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and practice of time series analysis have developed rapidly since the appear-
0 of the seminal work of George E. P. Box and Gwilym M. Jenkins, Time
ysis: Forecasting and Control, now available in its third edition (1994) with
regory C. Reinsel. Many books on time series have appeared since then, but
m give too little practical application, while others give too little theoretical
. This book attempts to present both application and theory at a level acces-
ide variety of students and practitioners. Our approach is to mix application
throughout the book as they are naturally needed. 
ok was developed for a one-semester course usually attended by students in
conomics, business, engineering, and quantitative social sciences. Basic
tistics through multiple linear regression is assumed. Calculus is assumed
extent of minimizing sums of squares, but a calculus-based introduction to
 necessary for a thorough understanding of some of the theory. However,
cts concerning expectation, variance, covariance, and correlation are
 appendices. Also, conditional expectation properties and minimum mean

r prediction are developed in appendices. Actual time series data drawn from
iplines are used throughout the book to illustrate the methodology. The book

ditional topics of a more advanced nature that can be selected for inclusion in
the instructor so chooses.
the plots and numerical output displayed in the book have been produced
software, which is available from the R Project for Statistical Computing at
ect.org. Some of the numerical output has been edited for additional clarity
licity. R is available as free software under the terms of the Free Software
's GNU General Public License in source code form. It runs on a wide vari-

 platforms and similar systems, Windows, and MacOS.
anguage and environment for statistical computing and graphics, provides a

y of statistical (e.g., time-series analysis, linear and nonlinear modeling, clas-
ical tests) and graphical techniques, and is highly extensible. The extensive
n Introduction to R, provides an introduction to the R software specially

 go with this book. One of the authors (KSC) has produced a large number of
nced R functions specifically tailored to the methods described in this book.
sted on page 468 and are available in the package named TSA on the R
ebsite at www.r-project.org. We have also constructed R command script
ch chapter. These are available for download at www.stat.uiowa.edu/

A.htm. We also show the required R code beneath nearly every table and
isplay in the book. The datasets required for the exercises are named in each
 an appropriate filename; for example, larain for the Los Angeles rainfall
vii

ver, if you are using the TSA package, the datasets are part of the package
 accessed through the R command data(larain), for example.
the datasets are also available at the textbook website as ASCII files with
mes in the first row. We believe that many of the plots and calculations
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 the book could also be obtained with other software, such as SAS©, Splus©,
s©, SCA©, EViews©, RATS©, Ox©, and others.
ok is a second edition of the book Time Series Analysis by Jonathan Cryer,

n 1986 by PWS-Kent Publishing (Duxbury Press). This new edition contains
f the well-received original in addition to considerable new material, numer-
tasets, and new exercises. Some of the new topics that are integrated with the
lude unit root tests, extended autocorrelation functions, subset ARIMA mod-
tstrapping. Completely new chapters cover the topics of time series regres-

s, time series models of heteroscedasticity, spectral analysis, and threshold
though the level of difficulty in these new chapters is somewhat higher than
 basic material, we believe that the discussion is presented in a way that will
aterial accessible and quite useful to a broad audience of users. Chapter 15,
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DUCTION

ed from observations collected sequentially over time are extremely com-
iness, we observe weekly interest rates, daily closing stock prices, monthly
s, yearly sales figures, and so forth. In meteorology, we observe daily high
mperatures, annual precipitation and drought indices, and hourly wind
griculture, we record annual figures for crop and livestock production, soil
 export sales. In the biological sciences, we observe the electrical activity of

 millisecond intervals. In ecology, we record the abundance of an animal spe-
st of areas in which time series are studied is virtually endless. The purpose
es analysis is generally twofold: to understand or model the stochastic mech-
gives rise to an observed series and to predict or forecast the future values of
ed on the history of that series and, possibly, other related series or factors.
apter will introduce a variety of examples of time series from diverse areas

ion. A somewhat unique feature of time series and their models is that we
not assume that the observations arise independently from a common popu-
rom populations with different means, for example). Studying models that
 dependence is the key concept in time series analysis.

mples of Time Series

on, we introduce a number of examples that will be pursued in later chapters.

infall in Los Angeles

 displays a time series plot of the annual rainfall amounts recorded in Los
alifornia, over more than 100 years. The plot shows considerable variation in
ount over the years — some years are low, some high, and many are

 in value. The year 1883 was an exceptionally wet year for Los Angeles,
 was quite dry. For analysis and modeling purposes we are interested in
not consecutive years are related in some way. If so, we might be able to use
ainfall value to help forecast next year’s rainfall amount. One graphical way
te that question is to pair up consecutive rainfall values and plot the resulting
1

of pairs.
t 1.2 shows such a scatterplot for rainfall. For example, the point plotted near
ght-hand corner shows that the year of extremely high rainfall, 40 inches in
ollowed by a middle of the road amount (about 12 inches) in 1884. The point
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> win.gra
> data(la
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> win.gra
> plot(y=
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 of the display shows that the 40 inch year was preceded by a much more
 of about 15 inches.

1 Time Series Plot of Los Angeles Annual Rainfall

(TSA)
ph(width=4.875, height=2.5,pointsize=8)
rain); plot(larain,ylab='Inches',xlab='Year',type='o')

2 Scatterplot of LA Rainfall versus Last Year’s LA Rainfall
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in impression that we obtain from this plot is that there is little if any infor-
ut this year’s rainfall amount from last year’s amount. The plot shows no
d no general tendencies. There is little correlation between last year’s rainfall
 this year’s amount. From a modeling or forecasting point of view, this is not
esting time series!

rial Chemical Process

d example, we consider a time series from an industrial chemical process.
e measured here is a color property from consecutive batches in the process.
 shows a time series plot of these color values. Here values that are neighbors
 to be similar in size. It seems that neighbors are related to one another.

3 Time Series Plot of Color Property from a Chemical Process

ph(width=4.875, height=2.5,pointsize=8)
lor)
lor,ylab='Color Property',xlab='Batch',type='o')

n be seen better by constructing the scatterplot of neighboring pairs as we
 first example.

t 1.4 displays the scatterplot of the neighboring pairs of color values. We see
ard trend in this plot—low values tend to be followed in the next batch by

 middle-sized values tend to be followed by middle-sized values, and high
 to be followed by high values. The trend is apparent but is not terribly
example, the correlation in this scatterplot is about 0.6. 
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4 Scatterplot of Color Value versus Previous Color Value

ph(width=3,height=3,pointsize=8)
color,x=zlag(color),ylab='Color Property', 
'Previous Batch Color Property')

undance of Canadian Hare

xample concerns the annual abundance of Canadian hare. Exhibit 1.5 gives
ies plot of this abundance over about 30 years. Neighboring values here are
 related. Large changes in abundance do not occur from one year to the next.
oring correlation is seen clearly in Exhibit 1.6 where we have plotted abun-

us the previous year’s abundance. As in the previous example, we see an
d in the plot—low values tend to be followed by low values in the next year,
d values by middle-sized values, and high values by high values. 
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5 Abundance of Canadian Hare

ph(width=4.875, height=2.5,pointsize=8)
re); plot(hare,ylab='Abundance',xlab='Year',type='o')

6 Hare Abundance versus Previous Year’s Hare Abundance

ph(width=3, height=3,pointsize=8)
hare,x=zlag(hare),ylab='Abundance',
'Previous Year Abundance')
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verage Temperatures in Dubuque, Iowa

e monthly temperatures (in degrees Fahrenheit) over a number of years
 Dubuque, Iowa, are shown in Exhibit 1.7.

7 Average Monthly Temperatures, Dubuque, Iowa

ph(width=4.875, height=2.5,pointsize=8)
mpdub); plot(tempdub,ylab='Temperature',type='o')

me series displays a very regular pattern called seasonality. Seasonality for
lues occurs when observations twelve months apart are related in some man-
her. All Januarys and Februarys are quite cold but they are similar in value
t from the temperatures of the warmer months of June, July, and August, for

here is still variation among the January values and variation among the June
dels for such series must accommodate this variation while preserving the
. Here the reason for the seasonality is well understood—the Northern
’s changing inclination toward the sun.

il Filter Sales

mple for this chapter concerns the monthly sales to dealers of a specialty oil
nstruction equipment manufactured by John Deere. When these data were
ted to one of the authors, the manager said, “There is no reason to believe
ales are seasonal.” Seasonality would be present if January values tended to
o other January values, February values tended to be related to other Febru-
and so forth. The time series plot shown in Exhibit 1.8 is not designed to dis-
ality especially well. Exhibit 1.9 gives the same plot but amended to use
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 plotting symbols. In this plot, all January values are plotted with the charac-
bruarys with F, all Marches with M, and so forth.† With these plotting sym-
uch easier to see that sales for the winter months of January and February all
igh, while sales in September, October, November, and December are gener-
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w. The seasonality in the data is much easier to see from this modified time

8 Monthly Oil Filter Sales

lfilters); plot(oilfilters,type='o',ylab='Sales')

9 Monthly Oil Filter Sales with Special Plotting Symbols

lfilters,type='l',ylab='Sales')
y=oilfilters,x=time(oilfilters),
s.vector(season(oilfilters)))
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 (and June and July),
y, M=March (and May), and so forth
ding the plot, you will still have to distinguish between Januarys, Junes, and Julys,
en Marches and Mays, and Aprils and Augusts, but this is easily done by looking at
boring plotting characters.
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ral, our goal is to emphasize plotting methods that are appropriate and use-
ng patterns that will lead to suitable models for our time series data. In later
e will consider several different ways to incorporate seasonality into time
ls.

odel-Building Strategy

ropriate models for time series is a nontrivial task. We will develop a multi-
-building strategy espoused so well by Box and Jenkins (1976). There are
steps in the process, each of which may be used several times:

el specification (or identification)

el fitting, and

el diagnostics

el specification (or identification), the classes of time series models are
t may be appropriate for a given observed series. In this step we look at the

f the series, compute many different statistics from the data, and also apply
dge of the subject matter in which the data arise, such as biology, business,
 It should be emphasized that the model chosen at this point is tentative and
evision later on in the analysis.
sing a model, we shall attempt to adhere to the principle of parsimony; that
l used should require the smallest number of parameters that will adequately
e time series. Albert Einstein is quoted in Parzen (1982, p. 68) as remarking
hing should be made as simple as possible but not simpler.”
odel will inevitably involve one or more parameters whose values must be
rom the observed series. Model fitting consists of finding the best possible
f those unknown parameters within a given model. We shall consider criteria
t squares and maximum likelihood for estimation.
 diagnostics is concerned with assessing the quality of the model that we
ied and estimated. How well does the model fit the data? Are the assump-
 model reasonably well satisfied? If no inadequacies are found, the modeling
umed to be complete, and the model may be used, for example, to forecast
es. Otherwise, we choose another model in the light of the inadequacies
 is, we return to the model specification step. In this way, we cycle through
ps until, ideally, an acceptable model is found.
e the computations required for each step in model building are intensive,
y on readily available statistical software to carry out the calculations and do
. 
e Series Plots in History

toTufte (1983, p. 28), “The time-series plot is the most frequently used form
design. With one dimension marching along to the regular rhythm of sec-
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tes, hours, days, weeks, months, years, or millennia, the natural ordering of
ale gives this design a strength and efficiency of interpretation found in no
ic arrangement.”
t 1.10 reproduces what appears to be the oldest known example of a time
dating from the tenth (or possibly eleventh) century and showing the inclina-
 planetary orbits.† Commenting on this artifact, Tufte says “It appears as a
 and isolated wonder in the history of data graphics, since the next extant
 plotted time-series shows up some 800 years later.”

10 A Tenth-Century Time Series Plot

 Overview of the Book

evelops the basic ideas of mean, covariance, and correlation functions and
he important concept of stationarity. Chapter 3 discusses trend analysis and
s how to estimate and check common deterministic trend models, such as
ear time trends and seasonal means.
r 4 begins the development of parametric models for stationary time series,
 so-called autoregressive moving average (ARMA) models (also known as
s models). These models are then generalized in Chapter 5 to encompass
s of stochastic nonstationary cases—the ARIMA models.
rs 6, 7, and 8 form the heart of the model-building strategy for ARIMA mod-
niques are presented for tentatively specifying models (Chapter 6), effi-
mating the model parameters using least squares and maximum likelihood
, and determining how well the models fit the data (Chapter 8).

r 9 thoroughly develops the theory and methods of minimum mean square
asting for ARIMA models. Chapter 10 extends the ideas of Chapters 4

Tufte (1983, p. 28).
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o stochastic seasonal models. The remaining chapters cover selected topics
 somewhat more advanced nature.

