6/5) to 15 places

9. Same answers as Computer Problem 5

11. Same answers as Computer Problem 5

CHAPTER 3

3.1 Exercises

1. (a) P (x) = (x − 2)(x − 3)

(0 − 2)(0 − 3)
+ 3

x(x − 3)

(2 − 0)(2 − 3)

(b) P (x) = (x + 1)(x − 3)(x − 5)

(2 + 1)(2 − 3)(2 − 5)
+ (x + 1)(x − 2)(x − 5)

(3 + 1)(3 − 2)(3 − 5)
+ 2

(x + 1)(x − 2)(x − 3)

(5 + 1)(5 − 2)(5 − 3)

(c) P (x) = −2
(x − 2)(x − 4)

(0 − 2)(0 − 4)
+ x(x − 4)

(2 − 0)(2 − 4)
+ 4

x(x − 2)

4(4 − 2)
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3. (a) One, P (x) = 3 + (x + 1)(x − 2) (b) None (c) Infinitely many, for example
P (x) = 3 + (x + 1)(x − 2) + C(x + 1)(x − 1)(x − 2)(x − 3)3, where C is a nonzero constant

5. (a) P (x) = 4 − 2x (b) P (x) = 4 − 2x + A(x + 2)x(x − 1)(x − 3) for A ̸= 0

7. 4

9. (a) P (x) = 10(x − 1) · · ·(x − 6)/6! (b) Same as (a)

11. None

13. 4/2

15. P (x) = −x − (x − 1)(x − 2) · · ·(x − 25)/24!
17. (a) 316 (b) 465

3.1 Computer Problems

1. (a) 4494564854 (b) 4454831984 (c) 4472888288

3.2 Exercises

1. (a) P2(x) = 2
π

x − 4

π2 x(x − π/2) (b) P2(π/4) = 3/4 (c) π3/128 ≈ 0.242 (d) |
√

2/2 − 3/4| ≈ 0.043

3. (a) 7.06 × 10−11 (b) at least 9 decimal places, since 7.06 × 10−11 < 0.5 × 10−9

5. Expect errors at x = 0.35 to be smaller; approximately 5/21 the size of the error at x = 0.55.

3.2 Computer Problems

1. (a) P4(x) = 1.433329 + (x − 0.6)(1.98987 + (x − 0.7)(3.2589 + (x − 0.8)(3.680667 +
(x − 0.9)(4.000417)))) (b) P4(0.82) = 1.95891,P4(0.98) = 2.612848 (c) Upper bound for error at x = 0.82 is
0.0000537, actual error is 0.0000234. Upper bound for error at x = 0.98 is 0.000217, actual error is 0.000107.

3. −1.952 × 1012 bbl/day. The estimate is nonsensical, due to the Runge phenomenon.

3.3 Exercises

1. (a) cosπ/12,cosπ/4,cos5π/12,cos7π/12,cos3π/4,cos11π/12
(b) 2cosπ/8,2cos3π/8,2cos5π/8,2cos7π/8
(c) 8 + 4cosπ/12,8 + 4cosπ/4,8 + 4cos5π/12,8 + 4cos7π/12,8 + 4cos3π/4,8 + 4cos11π/12
(d) 1/5 + 1/2cosπ/10,1/5 + 1/2cos3π/10,1/5,1/5 + 1/2cos7π/10,1/5 + 1/2cos9π/10

3. 0.000118, 3 correct digits

5. 0.00521

7. d = 14

9. (a) −1 (b) 1 (c) 0 (d) 1 (e) 1 (f ) −1/2

3.4 Exercises

1. (a) not a cubic spline (b) cubic spline

3. (a) c = 9/4, natural (b) c = 4, parabolically-terminated and not-a-knot (c) c = 5/2, not-a-knot

5. One, S1(x) = S2(x) = x

7. (a)

{ 1
2 x + 1

2 x3 on [0,1]
1 + 2(x − 1) + 3

2 (x − 1)2 − 1
2 (x − 1)3 on [1,2]

(b)

{
1 − (x + 1) + 1

4 (x + 1)3 on [−1,1]
1 + 2(x − 1) + 3

2 (x − 1)2 − 1
2 (x − 1)3 on [1,2]
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9. −3,−12

11. (a) One, S1(x) = S2(x) = 2 − 4x + 2x2 (b) Infinitely many,
S1(x) = S2(x) = 2 − 4x + 2x2 + cx(x − 1)(x − 2) for arbitrary c.

13. (a) b1 = 1,c3 = −8/9 (b) No. (c) The clamps are S′(0) = 1 and S′(3) = −1/3.

15. Yes. The leftmost and rightmost sections of the spline must be linear.

17. S2(x) = 1 + dx3 for arbitrary d

19. There are infinitely many parabolas through two arbitrary points with x1 ̸= x2; each is a parabolically-terminated cubic
spline.

21. (a) infinitely many (b) S1(x) = S2(x) = x2 + dx(x − 1)(x − 2) where d ̸= 0.

3.4 Computer Problems

1. (a) S(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3 + 8
3 x − 2

3 x3 on [0,1]
5 + 2

3 (x − 1) − 2(x − 1)2 + 1
3 (x − 1)3 on [1,2]

4 − 7
3 (x − 2) − (x − 2)2 + 1

3 (x − 2)3 on [2,3]

(b) S(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

3 + 2.5629(x + 1) − 0.5629(x + 1)3 on [−1,0]
5 + 0.8742x − 1.6887x2 + 0.3176x3 on [0,3]
1 − 0.6824(x − 3) + 1.1698(x − 3)2 − 0.4874(x − 3)3 on [3,4]
1 + 0.1950(x − 4) − 0.2925(x − 4)2 + 0.0975(x − 4)3 on [4,5]

3. S(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 + 149
56 x − 37

56 x3 on [0,1]
3 + 19

28 (x − 1) − 111
56 (x − 1)2 + 73

56 (x − 1)3 on [1,2]
3 + 5

8 (x − 2) + 27
14 (x − 2)2 − 87

56 (x − 2)3 on [2,3]
4 − 5

28 (x − 3) − 153
56 (x − 3)2 + 51

56 (x − 3)3 on [4,5]

1. S(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 + 1.8006x + 3
2 x2 − 1.3006x3 on [0,1]

3 + 0.8988(x − 1) − 2.4018(x − 1)2 + 1.5030(x − 1)3 on [1,2]
3 + 0.6042(x − 2) + 2.1071(x − 2)2 − 1.7113(x − 2)3 on [2,3]
4 − 0.3155(x − 3) − 3.0268(x − 3)2 + 1.3423(x − 3)3 on [4,5]

3. S(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 − 2x + 57
7 x2 − 29

7 x3 on [0,1]
3 + 13

7 (x − 1) − 30
7 (x − 1)2 + 17

7 (x − 1)3 on [1,2]
3 + 4

7 (x − 2) + 3(x − 2)2 − 18
7 (x − 2)3 on [2,3]

4 − 8
7 (x − 3) − 33

7 (x − 3)2 + 27
7 (x − 3)3 on [4,5]

5. S(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x − 0.0006x2 − 0.1639x3 on [0, π
8 ]

sin π
8 + 0.9237(x − π

8 ) − 0.1937(x − π
8 )2 − 0.1396(x − π

8 )3 on [π
8 , π

4 ]
√

2
2 + 0.7070(x − π

4 ) − 0.3582(x − π
4 )2 − 0.0931(x − π

4 )3 on [π
4 , 3π

8 ]
sin 3π

8 + 0.3826(x − 3π
8 ) − 0.4679(x − 3π

8 )2 − 0.0327(x − 3π
8 )3 on [ 3π

8 , π
2 ]

7. n = 48

9. (a) 322.6 (b) 318.8 (c) not-a-knot spline is identical to solution of Exercise 3.1.13
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3.5 Exercises

1. (a)

{
x(t) = 6t2 − 5t3

y(t) = 6t − 12t2 + 6t3 (b)

{
x(t) = 1 − 3t − 3t2 + 3t3

y(t) = 1 − 3t + 3t2 (c)

{
x(t) = 1 + 3t2 − 2t3

y(t) = 2 + 3t − 3t2

3.

{
x(t) = 1 + 6t2 − 4t3

y(t) = 2 + 6t2 − 4t3

{
x(t) = 3 + 6t2 − 4t3

y(t) = 4 − 9t2 + 6t3

{
x(t) = 5 − 12t2 + 8t3

y(t) = 1 + 3t2 − 2t3

5. The number 3.

7.

{
x(t) = −1 + 6t2 − 4t3

y(t) = 4t − 4t2

9. (a)

⎧
⎪⎨

⎪⎩

x(t) = 1 + 3t − 9t2 + 5t3

y(t) = 6t2 − 5t3

z(t) = 3t2 − 3t3
(b)

⎧
⎪⎨

⎪⎩

x(t) = 1 − 6t2 + 6t3

y(t) = 1 + 3t − 9t2 + 6t3

z(t) = 2 + 3t − 12t2 + 8t3

(c)

⎧
⎪⎨

⎪⎩

x(t) = 2 + 3t − 12t2 + 10t3

y(t) = 1
z(t) = 1 + 6t2 − 4t3

CHAPTER 4

4.1 Exercises

1. (a) x = [−1/7,10/7], ||e||2 =
√

14/7 (b) x = [−1/2,2], ||e||2 =
√

6/2
(c) x = [16/19,16/19], ||e||2 = 2.013

3. x = [4,x2] for arbitrary x2

7. (a) y = 1/5 − 6/5t , RMSE = √
2/5 ≈ 0.6325 (b) y = 6/5 + 1/2t , RMSE =

√
26/10 ≈ 0.5099

9. (a) y = 0.3481 + 1.9475t − 0.1657t2, RMSE = 0.5519 (b) y = 2.9615 − 1.0128t + 0.1667t2,
RMSE = 0.4160 (c) y = 4.8 − 1.2t , RMSE = 0.4472

11. h(t) = 0.475 + 141.525t − 4.905t2, max height = 1021.3m, landing time = 28.86 sec.

4.1 Computer Problems

1. (a) x = [2.5246,0.6616,2.0934], ||e||2 = 2.4135 (b) x = [1.2739,0.6885,1.2124,1.7497], ||e||2 = 0.8256

3. (a) 2,996,236,899 + 76,542,140(t − 1960), RMSE = 36,751,088
(b) 3,028,751,748 + 67,871,514(t − 1960) + 216,766(t − 1960)2, RMSE = 17,129,714;
1980 estimates: (a) 4,527,079,702 (b) 4,472,888,288; Parabola gives better estimate.

5. (a) c1 = 9510.1,c2 = −8314.36, RMSE = 518.3 (b) selling price = 68.7 cents maximizes profit.

7. (a) y = 0.0769, RMSE = 0.2665 (b) y = 0.1748 − 0.02797t2, RMSE = 0.2519

9. (a) 4 correct decimal places, P5(t) = 1.000009 + 0.999983t + 1.000012t2 + 0.999996t3 + 1.000000t4 + 1.000000t5;
cond(AT A) = 2.72 × 1013 (b) 1 correct decimal place, P6(t) = 0.99 + 1.02t + 0.98t2 + 1.01t3 + t4 + t5 + t6;
cond(AT A) = 2.55 × 1016 (c) P8(t) has no correct places, cond(AT A) = 1.41 × 1019

4.2 Exercises

1. (a) y = 3/2 − 1/2cos2π t + 3/2sin 2π t, ||e||2 = 0, RMSE = 0 (b) y = 7/4 − 1/2cos2π t + sin 2π t, ||e||2 = 1/2,
RMSE = 1/4 (c) y = 9/4 + 3/4cos2π t, ||e||2 = 1/

√
2, RMSE = 1/(2

√
2)

3. (a) y = 1.932e0.3615t , ||e||2 = 1.2825, (b) y = 2t−1/4, ||e||2 = 0.9982

5. (a) y = 5.5618t−1.3778, RMSE = 0.2707 (b) y = 2.8256t0.7614, RMSE = 0.7099
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4.2 Computer Problems

1. y = 5.5837 + 0.7541cos2π t + 0.1220sin 2π t + 0.1935cos4π t M bbls/day, RMSE = 0.1836

3. P (t) = 3,079,440,361e0.0174(t−1960), 1980 estimate is P (20) = 4,361,485,000, estimation error ≈ 91 million

5. (a) tmax = −1/c2 (b) half-life ≈ 7.81 hrs.