ES

oftware to produce the time series plot shown in Exhibit 1.2, on page 2. The
are in the file named larain.†

uce the time series plot displayed in Exhibit 1.3, on page 3. The data file is
d color.
late a completely random process of length 48 with independent, normal val-
lot the time series plot. Does it look “random”? Repeat this exercise several
 with a new simulation each time.
late a completely random process of length 48 with independent, chi-square
buted values, each with 2 degrees of freedom. Display the time series plot.
 it look “random” and nonnormal? Repeat this exercise several times with a
simulation each time.
late a completely random process of length 48 with independent, t-distrib-
values each with 5 degrees of freedom. Construct the time series plot. Does it
“random” and nonnormal? Repeat this exercise several times with a new
lation each time.
truct a time series plot with monthly plotting symbols for the Dubuque tem-
ure series as in Exhibit 1.7, on page 6. The data are in the file named temp-
 have installed the R package TSA, available for download at www.r-project.org, the
 data are accessed by the R command: data(larain). An ASCII file of the data is also
ble on the book Website at www.stat.uiowa.edu/~kchan/TSA.htm.
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AMENTAL CONCEPTS

r describes the fundamental concepts in the theory of time series models. In
e introduce the concepts of stochastic processes, mean and covariance func-

nary processes, and autocorrelation functions.

e Series and Stochastic Processes

ce of random variables {Yt : t = 0, ±1, ±2, ±3,…} is called a stochastic
 serves as a model for an observed time series. It is known that the complete
c structure of such a process is determined by the set of distributions of all
tions of the Y’s. Fortunately, we will not have to deal explicitly with these

e distributions. Much of the information in these joint distributions can be
 terms of means, variances, and covariances. Consequently, we concentrate

on these first and second moments. (If the joint distributions of the Y’s are
 normal distributions, then the first and second moments completely deter-
 joint distributions.)

ans, Variances, and Covariances

astic process {Yt : t = 0, ±1, ±2, ±3,…}, the mean function is defined by

(2.2.1)

s just the expected value of the process at time t. In general, μt can be differ-
time point t.
tocovariance function, γt,s, is defined as

(2.2.2)

Yt, Ys) = E[(Yt − μt)(Ys − μs)] = E(YtYs) − μt μs .
tocorrelation function, ρt,s, is given by

(2.2.3)

μt E Yt( )= for t = 0, 1± 2 ...,±,

γt s, Cov Yt  Ys,( )= for t s = 0, 1± 2 ...,±,,

ρt s, Corr Yt  Ys,( )= for t s = 0, 1± 2 ...,±,,
11

(2.2.4)Corr Yt  Ys,( )
Cov Yt  Ys,( )

Var Yt( )Var Ys( )
--------------------------------------------

γt s,

γt t, γs s,

---------------------= =
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Fundamental Concepts

iew the basic properties of expectation, variance, covariance, and correlation
x A on page 24.
that both covariance and correlation are measures of the (linear) dependence
ndom variables but that the unitless correlation is somewhat easier to inter-
llowing important properties follow from known results and our definitions:

(2.2.5)

 of ρt,s near ±1 indicate strong (linear) dependence, whereas values near zero
ak (linear) dependence. If ρt,s = 0, we say that Yt and Ys are uncorrelated.
stigate the covariance properties of various time series models, the follow-
ill be used repeatedly: If c1, c2,…, cm and d1, d2,… , dn are constants and t1,
d s1, s2,… , sn are time points, then

(2.2.6)

oof of Equation (2.2.6), though tedious, is a straightforward application of
roperties of expectation. As a special case, we obtain the well-known result

(2.2.7)

om Walk

 be a sequence of independent, identically distributed random variables
ero mean and variance . The observed time series, {Yt : t = 1, 2,…}, is
 as follows:

(2.2.8)

ly, we can write
(2.2.9)

γt t, Var Yt( )=

γt s, γs t,=

γt s, γt t, γs s,≤

ρt t, 1=

ρt s, ρs t,=

ρt s, 1≤ ⎭
⎪
⎬
⎪
⎫

Cov ciYti
i 1=

m

∑ djYsj
j 1=

n

∑,   cidjCov Yti
Ysj

,( )
j 1=

n

∑
i 1=

m

∑=

ciYti
i 1=

n

∑ ci
2Var Yti

( )
i 1=

n

∑ 2   cicjCov Yti
Ytj

,( )
j 1=

i 1–

∑
i 2=

n

∑+=

σe
2

Y1 e1=
Y2 e1 e2+=

...

Yt e1 e2
… et+ + +=

⎭
⎪
⎪
⎬
⎪
⎪
⎫

Yt Yt 1– et+=
l condition” Y1 = e1. If the e’s are interpreted as the sizes of the “steps” taken
r backward) along a number line, then Yt is the position of the “random
ime t. From Equation (2.2.8), we obtain the mean function
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μt = 0    for all t (2.2.10)
e

(2.2.11)

 the process variance increases linearly with time.
stigate the covariance function, suppose that 1 ≤ t ≤ s. Then we have

tion (2.2.6), we have

ese covariances are zero unless i = j, in which case they equal Var(ei) = .
xactly t of these so that γt,s = t .

t,s = γs,t, this specifies the autocovariance function for all time points t and s
 write

(2.2.12)

rrelation function for the random walk is now easily obtained as

(2.2.13)

llowing numerical values help us understand the behavior of the random

lues of Y at neighboring time points are more and more strongly and posi-

t E Yt( ) E e1 e2
… et+ + +( ) E e1( ) E e2( ) … E et( )+ + += = =

0 0 … 0+ + +=

Yt) Var e1 e2
… et+ + +( ) Var e1( ) Var e2( ) … Var et( )+ + += =

σe
2 σe

2 … σe
2+ + +=

Var Yt( ) tσe
2=

ov Yt  Ys,( ) Cov e1 e2
… et  + + + e1 e2

… et et 1+
… es+ + + + + +,( )=

γt s,   Cov ei ej,( )
j 1=

t

∑
i 1=

s

∑=

σe
2

σe
2

γt s, tσe
2= for 1 t s≤ ≤

ρt s,
γt s,

γt t, γs s,

--------------------- t
s
--= = for 1 t s≤ ≤

ρ1 2,
1
2
--- 0.707= =

ρ24 25,
24
25
------ 0.980= =

ρ8 9,
8
9
--- 0.943= =

ρ1 25,
1

25
------ 0.200= =
lated as time goes by. On the other hand, the values of Y at distant time
ess and less correlated.
lated random walk is shown in Exhibit 2.1 where the e’s were selected from

normal distribution. Note that even though the theoretical mean function is
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 time points, the fact that the variance increases over time and that the corre-
een process values nearby in time is nearly 1 indicate that we should expect
ions of the process away from the mean level of zero.
ple random walk process provides a good model (at least to a first approxi-

 phenomena as diverse as the movement of common stock price, and the
small particles suspended in a fluid—so-called Brownian motion.

1  Time Series Plot of a Random Walk

ph(width=4.875, height=2.5,pointsize=8)
alk) # rwalk contains a simulated random walk
alk,type='o',ylab='Random Walk')

 Average

 example, suppose that {Yt} is constructed as

(2.2.14)

lways throughout this book) the e’s are assumed to be independent and iden-
ibuted with zero mean and variance . Here
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Yt

et et 1–+

2
----------------------=

σe
2

μt E Yt( ) E
et et 1–+

2
----------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫ E et( ) E et 1–( )+

2
---------------------------------------= = =
0=
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(2.2.15)

e,

ov(Yt, Yt−k) = 0 for k > 1, so we may write

correlation function, we have

(2.2.16)

Var Yt( ) Var
et et 1–+

2
----------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫ Var et( ) Var et 1–( )+

4
---------------------------------------------------= =

0.5σe
2=

Yt 1–, ) Cov
et et 1–+

2
----------------------

et 1– et 2–+

2
-----------------------------,

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

Cov et et 1–,( ) Cov et et 2–,( ) Cov et 1– et 1–,( )+ +

4
--------------------------------------------------------------------------------------------------------------------------=

       
Cov et 1– et 2–,( )

4
-----------------------------------------+

Cov et 1– et 1–,( )
4

-----------------------------------------= (as all the other covariances are zero)

0.25σe
2=

γt t 1–, 0.25σe
2= for all t

Cov Yt Yt 2–,( ) Cov
et et 1–+

2
----------------------

et 2– et 3–+

2
-----------------------------,

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

0= since the e′s are independent.

γt s,

0.5σe
2    for t s– 0=

0.25σe
2    for t s– 1=

0    for t s– 1>
⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

ρt s,

1    for t s– 0=

0.5    for t s– 1=

0    for t s– 1>⎩
⎪
⎨
⎪
⎧

=

2 2
/0.5 = 0.5.
 that ρ2,1 = ρ3,2 = ρ4,3 = ρ9,8 = 0.5. Values of Y precisely one time unit apart
y the same correlation no matter where they occur in time. Furthermore, ρ3,1

t − 2 and, more generally, ρt, t − k is the same for all values of t. This leads us to
nt concept of stationarity.

e σe
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tionarity

tistical inferences about the structure of a stochastic process on the basis of
 record of that process, we must usually make some simplifying (and pre-
asonable) assumptions about that structure. The most important such
 is that of stationarity. The basic idea of stationarity is that the probability
vern the behavior of the process do not change over time. In a sense, the pro-

tatistical equilibrium. Specifically, a process {Yt} is said to be strictly sta-
he joint distribution of  is the same as the joint distribution of

 for all choices of time points t1, t2,…, tn and all choices of time

hen n = 1 the (univariate) distribution of Yt is the same as that of Yt  − k for
n other words, the Y’s are (marginally) identically distributed. It then follows
 E(Yt  − k) for all t and k so that the mean function is constant for all time.
y, Var(Yt) = Var(Yt  − k) for all t and k so that the variance is also constant over

 n = 2 in the stationarity definition we see that the bivariate distribution of Yt
t be the same as that of Yt − k and Ys − k from which it follows that Cov(Yt, Ys)

k, Ys − k) for all t, s, and k. Putting k = s and then k = t, we obtain

 covariance between Yt and Ys depends on time only through the time differ-
and not otherwise on the actual times t and s. Thus, for a stationary process,
plify our notation and write

(2.3.1)

at

l properties given in Equation (2.2.5) now become

(2.3.2)

Yt1
Yt2

,… Ytn
, ,

k,… Ytn k–,

γt s, Cov Yt s– Y0,( )=

Cov Y0 Ys t–,( )=

Cov Y0 Y t s–,( )=

γ0 t s–,=

γk Cov Yt Yt k–,( )= and ρk Corr Yt Yt k–,( )=

ρk

γk

γ0
-----=

γ0 Var Yt( )=

γk γ k–=

ρ0 1=

ρk ρ k–=
⎪
⎬
⎪
⎫

cess is strictly stationary and has finite variance, then the covariance func-
epend only on the time lag.
ition that is similar to that of strict stationarity but is mathematically weaker

γk γ0≤ ρk 1≤ ⎭
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wing: A stochastic process {Yt} is said to be weakly (or second-order)
if

 the term stationary when used alone will always refer to this weaker form of
. However, if the joint distributions for the process are all multivariate normal
s, it can be shown that the two definitions coincide. For stationary processes,
only consider k ≥ 0.

se

ortant example of a stationary process is the so-called white noise process,
fined as a sequence of independent, identically distributed random variables
portance stems not from the fact that it is an interesting model itself but from
t many useful processes can be constructed from white noise. The fact that
tly stationary is easy to see since

. Also, μt = E(et) is constant and

ly, we can write

(2.3.3)

hite noise arises from the fact that a frequency analysis of the model shows
logy with white light, all frequencies enter equally. We usually assume that
oise process has mean zero and denote Var(et) by .
oving average example, on page 14, where Yt = (et + et − 1)/2, is another
 a stationary process constructed from white noise. In our new notation, we
 moving average process that

1.

2.

The mean function is constant over time, and

γt t k–, γ0 k,= for all time t and lag k

t1
x1≤ et2

x2≤ … etn
xn≤, , , )

r et1
x1≤( )Pr et2

x2≤( )…Pr etn
xn≤( ) (by independence) 

r et1 k– x1≤( )Pr et2 k– x2≤( )…Pr etn k– xn≤( )

          (identical distributions)

r et1 k– x1≤ et2 k– x2≤ … etn k– xn≤, , ,( ) (by independence)

γk
Var et( )

0⎩
⎨
⎧

=
for k 0=

for k 0≠

ρk
1

0⎩
⎨
⎧

=
for k 0=

for k 0≠

σe
2

ρk

1

0.5

0⎩
⎪
⎨
⎪
⎧

=

for k 0=

for k 1=

for k 2≥
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osine Wave

hat different example,† consider the process defined as follows:

 selected (once) from a uniform distribution on the interval from 0 to 1. A
 such a process will appear highly deterministic since Yt will repeat itself

every 12 time units and look like a perfect (discrete time) cosine curve. How-
ximum will not occur at t = 0 but will be determined by the random phase Φ.

 can be interpreted as the fraction of a complete cycle completed by time t =
statistical properties of this process can be computed as follows:

ero since the sines must agree. So μt = 0 for all t.

Yt 2π t
12
------ Φ+⎝ ⎠

⎛ ⎞cos= for t 0 1 2 …,±,±,=

E Yt( ) E 2π t
12
------ Φ+⎝ ⎠

⎛ ⎞cos
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

2π t
12
------ φ+⎝ ⎠

⎛ ⎞cos φd

0

1

∫=

1
2π
------ 2π t

12
------ φ+⎝ ⎠

⎛ ⎞sin
φ 0=

1

=

1
2π
------ 2π t

12
------ 2π+⎝ ⎠

⎛ ⎞sin 2π t
12
------⎝ ⎠

⎛ ⎞sin–=

γt s, E 2π t
12
------ Φ+⎝ ⎠

⎛ ⎞ 2π s
12
------ Φ+⎝ ⎠

⎛ ⎞coscos
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

2π t
12
------ φ+⎝ ⎠

⎛ ⎞ 2π s
12
------ φ+⎝ ⎠

⎛ ⎞coscos φd
0

1

∫=

1
2
--- 2π t s–

12
----------⎝ ⎠

⎛ ⎞cos 2π t s+
12

---------- 2φ+⎝ ⎠
⎛ ⎞cos+

⎩ ⎭
⎨ ⎬
⎧ ⎫

φd
0

1

∫=

1
2
--- 2π t s–

12
----------⎝ ⎠

⎛ ⎞cos
1

4π
------ 2π t s+

12
---------- 2φ+⎝ ⎠

⎛ ⎞sin
φ 0=

1

+
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

1--- 2π t s–------------⎛ ⎞cos=
xample contains optional material that is not needed in order to understand most of
mainder of this book. It will be used in Chapter 13, Introduction to Spectral Analysis.

2 12⎝ ⎠
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ess is stationary with autocorrelation function

(2.3.4)

ample suggests that it will be difficult to assess whether or not stationarity is
e assumption for a given time series on the basis of the time sequence plot of
d data.
ndom walk of page 12, where , is also constructed
 noise but is not stationary. For example, the variance function, Var(Yt) =
constant; furthermore, the covariance function  for 0 ≤ t ≤ s does
 only on time lag. However, suppose that instead of analyzing {Yt} directly,
r the differences of successive Y-values, denoted ∇Yt. Then ∇Yt = Yt − Yt−1 =
fferenced series, {∇Yt}, is stationary. This represents a simple example of a
ound to be extremely useful in many applications. Clearly, many real time
ot be reasonably modeled by stationary processes since they are not in statis-
rium but are evolving over time. However, we can frequently transform non-
eries into stationary series by simple techniques such as differencing. Such
will be vigorously pursued in the remaining chapters.

mmary

ter we have introduced the basic concepts of stochastic processes that serve
or time series. In particular, you should now be familiar with the important
 mean functions, autocovariance functions, and autocorrelation functions.
ed these concepts with the basic processes: the random walk, white noise, a
ing average, and a random cosine wave. Finally, the fundamental concept of
 introduced here will be used throughout the book.

ES

ose E(X) = 2, Var(X) = 9, E(Y) = 0, Var(Y) = 4, and Corr(X,Y) = 0.25. Find:
ar(X + Y).
ov(X, X + Y).
orr(X + Y, X − Y).
nd Y are dependent but Var(X) = Var(Y), find Cov(X + Y, X − Y).
 have a distribution with mean μ and variance σ2, and let Yt = X for all t.
how that {Yt} is strictly and weakly stationary.
ind the autocovariance function for {Yt}.
ketch a “typical” time plot of Y .