4.3 Exercises

1. (a)

[
0.8 −0.6
0.6 0.8

][
5 0.6
0 0.8

]

(b)
1√
2

[
1 1
1 −1

]⎡

⎢⎣

√
2 3

√
2

2

0
√

2
2

⎤

⎥⎦

(c)

⎡

⎢⎢⎢⎢⎣

2
3

√
2

6

√
2

2

1
3 − 2

√
2

3 0

2
3

√
2

6 −
√

2
2

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎣
3 1
0

√
2

0 0

⎤

⎥⎦ (d)

⎡

⎢⎣

4
5 0 − 3

5
0 1 0
3
5 0 4

5

⎤

⎥⎦

⎡

⎢⎣
5 10 5
0 2 −2
0 0 5

⎤

⎥⎦

3. (a) – (d) same as Exercise 1

5. (a) – (d) same as Exercise 1

7. (a) x = [4,−1] (b) x = [−11/18,4/9]

4.3 Computer Problems

5. (a) x = [1.6154,1.6615], ||e||2 = 0.3038 (b) x = [2.0588,2.3725,1.5784], ||e||2 = 0.2214

7. (a) x = [1, . . . ,1] to 10 correct decimal places (b) x = [1, . . . ,1] to 6 correct decimal places

4.4 Exercises

1. (a) x1 = [0.5834,−0.0050,−0.5812],x2 = [1.0753,−0.1039,−0.9417],x3 = [1,0,−1]
(b) x1 = [0.3896,0.1674,0.3045],x2 = [0.7650,0.2107,0.2502],x3 = [1/2,1/2,0]
(c) x1 = [0.0332,0.8505,0.9668],x2 = [0.0672,0.8479,0.9696],x3 = [0,0,1]

4.5 Exercises

1. (a) (x1,y1) = (2 −
√

2,0) (b) (x1,y1) = (1 −
√

2/2,0)

5. (a)

⎡

⎢⎢⎢⎣

t
c2
1 c1t

c2
1 ln t1

t
c2
2 c1t

c2
2 ln t2

t
c2
3 c1t

c2
3 ln t3

⎤

⎥⎥⎥⎦
(b)

⎡

⎢⎢⎢⎣

t1ec2t1 c1t2
1 ec2t1

t2ec2t2 c1t2
2 ec2t2

t3ec2t3 c1t2
3 ec2t3

⎤

⎥⎥⎥⎦

4.5 Computer Problems

1. (a) (x,y) = (0.410623,0.055501) (b) (x,y) = (0.275549,0)

3. (a) (x,y) = (0,−0.586187),K = 0.329572 (b) (x,y) = (0.556853,0),K = 1.288037

5. c1 = 15.9,c2 = 2.53, RMSE = 0.755

7. Same as Computer Problem 5.

9. (a) c1 = 11.993468,c2 = 0.279608,c3 = 1.802342, RMSE = 0.441305
(b) c1 = 12.702778,c2 = 0.159591,c3 = 5.682764, RMSE = 0.802834

11. (a) c1 = 8.670956,c2 = 0.274184,c3 = 0.981070,c4 = 1.232813, RMSE = 0.102660
(b) c1 = 8.683823,c2 = 0.131945,c3 = 0.620292,c4 = −1.921257, RMSE = 0.199789
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CHAPTER 5

5.1 Exercises

1. (a) 0.9531, error = 0.0469 (b) 0.9950, error = 0.0050 (c) 0.9995, error = 0.0005

3. (a) 0.455902, error = 0.044098; error must satisfy 0.0433 ≤ error ≤ 0.0456 (b) 0.495662, error = 0.004338; error
must satisfy 0.004330 ≤ error ≤ 0.004355 (c) 0.499567, error = 0.000433; error must satisfy 0.0004330 ≤ error
≤ 0.0004333

5. (a) 2.02020202, error = 0.02020202 (b) 2.00020002, error = 0.00020002 (c) 2.00000200, error = 0.00000200

7. f ′(x) = [(f (x) − f (x − h)]/h + hf ′′(c)/2

9. f ′(x) = [3f (x) − 4f (x − h) + f (x − 2h)]/(2h) + O(h2)

11. f ′(x) ≈ [4f (x + h/2) − 3f (x) − f (x + h)]/h

13. f ′(x) = [f (x + 3h) + 8f (x) − 9f (x − h)]/(12h) − h2f ′′′(c)/2, where x − h < c < x + 3h

15. f ′′(x) = [f (x + 3h) − 4f (x) + 3f (x − h)]/(6h2) − 2hf ′′′(c)/3, where x − h < c < x + 3h

17. f ′(x) = [4f (x + 3h) + 5f (x) − 9f (x − 2h)]/(30h) − h2f ′′′(c), where x − 2h < c < x + 3h

5.1 Computer Problems

1. minimum error at h = 10−5 ≈ ϵ
1/3
mach

3. minimum error at h = 10−8 ≈ ϵ
1/2
mach

5. (a) minimum error at h = 10−4 ≈ ϵ
1/4
mach (b) same as (a)

5.2 Exercises

1. (a) m = 1 : 0.500000, err = 0.166667; m = 2 : 0.375000, err = 0.041667; m = 4 : 0.343750, err = 0.010417
(b) m = 1 : 0.785398, err = 0.214602; m = 2 : 0.948059, err = 0.051941; m = 4 : 0.987116, err = 0.012884
(c) m = 1 : 1.859141, err = 0.140859; m = 2 : 1.753931, err = 0.035649; m = 4 : 1.727222, err = 0.008940

3. (a) m = 1 : 1/3, err = 0; m = 2 : 1/3, err = 0; m = 4 : 1/3, err = 0 (b) m = 1 : 1.002280, err = 0.002280;
m = 2 : 1.000135, err = 0.000135; m = 4 : 1.000008, err = 0.000008 (c) m = 1 : 1.718861, err = 0.000579;
m = 2 : 1.718319, err = 0.000037; m = 4 : 1.718284, err = 0.000002

5. (a) m = 1 : 1.414214, err = 0.585786; m = 2 : 1.577350, err = 0.422650; m = 4 : 1.698844; err = 0.301156
(b) m = 1 : 1.259921, err = 0.240079; m = 2 : 1.344022, err = 0.155978; m = 4 : 1.400461, err = 0.099539
(c) m = 1 : 2.000000, err = 0.828427; m = 2 : 2.230710, err = 0.597717; m = 4 : 2.402528, err = 0.425899

7. (a) 1.631729, err = 0.368271
(b) 1.372055, err = 0.127945
(c) 2.307614, err = 0.520814

11. (a) 1 (b) 1 (c) 3

13.
4h

3

m∑

i=1

[2f (ui) + 2f (vi) − f (wi)] + 7(b − a)h4

90
f (iv)(c)

15. 5

5.2 Computer Problems

1. (a) exact = 2; m = 16 approx = 1.998638, err = 1.36 × 10−3; m = 32 approx = 1.999660, err = 3.40 × 10−4

(b) exact = 1/2(1 − ln 2); m = 16 approx = 0.153752, err = 3.26 × 10−4; m = 32 approx = 0.153508,
err = 8.14 × 10−5 (c) exact = 1; m = 16 approx = 1.001444, err = 1.44 × 10−3; m = 32 approx = 1.000361,
err = 3.61 × 10−4 (d) exact = 9ln 3 − 26/9; m = 16 approx = 7.009809, err = 1.12 × 10−2; m = 32
approx = 7.001419, err = 2.80 × 10−3 (e) exact = π2 − 4; m = 16 approx = 5.837900, err = 3.17 × 10−2; m = 32
approx = 5.861678, err = 7.93 × 10−3 (f ) exact = 2

√
5 −

√
15/2; m = 16 approx = 2.535672, err = 2.80 × 10−5;
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m = 32 approx = 2.535651, err = 7.00 × 10−6 (g) exact = ln(
√

3 + 2); m = 16 approx = 1.316746, err
= 2.11 × 10−4; m = 32 approx = 1.316905, err = 5.29 × 10−5 (h) exact = ln(

√
2 + 1)/2; m = 16 approx

= 0.440361, err = 3.26 × 10−4; m = 32 approx = 0.440605, err = 8.14 × 10−5

3. (a) m = 16 approx = 1.464420; m = 32 approx = 1.463094 (b) m = 16 approx = 0.891197; m = 32
approx = 0.893925 (c) m = 16 approx = 3.977463; m = 32 approx = 3.977463 (d) m = 16 approx = 0.264269;
m = 32 approx = 0.264025 (e) m = 16 approx = 0.160686; m = 32 approx = 0.160936 (f ) m = 16 approx
= −0.278013; m = 32 approx = −0.356790 (g) m = 16 approx = 0.785276; m = 32 approx = 0.783951 (h)
m = 16 approx = 0.369964; m = 32 approx = 0.371168

5. (a) m = 10 : 1.808922, err = 0.191078; m = 100 : 1.939512, err = 0.060488; m = 1000 : 1.980871, err = 0.019129
(b) m = 10 : 1.445632, err = 0.054368; m = 100 : 1.488258, err = 0.011742; m = 1000 : 1.497470, err = 0.002530
(c) m = 10 : 2.558203, err = 0.270225; m = 100 : 2.742884, err = 0.085543; m = 1000 : 2.801375, err = 0.027052

7. (a) m = 16 approx = 1.8315299; m = 32 approx = 1.83183081 (b) m = 16 approx = 2.99986658; m = 32 approx
= 3.00116293 (c) m = 16 approx = 0.91601205; m = 32 approx = 0.91597721

5.3 Exercises

1. (a) 1/3 (b) 0.99999157 (c) 1.71828269

5.3 Computer Problems

1. (a) correct = 2, approx = 2.00000010, err = 1.0 × 10−7 (b) correct 1/2(1 − ln 2), approx = 0.15342640,
err = 1.23 × 10−8 (c) correct 1, approx = 1.00000000, err = 3.5 × 10−13 (d) correct 9 ln 3 − 26/9,
approx = 6.99862171, err = 3.00 × 10−9 (e) correct π2 − 4, approx = 5.86960486, err = 4.56 × 10−7

(f ) correct 2
√

5 −
√

15/2, approx = 2.53564428, err = 1.21 × 10−10 (g) correct ln(
√

3 + 2), approx = 1.31695765,
err = 2.46 × 10−7 (h) correct ln(

√
2 + 1)/2, approx = 0.44068686, err = 6.98 × 10−8

5.4 Exercises

1. (a) 0.3750, error = 0.0417 (b) 0.9871, error = 0.0129 (c) 1.7539, error = 0.0356

3. Use same tolerance test as Adaptive Quadrature with Trapezoid Rule, replace Trapezoid Rule with Midpoint Rule.

5.4 Computer Problems

1. (a) 2.00000000, 12606 subintervals (b) 0.15342641, 6204 subintervals (c) 1.00000000, 12424 subintervals
(d) 6.99862171, 32768 subintervals (e) 5.86960440, 73322 subintervals (f ) 2.53564428, 1568 subintervals
(g) 1.31695790, 7146 subintervals (h) 0.44068679, 5308 subintervals