ρk 2π k
12
------⎝ ⎠

⎛ ⎞cos= for k 0 1 2 …,±,±,=

Yt e1 e2
… et+ + +=

γt s, tσe
2=
t
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et} be a zero mean white noise process. Suppose that the observed process is

t + θet − 1, where θ is either 3 or 1/3.
ind the autocorrelation function for {Yt} both when θ = 3 and when θ = 1/3.
ou should have discovered that the time series is stationary regardless of the
alue of θ and that the autocorrelation functions are the same for θ = 3 and θ =
/3. For simplicity, suppose that the process mean is known to be zero and the
ariance of Yt is known to be 1. You observe the series {Yt} for t = 1, 2, ... , n
nd suppose that you can produce good estimates of the autocorrelations ρk.
o you think that you could determine which value of θ is correct (3 or 1/3)
ased on the estimate of ρk? Why or why not?
ose Yt = 5 + 2t + Xt, where {Xt} is a zero-mean stationary series with autoco-
nce function γk.
ind the mean function for {Yt}.
ind the autocovariance function for {Yt}.
 {Yt} stationary? Why or why not?
Xt} be a stationary time series, and define 

how that is free of t for all lags k.
 {Yt} stationary?
ose that {Yt} is stationary with autocovariance function γk.
how that Wt = ∇Yt = Yt − Yt − 1 is stationary by finding the mean and autoco-
ariance function for {Wt}.
how that Ut = ∇2Yt = ∇[Yt − Yt−1] = Yt − 2Yt−1 + Yt−2 is stationary. (You need
ot find the mean and autocovariance function for {Ut}.)
ose that {Yt} is stationary with autocovariance function γk. Show that for any
 positive integer n and any constants c1, c2, ... , cn, the process {Wt} defined

 is stationary. (Note that Exercise
 a special case of this result.)
ose Yt = β0 + β1t + Xt, where {Xt} is a zero-mean stationary series with auto-
iance function γk and β0 and β1 are constants.
how that {Yt} is not stationary but that Wt = ∇Yt = Yt − Yt − 1 is stationary.
 general, show that if Yt = μt + Xt, where {Xt} is a zero-mean stationary
ries and μt is a polynomial in t of degree d, then ∇mYt = ∇(∇m−1Yt) is sta-

onary for m ≥ d and nonstationary for 0 ≤ m < d.
Xt} be a zero-mean, unit-variance stationary process with autocorrelation
ion ρk. Suppose that μt is a nonconstant function and that σt is a positive-val-
onconstant function. The observed series is formed as Yt = μt + σtXt.
ind the mean and covariance function for the {Yt} process.
how that the autocorrelation function for the {Yt} process depends only on
e time lag. Is the {Yt} process stationary?
 it possible to have a time series with a constant mean and with

Yt
Xt
Xt 3+⎩

⎨
⎧

=
for t odd

for t even.
Cov Yt Yt k–,( )

t c1Yt c2Yt 1–
… cnYt n– 1++ + +=
orr(Yt ,Yt − k) free of t but with {Yt} not stationary?
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ose Cov(Xt,Xt − k) = γk is free of t but that E(Xt) = 3t.
 {Xt} stationary?
et Yt = 7 − 3t + Xt. Is {Yt} stationary?
ose that Yt = et − et−12. Show that {Yt} is stationary and that, for k > 0, its
orrelation function is nonzero only for lag k = 12.

t = et − θ(et − 1)2. For this exercise, assume that the white noise series is nor-
 distributed.

ind the autocorrelation function for {Yt}.
 {Yt} stationary?
ate the mean and covariance function for each of the following processes. In
case, determine whether or not the process is stationary.

t = θ0 + tet .

t =  ∇Yt, where Yt is as given in part (a). 

t = et et − 1. (You may assume that {et } is normal white noise.)
ose that X is a random variable with zero mean. Define a time series by
−1)tX.
ind the mean function for {Yt}.
ind the covariance function for {Yt}.
 {Yt} stationary?
ose Yt = A + Xt, where {Xt} is stationary and A is random but independent of
 Find the mean and covariance function for {Yt} in terms of the mean and
ovariance function for {Xt} and the mean and variance of A.
Yt} be stationary with autocovariance function γk. Let .
 that

Yt} be stationary with autocovariance function γk. Define the sample vari-

as .

irst show that .

se part (a) to show that

. 

se the results of Exercise 2.17 for the last expression.)

Y
 _ 1

n
--- Ytt 1=

n∑=

Var Y
 _

( )
γ0

n
-----

2
n
--- 1 k

n
---–⎝ ⎠

⎛ ⎞ γk
k 1=

n 1–

∑+=

1
n
--- 1 k

n
-----–⎝ ⎠

⎛ ⎞ γk
k n– 1+=

n 1–

∑=

S2 1
n 1–
------------ Yt Y

 _
–( )2

t 1=

n

∑=

Yt μ–( )2

t 1=

n

∑ Yt Y
 _

–( )2

t 1=

n

∑ n Y
 _

μ–( )2+=

S2( ) n
n 1–
------------γ0

n
n 1–
------------Var Y

 _
( )– γ0

2
n 1–
------------ 1 k

n
---–⎝ ⎠

⎛ ⎞ γk
k 1=

n 1–

∑–= =
 {Yt} is a white noise process with variance γ0, show that E(S2) =  γ0.
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1 = θ0 + e1, and then for t > 1 define Yt recursively by Yt = θ0 + Yt−1 + et.
 θ0 is a constant. The process {Yt} is called a random walk with drift.
how that Yt may be rewritten as .
ind the mean function for Yt.
ind the autocovariance function for Yt.
ider the standard random walk model where Yt = Yt − 1 + et with Y1 = e1.
se the representation of Yt above to show that μt = μt − 1 for t > 1 with initial

ondition μ1 = E(e1) = 0. Hence show that μt = 0 for all t.
imilarly, show that Var(Yt) = Var(Yt − 1) +  for t > 1 with Var(Y1) = 
nd hence Var(Yt) = t .
or 0 ≤ t ≤ s, use Ys = Yt + et + 1 + et + 2 + + es to show that Cov(Yt, Ys) =
ar(Yt) and, hence, that Cov(Yt, Ys) = min(t, s) .
 random walk with random starting value, let 
> 0, where Y0 has a distribution with mean μ0 and variance . Suppose fur-
hat Y0, e1, ... , et are independent.
how that E(Yt) = μ0 for all t.
how that Var(Yt) = t + .
how that Cov(Yt, Ys) = min(t, s) + .

how that .

et} be a zero-mean white noise process, and let c be a constant with |c| < 1.
e Yt recursively by Yt = cYt − 1 + et with Y1 = e1.

how that E(Yt) = 0.
how that Var(Yt) = (1 + c2 +c4 + + c2t − 2). Is {Yt} stationary?
how that

and, in general,

int: Argue that Yt − 1 is independent of et. Then use
Cov(Yt, Yt − 1) = Cov(cYt − 1 + et, Yt −1 )

or large t, argue that

 that {Yt} could be called asymptotically stationary.
uppose now that we alter the initial condition and put . Show
at now {Yt} is stationary.

Yt tθ0 et et 1–
… e1+ + + +=

σe
2 σe

2

σe
2

…
σe

2

Yt Y0 et et 1–
… e1+ + + +=

σ0
2

σe
2 σ0

2

σe
2 σ0

2

Corr Yt Ys,( )
tσa

2 σ0
2+

sσa
2 σ0

2+
----------------------= for 0 t s≤ ≤

σe
2 …

Corr Yt  Yt 1–,( ) c
Var Yt 1–( )

Var Yt( )
---------------------------=

Corr Yt  Yt k–,( ) ck
Var Yt k–( )

Var Yt( )
--------------------------= for k 0>

r Yt( )
σe

2

1 c2–
--------------≈ and Corr Yt  Yt k–,( ) ck≈ for k 0>

Y1

e1

1 c2–
------------------=
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processes {Zt} and {Yt} are said to be independent if for any time points t1,

 tm and s1, s2, ... , sn the random variables { } are independent

e random variables { }. Show that if {Zt} and {Yt} are inde-

ent stationary processes, then Wt = Zt + Yt is stationary.

Xt} be a time series in which we are interested. However, because the mea-
ent process itself is not perfect, we actually observe Yt = Xt + et. We assume
Xt} and {et} are independent processes. We call Xt the signal and et the
urement noise or error process.
{Xt} is stationary with autocorrelation function ρk, show that {Yt} is also sta-
ry with

all  the signal-to-noise ratio, or SNR. Note that the larger the SNR,
loser the autocorrelation function of the observed process {Yt} is to the auto-
lation function of the desired signal {Xt}.

ose , where β0, f1, f2,..., fk are

ants and A1, A2, ... , Ak, B1, B2, ... , Bk are independent random variables with
means and variances Var(Ai) = Var(Bi) = . Show that {Yt} is stationary
ind its covariance function.
e the function . In geostatistics, Γt,s is called the
ariogram.

how that for a stationary process .
 process is said to be intrinsically stationary if Γt,s depends only on the time
ifference | t − s |. Show that the random walk process is intrinsically station-
ry.
 fixed, positive integer r and constant φ, consider the time series defined by

.
how that this process is stationary for any value of φ.
ind the autocorrelation function.
dom cosine wave extended) Suppose that

e 0 < f < ½ is a fixed frequency and R and Φ are uncorrelated random vari-
 and with Φ uniformly distributed on the interval (0,1).
how that E(Yt) = 0 for all t.
how that the process is stationary with .

 Use the calculations leading up to Equation (2.3.4), on page 19.

Zt1
Zt2

… Ztm
, , ,

Ys1
Ys2

… Ysn
, , ,

Corr Yt Yt k–,( )
ρk

1 σe
2 σX

2⁄+
---------------------------= for k 1≥

σX
2 σe

2⁄

Yt β0 Ai 2πfit( ) Bi 2πfit( )sin+cos[ ]
i 1=

k

∑+=

σi
2

Γt s,
1
2
---E Yt Ys–( )2[ ]=

Γt s, γ0 γ t s––=

et φet 1– φ2et 2–
… φret r–+ + + +

Yt R 2π f t Φ+( )( )cos= for t 0 1 2 …,±,±,=

γk
1
2
---E R2( ) 2πf k( )cos=
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Fundamental Concepts

dom cosine wave extended further) Suppose that

e 0 < f1 < f2 < … < fm < ½ are m fixed frequencies, and R1, Φ1, R2, Φ2,…,

m are uncorrelated random variables with each Φj uniformly distributed on
terval (0,1).

how that E(Yt) = 0 for all t.
how that the process is stationary with .
int: Do Exercise 2.28 first.
hematical statistics required) Suppose that

 

e R and Φ are independent random variables and f is a fixed frequency. The
 Φ is assumed to be uniformly distributed on (0,1), and the amplitude R has
leigh distribution with pdf  for r > 0. Show that for each

point t, Yt has a normal distribution. (Hint: Let  and
. Now find the joint distribution of X and Y. It can also be

n that all of the finite dimensional distributions are multivariate normal and
e the process is strictly stationary.)

ix A: Expectation, Variance, Covariance,
and Correlation

ndix, we define expectation for continuous random variables. However, all
erties described hold for all types of random variables, discrete, continuous,
e. Let X have probability density function f(x) and let the pair (X,Y) have
ility density function f(x,y).

pected value of X is defined as .

; otherwise E(X) is undefined.) E(X) is also called the expectation

mean of X and is often denoted μ or μX.

 of Expectation

unction such that , it may be shown that

Yt Rj 2π fj t Φj+( )[ ]cos
j 1=

m

∑= for t 0 1 2 …,±,±,=

γk
1
2
--- E Rj

2( ) 2πfj k( )cos
j 1=

m

∑=

Yt R 2π ft Φ+( )[ ]cos= for t 0 1 2 …,±,±,=

f r( ) re r2 2⁄–=
Y R 2π ft Φ+( )[ ]cos=

2π ft Φ+( )[ ]sin

E X( ) xf x( ) xd
∞–

∞
∫=

x) xd ∞<

h x( ) f x( ) xd
∞–

∞
∫ ∞<

E h X( )[ ] h x( )f x( ) xd
∞

=

f , it may be shown that

∞–
∫

h x y( , ) f x y,( ) xd yd
∞–

∞
∫

∞–

∞
∫ ∞<
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 (2.A.1)

ry to Equation (2.A.1), we easily obtain the important result

(2.A.2)

e

(2.A.3)

riance of a random variable X is defined as

(2.A.4)

(X2) exists). The variance of X is often denoted by σ2 or .

 of Variance

(2.A.5)

(2.A.6)

re independent, then

(2.A.7)

it may be shown that

(2.A.8)

e square root of the variance of X is called the standard deviation of X and
oted by σ or σX. The random variable (X − μX)/σX is called the standard-
n of X. The mean and standard deviation of a standardized variable are
 and one, respectively.
variance of X and Y is defined as .

 of Covariance

(2.A.9)

(2.A.10)

(2.A.11)

(2.A.12)

(2.A.13)

E h X Y,( )[ ] h x y,( )f x y,( ) xd yd
∞–

∞
∫

∞–

∞
∫=

E aX bY c+ +( ) aE X( ) bE Y( ) c+ +=

E XY( ) xyf x y,( ) xd yd
∞–

∞
∫

∞–

∞
∫=

Var X( ) E X E X( )–[ ]2{ }=

σX
2

Var X( ) 0≥

Var a bX+( ) b2Var X( )=

Var X Y+( ) Var X( ) Var Y( )+=

Var X( ) E X2( ) E X( )[ ]2–=

Cov X Y,( ) E X μX–( ) Y μY–( )[ ]=

Cov a bX+ c dY+,( ) bdCov X Y,( )=

Var X Y+( ) Var X( ) Var Y( ) 2Cov X Y,( )+ +=

Cov X Y+ Z,( ) Cov X Z,( ) Cov Y Z,( )+=

Cov X X,( ) Var X( )=

Cov X Y,( ) Cov Y X,( )=
re independent,

(2.A.14)Cov X Y,( ) 0=
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Corr(X, Y) 
Fundamental Concepts

rrelation coefficient of X and Y, denoted by Corr(X, Y) or ρ, is defined as

ly, if X* is a standardized X and Y* is a standardized Y, then ρ = E(X*Y*).

 of Correlation

(2.A.15)

(2.A.16)

=  if and only if there are constants a and b such that Pr(Y = a + bX) = 1.