3. first eight decimal places identical to Computer Problem 1 (a) 56 subintervals (b) 46 subintervals
(c) 40 subintervals (d) 56 subintervals (e) 206 subintervals (f ) 22 subintervals (g) 54 subintervals
(h) 52 subintervals

5. first eight decimal places identical to Computer Problem 1 (a) 50 subintervals (b) 44 subintervals
(c) 36 subintervals (d) 54 subintervals (e) 198 subintervals (f ) 22 subintervals (g) 50 subintervals
(h) 52 subintervals

7. Same as Computer Problem 6

9. erf(1) = 0.84270079, erf(3) = 0.99997791

5.5 Exercises

1. (a) 0, error = 0 (b) 0.222222, error = 0.1777778 (c) 2.342696, error = 0.007706 (d) −0.481237,
error = 0.481237

3. (a) 0, error = 0 (b) 0.4, error = 0 (c) 2.350402, error = 2.95 × 10−7 (d) −0.002136, error = 0.002136

5. (a) 1.999825 (b) 0.15340700 (c) 0.99999463 (d) 6.99867782
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CHAPTER 6

6.1 Exercises

3. (a) y(t) = 1 + t2/2 (b) y(t) = et3/3 (c) y(t) = et2+2t (d) y = et5
(e) y(t) = (3t + 1)1/3 (f )

y(t) = (3t4/4 + 1)1/3

5. (a) w = [1.0000,1.0000,1.0625,1.1875,1.3750], error = 0.1250
(b) w = [1.0000,1.0000,1.0156,1.0791,1.2309], error = 0.1648
(c) w = [1.0000,1.5000,2.4375,4.2656,7.9980], error = 12.0875
(d) w = [1.0000,1.0000,1.0049,1.0834,1.5119], error = 1.2064
(e) w = [1.0000,1.2500,1.4100,1.5357,1.6417], error = 0.0543
(f ) w = [1.0000,1.0000,1.0039,1.0349,1.1334], error = 0.0717

7. (b) c = arctan y0

9. (a) L = 0, has unique solution (b) L = 1, has unique solution (a) L = 1, has unique solution
(d) No Lipschitz constant

11. (a) Solutions are Y (t) = t2/2 and Z(t) = t2/2 + 1. |Y (t) − Z(t)| = 1 ≤ e0|1| = 1 (b) Solutions are Y (t) = 0 and
Z(t) = et . |Y (t) − Z(t)| = et ≤ e1(t−0)|1| (c) Solutions are Y (t) = 0 and Z(t) = e−t .
|Y (t) − Z(t)| = e−t ≤ e1(t−0)|1| = 1 (d) Lipschitz condition not satisfied

13. y(t) = 1/(1 − t)

15. (a) [a,b]

6.1 Computer Problems

1.

(a)

ti wi error
0.0 1.0000 0.0000
0.1 1.0000 0.0050
0.2 1.0100 0.0100
0.3 1.0300 0.0150
0.4 1.0600 0.0200
0.5 1.1000 0.0250
0.6 1.1500 0.0300
0.7 1.2100 0.0350
0.8 1.2800 0.0400
0.9 1.3600 0.0450
1.0 1.4500 0.0500

(b)

ti wi error
0.0 1.0000 0.0000
0.1 1.0000 0.0003
0.2 1.0010 0.0017
0.3 1.0050 0.0040
0.4 1.0140 0.0075
0.5 1.0303 0.0123
0.6 1.0560 0.0186
0.7 1.0940 0.0271
0.8 1.1477 0.0384
0.9 1.2211 0.0540
1.0 1.3200 0.0756

(c)

ti wi error
0.0 1.0000 0.0000
0.1 1.2000 0.0337
0.2 1.4640 0.0887
0.3 1.8154 0.1784
0.4 2.2874 0.3243
0.5 2.9278 0.5625
0.6 3.8062 0.9527
0.7 5.0241 1.5952
0.8 6.7323 2.6610
0.9 9.1560 4.4431
1.0 12.6352 7.4503

(d)

ti wi error
0.0 1.0000 0.0000
0.1 1.0000 0.0000
0.2 1.0001 0.0003
0.3 1.0009 0.0016
0.4 1.0049 0.0054
0.5 1.0178 0.0140
0.6 1.0496 0.0313
0.7 1.1176 0.0654
0.8 1.2517 0.1360
0.9 1.5081 0.2968
1.0 2.0028 0.7154

(e)

ti wi error
0.0 1.0000 0.0000
0.1 1.1000 0.0086
0.2 1.1826 0.0130
0.3 1.2541 0.0156
0.4 1.3177 0.0171
0.5 1.3753 0.0181
0.6 1.4282 0.0187
0.7 1.4772 0.0191
0.8 1.5230 0.0193
0.9 1.5661 0.0195
1.0 1.6069 0.0195

(f )

ti wi error
0.0 1.0000 0.0000
0.1 1.0000 0.0000
0.2 1.0001 0.0003
0.3 1.0009 0.0011
0.4 1.0036 0.0028
0.5 1.0099 0.0054
0.6 1.0222 0.0092
0.7 1.0429 0.0139
0.8 1.0744 0.0190
0.9 1.1188 0.0239
1.0 1.1770 0.0281
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6.2 Exercises

1. (a) w = [1.0000,1.0313,1.1250,1.2813,1.5000], error = 0 (b) w = [1.0000,1.0078,1.0477,1.1587,1.4054], error
= 0.0097 (c) w = [1.0000,1.7188,3.3032,7.0710,16.7935], error = 3.2920
(d) w = [1.0000,1.0024,1.0442,1.3077,2.7068], error = 0.0115
(e) w = [1.0000,1.2050,1.3570,1.4810,1.5871], error = 0.0003
(f ) w = [1.0000,1.0020,1.0193,1.0823,1.2182], error = 0.0132

3. (a) wi+1 = wi + htiwi + 1/2h2(wi + t2
i wi)

(b) wi+1 = wi + h(tiw
2
i + w3

i ) + 1/2h2(w2
i + (2tiwi + 3w2

i )(tiw
2
i + w3

i ))

(c) wi+1 = wi + hwi sin wi + 1/2h2(sin wi + wi coswi)wi sin wi

(d) wi+1 = wi + hewi t
2
i + 1/2h2ewi t

2
i (2tiwi + t2

i ewi t
2
i )

6.2 Computer Problems

1.

(a)

ti wi error
0.0 1.0000 0
0.1 1.0050 0
0.2 1.0200 0
0.3 1.0450 0
0.4 1.0800 0
0.5 1.1250 0
0.6 1.1800 0
0.7 1.2450 0
0.8 1.3200 0
0.9 1.4050 0
1.0 1.5000 0

(b)

ti wi error
0.0 1.0000 0.0000
0.1 1.0005 0.0002
0.2 1.0030 0.0003
0.3 1.0095 0.0005
0.4 1.0222 0.0007
0.5 1.0434 0.0008
0.6 1.0757 0.0010
0.7 1.1224 0.0012
0.8 1.1875 0.0014
0.9 1.2767 0.0016
1.0 1.3974 0.0018

(c)

ti wi error
0.0 1.0000 0.0000
0.1 1.2320 0.0017
0.2 1.5479 0.0048
0.3 1.9832 0.0106
0.4 2.5908 0.0209
0.5 3.4509 0.0394
0.6 4.6864 0.0725
0.7 6.4878 0.1316
0.8 9.1556 0.2378
0.9 13.1694 0.4297
1.0 19.3063 0.7792

(d)

ti wi error
0.0 1.0000 0.0000
0.1 1.0000 0.0000
0.2 1.0005 0.0001
0.3 1.0029 0.0004
0.4 1.0114 0.0011
0.5 1.0338 0.0021
0.6 1.0845 0.0037
0.7 1.1890 0.0060
0.8 1.3967 0.0090
0.9 1.8158 0.0109
1.0 2.7164 0.0018

(e)

ti wi error
0.0 1.0000 0.0000
0.1 1.0913 0.0001
0.2 1.1695 0.0001
0.3 1.2384 0.0001
0.4 1.3005 0.0001
0.5 1.3571 0.0001
0.6 1.4093 0.0001
0.7 1.4580 0.0001
0.8 1.5036 0.0001
0.9 1.5466 0.0001
1.0 1.5873 0.0001

(f )

ti wi error
0.0 1.0000 0.0000
0.1 1.0001 0.0000
0.2 1.0005 0.0001
0.3 1.0022 0.0002
0.4 1.0068 0.0004
0.5 1.0160 0.0006
0.6 1.0323 0.0009
0.7 1.0579 0.0011
0.8 1.0948 0.0014
0.9 1.1443 0.0017
1.0 1.2069 0.0018

6.3 Exercises

1. (a)

[
w1
w2

]

=
[

1 1.25 1.5 1.7188 1.8594
0 −0.25 −0.625 −1.1563 −1.875

]

error =
[

0.3907
0.4124

]

(b)

[
w1
w2

]

=
[

1 0.7500 0.5000 0.2813 0.1094
0 0.2500 0.3750 0.4063 0.3750

]

error =
[

0.0894
0.0654

]

(c)

[
w1
w2

]

=
[

1 1.0000 0.9375 0.8125 0.6289
0 0.2500 0.5000 0.7344 0.9375

]

error =
[

0.0886
0.0960

]

(d)

[
w1
w2

]

=
[

5 6.2500 9.6875 17.2656 32.9492
0 2.5000 6.8750 15.1563 31.3672

]

error =
[

77.3507
77.0934

]
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1. (a)

[
y1
y2

]

=
[

1 1.2500 1.4648 1.5869 1.5354
0 −0.3125 −0.7813 −1.4343 −2.2888

]

error =
[

0.0667
0.0015

]

(b)

[
y1
y2

]

=
[

1 0.7500 0.5273 0.3428 0.1990
0 0.1875 0.2813 0.3098 0.2966

]

error =
[

0.0002
0.0129

]

(c)

[
y1
y2

]

=
[

1 0.9688 0.8760 0.7275 0.5327
0 0.2500 0.4844 0.6882 0.8486

]

error =
[

0.0076
0.0071

]

(d)

[
y1
y2

]

=
[

5 7.3438 14.3311 32.6805 79.2426
0 3.4375 11.2793 30.2963 77.3799

]

error =
[

31.0574
31.0806

]

3. (a) y1 = [1.0000,1.2500,1.5195,1.8364,2.2388] (b) [1,1.1875,1.2378,1.1229,0.7832]
(c) [1,1.2813,1.6617,2.1999,2.9933]

6.3 Computer Problems

1. errors in [y1,y2]: (a) [0.1973,0.1592] for h = 0.1, [0.0226,0.0149] for h = 0.01 (b) [0.0328,0.0219] for h = 0.1,
[0.0031,0.0020] for h = 0.01 (c) [0.0305,0.0410] for h = 0.1, [0.0027,0.0042] for h = 0.01
(d) [51.4030,51.3070] for h = 0.1, [8.1919,8.1827] for h = 0.01. Note that the errors decline roughly by a factor of 10
for a first-order method.

5. (a) Roughly speaking, periodic trajectory consisting of 3 1
2 revolutions clockwise, 2 1

2 revolutions counterclockwise, 3 1
2

revolutions clockwise, 2 1
2 revolutions counterclockwise. The other periodic trajectory is the same with clockwise replaced

by counterclockwise.