ρ Corr X Y,( ) Cov X Y,( )
Var X( )Var Y( )

-----------------------------------------= =

1– Corr X Y,( ) 1≤ ≤

Corr a bX+ c dY+,( ) sign bd( )Corr X Y,( )=

where sign bd( )
1 if bd 0>
0 if bd 0=

1–  if bd 0<⎩
⎪
⎨
⎪
⎧

=

1±
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 time series, the mean function is a totally arbitrary function of time. In a sta-
e series, the mean function must be constant in time. Frequently we need to
ddle ground and consider mean functions that are relatively simple (but not
nctions of time. These trends are considered in this chapter.

terministic Versus Stochastic Trends

n be quite elusive. The same time series may be viewed quite differently by
alysts. The simulated random walk shown in Exhibit 2.1 might be consid-
lay a general upward trend. However, we know that the random walk process
ean for all time. The perceived trend is just an artifact of the strong positive
between the series values at nearby time points and the increasing variance
ss as time goes by. A second and third simulation of exactly the same pro-

well show completely different “trends.” We ask you to produce some addi-
ulations in the exercises. Some authors have described such trends as
trends (see Box, Jenkins, and Reinsel, 1994), although there is no generally
finition of a stochastic trend.
erage monthly temperature series plotted in Exhibit 1.7 on page 6, shows a
 seasonal trend, but here the reason for the trend is clear—the Northern
’s changing inclination toward the sun. In this case, a possible model might
 Xt, where μt is a deterministic function that is periodic with period 12; that
 satisfy

ssume that Xt, the unobserved variation around μt, has zero mean for all t so
 μt is the mean function for the observed series Yt. We could describe this
aving a deterministic trend as opposed to the stochastic trend considered
ther situations we might hypothesize a deterministic trend that is linear in
,  μt = β0 + β1t) or perhaps a quadratic time trend,  μt = β0 + β1t + β2t2. Note
lication of the model Yt = μt + Xt with E(Xt) = 0 for all t is that the determin-

μt μt 12–= for all t
27

t applies for all time. Thus, if μt = β0 + β1t, we are assuming that the same
trend applies forever. We should therefore have good reasons for assuming
el—not just because the series looks somewhat linear over the time period
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chapter, we consider methods for modeling deterministic trends. Stochastic
be discussed in Chapter 5, and stochastic seasonal models will be discussed
10. Many authors use the word trend only for a slowly changing mean func-
s a linear time trend, and use the term seasonal component for a mean func-
ries cyclically. We do not find it useful to make such distinctions here.

imation of a Constant Mean

nsider the simple situation where a constant mean function is assumed. Our
 then be written as

(3.2.1)

) = 0 for all t. We wish to estimate μ with our observed time series Y1, Y2,…,
st common estimate of μ is the sample mean or average defined as

(3.2.2)

the minimal assumptions of Equation (3.2.1), we see that E( ) = μ; there-
n unbiased estimate of μ. To investigate the precision of  as an estimate of
to make further assumptions concerning Xt.
e that {Yt}, (or, equivalently, {Xt} of Equation (3.2.1)) is a stationary time
autocorrelation function ρk. Then, by Exercise 2.17, we have

(3.2.3)

 the first factor, γ0/n, is the process (population) variance divided by the sam-
 concept with which we are familiar in simpler random sampling contexts. If
Xt} of Equation (3.2.1) is just white noise, then ρk = 0 for k > 0 and 
imply γ0/n. 

(stationary) moving average model Yt = et − ½et − 1, we find that ρ1 = −0.4
for k > 1. In this case, we have

Yt μ Xt+=

Y
 _ 1

n
--- Yt

t 1=

n

∑=

Y
Y

Var Y
 _

( )
γ0

n
----- 1 k

n
-----–⎝ ⎠

⎛ ⎞ ρk
k n– 1+=

n 1–

∑=

γ0

n
----- 1 2 1 k

n
---–⎝ ⎠

⎛ ⎞ ρk
k 1=

n 1–

∑+=

Var Y( )

Var Y
 _

( )
γ0

n
----- 1 2 1 1

n
---–⎝ ⎠

⎛ ⎞ 0.4–( )+=

γ0

n
----- 1 0.8

n 1–
n

------------⎝ ⎠
⎛ ⎞–=
lues of n usually occurring in time series (n > 50, say), the factor (n − 1)/n
e to 1, so that we have
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t the negative correlation at lag 1 has improved the estimation of the mean
ith the estimation obtained in the white noise (random sample) situation.

e series tends to oscillate back and forth across the mean, the sample mean
more precise.
 other hand, if ρk ≥ 0 for all k ≥ 1, we see from Equation (3.2.3) that 
er than γ0/n. Here the positive correlations make estimation of the mean more
n in the white noise case. In general, some correlations will be positive and
ive, and Equation (3.2.3) must be used to assess the total effect.
ny stationary processes, the autocorrelation function decays quickly enough
sing lags that

(3.2.4)

m cosine wave of Chapter 2 is an exception.)
assumption (3.2.4) and given a large sample size n, the following useful
ion follows from Equation (3.2.3) (See Anderson, 1971, p. 459, for example)

(3.2.5)

 to this approximation the variance is inversely proportional to the sample

xample, suppose that ρk = φ|k| for all k, where φ is a number strictly between
Summing a geometric series yields

(3.2.6)

onstationary process (but with a constant mean), the precision of the sample
 estimate of μ can be strikingly different. As a useful example, suppose that
 (3.2.1) {Xt} is a random walk process as described in Chapter 2. Then

m Equation (2.2.8) we have

Var Y
 _

( ) 0.2
γ0

n
-----≈

Var Y( )

ρk
k 0=

∞
∑ ∞<

Var Y
 _

( )
γ0

n
----- ρk

k ∞–=

∞
∑≈ for large n

Var Y
 _

( ) 1 φ+( )
1 φ–( )

-----------------
γ0

n
-----≈

Var Y
 _

( ) 1
n2
-----Var Yi

i 1=

n

∑=

1 in
n2
-----Var ej

j 1=
∑

i 1=
∑=
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(3.2.7)

t in this special case the variance of our estimate of the mean actually
s the sample size n increases. Clearly this is unacceptable, and we need to
her estimation techniques for nonstationary series.

gression Methods

al statistical method of regression analysis may be readily used to estimate
ters of common nonconstant mean trend models. We shall consider the most
: linear, quadratic, seasonal means, and cosine trends.

d Quadratic Trends in Time

e deterministic time trend expressed as

(3.3.1)

lope and intercept, β1 and β0 respectively, are unknown parameters. The
st squares (or regression) method is to choose as estimates of β1 and β0 val-
imize

n may be obtained in several ways, for example, by computing the partial
 with respect to both β’s, setting the results equal to zero, and solving the
ear equations for the β’s. Denoting the solutions by and , we find that

(3.3.2)

1

n2
-----Var e1 2e2 3e3

… nen+ + + +( )=

σe
2

n2
------ k2

k 1=

n

∑=

Var Y
 _

( ) σe
2 2n 1+( ) n 1+( )

6n
-----------------=

μt β0 β1t+=

Q β0  β1,( ) Yt β0 β1t+( )–[ ]2

t 1=

n

∑=

β̂0 β̂1

β̂1

Yt Y
 _

–( ) t t
_

–( )
t 1=

n

∑

t t
_

–( )2

t 1=

n

∑
---------------------------------------------=

^  _ ^ _
(n + 1)/2 is the average of 1, 2,…, n. These formulas can be simplified some-
arious versions of the formulas are well-known. However, we assume that

β0 Y β1t–=
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tations will be done by statistical software and we will not pursue other
 for and here.

e random walk process that was shown in Exhibit 2.1. Suppose we (mistak-
t this as a linear time trend and estimate the slope and intercept by
s regression. Using statistical software we obtain Exhibit 3.1.

1 Least Squares Regression Estimates for Linear Time Trend

alk)
lm(rwalk~time(rwalk))
(model1)

 the estimated slope and intercept are = 0.1341 and  = −1.008, respec-
bit 3.2 displays the random walk with the least squares regression trend line
ed. We will interpret more of the regression output later in Section 3.5 on
 see that fitting a line to these data is not appropriate.

2 Random Walk with Linear Time Trend

Estimate Std. Error t value Pr(>|t|)

−1.008 0.2972 −3.39 0.00126

0.1341 0.00848 15.82 < 0.0001

β̂0 β̂1

β̂1 β̂0

● ●
●

●

●

●

●
●

●
●

● ● ●
●

● ●
●

●

●

●

●

● ●

●
●

● ●
●

●
●

●

●

● ●

●
●

●

●
●

● ●

●

● ●
●

●
●

●

●

● ●

●

●

●

●
● ●

● ●
●
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ph(width=4.875, height=2.5,pointsize=8)
alk,type='o',ylab='y')
model1) # add the fitted least squares line from model1

Time
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r Seasonal Trends

w modeling and estimating seasonal trends, such as for the average monthly
 data in Exhibit 1.7. Here we assume that the observed series can be repre-

) = 0 for all t.
ost general assumption for μt with monthly seasonal data is that there are 12
arameters), β1, β2,…, and β12, giving the expected average temperature for
12 months. We may write

(3.3.3)

etimes called a seasonal means model.
xample of this model consider the average monthly temperature data shown

1.7 on page 6. To fit such a model, we need to set up indicator variables
 called dummy variables) that indicate the month to which each of the data
ains. The procedure for doing this will depend on the particular statistical
at you use. We also need to note that the model as stated does not contain an
rm, and the software will need to know this also. Alternatively, we could use
t and leave out any one of the β’s in Equation (3.3.3). 
t 3.3 displays the results of fitting the seasonal means model to the tempera-
ere the t-values and Pr(>|t|)-values reported are of little interest since they
ting the null hypotheses that the β’s are zero—not an interesting hypothesis
.

3 Regression Results for the Seasonal Means Model

Estimate Std. Error t-value Pr(>|t|)

16.608 0.987 16.8 < 0.0001

20.650 0.987 20.9 < 0.0001

32.475 0.987 32.9 < 0.0001

46.525 0.987 47.1 < 0.0001

Yt μt Xt+=

μt

β1 for t = 1, 13, 25, ...

β2 for t = 2, 14, 26, ...

...

β12 for t =12, 24, 36, ...
⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

=

58.092 0.987 58.9 < 0.0001

67.500 0.987 68.4 < 0.0001

71.717 0.987 72.7 < 0.0001
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mpdub)
season(tempdub) # period added to improve table display
lm(tempdub~month.-1) # -1 removes the intercept term 
(model2)

t 3.4 shows how the results change when we fit a model with an intercept
oftware omits the January coefficient in this case. Now the February coeffi-
rpreted as the difference between February and January average tempera-
arch coefficient is the difference between March and January average

es, and so forth. Once more, the t-values and Pr(>|t|) (p-values) are testing
 of little interest in this case. Notice that the Intercept coefficient plus the
efficient here equals the February coefficient displayed in Exhibit 3.3.

4 Results for Seasonal Means Model with an Intercept

69.333 0.987 70.2 < 0.0001

r 61.025 0.987 61.8 < 0.0001

50.975 0.987 51.6 < 0.0001

r 36.650 0.987 37.1 < 0.0001

r 23.642 0.987 24.0 < 0.0001

Estimate Std. Error t-value Pr(>|t|)

16.608 0.987 16.83 < 0.0001

4.042 1.396 2.90 0.00443

15.867 1.396 11.37 < 0.0001

29.917 1.396 21.43 < 0.0001

41.483 1.396 29.72 < 0.0001

50.892 1.396 36.46 < 0.0001

55.108 1.396 39.48 < 0.0001

52.725 1.396 37.78 < 0.0001

r 44.417 1.396 31.82 < 0.0001

34.367 1.396 24.62 < 0.0001

r 20.042 1.396 14.36 < 0.0001

Estimate Std. Error t-value Pr(>|t|)
lm(tempdub~month.) # January is dropped automatically
(model3)

r 7.033 1.396 5.04 < 0.0001
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ends

al means model for monthly data consists of 12 independent parameters and
ke the shape of the seasonal trend into account at all. For example, the fact
rch and April means are quite similar (and different from the June and July
ot reflected in the model. In some cases, seasonal trends can be modeled eco-
with cosine curves that incorporate the smooth change expected from one
 to the next while still preserving the seasonality.
er the cosine curve with equation

(3.3.4)

 0) the amplitude, f the frequency, and Φ the phase of the curve. As t varies,
scillates between a maximum of β and a minimum of −β. Since the curve
lf exactly every 1/f time units, 1/f is called the period of the cosine wave. As
apter 2, Φ serves to set the arbitrary origin on the time axis. For monthly

me indexed as 1, 2,…, the most important frequency is f = 1/12, because such
ve will repeat itself every 12 months. We say that the period is 12.
on (3.3.4) is inconvenient for estimation because the parameters β and Φ do
e expression linearly. Fortunately, a trigonometric identity is available that

rizes (3.3.4) more conveniently, namely

(3.3.5)

(3.3.6)

sely,
(3.3.7)

e the parameters β1 and β2 with regression techniques, we simply use
d sin(2πft) as regressors or predictor variables.
plest such model for the trend would be expressed as

(3.3.8)

nstant term, β0, can be meaningfully thought of as a cosine with frequency

practical example, we must be careful how we measure time, as our choice
surement will affect the values of the frequencies of interest. For example, if
nthly data but use 1, 2, 3,... as our time scale, then 1/12 would be the most

frequency, with a corresponding period of 12 months. However, if we mea-
y year and fractional year, say 1980 for January, 1980.08333 for February of

μt β 2πft Φ+( )cos=

β 2πft Φ+( )cos β1 2πft( )cos β2 2πft( )sin+=

β β1
2 β2

2+  ,= Φ β2– β1⁄( )atan=

β1 β Φ( ),cos= β2 β Φ( )sin=

μt β0 β1 2πft( )cos β2 2πft( )sin+ +=
o forth, then a frequency of 1 corresponds to an annual or 12 month periodic-

t 3.5 is an example of fitting a cosine curve at the fundamental frequency to
 monthly temperature series.
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5 Cosine Trend Model for Temperature Series

rmonic(tempdub,1)
lm(tempdub~har.)
(model4)

output, time is measured in years, with 1964 as the starting value and a fre-
 per year. A graph of the time series values together with the fitted cosine

own in Exhibit 3.6. The trend fits the data quite well with the exception of
 January values, where the observations are lower than the model would pre-

6 Cosine Trend for the Temperature Series

ph(width=4.875, height=2.5,pointsize=8)
(fitted(model4),freq=12,start=c(1964,1)), 
'Temperature',type='l',
nge(c(fitted(model4),tempdub))); points(tempdub)
ensures that the y axis range fits the raw data and the 

t Estimate Std. Error t-value Pr(>|t|)

46.2660 0.3088 149.82 < 0.0001

−26.7079 0.4367 −61.15 < 0.0001

−2.1697 0.4367 −4.97 <0.0001
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nal cosine functions at other frequencies will frequently be used to model
nds. For monthly series, the higher harmonic frequencies, such as 2/12 and
pecially pertinent and will sometimes improve the fit at the expense of add-
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rameters to the model. In fact, it may be shown that any periodic trend with
ay be expressed exactly by the sum of six pairs of cosine-sine functions.

s are discussed in detail in Fourier analysis or spectral analysis. We pursue
further in Chapters 13 and 14.

liability and Efficiency of Regression Estimates

 that the series is represented as Yt = μt + Xt, where μt is a deterministic trend
considered above and {Xt} is a zero-mean stationary process with autocova-
autocorrelation functions γk and ρk, respectively. Ordinary regression esti-

eters in a linear model according to the criterion of least squares regardless
we are fitting linear time trends, seasonal means, cosine curves, or whatever.
t consider the easiest case—the seasonal means. As mentioned earlier, the
s estimates of the seasonal means are just seasonal averages; thus, if we have
e) years of monthly data, we can write the estimate for the mean for the j th

 is an average like  but uses only every 12th observation, Equation
be easily modified to give . We replace n by N (years) and ρk by ρ12k

(3.4.1)

hat if {Xt} is white noise, then  reduces to γ0/N, as expected. Fur-
 several ρk are nonzero but ρ12k = 0, then we still have . In
nly the seasonal autocorrelations, ρ12, ρ24, ρ36 ,..., enter into Equation

ce N will rarely be very large (except perhaps for quarterly data), approxima-
ose shown in Equation (3.2.5) will usually not be useful.
n now to the cosine trends expressed as in Equation (3.3.8). For any fre-
he form f = m/n, where m is an integer satisfying 1 ≤ m < n/2, explicit expres-
ailable for the estimates  and , the amplitudes of the cosine and sine:

(3.4.2)

β̂j
1
N
---- Yj 12i+

i 0=

N 1–

∑=

β̂j Y
Var β̂j( )

r β̂j( )
γ0

N
----- 1 2 1 k

N
----–⎝ ⎠

⎛ ⎞ ρ12k
k 1=

N 1–

∑+= for j = 1, 2, ..., 12

Var β̂j( )
Var β̂j( ) γ0 N⁄=

β̂1 β̂2

2
n
--- 2πmt

n
-------------⎝ ⎠

⎛ ⎞ Ytcos ,
t 1=

n

∑= β̂2
2
n
--- 2πmt

n
-------------⎝ ⎠

⎛ ⎞ Ytsin
t 1=

n

∑=
effectively the correlations between the time series {Yt} and the cosine and
with frequency m/n.)
e these are linear functions of {Yt}, we may evaluate their variances using
.2.6). We find
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(3.4.3)

ave used the fact that . However, the double

ation (3.4.3) does not, in general, reduce further. A similar expression holds

 if we replace the cosines by sines.

 is white noise, we get just 2γ0/n. If ρ1 ≠ 0, ρk = 0 for k > 1, and m/n = 1/12,
iance reduces to

(3.4.4)

 the effect of the cosine terms, we have calculated some representative val-

4, then the large sample multiplier in Equation (3.4.5) is 1+1.732(−0.4) =
he variance is reduced by about 70% when compared with the white noise

e circumstances, seasonal means and cosine trends could be considered as
models for a cyclical trend. If the simple cosine model is an adequate model,
 do we lose if we use the less parsimonious seasonal means model? To
is problem, we must first consider how to compare the models. The parame-
lves are not directly comparable, but we can compare the estimates of the
parable time points.
er the two estimates for the trend in January; that is, μ . With seasonal

Var( )

(3.4.5)

ar β̂1( )
2γ0

n
-------- 1 4

n
---+

2πmt
n

-------------⎝ ⎠
⎛ ⎞ 2πms

n
--------------⎝ ⎠

⎛ ⎞ ρs t–coscos
t 1=

s 1–

∑
s 2=

n

∑=

2πmt n⁄( )cos[ ]2
t 1=

n

∑ n 2⁄=

)

Var β̂1( )
2γ0

n
-------- 1

4ρ1

n
---------+

πt
6
-----⎝ ⎠

⎛ ⎞ πt 1+
6

--------------⎝ ⎠
⎛ ⎞coscos

t 1=

n 1–

∑=

β̂1

2γ0

n
--------⎝ ⎠

⎛ ⎞ 1 1.71ρ1+( )

2γ0

n
--------⎝ ⎠

⎛ ⎞ 1 1.75ρ1+( )

2γ0

n
--------⎝ ⎠

⎛ ⎞ 1 1.73ρ1+( )

2γ0

n
--------⎝ ⎠

⎛ ⎞ 1 2ρ1
π
6
---⎝ ⎠

⎛ ⎞cos+⎝ ⎠
⎛ ⎞ 2γ0

n
--------⎝ ⎠

⎛ ⎞ 1 1.732ρ1+( )=
1
 estimate is just the January average, which has variance given by Equation
h the cosine trend model, the corresponding estimate is
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 the variance of this estimate, we need one more fact: With this model, the
, , and are uncorrelated.† This follows from the orthogonality rela-

f the cosines and sines involved. See Bloomfield (1976) or Fuller (1996) for
s. For the cosine model, then, we have

(3.4.6)

 first comparison, assume that the stochastic component is white noise. Then
e of our estimate in the seasonal means model is just γ0/N. For the cosine
use Equation (3.4.6), and Equation (3.4.4) and its sine equivalent, to obtain

. Thus the ratio of the standard deviation in the cosine
at in the seasonal means model is

r, for the monthly temperature series, we have n = 144 and N = 12; thus, the

 cosine model, we estimate the January effect with a standard deviation that
 as large as it would be if we estimated with a seasonal means model—a sub-
. (Of course, this assumes that the cosine trend plus white noise model is the
el.)
e now that the stochastic component is such that ρ1 ≠ 0 but ρk = 0 for k > 1.
sonal means model, the variance of the estimated January effect will be
(see Equation (3.4.1) on page 36). For the cosine trend model, if we have a
large sample size, we may use Equation (3.4.5), an identical expression for
nd Equation (3.2.3) on page 28 for to obtain

μ̂1 β̂0 β̂1
2π
12
------⎝ ⎠

⎛ ⎞cos β̂2
2π
12
------⎝ ⎠

⎛ ⎞sin+ +=

0 β̂1 β̂2

μ̂1) Var β̂0( ) Var β̂1( ) 2π
12
------⎝ ⎠

⎛ ⎞cos
2

Var β̂2( ) 2π
12
------⎝ ⎠

⎛ ⎞sin
2

+ +=

Var μ̂1( )
γ0

n
----- 1 2

π
6
---⎝ ⎠

⎛ ⎞cos
2

2
π
6
---⎝ ⎠

⎛ ⎞sin
2

+ +
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

3
γ0

n
-----=

θ)2 θsin( )2+ 1=

3γ0 n⁄
γ0 N⁄
--------------- 3N

n
-------=

3 12( )
144

-------------- 0.5=

Var β̂0( )
ssumes that 1/12 is a “Fourier frequency”; that is, it is of the form m/n. Otherwise,
estimates are only approximately uncorrelated.
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, then we have 0.814γ0/n, and the ratio of the standard deviation in the cosine
standard deviation in the seasonal means case is

 = 144 and N = 12, the ratio is

tantial reduction indeed!
 turn to linear time trends. For these trends, an alternative formula to Equa-

 on page 30 for is more convenient. It can be shown that the least squares
 the slope may be written

(3.4.7)

stimate is a linear combination of Y-values, some progress can be made in
ts variance. We have

(3.4.8)

ave used = n(n2 − 1)/12. Again the double sum does not in gen-
.
strate the effect of Equation (3.4.8), consider again the case where ρ1 ≠ 0 but
 > 1. Then, after some algebraic manipulation, again involving the sum of
 integers and their squares, Equation (3.4.8) can be reduced to

Var μ̂1( )
γ0

n
----- 1 2ρ1 2 1 2ρ1

2π
12
------⎝ ⎠

⎛ ⎞cos++ +
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

γ0

n
----- 3 2ρ1 1 2

π
6
---⎝ ⎠

⎛ ⎞cos++
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

0.814γ0( ) n⁄
γ0 N⁄

------------------------------ 0.814N
n

-----------------=

0.814 12( )
144

------------------------ 0.26=

β̂1

β̂1

t t
_

–( )Yt
t 1=

n

∑

t t
_

–( )2

t 1=

n

∑
-------------------------------=

β̂1( )
12γ0

n n2 1–( )
---------------------- 1

24
n n2 1–( )
---------------------- t t

_
–( ) s t

_
–( )ρs t–

t 1=

s 1–
∑

s 2=

n

∑+=

t t
_

–( )2
t 1=

n
∑

Var β̂1( )
12γ0

n n2 1–( )
---------------------- 1 2ρ1 1 3

n
---–⎝ ⎠

⎛ ⎞+=
ge n, we can neglect the 3/n term and use

(3.4.9)Var β̂1( )
12γ0 1 2ρ1+( )

n n2 1–( )
-----------------------------------=
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4, then 1 + 2ρ1 = 0.2, and then the variance of is only 20% of what it
f {Xt} were white noise. Of course, if ρ1 > 0, then the variance would be
for the white noise case.
n now to comparing the least squares estimates with the so-called best linear
stimates (BLUE) or the generalized least squares (GLS) estimates. If the
omponent {Xt} is not white noise, estimates of the unknown parameters in
nction may be made; they are linear functions of the data, are unbiased, and
allest variances among all such estimates—the so-called BLUE or GLS

These estimates and their variances can be expressed fairly explicitly by
in matrices and their inverses. (Details may be found in Draper and Smith
owever, constructing these estimates requires complete knowledge of the
function of the stochastic component, a function that is unknown in virtually
lications. It is possible to iteratively estimate the covariance function for {Xt}
preliminary estimate of the trend. The trend is then estimated again using the
ovariance function for {Xt} and thus iterated to an approximate BLUE for
hese methods are pursued further in Chapter 11.
ately, there are some results based on large sample sizes that support the use
ler least squares estimates for the types of trends that we have considered. In
we have the following result (see Fuller (1996), pp. 476–480, for more
 assume that the trend is either a polynomial in time, a trigonometric poly-
sonal means, or a linear combination of these. Then, for a very general sta-
chastic component {Xt}, the least squares estimates for the trend have the
ce as the best linear unbiased estimates for large sample sizes.
gh the simple least squares estimates may be asymptotically efficient, it does
hat the estimated standard deviations of the coefficients as printed out by all
outines are correct. We shall elaborate on this point in the next section. We

n the reader that the result above is restricted to certain kinds of trends and
eneral, be extended to regression on arbitrary predictor variables, such as

series. For example, Fuller (1996, pp. 518–522) shows that if Yt = βZt + Xt,
 has a simple stochastic structure but {Zt} is also a stationary series, then the
s estimate of β can be very inefficient and biased even for large samples.

rpreting Regression Output

ready noted that the standard regression routines calculate least squares esti-
 unknown regression coefficients—the betas. As such, the estimates are rea-
er minimal assumptions on the stochastic component {Xt}. However, some
erties of the regression output depend heavily on the usual regression
 that {Xt} is white noise, and some depend on the further assumption that
roximately normally distributed. We begin with the items that depend least

β̂1
mptions.
er the regression output shown in Exhibit 3.7. We shall write for the esti-
 regardless of the assumed parametric form for μt. For example, for the lin-
nd, we have μt = β0 + β1t. For each t, the unobserved stochastic component

μ̂t
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stimated (predicted) by Yt − . If the {Xt} process has constant variance,
n estimate the standard deviation of Xt, namely , by the residual stan-
tion

(3.5.1)

he number of parameters estimated in μt and n − p is the so-called degrees of
 s. The value of s gives an absolute measure of the goodness of fit of the esti-
—the smaller the value of s, the better the fit. However, a value of s of, say,
ewhat difficult to interpret.

ess measure of the goodness of fit of the trend is the value of R2, also called
ent of determination or multiple R-squared. One interpretation of R2 is that
are of the sample correlation coefficient between the observed series and the
rend. It is also the fraction of the variation in the series that is explained by
ed trend. Exhibit 3.7 is a more complete regression output when fitting the
 to the random walk data. This extends what we saw in Exhibit 3.1 on page

7 Regression Output for Linear Trend Fit of Random Walk

lm(rwalk~time(rwalk))
(model1)

ing to Exhibit 3.7, about 81% of the variation in the random walk series is
y the linear time trend. The adjusted R-squared value is a small adjustment
ields an approximately unbiased estimate based on the number of parameters
n the trend. It is useful for comparing models with different numbers of

Estimate Std. Error t-value Pr(>|t|)

−1.007888 0.297245 −3.39 0.00126

0.134087 0.008475 15.82 < 0.0001

standard error 1.137  with 58 degrees of freedom

-Squared 0.812

 R-squared 0.809

250.3 with 1 and 58 df; p-value < 0.0001

μ̂t
γ0

s
1

n p–
------------ Yt μ̂̂t–( )2

t 1=

n

∑=
. Various formulas for computing R2 may be found in any book on regres-
as Draper and Smith (1981). The standard deviations of the coefficients
. Error on the output need to be interpreted carefully. They are appropriate
the stochastic component is white noise—the usual regression assumption.
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e, in Exhibit 3.7 the value 1.137 is obtained from the square root of the value
uation (3.4.8) when ρk = 0 for k > 0 and with γ0 estimated by s2, that is, to
ding,

ant point is that these standard deviations assume a white noise stochastic
 that will rarely be true for time series.
alues or t-ratios shown in Exhibit 3.7 are just the estimated regression coef-
h divided by their respective standard errors. If the stochastic component is
stributed white noise, then these ratios provide appropriate test statistics for
e significance of the regression coefficients. In each case, the null hypothesis
orresponding unknown regression coefficient is zero. The significance levels
s are determined from the t-distribution with n − p degrees of freedom.

sidual Analysis

 already noted, the unobserved stochastic component {Xt} can be estimated,
, by the residual

(3.6.1)

s really a better term. We reserve the term estimate for the guess of an
arameter and the term predictor for an estimate of an unobserved random
e call  the residual corresponding to the tth observation. If the trend model
ly correct, then the residuals should behave roughly like the true stochastic
, and various assumptions about the stochastic component can be assessed by
the residuals. If the stochastic component is white noise, then the residuals
ve roughly like independent (normal) random variables with zero mean and
viation s. Since a least squares fit of any trend containing a constant term
ly produces residuals with a zero mean, we might consider standardizing the
 . However, most statistics software will produce standardized residuals
re complicated standard error in the denominator that takes into account the
ression model being fit.
e residuals or standardized residuals in hand, the next step is to examine var-

al plots. We first look at the plot of the residuals over time. If the data are
sonal, we should use plotting symbols as we did in Exhibit 1.9 on page 7, so
ls associated with the same season can be identified easily.
l use the monthly average temperature series which we fitted with seasonal
ur first example to illustrate some of the ideas of residual analysis. Exhibit
 6 shows the time series plot of that series. Exhibit 3.8 shows a time series

0.008475 12 1.137( )2

60 602 1–( )
----------------------------=

X̂t Yt μ̂t–=

X̂t

X̂t s⁄
 standardized residuals of the monthly temperature data fitted by seasonal
e stochastic component is white noise and the trend is adequately modeled,
xpect such a plot to suggest a rectangular scatter with no discernible trends
. There are no striking departures from randomness apparent in this display.
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 repeats the time series plot but now with seasonal plotting symbols. Again
 apparent patterns relating to different months of the year.