6.4 Exercises

1. (a) w = [1.0000,1.0313,1.1250,1.2813,1.5000], error = 0 (b) w = [1.0000,1.0039,1.0395,1.1442,1.3786], error
= 0.0171 (c) w = [1.0000,1.7031,3.2399,6.8595,16.1038], error = 3.9817
(d) w = [1.0000,1.0003,1.0251,1.2283,2.3062], error = 0.4121
(e) w = [1.0000,1.1975,1.3490,1.4734,1.5801], error = 0.0073
(f ) w = [1.0000,1.0005,1.0136,1.0713,1.2055], error = 0.0004

3. (a) w = [1,1.0313,1.1250,1.2813,1.5000], error = 0 (b) w = [1,1.0052,1.0425,1.1510,1.3956],
error = 1.2476 × 10−5 (c) w = [1,1.7545,3.4865,7.8448,19.975], error = 0.11007
(d) w = [1,1.001,1.0318,1.2678,2.7103], error = 7.9505 × 10−3

(e) w = [1,1.2051,1.3573,1.4813,1.5874], error = 4.1996 × 10−5

(f ) w = [1,1.0010,1.0154,1.0736,1.2051], error = 6.0464 × 10−5

6.4 Computer Problems

1.

(a)

ti wi error
0.0 1.0000 0
0.1 1.0050 0
0.2 1.0200 0
0.3 1.0450 0
0.4 1.0800 0
0.5 1.1250 0
0.6 1.1800 0
0.7 1.2450 0
0.8 1.3200 0
0.9 1.4050 0
1.0 1.5000 0

(b)

ti wi error
0.0 1.0000 0.0000
0.1 1.0003 0.0001
0.2 1.0025 0.0002
0.3 1.0088 0.0003
0.4 1.0212 0.0004
0.5 1.0420 0.0005
0.6 1.0740 0.0007
0.7 1.1201 0.0010
0.8 1.1847 0.0014
0.9 1.2730 0.0020
1.0 1.3926 0.0030

(c)

ti wi error
0.0 1.0000 0.0000
0.1 1.2310 0.0027
0.2 1.5453 0.0074
0.3 1.9780 0.0158
0.4 2.5814 0.0303
0.5 3.4348 0.0555
0.6 4.6594 0.0995
0.7 6.4430 0.1764
0.8 9.0814 0.3120
0.9 13.0463 0.5528
1.0 19.1011 0.9845
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(d)

ti wi error
0.0 1.0000 0.0000
0.1 1.0000 0.0000
0.2 1.0003 0.0001
0.3 1.0022 0.0002
0.4 1.0097 0.0005
0.5 1.0306 0.0012
0.6 1.0785 0.0024
0.7 1.1778 0.0052
0.8 1.3754 0.0124
0.9 1.7711 0.0338
1.0 2.6107 0.1076

(e)

ti wi error
0.0 1.0000 0.0000
0.1 1.0907 0.0007
0.2 1.1686 0.0010
0.3 1.2375 0.0011
0.4 1.2995 0.0011
0.5 1.3561 0.0011
0.6 1.4083 0.0011
0.7 1.4570 0.0011
0.8 1.5026 0.0011
0.9 1.5456 0.0010
1.0 1.5864 0.0010

(f )

ti wi error
0.0 1.0000 0.0000
0.1 1.0000 0.0000
0.2 1.0003 0.0000
0.3 1.0019 0.0001
0.4 1.0062 0.0002
0.5 1.0151 0.0003
0.6 1.0311 0.0003
0.7 1.0564 0.0003
0.8 1.0931 0.0003
0.9 1.1426 0.0001
1.0 1.2051 0.0001

6.6 Exercises

1. (a) w = [0,0.0833,0.2778,0.6204,1.1605], error = 0.4422
(b) w = [0,0.0500,0.1400,0.2620,0.4096], error = 0.0417
(c) w = [0,0.1667,0.4444,0.7963,1.1975], error = 0.0622

6.6 Computer Problems

1. (a) y = 1, Euler step size ≤ 1.8 (b) y = 1, Euler step size ≤ 1/3

6.7 Exercises

1. (a) w = [1.0000,1.0313,1.1250,1.2813,1.5000], error = 0
(b) w = [1.0000,1.0078,1.0314,1.1203,1.3243], error = 0.0713
(c) w = [1.0000,1.7188,3.0801,6.0081,12.7386], error = 7.3469
(d) w = [1.0000,1.0024,1.0098,1.1257,1.7540], error = 0.9642
(e) w = [1.0000,1.2050,1.3383,1.4616,1.5673], error = 0.0201
(f ) w = [1.0000,1.0020,1.0078,1.0520,1.1796], error = 0.0255

3. wi+1 = −4wi + 5wi−1 + h[4fi + 2fi−1]; No.

7. (a) 0 < a1 < 2 (b) a1 = 0

9. (a) second order unstable (b) second order strongly stable (c) third order strongly stable (d) third order
unstable (e) third order unstable

11. For example, a1 = 0,a2 = 1,b1 = 2 − 2b0,b2 = b0, where b0 ̸= 0 is arbitrary.

13. (a) a1 + a2 + a3 = 1,−a2 − 2a3 + b1 + b2 + b3 = 1,a2 + 4a3 − 2b2 − 4b3 = 1,−a2 − 8a3 + 3b2 +
12b3 = 1 (c) P (x) = x3 − x2 has double root at 0, simple root at 1.
(d) wi+1 = wi−1 + h[ 7

3 fi − 2
3 fi−1 + 1

3 fi−2]

15. (a) a1 + a2 + a3 = 1,−a2 − 2a3 + b0 + b1 + b2 + b3 = 1,a2 + 4a3 + 2b0 − 2b2 − 4b3 = 1,

−a2 − 8a3 + 3b0 + 3b2 + 12b3 = 1,a2 + 16a3 + 4b0 − 4b2 − 32b3 = 1 (c) P (x) = x3 − x2 = x2(x − 1) has
simple root at 1.
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6.7 Computer Problems

1.

(a)

ti wi error
0.0 1.0000 0
0.1 1.0050 0
0.2 1.0200 0
0.3 1.0450 0
0.4 1.0800 0
0.5 1.1250 0
0.6 1.1800 0
0.7 1.2450 0
0.8 1.3200 0
0.9 1.4050 0
1.0 1.5000 0

(b)

ti wi error
0.0 1.0000 0.0000
0.1 1.0005 0.0002
0.2 1.0020 0.0007
0.3 1.0075 0.0015
0.4 1.0191 0.0025
0.5 1.0390 0.0035
0.6 1.0698 0.0048
0.7 1.1146 0.0065
0.8 1.1773 0.0088
0.9 1.2630 0.0121
1.0 1.3788 0.0168

(c)

ti wi error
0.0 1.0000 0.0000
0.1 1.2320 0.0017
0.2 1.5386 0.0141
0.3 1.9569 0.0368
0.4 2.5355 0.0762
0.5 3.3460 0.1443
0.6 4.4967 0.2621
0.7 6.1533 0.4661
0.8 8.5720 0.8214
0.9 12.1548 1.4443
1.0 17.5400 2.5455

(d)

ti wi error
0.0 1.0000 0.0000
0.1 1.0000 0.0000
0.2 1.0001 0.0002
0.3 1.0013 0.0012
0.4 1.0070 0.0033
0.5 1.0243 0.0075
0.6 1.0658 0.0150
0.7 1.1534 0.0296
0.8 1.3266 0.0611
0.9 1.6649 0.1400
1.0 2.3483 0.3700

(e)

ti wi error
0.0 1.0000 0.0000
0.1 1.0913 0.0001
0.2 1.1673 0.0023
0.3 1.2354 0.0032
0.4 1.2970 0.0036
0.5 1.3534 0.0038
0.6 1.4055 0.0039
0.7 1.4542 0.0039
0.8 1.4998 0.0039
0.9 1.5428 0.0038
1.0 1.5836 0.0038

(f )

ti wi error
0.0 1.0000 0.0000
0.1 1.0001 0.0000
0.2 1.0002 0.0002
0.3 1.0013 0.0007
0.4 1.0050 0.0014
0.5 1.0131 0.0022
0.6 1.0282 0.0032
0.7 1.0528 0.0039
0.8 1.0890 0.0044
0.9 1.1383 0.0044
1.0 1.2011 0.0040

3.

(a)

ti wi error
0.0 0.0000 0.0000
0.1 0.0050 0.0002
0.2 0.0213 0.0002
0.3 0.0493 0.0005
0.4 0.0916 0.0002
0.5 0.1474 0.0013
0.6 0.2222 0.0001
0.7 0.3105 0.0032
0.8 0.4276 0.0020
0.9 0.5510 0.0086
1.0 0.7283 0.0100

(b)

ti wi error
0.0 0.0000 0.0000
0.1 0.0050 0.0002
0.2 0.0187 0.0000
0.3 0.0413 0.0005
0.4 0.0699 0.0004
0.5 0.1082 0.0016
0.6 0.1462 0.0027
0.7 0.2032 0.0066
0.8 0.2360 0.0134
0.9 0.3363 0.0297
1.0 0.3048 0.0631

(c)

ti wi error
0.0 0.0000 0.0000
0.1 0.0200 0.0013
0.2 0.0700 0.0003
0.3 0.1530 0.0042
0.4 0.2435 0.0058
0.5 0.3855 0.0176
0.6 0.4645 0.0367
0.7 0.7356 0.0890
0.8 0.5990 0.2029
0.9 1.4392 0.4739
1.0 0.0394 1.0959

CHAPTER 7
7.1 Exercises

3. (a) sin 2t,cos2t (b) ya − yb = 0 (c) ya + yb = 0 (d) no condition, solution always exists

5. y(t) = y1 − e−
√

ky0

e
√

k − e−
√

k
e
√

kt + e
√

ky0 − y1

e
√

k − e−
√

k
e−

√
kt
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7.1 Computer Problems

1. (a) y(t) = 1/3tet (b) y(t) = et2

3. (a) y(t) = 1/(3t2) (b) y(t) = ln(t2 + 1)

5. (a) s = y2(0) = 1, exact solution is y1(t) = arctan t,y2 = t2 + 1 (b) s = y2(0) = 1/3, exact solution is
y1(t) = et3

,y2(t) = 1/3 − t2

7.2 Computer Problems

5. (a) y(t) = e1+t − e1−t

e2 − 1

(c)

n h error
3 1/4 0.00026473
7 1/8 0.00006657

15 1/16 0.00001667
31 1/32 0.00000417
63 1/64 0.00000104
127 1/128 0.00000026

7. Extrapolate by N2(h) = (4N(h/2) − N(h))/3 and N3(h) = (16N2(h/2) − N2(h))/15 to arrive at estimate
y(1/2) ≈ 0.443409442296, error ≈ 3.11 × 10−10.

11. 11.786

CHAPTER 8
8.1 Computer Problems

1. Approximate solution at representative points:

(a)

x = 0.2 x = 0.5 x = 0.8
t = 0.2 3.0432 3.3640 3.9901
t = 0.5 5.5451 6.1296 7.2705
t = 0.8 10.1039 11.1688 13.2477

(b)

x = 0.2 x = 0.5 x = 0.8
t = 0.2 1.8219 2.4593 3.3199
t = 0.5 3.3198 4.4811 6.0492
t = 0.8 6.0490 8.1651 11.0224

Forward Difference Method is unstable on both parts for h = 0.1,K > 0.003.

3.

(a)

h k u(0.5,1) w(0.5,1) error
0.02 0.02 16.6642 16.7023 0.0381
0.02 0.01 16.6642 16.6834 0.0192
0.02 0.005 16.6642 16.6738 0.0097

(b)

h k u(0.5,1) w(0.5,1) error
0.02 0.02 12.1825 12.2104 0.0279
0.02 0.01 12.1825 12.1965 0.0140
0.02 0.005 12.1825 12.1896 0.0071

5.