8 Residuals versus Time for Temperature Seasonal Means

rstudent(model3),x=as.vector(time(tempdub)),
'Time',ylab='Standardized Residuals',type='o')

9 Residuals versus Time with Seasonal Plotting Symbols
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rstudent(model3),x=as.vector(time(tempdub)),xlab='Time',
tandardized Residuals',type='l')
y=rstudent(model3),x=as.vector(time(tempdub)), 
s.vector(season(tempdub)))
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e look at the standardized residuals versus the corresponding trend estimate,
lue, as in Exhibit 3.10. Once more we are looking for patterns. Are small
sociated with small fitted trend values and large residuals with large fitted
s? Is there less variation for residuals associated with certain sized fitted
s or more variation with other fitted trend values? There is somewhat more
r the March residuals and less for November, but Exhibit 3.10 certainly does
e any dramatic patterns that would cause us to doubt the seasonal means

10 Standardized Residuals versus Fitted Values for the 
Temperature Seasonal Means Model

rstudent(model3),x=as.vector(fitted(model3)), 
'Fitted Trend Values',
tandardized Residuals',type='n')
y=rstudent(model3),x=as.vector(fitted(model3)), 
s.vector(season(tempdub)))

onnormality can be assessed by plotting a histogram of the residuals or stan-
siduals. Exhibit 3.11 displays a frequency histogram of the standardized
om the seasonal means model for the temperature series. The plot is some-
etric and tails off at both the high and low ends as a normal distribution does.

J

F

M

A

M

J
J

A
S

O

N

D

J
F

M

A

M

J
J

AS
O

N

D

J

F

M

A

M

J
J

A
SO

ND

J

F

M
A

M

J

J
A

S

O
N

DJ

F

M

A

M

J
J

A
SON

DJ

F

M

A M

J

J

A
S

O
N

D

J

F M

A
M

J J
ASO

ND

J

F

M

A

M

J

J
A

S

O

N

D

J F

M
A

M

J J

A
S

O
N

D

J
F

M

A
M

J
J

A
S

O

N

D

J
F

M
A

M J

J

A
S

ON

D

J

F

M

A

M

J
J

A

S

O

N
D

20 30 40 50 60 70

Fitted Trend Values



3.6  Resid

Exhibit 3.

> hist(rs

Norma
quantile-qu
oretical qua
looks appro
for the stan
The straigh
tic compon

Exhibit 3.

> win.gra
> qqnorm(

F
re

qu
en

cy

0
5

10
15

20
25

30
35
ual Analysis 45

11 Histogram of Standardized Residuals from Seasonal 
Means Model

tudent(model3),xlab='Standardized Residuals')

lity can be checked more carefully by plotting the so-called normal scores or
antile (QQ) plot. Such a plot displays the quantiles of the data versus the the-
ntiles of a normal distribution. With normally distributed data, the QQ plot
ximately like a straight line. Exhibit 3.12 shows the QQ normal scores plot

dardized residuals from the seasonal means model for the temperature series.
t-line pattern here supports the assumption of a normally distributed stochas-
ent in this model.

12 Q-Q Plot: Standardized Residuals of Seasonal Means Model

Standardized Residuals
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ellent test of normality is known as the Shapiro-Wilk test.† It essentially cal-
correlation between the residuals and the corresponding normal quantiles.
his correlation, the more evidence we have against normality. Applying that
 residuals gives a test statistic of W = 0.9929 with a p-value of 0.6954. We
t the null hypothesis that the stochastic component of this model is normally

ndence in the stochastic component can be tested in several ways. The runs
es the residuals in sequence to look for patterns—patterns that would give
ainst independence. Runs above or below their median are counted. A small

runs would indicate that neighboring residuals are positively dependent and
g together” over time. On the other hand, too many runs would indicate that

ls oscillate back and forth across their median. Then neighboring residuals
ly dependent. So either too few or too many runs lead us to reject indepen-

forming a runs test‡ on these residuals produces the following values:
ns = 65, expected runs = 72.875, which leads to a p-value of 0.216 and we

ct independence of the stochastic component in this seasonal means model.

le Autocorrelation Function

ry important diagnostic tool for examining dependence is the sample auto-
function. Consider any sequence of data Y1, Y2,…, Yn—whether residuals,
d residuals, original data, or some transformation of data. Tentatively assum-
rity, we would like to estimate the autocorrelation function ρk for a variety of
 2,…. The obvious way to do this is to compute the sample correlation
e pairs k units apart in time. That is, among (Y1, Y1 + k), (Y2, Y2 + k),

,..., and (Yn − k, Yn). However, we modify this slightly, taking into account
 assuming stationarity, which implies a common mean and variance for the
 this in mind, we define the sample autocorrelation function, rk, at lag k as

(3.6.2)

 we used the “grand mean,” , in all places and have also divided by the
 of squares” rather than the product of the two separate standard deviations
ordinary correlation coefficient. We also note that the denominator is a sum
d terms while the numerator contains only n − k cross products. For a variety
this has become the standard definition for the sample autocorrelation func-
 of rk versus lag k is often called a correlogram.

rk

Yt Y
 _

–( ) Yt k– Y
 _

–( )
t k 1+=

n

∑

Yt Y
 _

–( )2

t 1=

n

∑
---------------------------------------------------------------= for k = 1, 2, ...

Y
 _
on, P. (1982) “An Extension of Shapiro and Wilk’s W Test for Normality to Large
les.” Applied Statistics, 31, 115–124.
e: runs(rstudent(model3))
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present context, we are interested in discovering possible dependence in the
omponent; therefore the sample autocorrelation function for the standard-
als is of interest. Exhibit 3.13 displays the sample autocorrelation for the
d residuals from the seasonal means model of the temperature series. All val-
in the horizontal dashed lines, which are placed at zero plus and minus two

e standard errors of the sample autocorrelations, namely . The values
 course, estimates of ρk. As such, they have their own sampling distributions,
rors, and other properties. For now we shall use rk as a descriptive tool and
ssion of those topics until Chapters 6 and 8. According to Exhibit 3.13, for k
, none of the hypotheses ρk = 0 can be rejected at the usual significance lev-

is reasonable to infer that the stochastic component of the series is white

13 Sample Autocorrelation of Residuals of Seasonal Means 
Model

ph(width=4.875,height=3,pointsize=8)
udent(model3))

cond example consider the standardized residuals from fitting a straight line
m walk time series. Recall Exhibit 3.2 on page 31, which shows the data and
 time series plot of the standardized residuals is shown in Exhibit 3.14.

2 n⁄±

2 4 6 8 10 12 14 16 18 20

Lag
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14 Residuals from Straight Line Fit of the Random Walk

rstudent(model1),x=as.vector(time(rwalk)), 
'Standardized Residuals',xlab='Time',type='o')

plot, the residuals “hang together” too much for white noise—the plot is too
rthermore, there seems to be more variation in the last third of the series than
two-thirds. Exhibit 3.15 shows a similar effect with larger residuals associ-
rger fitted values.

15 Residuals versus Fitted Values from Straight Line Fit

ph(width=4.875, height=3,pointsize=8)
rstudent(model1),x=fitted(model1), 
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mple autocorrelation function of the standardized residuals, shown in Exhibit
ms the smoothness of the time series plot that we observed in Exhibit 3.14.
nd lag 2 autocorrelations exceed two standard errors above zero and the lag 5
utocorrelations more than two standard errors below zero. This is not what
rom a white noise process.

16 Sample Autocorrelation of Residuals from Straight Line 
Model

udent(model1))

, we return to the annual rainfall in Los Angeles shown in Exhibit 1.1 on
 found no evidence of dependence in that series, but we now look for evi-
st normality. Exhibit 3.17 displays the normal quantile-quantile plot for that
see considerable curvature in the plot. A line passing through the first and
l quartiles helps point out the departure from a straight line in the plot.

2 4 6 8 10 12 14 16

Lag
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17 Quantile-Quantile Plot of Los Angeles Annual Rainfall Series

ph(width=2.5,height=2.5,pointsize=8)
larain); qqline(larain)

mmary

er is concerned with describing, modeling, and estimating deterministic
me series. The simplest deterministic “trend” is a constant-mean function.
 estimating a constant mean were given but, more importantly, assessment of
y of the estimates under various conditions was considered. Regression
re then pursued to estimate trends that are linear or quadratic in time. Meth-
eling cyclical or seasonal trends came next, and the reliability and efficiency
se regression methods were investigated. The final section began our study

analysis to investigate the quality of the fitted model. This section also intro-
mportant sample autocorrelation function, which we will revisit throughout
er of the book.

ES

y Equation (3.3.2) on page 30, for the least squares estimates of β0 and of β1
 the model Yt = β0 + β1t + Xt is considered.
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 _

ose Yt = μ + et − et−1. Find . Note any unusual results. In particular,
are your answer to what would have been obtained if Yt = μ + et. (Hint: You
avoid Equation (3.2.3) on page 28 by first doing some algebraic simplifica-
n .)

Var Y( )

et et 1––( )
t 1=
n∑
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ose Yt = μ + et + et−1. Find . Compare your answer to what would
 been obtained if Yt = μ + et. Describe the effect that the autocorrelation in
has on .
data file hours contains monthly values of the average hours worked per
 in the U.S. manufacturing sector for July 1982 through June 1987.
isplay and interpret the time series plot for these data.
ow construct a time series plot that uses separate plotting symbols for the
arious months. Does your interpretation change from that in part (a)?
ata file wages contains monthly values of the average hourly wages (in dol-
for workers in the U.S. apparel and textile products industry for July 1981
gh June 1987.
isplay and interpret the time series plot for these data.
se least squares to fit a linear time trend to this time series. Interpret the
gression output. Save the standardized residuals from the fit for further anal-

sis.
onstruct and interpret the time series plot of the standardized residuals from
art (b).
se least squares to fit a quadratic time trend to the wages time series. Inter-
ret the regression output. Save the standardized residuals from the fit for fur-
er analysis.
onstruct and interpret the time series plot of the standardized residuals from
art (d).
ata file beersales contains monthly U.S. beer sales (in millions of barrels)
e period January 1975 through December 1990.
isplay and interpret the plot the time series plot for these data.
ow construct a time series plot that uses separate plotting symbols for the
arious months. Does your interpretation change from that in part (a)?
se least squares to fit a seasonal-means trend to this time series. Interpret the
gression output. Save the standardized residuals from the fit for further anal-

sis.
onstruct and interpret the time series plot of the standardized residuals from
art (c). Be sure to use proper plotting symbols to check on seasonality in the
andardized residuals.
se least squares to fit a seasonal-means plus quadratic time trend to the beer
les time series. Interpret the regression output. Save the standardized residu-

ls from the fit for further analysis.
onstruct and interpret the time series plot of the standardized residuals from
art (e). Again use proper plotting symbols to check for any remaining sea-
nality in the residuals.
ata file winnebago contains monthly unit sales of recreational vehicles from

Var Y
 _

( )

Var Y
 _

( )
ebago, Inc., from November 1966 through February 1972.
isplay and interpret the time series plot for these data.
se least squares to fit a line to these data. Interpret the regression output. Plot
e standardized residuals from the fit as a time series. Interpret the plot.
ow take natural logarithms of the monthly sales figures and display and
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terpret the time series plot of the transformed values.
se least squares to fit a line to the logged data. Display and interpret the time
ries plot of the standardized residuals from this fit.
ow use least squares to fit a seasonal-means plus linear time trend to the
gged sales time series and save the standardized residuals for further analy-
s. Check the statistical significance of each of the regression coefficients in
e model.
isplay the time series plot of the standardized residuals obtained in part (e).
terpret the plot.