(a)

h k u(0.5,1) w(0.5,1) error
0.02 0.02 16.664183 16.664504 0.000321
0.01 0.01 16.664183 16.664263 0.000080
0.005 0.005 16.664183 16.664203 0.000020

(b)

h k u(0.5,1) w(0.5,1) error
0.02 0.02 12.182494 12.182728 0.000235
0.01 0.01 12.182494 12.182553 0.000059
0.005 0.005 12.182494 12.182509 0.000015

7. C = π2/100
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8.2 Computer Problems

1. Approximate solution at representative points:

(a)

x = 0.2 x = 0.5 x = 0.8
t = 0.2 −0.4755 −0.8090 −0.4755
t = 0.5 0.5878 1.0000 0.5878
t = 0.8 −0.4755 −0.8090 −0.4755

(b)

x = 0.2 x = 0.5 x = 0.8
t = 0.2 0.5489 0.4067 0.3012
t = 0.5 0.3012 0.2231 0.1653
t = 0.8 0.1652 0.1224 0.0907

(c)

x = 0.2 x = 0.5 x = 0.8
t = 0.2 0.3364 0.5306 0.6931
t = 0.5 0.5306 0.6930 0.8329
t = 0.8 0.6931 0.8329 0.9554

3.

(a)

h k w(1/4,3/4) error

2−4 2−6 − 0.70710678 0.0
2−5 2−7 − 0.70710678 0.0
2−6 2−8 − 0.70710678 0.0
2−7 2−9 − 0.70710678 0.0
2−8 2−10 − 0.70710678 0.0

(b)

h k w(1/4,3/4) error

2−4 2−5 0.17367424 0.00009971
2−5 2−6 0.17374901 0.00002493
2−6 2−7 0.17376771 0.00000623
2−7 2−8 0.17377238 0.00000156
2−8 2−9 0.17377355 0.00000039

(c)

h k w(1/4,3/4) error

2−4 2−4 0.69308400 0.00006318
2−5 2−5 0.69313136 0.00001582
2−6 2−6 0.69314323 0.00000396
2−7 2−7 0.69314619 0.00000099
2−8 2−8 0.69314693 0.00000025

8.3 Computer Problems

1. Approximate solution at representative points:

(a)

x = 0.2 x = 0.5 x = 0.8
y = 0.2 0.3151 0.5362 0.3151
y = 0.5 0.1236 0.2103 0.1236
y = 0.8 0.0482 0.0821 0.0482

(b)

x = 0.2 x = 0.5 x = 0.8
y = 0.2 0.4006 1.3686 3.6222
y = 0.5 0.6816 2.3284 6.1624
y = 0.8 0.4006 1.3686 3.6222

3. Approximate solution at representative points:

(a)

x = 0.2 x = 0.5 x = 0.8
y = 0.2 0.0347 0.0590 0.0347
y = 0.5 0.1185 0.2016 0.1185
y = 0.8 0.3136 0.5336 0.3136

(b)

x = 0.2 x = 0.5 x = 0.8
y = 0.2 0.4579 0.6752 0.8417
y = 0.5 0.6752 0.6708 0.6752
y = 0.8 0.8417 0.6752 0.4579

5. 11.4 meters

7.

(a)

h k w(1/4,3/4) error

2−2 2−2 0.072692 0.005672
2−3 2−3 0.068477 0.001457
2−4 2−4 0.067387 0.000367
2−5 2−5 0.067112 0.000092

(b)

h k w(1/4,3/4) error

2−2 2−2 0.673903 0.059660
2−3 2−3 0.629543 0.015300
2−4 2−4 0.618094 0.003851
2−5 2−5 0.615207 0.000964
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11. Approximate solution at representative points:

(a)

x = 0.2 x = 0.5 x = 0.8
y = 0.2 0.0631 0.1571 0.2493
y = 0.5 0.1571 0.3839 0.5887
y = 0.8 0.2493 0.5887 0.8448

(b)

x = 0.2 x = 0.5 x = 0.8
y = 0.2 1.0405 1.1046 1.1731
y = 0.5 1.1046 1.2830 1.4910
y = 0.8 1.1731 1.4910 1.8956

13. Approximate solution at representative points:

(a)

x = 1.25 x = 1.50 x = 1.75
y = 1.25 3.1250 3.8125 4.6250
y = 1.50 3.8125 4.5000 5.3125
y = 1.75 4.6250 5.3125 6.1250

(b)

x = 1.25 x = 1.50 x = 1.75
y = 0.50 0.1999 0.1666 0.1428
y = 1.00 0.7999 0.6666 0.5714
y = 1.50 1.7999 1.4999 1.2857

15.

(a)

h k w(1/4,3/4) error

2−2 2−2 0.294813 0.004528
2−3 2−3 0.291504 0.001219
2−4 2−4 0.290596 0.000311
2−5 2−5 0.290363 0.000078

(b)

h k w(1/4,3/4) error

2−2 2−2 1.202628 0.003602
2−3 2−3 1.205310 0.000920
2−4 2−4 1.205999 0.000231
2−5 2−5 1.206172 0.000058

8.4 Computer Problems

1. Solution approaches u = 0.

3. (a) Solution approaches u = 0 (b) Solution approaches u = 2

CHAPTER 9

9.1 Exercises

1. (a) 4 (b) 9

3. (a) 0.3 (b) 0.28

9.1 Computer Problems

1. 0.000273, compared with correct volume ≈ 0.000268.

3. (The minimal standard LCG with seed 1 is used in the following answers:)

(a) 1/3 (b)

n Type 1 estimate error

102 0.327290 0.006043
103 0.342494 0.009161
104 0.332705 0.000628
105 0.333610 0.000277
106 0.333505 0.000172

(c)

n Type 2 estimate error

102 0.28 0.053333
103 0.354 0.020667
104 0.3406 0.007267
105 0.33382 0.000487
106 0.333989 0.000656

5. (a) n = 104: 0.5128, error = 0.010799; n = 106: 0.524980, error = 0.001381 (b) n = 104: 0.1744, error = 0.000133;
n = 106: 0.174851, error = 0.000318

7. (a) 1/12 (b) 0.083566, error = 0.000232
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9.2 Computer Problems

1. (a) 1/3 (b)

n Type 1 estimate error

102 0.335414 0.002080
103 0.333514 0.000181
104 0.333339 0.000006
105 0.333334 0.000001

(c)

n Type 2 estimate error

102 0.35 0.016667
103 0.333 0.000333
104 0.3339 0.000567
105 0.33338 0.000047

3. (a) n = 104: 0.5232, error = 0.000399; n = 105: 0.52396, error = 0.000361 (b) n = 104: 0.1743, error = 0.000233;
n = 105: 0.17455, error = 0.000017

5. Typical results: Monte Carlo estimate 4.9656, error = 0.030798; quasi-Monte Carlo estimate 4.92928, error = 0.005522.

7. (a) exact value = 1/2; n = 106 Monte Carlo estimate 0.500313 (b) exact value 4/9; n = 106 Monte Carlo estimate
0.444486

9. 1/24 ≈ 4.167%

9.3 Computer Problems

Answers in this section use the minimal standard LCG.

1. (a) Monte Carlo = 0.2907, error = 0.0050 (b) 0.6323, error 0.0073. (c) 0.7322, error 0.0049.

3. (a) 0.8199, error = 0.0014 (b) 0.9871, error = 0.0004 (c) 0.9984, error = 0.0006

5. (a) 0.2969, error = 0.0112 (b) 0.3939, error = 0.0049 (c) 0.4600, error = 0.0106

7. (a) 0.5848, error = 0.0207 (b) 0.3106, error = 0.0154 (c) 0.7155, error = 0.0107

9.4 Computer Problems

5. Typical results:
$t avg. error

10−1 0.2657
10−2 0.0925
10−3 0.0256

The results show approximate order 1/2.

11.

$t avg. error

10−1 0.1394
10−2 0.0202
10−3 0.0026

The results show approximate order 1.

CHAPTER 10

10.1 Exercises

1. (a) [0,−i,0, i] (b) [2,0,0,0] (c) [0, i,0,−i] (d) [0,0,−
√

2i,0,0,0,
√

2i,0]
3. (a) [1/2,1/2,1/2,1/2] (b) [1,1,−1,1] (c) [1,1,1,−1] (d) [2,−1,2,−1,2,−1,2,−1]/

√
2

5. (a) 4th roots of unity: −i,−1, i,1; primitive: −i, i (b) ω,ω2,ω3,ω4,ω5,ω6 where ω = e−2π i/7 (c) p − 1

7. (a) a0 = a1 = a2 = 0,b1 = −1 (b) a0 = 2,a1 = a2 = 0,b1 = 0 (c) a0 = a1 = a2 = 0,b1 = 1
(d) b2 = −

√
2,a0 = a1 = a2 = a3 = a4 = b1 = b3 = 0
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10.2 Exercises

1. (a) P4(t) = sin 2π t (b) P4(t) = cos2π t + sin 2π t (c) P4(t) = −cos4π t (d) P4(t) = 1

3. (a) P8(t) = sin 4π t (b) P8(t) = 1 + sin 4π t (c) P8(t) = 1
2 + 1

4 cos2π t +
√

2+1
4 sin 2π t + 1

4 cos6π t +√
2−1
4 sin 6π t (d) P8(t) = cos8π t

10.2 Computer Problems

1. (a) P8(t) = 7
2 − cos2π t − (1 +

√
2)sin 2π t − cos4π t − sin 4π t − cos6π t + (1 −

√
2)sin 6π t −

1
2 cos8π t (b) P8(t) = 1

2 − 0.8107cos2π t − 0.1036sin 2π t + cos4π t + 1
2 sin 4π t + 1.3107cos6π t −

0.6036sin 6π t (c) P8(t) = 5
2 − 1

2 cos π
2 t − 1

2 sin π
2 t + cosπ t (d) P8(t) = 5

8 + 3
4 cos π

4 (t − 1) +
1.3536sin π

4 (t − 1) − 7
4 cos π

2 (t − 1) − 5
2 sin π

2 (t − 1) + 3
4 cos 3π

4 (t − 1) − 0.6464sin 3π
4 (t − 1) +

5
8 cosπ(t − 1)

3. P8(t) = 1.6131 − 0.1253cos2π t − 0.5050sin 2π t − 0.1881cos4π t − 0.2131sin 4π t − 0.1991cos6π t −
0.0886sin 6π t − 0.1007cos8π t

5. P8(t) = 0.3423 − 0.1115cos2π (t − 1) − 0.2040sin 2π (t − 1) − 0.0943cos4π (t − 1) − 0.0859sin 4π (t − 1) −
0.0912cos6π (t − 1) − 0.0357sin 6π (t − 1) − 0.0453cos8π (t − 1)

10.3 Exercises

1. (a) F2(t) = 0 (b) F2(t) = cos2π t (c) F2(t) = 0 (d) F2(t) = 1

3. (a) F4(t) = 0 (b) F4(t) = 1 (c) F4(t) = 1
2 + 1

4 cos2π t +
√

2+1
4 sin 2π t (d) F4(t) = 0

10.3 Computer Problems

1. (a) F2(t) = F4(t) = 3cos2π t

(b) F2(t) = 2 − 3
2 cos2π t,F4(t) = 2 − 3

2 cos2π t − 1
2 sin 2π t + 3

2 cos4π t

(c) F2(t) = 7
2 − 1

2 cos π
2 t,F4(t) = 7

2 − 1
2 cos π

2 t + 1
2 sin π

2 t + 2cosπ t

(d) F2(t) = 2 − 2cos π
3 (t − 1),F4(t) = 2 − 2cos π

3 (t − 1) − cos 2π
3 (t − 1)

CHAPTER 11

11.1 Exercises

1. The DCT matrix is C = 1√
2

[
1 1
1 −1

]

, and P2(t) = 1√
2

y0 + y1 cos
(2t + 1)π

4

(a) y = [3
√

2,0],P2(t) = 3 (b) y = [0,2
√

2], P2(t) = 2
√

2cos
(2t + 1)π

4

(c) y = [2
√

2,
√

2],P2(t) = 2 +
√

2cos
(2t + 1)π

4
(d) y = [3

√
2/2,5

√
2/2], P2(t) = 3/2 + (5

√
2/2)cos

(2t + 1)π

4
.

3. (a) y = [1,b − c,0,b + c],P4(t) = 1
2

+
(
(b − c)/

√
2
)

cos
(2t + 1)π

8
+

(
(b + c)/

√
2
)

cos
3(2t + 1)π

8

(b) y = [2,0,0,0],P4(t) = 1 (c) y = [1/2,b,1/2,c],P4(t) = 1/2 +
(
b/

√
2
)

cos
(2t + 1)π

8
+

(1/2
√

2)cos
2(2t + 1)π

8
+

(
c/

√
2
)

cos
3(2t + 1)π

8
(d) y = [5,−(c + 3b),0, (b − 3c)],P4(t) = 5

2
−

(
(c + 3b)/

√
2
)

cos
(2t + 1)π

8
+

(
(b − 3c)/

√
2
)

cos
3(2t + 1)π

8
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11.2 Exercises

1. (a) Y =
[

1/2 1/2
1/2 1/2

]

,P2(s, t) = 1
4

+ 1

2
√

2
cos

(2s + 1)π

4
+ 1

2
√

2
cos

(2t + 1)π

4
+

1
2

cos
(2s + 1)π

4
cos

(2t + 1)π

4
(b) Y =

[
1 1
0 0

]

,P2(s, t) = 1
2

+ 1√
2

cos
(2t + 1)π

4

(c) Y =
[

2 0
0 0

]

,P2(s, t) = 1. (d) Y =
[

1 0
0 1

]

,P2(s, t) = 1
2

+ cos
(2s + 1)π

4
cos

(2t + 1)π

4

3. (a) P (t) =
(
(b + c)/

√
2
)

cos
(2t + 1)π

8
(b) P (t) = 1/4 (c) P (t) = 1/4

(d) P (t) = 2 +
√

2(b − c)cos
(2s + 1)π

8

11.2 Computer Problems

1. (a)

⎡

⎢⎢⎢⎣

0 −3.8268 0 −9.2388
0 1.7071 0 4.1213
0 0 0 0
0 0.1213 0 0.2929

⎤

⎥⎥⎥⎦
(b)

⎡

⎢⎢⎢⎣

0 0 0 0
0 2.1213 −0.7654 −0.8787
0 0 0 0
0 5.1213 −1.8478 −2.1213

⎤

⎥⎥⎥⎦

(c)

⎡

⎢⎢⎢⎣

4.7500 1.4419 0.2500 0.2146
−0.7886 0.5732 −1.4419 −1.0910

0.2500 2.6363 −2.2500 −0.8214
0.0560 −2.0910 −0.2146 0.9268

⎤

⎥⎥⎥⎦
(d)

⎡

⎢⎢⎢⎣

0 −4.4609 0 −0.3170
−4.4609 0 0 0

0 0 0 0
−0.3170 0 0 0

⎤

⎥⎥⎥⎦

11.3 Exercises

1. (a) P (A) = 1/4,P (B) = 5/8,P (C) = 1/8,1.30 (b) P (A) = 3/8,P (B) = 1/4,P (C) = 3/8,1.56
(c) P (A) = 1/2,P (B) = 3/8,P (C) = 1/8,1.41

3. (a) 34 bits needed, 34/11 = 3.09 bits/symbol > 3.03 = Shannon inf. (b) 73 bits needed, 73/21 = 3.48 bits/symbol
> 3.42 = Shannon inf. (c) 108 bits needed, 108/35 = 3.09 bits/symbol > 3.04 = Shannon inf.

11.4 Exercises

1. (a) [−12b − 2c,2b − 12c] (b) [−3b − c,b − 3c] (c) [−8b + 5c,−5b − 8c]
3. (a) +101., error = 0 (b) +101., error = 1/15 (c) +011., error = 1/35

5. (a) +0110000., error = 1/170 (b) −0101101., error = 1/85 (c) +1011100., error = 7/510
(d) +1100100., error ≈ 0.0043

7. (a) 1
2 (w2 + w3) = [−1.2246,0.9184] ≈ [−1,1] (b) 1

2 (w2 + w3) = [2.1539,−0.9293] ≈ [2,−1]
(c) 1

2 (w2 + w3) = [−1.7844,−3.0832] ≈ [−2,−3]
9. c5n = −cn−1,c6n = −c0

CHAPTER 12
12.1 Exercises

1. (a) P (λ) = (λ − 5)(λ − 2), 2 and [1,1], 5 and [1,−1] (b) P (λ) = (λ + 2)(λ − 2), −2 and [1,−1], 2 and [1,1]
(c) P (λ) = (λ − 3)(λ + 2), 3 and [−3,4], −2 and [4,3] (d) P (λ) = (λ − 100)(λ − 200), 200 and [−3,4], 100
and [4,3]
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3. (a) P (λ) = −(λ − 1)(λ − 2)(λ − 3), 3 and [0,1,0], 2 and [1,2,1], 1 and [1,0,0]
(b) P (λ) = −λ(λ − 1)(λ − 2), 2 and [−1,2,3], 1 and [1,1,0], 0 and [1,−2,3]
(c) P (λ) = −λ(λ − 1)(λ + 1), 1 and [1,−2,−3], 0 and [1,−2,3], −1 and [1,1,0]

5. (a) λ = 4,S = 3/4 (b) λ = −4,S = 3/4 (c) λ = 4,S = 1/2 (d) λ = 10,S = 9/10

7. (a) λ = 1,S = 1/3 (b) λ = 1,S = 1/3 (c) λ = −1,S = 1/2 (d) λ = 9,S = 3/4

9. (a) 5 and [1,2], −1 and [−1,1] (b) u1 =
[
1/

√
17,4/

√
17

]
, RQ = 1; u2 = [0.4903,0.8716], RQ = 4.29;

u3 = [0.4386,0.8987], RQ = 5.08 (c) IPI converges to λ = −1. (d) IPI converges to λ = 5.

11. (a) 7 (b) 5 (c) S = 6/7,S = 1/2; IPI with s = 4 is faster.

12.1 Computer Problems

1. (a) converges to 4 and [1,1,−1] (b) converges to −4 and [1,1,−1] (c) converges to 4 and [1,1,−1]
(d) converges to 10 and [1,1,−1]

3. (a) λ = 4 (b) λ = 3 (c) λ = 2 (d) λ = 9

12.2 Exercises

1. (a)

⎡

⎢⎢⎢⎣

1 − 1√
2

1√
2

−
√

2 1
2

1
2

0 1
2

1
2

⎤

⎥⎥⎥⎦
(b)

⎡

⎢⎣
1 0 0
0 0 −1
0 −1 0

⎤

⎥⎦ (c)

⎡

⎢⎢⎣

2 − 4
5 − 3

5

−5 37
25 − 16

25

0 9
25

13
25

⎤

⎥⎥⎦

(d)

⎡

⎢⎢⎢⎣

1 − 1√
2

− 1√
2

−
√

8 5
2

3
2

0 3
2

1
2

⎤

⎥⎥⎥⎦

5. (a) NSI fails: Qk does not converge, alternates with period of 2. (b) NSI fails: Qk does not converge, alternates with
period of 2.

7. (a) before: does not converge; after: same (already in Hessenberg form) (b) before: does not converge; after: does not
converge

12.2 Computer Problems

1. (a) {−6,4,−2} (b) {6,4,2} (c) {20,18,16} (d) {10,2,1}
3. (a) {3,3,3} (b) {1,9,10} (c) {3,3,18} (d) {−2,2,0}
5. (a) {2, i,−i} (b) {1, i,−i} (c) {2 + 3i,2 − 3i,1} (d) {5,4 + 3i,4 − 3i}

12.3 Exercises

1. (a)

[
−3 0

0 2

]

=
[

1 0
0 1

][
3 0
0 2

][
−1 0

0 1

]

Expands by factor of 3 and flips along x-axis, expands by factor of 2 along y-axis.

(b)

[
0 0
0 3

]

=
[

0 1
1 0

][
3 0
0 0

][
0 1
1 0

]

Projects onto y axis and expands by 3 in y-direction.

(c)

⎡

⎣
3
2 − 1

2

− 1
2

3
2

⎤

⎦ =

⎡

⎣
− 1√

2
1√
2

1√
2

1√
2

⎤

⎦
[

2 0
0 1

]⎡

⎣
− 1√

2
1√
2

1√
2

1√
2

⎤

⎦
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Expands into ellipse with major axis of length 4 along the line y = −x.

(d)

⎡

⎣
− 3

2
1
2

1
2 − 3

2

⎤

⎦ =

⎡

⎣
− 1√

2
1√
2

1√
2

1√
2

⎤

⎦
[

2 0
0 1

]⎡

⎣
1√
2

− 1√
2

− 1√
2

− 1√
2

⎤

⎦ Same as (c), but rotated 180◦.

(e)

⎡

⎣
3
4

5
4

5
4

3
4

⎤

⎦ =

⎡

⎣
− 1√

2
1√
2

− 1√
2

− 1√
2

⎤

⎦
[

2 0
0 1

2

]⎡

⎣
− 1√

2
− 1√

2

− 1√
2

1√
2

⎤

⎦

Expands by factor of 2 along line y = x and contracts by factor of 2 along line y = −x, and flips the points on the circle.

3. Four:

[
3 0
0 1

2

]

=
[

1 0
0 1

][
3 0
0 1

2

][
1 0
0 1

]

=
[

−1 0
0 1

][
3 0
0 1

2

][
−1 0

0 1

]

=
[

1 0
0 −1

][
3 0
0 1

2

][
1 0
0 −1

]

=
[

−1 0
0 −1

][
3 0
0 1

2

][
−1 0

0 −1

]

12.4 Computer Problems

1. (a)

[
1.1708 1.8944
1.8944 3.0652

]

(b)

[
1.5607 3.7678
1.3536 3.2678

]

(c)

⎡

⎢⎣
1.0107 2.5125 3.6436
0.9552 2.3746 3.4436
0.1787 0.4442 0.6441

⎤

⎥⎦

(d)

⎡

⎢⎣
−0.5141 5.2343 1.9952

0.2070 −2.1076 −0.8033
−0.1425 1.4510 0.5531

⎤

⎥⎦

3. (a) Best line y = 3.3028x; projections are

[
1.1934
3.9415

]

,

[
1.4707
4.8575

]

,

[
1.2774
4.2188

]

.

(b) Best line y = 0.3620x; projections are

[
1.7682
0.6402

]

,

[
3.8565
1.3963

]

,

[
3.2925
1.1921

]

.

(c) Best line (x(t),y(t),z(t)) = [0.3015,0.3416,0.8902]t ; projections are

⎡

⎢⎣
1.3702
1.5527
4.0463

⎤

⎥⎦,

⎡

⎢⎣
1.8325
2.0764
5.4111

⎤

⎥⎦,

⎡

⎢⎣
1.8949
2.1471
5.5954

⎤

⎥⎦

⎡

⎢⎣
0.9989
1.1319
2.9498

⎤

⎥⎦.

5. See Exercise 12.3.2 answers.

CHAPTER 13

13.1 Exercises

1. (a) (0,1) (b) (0,0) (c) (−1/2,−3/8) (d) (1,1)

13.1 Computer Problems

1. (a) 1/2 (b) −2,1 (c) 0.47033 (d) 1.43791

3. (a), (b): (0.358555,2.788973)
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5. (1.20881759,1.20881759), about 8 correct places

7. (1,1)

13.2 Computer Problems

1. Minimum is (1.2088176,1.2088176). Different initial conditions will yield answers that differ by about ϵ1/2.

3. (1,1). Newton’s Method will be accurate to machine precision, since it is finding a simple root. Steepest Descent
will have error of size ≈ ϵ1/2.