data file retail lists total U.K. (United Kingdom) retail sales (in billions of
ds) from January 1986 through March 2007. The data are not “seasonally
ted,” and year 2000 = 100 is the base year.
isplay and interpret the time series plot for these data. Be sure to use plotting
mbols that permit you to look for seasonality.
se least squares to fit a seasonal-means plus linear time trend to this time
ries. Interpret the regression output and save the standardized residuals from
e fit for further analysis.
onstruct and interpret the time series plot of the standardized residuals from
art (b). Be sure to use proper plotting symbols to check on seasonality.
data file prescrip gives monthly U.S. prescription costs for the months
st 1986 to March 1992. These data are from the State of New Jersey’s Pre-

tion Drug Program and are the cost per prescription claim.
isplay and interpret the time series plot for these data. Use plotting symbols
at permit you to look for seasonality.
alculate and plot the sequence of month-to-month percentage changes in the
rescription costs. Again, use plotting symbols that permit you to look for sea-
nality.
se least squares to fit a cosine trend with fundamental frequency 1/12 to the
ercentage change series. Interpret the regression output. Save the standard-
ed residuals.
lot the sequence of standardized residuals to investigate the adequacy of the
osine trend model. Interpret the plot.
tinuation of Exercise 3.4) Consider the hours time series again.
se least squares to fit a quadratic trend to these data. Interpret the regression
utput and save the standardized residuals for further analysis.
isplay a sequence plot of the standardized residuals and interpret. Use
onthly plotting symbols so that possible seasonality may be readily identi-
ed.
erform the Runs test of the standardized residuals and interpret the results.
alculate and interpret the sample autocorrelations for the standardized resid-

als.
vestigate the normality of the standardized residuals (error terms). Consider

istograms and normal probability plots. Interpret the plots.
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tinuation of Exercise 3.5) Return to the wages series.
onsider the residuals from a least squares fit of a quadratic time trend.
erform a runs test on the standardized residuals and interpret the results.
alculate and interpret the sample autocorrelations for the standardized resid-
als.
vestigate the normality of the standardized residuals (error terms). Consider

istograms and normal probability plots. Interpret the plots.
tinuation of Exercise 3.6) Consider the time series in the data file beersales.
btain the residuals from the least squares fit of the seasonal-means plus qua-
ratic time trend model.
erform a runs test on the standardized residuals and interpret the results.
alculate and interpret the sample autocorrelations for the standardized resid-
als.
vestigate the normality of the standardized residuals (error terms). Consider

istograms and normal probability plots. Interpret the plots.
tinuation of Exercise 3.7) Return to the winnebago time series.
alculate the least squares residuals from a seasonal-means plus linear time
end model on the logarithms of the sales time series.
erform a runs test on the standardized residuals and interpret the results.
alculate and interpret the sample autocorrelations for the standardized resid-
als.
vestigate the normality of the standardized residuals (error terms). Consider

istograms and normal probability plots. Interpret the plots.
tinuation of Exercise 3.8) The data file retail contains U.K. monthly retail
 figures.
btain the least squares residuals from a seasonal-means plus linear time
end model.
erform a runs test on the standardized residuals and interpret the results.
alculate and interpret the sample autocorrelations for the standardized resid-
als.
vestigate the normality of the standardized residuals (error terms). Consider

istograms and normal probability plots. Interpret the plots.
tinuation of Exercise 3.9) Consider again the prescrip time series.
ave the standardized residuals from a least squares fit of a cosine trend with
ndamental frequency 1/12 to the percentage change time series.

erform a runs test on the standardized residuals and interpret the results.
alculate and interpret the sample autocorrelations for the standardized resid-
als.
vestigate the normality of the standardized residuals (error terms). Consider

istograms and normal probability plots. Interpret the plots.
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ose that a stationary time series, {Yt}, has an autocorrelation function of the
 ρk = φk for k > 0, where φ is a constant in the range (−1,+1).

how that .

int: Use Equation (3.2.3) on page 28, the finite geometric sum 

, and the related sum .)

 n is large, argue that .

lot  for φ over the range −1 to +1. Interpret the plot in terms
f the precision in estimating the process mean.

y Equation (3.2.6) on page 29. (Hint: You will need the fact that

 for −1 < φ < +1.)

y Equation (3.2.7) on page 30. (Hint: You will need the two sums

 and .)
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er discusses the basic concepts of a broad class of parametric time series
he autoregressive moving average (ARMA) models. These models have
eat importance in modeling real-world processes.

neral Linear Processes

ays let {Yt} denote the observed time series. From here on we will also let
nt an unobserved white noise series, that is, a sequence of identically distrib-
ean, independent random variables. For much of our work, the assumption

ence could be replaced by the weaker assumption that the {et} are uncorre-
m variables, but we will not pursue that slight generality.
ral linear process, {Yt}, is one that can be represented as a weighted linear
n of present and past white noise terms as

(4.1.1)

hand side of this expression is truly an infinite series, then certain conditions
ced on the ψ-weights for the right-hand side to be meaningful mathemati-

ur purposes, it suffices to assume that

(4.1.2)

also note that since {et} is unobservable, there is no loss in the generality of
.1.2) if we assume that the coefficient on et is 1; effectively, ψ0 = 1.
ortant nontrivial example to which we will return often is the case where the
 exponentially decaying sequence

 number strictly between −1 and +1. Then

Yt et ψ1et 1– ψ2et 2–
…+ + +=

ψi
2 ∞<

i 1=

∞
∑

ψj φ j=

2 …
55

s example,

Yt et φet 1– φ et 2–+ + +=

E Yt( ) E et φet 1– φ2et 2–
…+ + +( ) 0= =
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 has a constant mean of zero. Also,

e,

ilar manner, we can find 

(4.1.3)

portant to note that the process defined in this way is stationary—the autoco-
ucture depends only on time lag and not on absolute time. For a general lin-
, , calculations similar to those done above
llowing results:

(4.1.4)

. A process with a nonzero mean μ may be obtained by adding μ to the
side of Equation (4.1.1). Since the mean does not affect the covariance prop-

Var Yt( ) Var et φet 1– φ2et 2–
…+ + +( )=

Var et( ) φ2Var et 1–( ) φ4Var et 2–( ) …+ + +=

σe
2 1 φ2 φ4 …+ + +( )=

σe
2

1 φ2–
--------------  (by summing a geometric series)=

Yt 1– ) Cov et φet 1– φ2et 2–
…+ + + et 1– φet 2– φ2et 3–

…+ + +,( )=

Cov φet 1– et 1–,( ) Cov φ2et 2– φet 2–,( ) …+ +=

φσe
2 φ3σe

2 φ5σe
2 …+ + +=

φσe
2 1 φ2 φ4 …+ + +( )=

φσe
2

1 φ2–
--------------  (again summing a geometric series)=

Corr Yt Yt 1–,( )
φσe

2

1 φ2–
--------------

σe
2

1 φ2–
--------------⁄ φ= =

Cov Yt Yt k–,( )
φkσe

2

1 φ2–
--------------=

Corr Yt Yt k–,( ) φk=

Yt et ψ1et 1– ψ2et 2–
…+ + +=

) 0= γk Cov Yt Yt k–,( ) σe
2 ψiψi k+

i 0=

∞
∑= = k 0≥
rocess, we assume a zero mean until we begin fitting models to data.
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ving Average Processes

 where only a finite number of the ψ-weights are nonzero, we have what is
ving average process. In this case, we change notation† somewhat and write

(4.2.1)

h a series a moving average of order q and abbreviate the name to MA(q).
ology moving average arises from the fact that Yt is obtained by applying the
θ1, −θ2, ... , −θq to the variables et, et − 1, et − 2,…,  et − q and then moving the
 applying them to et + 1, et, et − 1,... , et − q + 1 to obtain Yt+1 and so on. Mov-
 models were first considered by Slutsky (1927) and Wold (1938).

Order Moving Average Process

r in detail the simple but nevertheless important moving average process of
at is, the MA(1) series. Rather than specialize the formulas in Equation
s instructive to rederive the results. The model is . Since
θ is involved, we drop the redundant subscript 1. Clearly = 0

 . Now

 are no e’s with subscripts in common between Yt and Yt − 2. Similarly,
 whenever ; that is, the process has no correlation beyond lag

t will be important later when we need to choose suitable models for real

mary, for an MA(1) model ,

(4.2.2)

Yt et θ1et 1–– θ2et 2–– … θq– et q––=

Yt et θet 1––=
E Yt( )

) σe
2 1 θ2+( )=

Cov Yt Yt 1–,( ) Cov et θet 1–– et 1– θet 2––,( )=

Cov θet 1–– et 1–,( ) θσe
2–==

Cov Yt Yt 2–,( ) Cov et θet 1–– et 2– θet 3––,( )=

0=

k– ) 0= k 2≥

Yt et θet 1––=

E Yt( ) 0=

γ0 Var Yt( ) σe
2 1 θ2+( )= =

γ1 θσe
2–=

ρ1 θ–( ) 1 θ2+( )⁄=

γk ρk 0     for k 2≥= =
⎭
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎫

ason for this change will be evident later on. Some statistical software, for example
s plus signs before the thetas. Check with yours to see which convention it uses.
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umerical values for ρ1 versus θ in Equation (4.2.2) help illustrate the possi-
te that the ρ1 values for negative θ can be obtained by simply negating the
 for the corresponding positive θ-value.

ulus argument shows that the largest value that ρ1 can attain is ρ1 = ½ when
the smallest value is ρ1 = −½, which occurs when θ = +1 (see Exercise 4.3).
 displays a graph of the lag 1 autocorrelation values for θ ranging from −1 to

1 Lag 1 Autocorrelation of an MA(1) Process for Different θ

e 4.4 asks you to show that when any nonzero value of θ is replaced by 1/θ,
lue for ρ1 is obtained. For example, ρ1 is the same for θ = ½ as for θ = 1/(½)
new that an MA(1) process had ρ1 = 0.4, we still could not tell the precise

 We will return to this troublesome point when we discuss invertibility in
 on page 79.
t 4.2 shows a time plot of a simulated MA(1) series with θ = −0.9 and nor-
buted white noise. Recall from Exhibit 4.1 that ρ1 = 0.4972 for this model;

−0.099 0.6 −0.441

−0.192 0.7 −0.470

−0.275 0.8 −0.488

−0.345 0.9 −0.497

−0.400 1.0 −0.500

ρ1 θ 1 θ2+( )⁄–= θ ρ1 θ 1 θ2+( )⁄–=

−0.8 −0.4 0.0 0.4 0.8

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

θθ

ρρ 1
s moderately strong positive correlation at lag 1. This correlation is evident
of the series since consecutive observations tend to be closely related. If an
 is above the mean level of the series, then the next observation also tends to
e mean. The plot is relatively smooth over time, with only occasional large
.
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2 Time Plot of an MA(1) Process with θ = −0.9

ph(width=4.875,height=3,pointsize=8)
1.2.s); plot(ma1.2.s,ylab=expression(Y[t]),type='o')

 1 autocorrelation is even more apparent in Exhibit 4.3, which plots Yt ver-
ote the moderately strong upward trend in this plot.

3 Plot of Yt versus Yt – 1 for MA(1) Series in Exhibit 4.2
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ot of Yt versus Yt − 2 in Exhibit 4.4 gives a strong visualization of the zero
tion at lag 2 for this model.

4 Plot of Yt versus Yt – 2 for MA(1) Series in Exhibit 4.2

ma1.2.s,x=zlag(ma1.2.s,2),ylab=expression(Y[t]), 
expression(Y[t-2]),type='p')

ewhat different series is shown in Exhibit 4.5. This is a simulated MA(1)
θ = +0.9. Recall from Exhibit 4.1 that ρ1 = −0.497 for this model; thus there
ly strong negative correlation at lag 1. This correlation can be seen in the
eries since consecutive observations tend to be on opposite sides of the zero
 observation is above the mean level of the series, then the next observation
below the mean. The plot is quite jagged over time—especially when com-
the plot in Exhibit 4.2.
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5 Time Plot of an MA(1) Process with θ = +0.9

ph(width=4.875,height=3,pointsize=8)
1.1.s)
1.1.s,ylab=expression(Y[t]),type='o')

gative lag 1 autocorrelation is even more apparent in the lag plot of Exhibit

6 Plot of Yt versus Yt – 1 for MA(1) Series in Exhibit 4.5

ph(width=3, height=3,pointsize=8)
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ot of Yt versus Yt − 2 in Exhibit 4.7 displays the zero autocorrelation at lag 2
el.

7 Plot of Yt versus Yt−2 for MA(1) Series in Exhibit 4.5

ma1.1.s,x=zlag(ma1.1.s,2),ylab=expression(Y[t]), 
expression(Y[t-2]),type='p')

 processes have no autocorrelation beyond lag 1, but by increasing the order
ss, we can obtain higher-order correlations.

nd-Order Moving Average Process

e moving average process of order 2:
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or an MA(2) process,

(4.2.3)

 specific case , we have

 plot of a simulation of this MA(2) process is shown in Exhibit 4.8. The
 to move back and forth across the mean in one time unit. This reflects the

g negative autocorrelation at lag 1.

8 Time Plot of an MA(2) Process with θ1 = 1 and θ2 = −0.6
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t in Exhibit 4.9 reflects that negative autocorrelation quite dramatically.

9 Plot of Yt versus Yt – 1 for MA(2) Series in Exhibit 4.8

ph(width=3,height=3,pointsize=8)
ma2.s,x=zlag(ma2.s),ylab=expression(Y[t]), 
expression(Y[t-1]),type='p')

ak positive autocorrelation at lag 2 is displayed in Exhibit 4.10.

10 Plot of Yt versus Yt – 2 for MA(2) Series in Exhibit 4.8
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, the lack of autocorrelation at lag 3 is apparent from the scatterplot in
1.

11 Plot of Yt versus Yt – 3 for MA(2) Series in Exhibit 4.8

ma2.s,x=zlag(ma2.s,3),ylab=expression(Y[t]), 
expression(Y[t-3]),type='p')

ral MA(q) Process

eral MA(q) process , similar calcu-
 that

(4.2.4)

(4.2.5)

umerator of ρq is just −θq. The autocorrelation function “cuts off” after lag
 is zero. Its shape can be almost anything for the earlier lags. Another type of
 autoregressive process, provides models for alternative autocorrelation pat-
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2+ + + +( )σe
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θk– θ1θk 1+ θ2θk 2+
… θq k– θq+ + + +

1 θ1
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2 … θq
2+ + + +

-------------------------------------------------------------------------------------------------- for k = 1, 2,..., q

0 for k q>
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toregressive Processes

sive processes are as their name suggests—regressions on themselves. Spe-
th-order autoregressive process {Yt} satisfies the equation

(4.3.1)

 value of the series Yt is a linear combination of the p most recent past values
s an “innovation” term et that incorporates everything new in the series at

is not explained by the past values. Thus, for every t, we assume that et is
t of Yt − 1, Yt − 2, Yt − 3, ... . Yule (1926) carried out the original work on

ive processes.†

Order Autoregressive Process

 instructive to consider the first-order model, abbreviated AR(1), in detail.
 series is stationary and satisfies

(4.3.2)

ave dropped the subscript 1 from the coefficient φ for simplicity. As usual, in
l chapters, we assume that the process mean has been subtracted out so that
ean is zero. The conditions for stationarity will be considered later.
t take variances of both sides of Equation (4.3.2) and obtain

 γ0 yields

(4.3.3)

 the immediate implication that  or that . Now take Equation
ltiply both sides by Yt − k (k = 1, 2,...), and take expected values

he series is assumed to be stationary with zero mean, and since et is indepen-

k, we obtain

Yt φ1Yt 1– φ2Yt 2–
… φpYt p– et+ + + +=

Yt φYt 1– et+=

γ0 φ2γ0 σe
2+=

γ0

σe
2

1 φ2–
--------------=

φ2 1< φ 1<

E Yt k– Yt( ) φE Yt k– Yt 1–( ) E etYt k–( )+=

γk φγk 1– E etYt k–( )+=

E etYt k–( ) E et( )E Yt k–( ) 0= =
l that we are assuming that Yt has zero mean. We can always introduce a nonzero
by replacing Yt by Yt − μ throughout our equations.
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(4.3.4)

= 1, we get  .  With k = 2, we obtain
. Now it is easy to see that in general

(4.3.5)

(4.3.6)

, the magnitude of the autocorrelation function decreases exponentially
ber of lags, k, increases. If , all correlations are positive; if

, the lag 1 autocorrelation is negative (ρ1 = φ) and the signs of successive
tions alternate from positive to negative, with their magnitudes decreasing
lly. Portions of the graphs of several autocorrelation functions are displayed
.12.