5. same as Computer Problem 2
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2-norm, 192, 198

AC component, 517
Adams-Bashforth Method, 336, 339, 341
Adams-Moulton Method, 342, 345
Adaptive Quadrature, 269, 270
Adobe Corp., 138
algorithm

stable, 50
Apple Corp., 138
arbitrage theory, 464
arc length integral, 243
arcsine law, 452
atomic clock, 239
audio file

aac, 495
mp3, 496
wav, 490, 529

B-spline, 408
piecewise-linear, 369

Bézier curve, 179, 279
in PDF file, 183

Bézier, P., 138, 179
Babylonian mathematics, 39
back-substitution, 73, 76, 77, 83
backsolving, see back-substitution
Backward Difference Method, 380
Backward Euler Method, 333
barrier option, 465
barycenter, 409
base 60, 39
base points, 143
basis

orthonormal, 539, 554
beam

Timoshenko, 105
bell curve, 438
bifurcation

buckling, 356
binary number, 5

infinitely repeating, 7
Bisection Method, 25, 44, 46, 51, 65, 69, 352, 354, 364

efficiency, 28
stopping criterion, 29

bit, 6
Black, F., 431, 464
Black-Scholes formula, 431, 464

Bogacki-Shampine Method, 327
Boole’s Rule, 264
boundary conditions

convective, 405
Dirichlet, 383, 398
homogeneous, 383
Neumann, 383, 398
Robin, 405

boundary value problem, 348
existence and uniqueness of solutions, 350
for systems, 353
nonlinear, 360

Box-Muller method, 438
bracket, 38, 62
bracketing, 25
Brent’s Method, 64, 69
Brownian bridge, 461
Brownian motion, 456

continuous, 450
discrete, 446
geometric, 464

Broyden’s Method, 134, 357, 585
Brusselator model, 426
buckling

of circular ring, 348, 355
Buffon needle, 445
bulk temperature, 404
Burgers’ equation, 417, 419
BVP, see boundary value problem
byte, 11

call option, 464
cantilever, 71
carbon dioxide, 150, 178, 211
castanets.wav, 490, 492
Casteljau, P., 138, 179
Cauchy-Schwarz inequality, 198
centered-difference formula, 376
Central Limit Theorem, 450
CFL condition, 396
chaotic attractor, 320
chaotic dynamics, 43, 60
characteristic function, 435
characteristic polynomial, 532
Chebyshev interpolation, 162
Cholesky factorization, 121
chopping, 9
cobweb diagram, 34, 34, 42
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codec, 526
Collocation Method

for BVP, 365
color image

RGB, 505
YUV, 512

column vector, 583
completing the square, 117
complex number, 468

polar representation, 468
compressibility, 355
compression, 194

image, 561
lossy, 508, 514, 559

computational neuroscience, 317
computer animation, 243
computer arithmetic, 45
computer word, 8
computer-aided manufacturing, 243
computer-aided modeling, 278
condition number, 50, 50, 88, 197, 289, 532
conditioning

normal equations, 197
conduction, 403
conic section, 311
conjugate

of a complex number, 468
Conjugate Gradient Method, 122, 127

preconditioned, 127
convection, 403
convective heat transfer, 404
convergence, 33

linear, 35, 37, 40, 55
local, 36, 53, 56, 57
quadratic, 53, 57
superlinear, 61, 135

conversion
binary to decimal, 7
decimal to binary, 6

convex set, 288
Cooley, J., 473
cooling fin, 403
CORDIC, 165
Crank-Nicolson Method, 254, 385

stability, 387
cube root, 30
cubic spline, 167

clamped, 174
curvature-adjusted, 173
end conditions, 169
Matlab default, 175
natural, 169

not-a-knot, 175
parabolically-terminated, 174

cumulative distribution function, 437
cuneiform, 39

Dahlquist criterion, 341
data

automobile supply, 204
height vs. weight, 207
Intel CPU, 205
Japan oil consumption, 210
temperature, 201

data compression, 138
data-fitting, 188
DC component, 504, 517
decimal number, 5
decimal places

correct within, 28
deflation, 543
degree of precision, 258, 273
demand curve, 199
derivative, 244

symbolic, 250
determinant, 30, 557
differential equation, 281

autonomous, 282
first-order linear, 291
ordinary, 282
partial, 374
stiff, 333
stochastic, 452

differentiation
numerical, 244

differentiation formula
centered difference, 246, 358
forward difference, 245

diffusion, 453
diffusion coefficient, 375
dimension reduction, 559
direct kinematics problem, see forward kinematics

problem
direct method, 106
direction field, 282
direction vector, 309
Discrete Cosine Transform, 495

one-dimensional, 496
inverse, 497

two-dimensional, 502
inverse, 502

version 4, 520
Discrete Fourier Transform, 471

inverse, 471
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discretization, 71, 102, 357, 375
divided differences, 141
Dormand-Prince Method, 328
dot product, 190
dot product rule, 230
double helix, 565
double precision, 8, 43, 44, 92, 197
downhill simplex method, 571
DPCM tree, 517
drift, 453
DSP chip, 473

eigenvalue, 30, 531, 586
complex, 542
dominant, 539, 551

eigenvector, 532
principal, 551

electric field, 398
electrostatic potential, 415
ellipsoid, 554
elliptic equation

weak form, 407
engineering

structural, 71, 83
equation

diffusion, 375
reaction-diffusion, 390, 421

equations
inconsistent, 189

equilibrium solution, 334
equipartition, 278
error

absolute, 10, 40
backward, 45, 50, 86, 93
forward, 45, 50, 86, 93, 197
global truncation, 293
input, 88
interpolation, 151, 155, 159
local truncation, 293, 327, 376
quantization, 508
relative, 10, 40
relative backward, 87
relative forward, 87
root mean squared, 192
rounding, 10, 248
squared, 192
standard, 448
tolerance, 326
truncation, 248

error magnification factor, 49, 88, 241
escape time, 448
Euler formula, 468, 477

Euler’s Method, 284, 333
convergence, 296
global truncation error, 296
local truncation error, 294
order, 296

Euler-Bernoulli beam, 71, 102
Euler-Maruyama Method, 456
exponent, 8
exponent bias, 11
extended precision, 8
extrapolation, 249, 254, 265, 360, 364

factorization
Cholesky, 119
eigenvalue-revealing, 542
PA= LU, 98
QR, 215, 539

Fast Fourier Transform, 473
operation count, 475

Fick’s law, 375
fill-in, 113, 115
filtering

low pass, 507
financial derivative, 464
Finite Difference Method, 358, 375

explicit, 395
unstable, 378

Finite Element Method, 367
first passage time, 448
Fisher’s equation, 421
fixed point, 31
Fixed-Point Iteration, 31, 334

divergence, 34
geometry, 33

fl(x), 10
flight simulator, 24
floating point number, 8

normalized, 8
subnormal, 12
zero, 13

forward difference, 244
forward difference formula, 376
Forward Difference Method

conditionally stable, 380
explicit, 376
stability analysis, 379

forward kinematics problem, 24, 67
Fourier

first law, 404
Fourier, J., 468
FPI, see Fixed-Point Iteration
freezing temperature, 24
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FSAL, 327, 329
function

orthogonal, 483
Riemann integrable, 409
unimodal, 566

fundamental domain, 151
Fundamental Theorem of Algebra, 141

Galerkin Method, 367, 407
Gauss, C.F., 188
Gauss-Newton Method, 231, 236, 241
Gauss-Seidel

Method, 109
Gaussian elimination, 72, 92, 358

matrix form, 79
naive, 72, 95
operation count, 75–77
tableau form, 73

Gaussian Quadrature, 276
Generalized Minimum Residual Method,

226, 228
GIS, 240
GMRES, 226

preconditioned, 228
restarted, 228

Golden Section Search, 566
google-bombing, 551
Google.com, 549
Gough, E., 24
GPS, 188, 233, 238

conditioning of, 241
gradient, 230, 576
gradient search, 577
Gram-Schmidt Orthogonalization,

214, 218
Gram-Schmidt orthogonalization

operation count, 215
Green’s Theorem, 407
Gronwall inequality, 289
groundwater flow, 416

half-life, 207
Halton sequence, 443
harmonic function, 398
heat equation, 375, 385
heat sink, 403
heated plate, 416
Heron of Alexandria, 39
Hessian, 231
Heun Method, 298
hexadecimal number, 7
Hodgkin, A., 317

Hodgkin-Huxley neuron, 317
Hooke’s Law, 322
Horner’s method, 3
Householder reflector, 220, 220,

545, 546
Huffman coding, 501, 515

in JPEG, 517
Huffman tree, 517
Huxley, A., 317
hypotenuse, 19

ice cream, 60
ideal gas law, 60
IEEE, 8, 23, 92
ill-conditioned, 50, 90, 367
image compression, 505, 508, 561
image file

baseline JPEG, 512
grayscale, 505
JPEG, 495, 512

importance sampling, 529
Improved Euler Method, 298
IMSL, 23
incompressible flow, 399
inflection point, 169
information

Shannon, 515
initial condition, 282
initial value problem, 282

existence and uniqueness, 288
initial-boundary conditions, 375
inner product, 584
integral

arc length, 265
improper, 263, 265

integrating factor, 290
integration

Romberg, 266
Intel Corp., 374
Intermediate Value Theorem, 20, 25, 29

Generalized, 245
interpolating polynomial

Chebyshev, 159
interpolation, 139

by orthogonal functions, 497
Chebyshev, 159
Lagrange, 64, 140, 255
Newton’s divided difference, 142, 153
polynomial, 254
trigonometric, 467, 476

interpolation error formula, 152
inverse kinematics problem, 67
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Inverse Quadratic Interpolation, 64, 65, 69
IQI, see Inverse Quadratic Interpolation
iterative method, 106
Ito integral, 453

Jacobi Method, 106
Jacobian, see matrix Jacobian, 361
JPEG standard, 495

Annex K, 512

Keeling, C., 211
knot

cubic spline, 167
Krylov methods, 226

Langevin equation, 457
Laplace equation, 398, 414
Laplacian, 398
least squares, 558

by QR factorization, 217
from DCT, 499
nonlinear, 203
parabola, 488
trigonometric, 485

left-justified, 8
Legendre polynomial, 275
Legendre, A., 188
Lennard-Jones potential, 565, 580
Levenberg-Marquardt Method, 236
line

least squares, 193
linear congruential generator, 433
Lipschitz constant, 288
Lipschitz continuous, 288
local extrapolation, 327
logistic equation, 282
long-double precision, see extended precision
Lorenz equations, 319
Lorenz, E., 319
loss of significance, 16, 248
loss parameter, 508
low-discrepancy sequence, 442
LU factorization, 79
luminance, 512

machine epsilon, 9, 12, 13, 46, 248, 532
magnitude

of a complex number, 468
of a complex vector, 471

mantissa, 8
Maple, 23
Markov process, 551
Mathematica, 23

matrix
adjacency, 550
banded, 104
coefficient, 79
condition number, 88, 88
diagonalizable, 587
Fourier, 471
full, 113
google, 551
Hessian, 576
Hilbert, 30, 79, 94, 130, 200, 225, 594
identity, 584
inverse, 557
invertible, 584
Jacobian, 131, 576
lower triangular, 79
nonsymmetric, 541
orthogonal, 215, 483, 495, 520, 542, 554
permutation, 97, 98
positive-definite, 117, 578
projection, 220
quantization, 508
rank-one, 558, 584
similar, 542, 587
singular, 584
sparse, 71, 113
stochastic, 547
structure, 83
symmetric, 117, 539
transpose, 190
tridiagonal, 171, 359, 379
unitary, 471
upper Hessenberg, 544
upper triangular, 79, 215, 542
Van der Monde, 197

matrix multiplication
blockwise, 585

Mauna Loa, 150
Maxwell’s equation, 399
Mean Value Theorem, 20, 35

for Integrals, 22, 256, 262
Mersenne prime, 434
Method of False Position, 63

slow convergence, 63
midpoint, 26, 27, 62
Midpoint Method, 314, 336
Midpoint Rule, 262

Composite, 263
two-dimensional, 410

Milne-Simpson Method, 344
Milstein Method, 458
MKS units, 102
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model
drug concentration, 208
exponential, 203
linearization, 204
population, 282
power law, 206

Modified Discrete Cosine
Transform, 496, 521

Modified Gram-Schmidt, 218
moment of inertia, 102
Monte Carlo

convergence, 445
pseudo-random, 440
quasi-random, 444
Type 1, 434
Type 2, 435

Moore’s Law, 206, 374
Moore, G.C., 206
motion of projectile, 349, 354
Muller’s Method, 63
multiplicity, 46, 50
multistep methods, 336

consistent, 341
convergent, 341
local truncation error, 339
stable, 340, 341
strongly stable, 340
weakly stable, 340

Matlab
animation in, 279
Symbolic Toolbox, 241

Matlab code
ab2step.m, 337, 343
adapquad.m, 271
am1step.m, 343
bezierdraw.m, 181
bisect.m, 28, 353
broyden2.m, 135
brusselator.m, 427
burgers.m, 419
bvpfem.m, 372
clickinterp.m, 147
crank.m, 387
cubrt.m, 593
dftfilter.m, 488, 492
dftinterp.m, 480
euler.m, 286
euler2.m, 303
eulerstep.m, 286
exmultistep.m, 337
fisher2d.m, 425
fpi.m, 32

gss.m, 568
halton.m, 443
heatbdn.m, 384
heatfd.m, 378, 381
hessen.m, 546
hh.m, 318
invpowerit.m, 536
jacobi.m, 115
nest.m, 3, 146, 148, 165
newtdd.m, 146, 148
nlbvpfd.m, 362
nsi.m, 540
orbit.m, 310
pend.m, 307
poisson.m, 402, 406
poissonfem.m, 412
powerit.m, 534
predcorr.m, 343
rk4step.m, 319
romberg.m, 267
rqi.m, 537
shiftedqr.m, 543
shiftedqr0.m, 543
sin2.m, 165
sparsesetup.m, 115
spi.m, 570
splinecoeff.m, 172
splineplot.m, 173
tacoma.m, 324
trapstep.m, 308, 324, 337
unshiftedqr.m, 541
unstable2step.m, 337
weaklystab2step.m, 337
wilkpoly.m, 47

Matlab command
axis, 592, 597
backslash, 89, 94, 412
break, 594
button, 147
cla, 597
clear, 590
cond, 89
conj, 494
dct, 504
det, 30
diag, 115, 378
diary, 590
diff, 251
double, 505
drawnow, 307, 598
eig, 30, 547
erf, 273
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error, 75, 595
fft, 472, 480, 494
figure, 592
fminunc, 582
for, 594
format, 591
format hex, 7, 11
fprintf, 591
fzero, 44, 47, 51, 65, 69
ginput, 147, 181
global, 319, 596
grid, 592
handel, 490
hilb, 30, 90
ifft, 472, 480, 494
imagesc, 505
imread, 505, 513
int, 251
interp1, 187
length, 115, 597
line, 280, 324
load, 590
log, 590
loglog, 265
lu, 101, 115, 446
max, 30, 534
mean, 596
mesh, 392, 402, 406, 592
nargin, 596
ode23s, 331, 335
ode45, 329, 331, 353
odeset, 329
ones, 90, 115, 597
pause, 598
pi, 30
plot, 30, 591
plot3, 581
polyfit, 187, 196
polyval, 187, 196
pretty, 251
qr, 540, 541, 543
rand, 437
randn, 439, 456, 494
rem, 594
round, 286, 529
semilogy, 592
set, 280, 307
simple, 251
size, 597
solve, 241
sound, 490, 492, 529
spdiags, 115, 371

spline, 175, 187
std, 494, 596
subplot, 319, 592
subs, 241
surf, 413, 592
svd, 555, 562
syms, 241, 251
wavread, 490, 529
wavwrite, 490
while, 594
xdata, 598
ydata, 598
zeros, 115, 597

NAG, 23
Napoleon, 468
Navier-Stokes equations, 428
Nelder-Mead search, 571, 581
nested multiplication, 2, 139
Newton

law of cooling, 404
second law of motion, 282, 305, 309, 322, 349

Newton’s Method, 52, 69, 334, 576
convergence, 53
Modified, 57
Multivariate, 131, 231, 233, 360
periodicity, 58

Newton-Cotes formula, 255
closed, 259
open, 262

Newton-Raphson Method, see Newton’s Method
noise, 492

Gaussian, 493
norm

Euclidean, 212
infinity, 86
matrix, 88, 90
maximum, 86
vector, 90

normal equations, 191, 498
Normalized Simultaneous Iteration, 540
numerical integration, 254

composite, 259

objective function, 565
ODE solver

multistep, 336
convergence, 296
explicit, 332
implicit, 333
variable step size, 325

one-body problem, 309
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option
barrier, 465
call, 464
put, 465

order
of a differential equation, 303
of approximation, 244
of ODE solver, 296

ordinary differential equation, 349
Ornstein-Uhlenbeck process, 457
orthogonal

functions, 368
matrix, 215

orthogonalization, 539
Gram-Schmidt, 212
Modified Gram-Schmidt, 218

orthonormal, 552, 587
outer product, 584

page rank, 549
panel, 259
parabola, 64

interpolating, 139
least squares, 194

partial derivative, 334
partial differential equation, 374

elliptic, 398, 404
hyperbolic, 393
parabolic, 375

PDF file, 183
pencil, 44
pendulum, 305

damped, 308
double, 309

pivot, 75, 101
pivoting

partial, 95, 100
Poincaré, H., 311
Poincaré-Bendixson Theorem, 308
Poisson equation, 398
polishing, 113
polynomial

Chebyshev, 159, 367
evaluation, 1
Legendre, 275
monic, 161
orthogonal, 274
Taylor, 48
Wilkinson, 47, 50, 51

PostScript, 138
potential, 398
Power Iteration, 532, 549

convergence, 534
inverse, 535
shifted, 536

power law, 206, 445
Prandtl number, 320
preconditioner, 126

Gauss-Seidel, 127
Jacobi, 126
SSOR, 127

preconditioning, 125
predictor-corrector method, 342
Prigogine, I., 426
prismatic joint, 67
probability distribution function, 437
product rule

matrix/vector, 589
progress curve, 280
projection

orthogonal, 559
psychoacoustics, 528

QR Algorithm, 544
shifted, 543
unshifted, 541

convergence, 541
QR-factorization, 215

operation count, 223
reduced, 213

quadratic formula, 17
quadrature, 254

Gaussian, 276
quantization, 508, 561

JPEG standard, 512
linear, 508

radix, 6
random number

exponential, 437
normal, 438
pseudo-, 432
quasi-, 442
uniform, 432

random number generator
minimal standard, 434, 437
period, 433
RANDNUM, 439
randu, 435
uniform, 432

random seed, 432
random variable

standard deviation, 440
standard normal, 438, 456
variance, 440
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random walk, 447
biased, 451

rank, 557
Rayleigh quotient, 534
Rayleigh Quotient Iteration, 537
Rayleigh-Bénard convection, 319
reaction-diffusion equation, 390, 421
recursion relation

Chebyshev polynomials, 160
Regula Falsi, see Method of False Position
rejection method, 439
relaxation parameter, 110
residual, 86, 125, 234, 368
Reynolds number, 320
Richardson extrapolation, 249
Riemann integral, 453
right-hand side vector, 79
RKF45, see Runge-Kutta-Fehlberg Method
RMSE, 192
robot, 24
Rolle’s Theorem, 20
Romberg Integration, 267
root, 25

double, 46
multiple, 46, 56, 59
simple, 46
triple, 46

root of unity, 469
primitive, 469

rounding, 9
to nearest, 9, 14, 15

row exchange, 95
row vector, 583
run length encoding, 518
Runge example, 155
Runge Kutta Method, First-Order

Stochastic, 460
Runge phenomenon, 155, 157, 158, 367
Runge-Kutta Method, 314

global truncation error, 317
embedded pair, 326
order 2/3, 327
order four, 316, 339

Runge-Kutta-Fehlberg Method, 328

sample mean, 448
sample variance, 448
sampling rate, 490
Scholes, M., 431, 464
Schur form

real, 542
Scripps Institute, 211

Secant Method, 61, 64, 65
convergence, 61
slow convergence, 63

sensitive dependence
on initial conditions, 311, 320

sensitivity, 48
Sensitivity Formula for Roots, 48
separation of variables, 287
Shannon, C., 515
Sherman-Morrison formula, 585
shifted QR algorithm, 562
Shooting Method, 352, 357
sign, 8
significant digits, 43

loss of, 248
Simpson’s Rule, 257, 327, 344

adaptive, 272
Composite, 261

single precision, 8
singular value, 552
singular value decomposition, 554

calculation of, 562
nonuniqueness, 554

singular vector, 552
sinusoid

least squares, 201
size

in JPEG code, 517
slope field, 282
solution

least squares, 189
SOR, see Successive Over-Relaxation
spectral method, 367
spectral radius, 111, 382, 588
spline

Bézier, 138, 179
cubic, 167
linear, 166

square root, 30, 38, 54
squid axon, 318
stability

conditional, 380, 395
unconditional, 382

stage
of ODE solver, 315

steepest descent, 577
stencil, 376
step size, 284, 376, 417
Stewart platform, 24, 67

planar, 67
stiffness, 71
stochastic differential equation, 452
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stochastic process, 447
continuous-time, 452

stopping criterion, 40, 47, 65, 575
stress, 71
strictly diagonally dominant, 107, 171
strike price, 464
strut, 67
submatrix

principal, 118
Successive Over-Relaxation, 109
Successive Parabolic Interpolation, 569
swamping, 91
synthetic division, 3

tableau form, 92
Tacoma Narrows Bridge, 281, 322
Taylor formula, 53
Taylor Method, 300
Taylor polynomial, 21
Taylor remainder, 21
Taylor’s Theorem, 21, 244, 338
thermal conductivity, 404
thermal diffusivity, 375
three-body problem, 311
time series, 476
transpose

of a matrix, 584
Trapezoid Method

explicit, 297, 336
implicit, 342

Trapezoid Rule, 257, 298
adaptive, 269
Composite, 260

tridiagonal, 562
trigonometric function

order n, 477
plotting, 480

Tukey, J., 473
Turing patterns, 426
Turing, A., 426

unconstrained optimization, 566
updating

interpolating polynomial, 144
upper Hessenberg form, 544, 562

Van der Corput sequence, 443
Van der Waal’s equation, 60
Van der Waals force, 565, 580
vector

orthogonal, 190
residual, 86

vector calculus, 588
volatility, 465
Von Neumann stability, 379
Von Neumann, J., 432

wave equation, 393
wave speed, 393
Weather Underground, 210
web search, 549
well-conditioned, 50
Wiener, N., 492
Wilkinson polynomial, 47, 50, 51, 88, 532
Wilkinson, J., 47
wind turbine, 211
window function, 529
world oil production, 157
world population, 151, 178

Young’s modulus, 71, 102

zero-padding, 524
ziggurat algorithm, 439
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