12 Autocorrelation Functions for Several AR(1) Models

γk φγk 1–= for k = 1, 2, 3,...

γ1 φγ0 φσe
2 1 φ2–( )⁄= = γ2 =

φ2)
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es if φ is positive and a very jagged series if φ is negative.
t 4.13 displays the time plot of a simulated AR(1) process with φ = 0.9.
 infrequently the series crosses its theoretical mean of zero. There is a lot of
he series—it hangs together, remaining on the same side of the mean for
riods. An observer might claim that the series has several trends. We know
the theoretical mean is zero for all time points. The illusion of trends is due
g autocorrelation of neighboring values of the series.

13 Time Plot of an AR(1) Series with φ = 0.9

ph(width=4.875, height=3,pointsize=8)
1.s); plot(ar1.s,ylab=expression(Y[t]),type='o')

oothness of the series and the strong autocorrelation at lag 1 are depicted in
 shown in Exhibit 4.14.
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14 Plot of Yt versus Yt − 1 for AR(1) Series of Exhibit 4.13

ph(width=3, height=3,pointsize=8)
ar1.s,x=zlag(ar1.s),ylab=expression(Y[t]), 
expression(Y[t-1]),type='p')

R(1) model also has strong positive autocorrelation at lag 2, namely ρ2 =
1. Exhibit 4.15 shows this quite well.

15 Plot of Yt versus Yt − 2 for AR(1) Series of Exhibit 4.13
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, at lag 3, the autocorrelation is still quite high: ρ3 = (0.9)3 = 0.729. Exhibit
s this for this particular series.

16 Plot of Yt versus Yt − 3 for AR(1) Series of Exhibit 4.13

ar1.s,x=zlag(ar1.s,3),ylab=expression(Y[t]), 
expression(Y[t-3]),type='p')

ral Linear Process Version of the AR(1) Model

ive definition of the AR(1) process given in Equation (4.3.2) is extremely
nterpretating the model. For other purposes, it is convenient to express the
el as a general linear process as in Equation (4.1.1). The recursive definition
r all t. If we use this equation with t replaced by t− 1, we get 

. Substituting this into the original expression gives

t this substitution into the past, say k − 1 times, we get

(4.3.7)

 and letting k increase without bound, it seems reasonable (this is
orous proof) that we should obtain the infinite series representation
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Yt φ φYt 2– et 1–+( ) et+=

et φet 1– φ2Yt 2–+ +=

Yt et φet 1– φ2et 2–
… φk 1– et k– 1+ φkYt k–+ + + + +=

φ 1<
(4.3.8)Yt et φet 1– φ2et 2– φ3et 3–
…+ + + +=
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he form of the general linear process of Equation (4.1.1) with ,
lready investigated in Section 4.1 on page 55. Note that this representation
es the need for the restriction .

ty of an AR(1) Process

own that, subject to the restriction that et be independent of Yt − 1, Yt − 2,
d that , the solution of the AR(1) defining recursion 
ionary if and only if . The requirement  is usually called the
y condition for the AR(1) process (See Box, Jenkins, and Reinsel, 1994,
on, 1973, p. 39; and Wei, 2005, p. 32) even though more than stationarity is
ee especially Exercises 4.16, 4.18, and 4.25.
 point, we should note that the autocorrelation function for the AR(1) process
rived in two different ways. The first method used the general linear process
ion leading up to Equation (4.1.3). The second method used the defining

 and the development of Equations (4.3.4), (4.3.5), and
hird derivation is obtained by multiplying both sides of Equation (4.3.7) by
g expected values of both sides, and using the fact that et, et − 1, et − 2, ... ,
e independent of Yt − k. The second method should be especially noted since
ralize nicely to higher-order processes.

nd-Order Autoregressive Process

er the series satisfying

(4.3.9)

sual, we assume that et is independent of Yt − 1, Yt − 2, Yt − 3, ... . To discuss
, we introduce the AR characteristic polynomial

responding AR characteristic equation

at a quadratic equation always has two roots (possibly complex).

ty of the AR(2) Process

hown that, subject to the condition that et is independent of Yt − 1, Yt − 2,
tationary solution to Equation (4.3.9) exists if and only if the roots of the AR
ic equation exceed 1 in absolute value (modulus). We sometimes say that the
 lie outside the unit circle in the complex plane. This statement will general-

th-order case without change.†

ψj φ j=

φ 1<

σe
2 0> Yt φYt 1– et+=

φ 1< φ 1<

t φYt 1– et+=

Yt φ1Yt 1– φ2Yt 2– et+ +=

φ x( ) 1 φ1x– φ2x2–=

1 φ1x– φ2x2– 0=
 applies in the first-order case, where the AR characteristic equation is just = 0
oot 1/φ, which exceeds 1 in absolute value if and only if .

1 φx–
φ 1<
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econd-order case, the roots of the quadratic characteristic equation are easily

(4.3.10)

tionarity, we require that these roots exceed 1 in absolute value. In Appendix
 we show that this will be true if and only if three conditions are satisfied:

(4.3.11)

h the AR(1) model, we call these the stationarity conditions for the AR(2)
 stationarity region is displayed in Exhibit 4.17.

17 Stationarity Parameter Region for AR(2) Process

orrelation Function for the AR(2) Process

e autocorrelation function for the AR(2) case, we take the defining recursive
 of Equation (4.3.9), multiply both sides by Yt − k, and take expectations.
tationarity, zero means, and that et is independent of Yt − k, we get

(4.3.12)

 through by γ0,

(4.3.13)

φ1 φ1
2 4φ2+±

2φ2–
-------------------------------------

φ1 φ2 1,<+ φ2 φ1 1,<– and φ2 1<

 

 

−2 −1 0 1 2

−
1.

0
−

0.
5

0.
0

0.
5

1.
0
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φφ 2

real roots

complex roots

φ1
2 4φ2+ 0=

γk φ1γk 1– φ2γk 2–+= for k = 1, 2, 3, ...

ρk φ1ρk 1– φ2ρk 2–+= for k = 1, 2, 3, ...
4.3.12) and/or (4.3.13) are usually called the Yule-Walker equations, espe-
et of two equations obtained for k = 1 and 2. Setting k = 1 and using ρ0 = 1

1, we get  and soρ1 φ1 φ2ρ1+=
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(4.3.14)

ow known values for ρ1 (and ρ0), Equation (4.3.13) can be used with k = 2 to

(4.3.15)

 values of ρk may be easily calculated numerically from the recursive rela-
Equation (4.3.13).
gh Equation (4.3.13) is very efficient for calculating autocorrelation values
 from given values of φ1 and φ2, for other purposes it is desirable to have a
it formula for ρk. The form of the explicit solution depends critically on the
 characteristic equation . Denoting the reciprocals of

by G1 and G2, it is shown in Appendix B, page 84, that

 G1 ≠ G2, it can be shown that we have

(4.3.16)

are complex (that is, if ), then ρk may be rewritten as

(4.3.17)

 and Θ and Φ are defined by  and 
.

pleteness, we note that if the roots are equal ( ), then we have

(4.3.18)

cussion of the derivations of these formulas can be found in Fuller (1996,
).
ecific details of these formulas are of little importance to us. We need only
e autocorrelation function can assume a wide variety of shapes. In all cases,
de of ρ  dies out exponentially fast as the lag k increases. In the case of com-

ρ1

φ1

1 φ2–
--------------=

ρ2 φ1ρ1 φ2ρ0+=

φ2 1 φ2–( ) φ1
2+

1 φ2–
--------------------------------------=

1 φ1x– φ2x2– 0=

G1

φ1 φ1
2 4φ2+–

2
-------------------------------------= and G2

φ1 φ1
2 4φ2++

2
-------------------------------------=

ρk

1 G2
2–( )G1

k 1+ 1 G1
2–( )G2

k 1+–

G1 G2–( ) 1 G1G2+( )
-----------------------------------------------------------------------------= for k 0≥

φ1
2 4φ2+ 0<

ρk Rk Θk Φ+( )sin
Φ( )sin

-------------------------------= for k 0≥

φ2– Θ( )cos φ1 2 φ2–( )⁄= Φ( )tan =
1 φ2+( )]

φ1
2 4φ2+ 0=

ρk 1
1 φ+ 2

1 φ2–
---------------k+⎝ ⎠

⎛ ⎞ φ1

2
-----⎝ ⎠

⎛ ⎞
k

= for k = 0, 1, 2,...
k
ρk displays a damped sine wave behavior with damping factor R, ,
 Θ, and phase Φ. Illustrations of the possible shapes are given in Exhibit

 function ARMAacf discussed on page 450 is useful for plotting.)

0 R 1<≤
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18 Autocorrelation Functions for Several AR(2) Models

t 4.19 displays the time plot of a simulated AR(2) series with φ1 = 1.5 and
 The periodic behavior of ρk shown in Exhibit 4.18 is clearly reflected in the
dic behavior of the series with the same period of 360/30 = 12 time units. If

red in radians, 2π/Θ is sometimes called the quasi-period of the AR(2) pro-

19 Time Plot of an AR(2) Series with φ1 = 1.5 and φ2 = −0.75
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nce for the AR(2) Model

s variance γ0 can be expressed in terms of the model parameters φ1, φ2, and
s: Taking the variance of both sides of Equation (4.3.9) yields

(4.3.19)

 k = 1 in Equation (4.3.12) gives a second linear equation for γ0 and γ1,
, which can be solved simultaneously with Equation (4.3.19) to

(4.3.20)

efficients for the AR(2) Model

ficients in the general linear process representation for an AR(2) series are
lex than for the AR(1) case. However, we can substitute the general linear
resentation using Equation (4.1.1) for Yt, for Yt − 1, and for Yt − 2 into

. If we then equate coefficients of ej , we get the recursive
s

(4.3.21)

 be solved recursively to obtain ψ0 = 1, ψ1 = φ1, , and so on.
ionships provide excellent numerical solutions for the ψ-coefficients for
rical values of φ1 and φ2.
n also show that, for G1 ≠ G2, an explicit solution is

(4.3.22)

efore, G1 and G2 are the reciprocals of the roots of the AR characteristic
 the roots are complex, Equation (4.3.22) may be rewritten as

(4.3.23)

ine wave with the same damping factor R and frequency Θ as in Equation

γ0 φ1
2 φ2

2+( )γ0 2φ1φ2γ1 σe
2+ +=

φ2γ1+

γ0

1 φ2–( )σe
2

1 φ2–( ) 1 φ1
2– φ2

2–( ) 2φ2φ1
2–

-------------------------------------------------------------------------=

1 φ2–

1 φ2+
---------------⎝ ⎠

⎛ ⎞ σe
2

1 φ2–( )2 φ1
2–

----------------------------------=

1– φ2Yt 2– et+ +

ψ0 1=

ψ1 φ1ψ0– 0=

ψj φ1ψj 1–– φ2ψj 2–– 0    for j =  2, 3, ...= ⎭
⎪
⎬
⎪
⎫

ψ2 φ1
2 φ2+=

ψj

G 1
j 1+ G 2

j 1+–

G1 G2–
---------------------------------=

ψj R j j 1+( )Θ[ ]sin
Θ( )sin

---------------------------------
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

 the autocorrelation function.
pleteness, we note that if the roots are equal, then

(4.3.24)ψj 1 j+( )φ1
j=
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w the pth-order autoregressive model

(4.3.25)

aracteristic polynomial

(4.3.26)

onding AR characteristic equation

(4.3.27)

ed earlier, assuming that et is independent of Yt − 1, Yt − 2, Yt − 3, ... a station-
 to Equation (4.3.27) exists if and only if the p roots of the AR characteristic
ch exceed 1 in absolute value (modulus). Other relationships between poly-
ts and coefficients may be used to show that the following two inequalities
ry for stationarity. That is, for the roots to be greater than 1 in modulus, it is
ut not sufficient, that both

(4.3.28)

stationarity and zero means, we may multiply Equation (4.3.25) by Yt − k,
ations, divide by γ0, and obtain the important recursive relationship

(4.3.29)

1, 2,..., and p into Equation (4.3.29) and using ρ0 = 1 and ρ−k = ρk, we get
 Yule-Walker equations

(4.3.30)

numerical values for φ1, φ2, ... , φp, these linear equations can be solved to
erical values for ρ1, ρ2, ... , ρp. Then Equation (4.3.29) can be used to obtain
alues for ρk at any number of higher lags.
 that

Yt φ1Yt 1– φ2Yt 2–
… φpYt p– et+ + + +=

φ x( ) 1 φ1x– φ2x2– …– φpxp–=

1 φ1x– φ2x2– …– φpxp– 0=

φ1 φ2
… φp+ + + 1<

and φp 1< ⎭
⎬
⎫

φ1ρk 1– φ2ρk 2– φ3ρk 3–
… φpρk p–+ + + + for k 1≥

ρ1 φ1 φ2ρ1 φ3ρ2
… φpρp 1–+ + + +=

ρ2 φ1ρ1 φ2 φ3ρ1
… φpρp 2–+ + + +=

...

ρp φ1ρp 1– φ2ρp 2– φ3ρp 3–
… φp+ + + += ⎭

⎪
⎪
⎬
⎪
⎪
⎫

Yt) E et φ1Yt 1– φ2Yt 2–
… φpYt p– et+ + + +( )[ ] E et

2( ) σe
2= = =
ltiply Equation (4.3.25) by Yt, take expectations, and find

γ0 φ1γ1 φ2γ2
… φpγp σe

2+ + + +=
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g ρk = γk/γ0, can be written as

(4.3.31)

 the process variance γ0 in terms of the parameters , φ1, φ2, ... , φp, and the
 values of ρ1, ρ2, ... , ρp. Of course, explicit solutions for ρk are essentially
 in this generality, but we can say that ρk will be a linear combination of
ly decaying terms (corresponding to the real roots of the characteristic equa-
mped sine wave terms (corresponding to the complex roots of the character-
n).

ing stationarity, the process can also be expressed in the general linear pro-
f Equation (4.1.1), but the ψ-coefficients are complicated functions of the
φ1, φ2,..., φp. The coefficients can be found numerically; see Appendix C on

 Mixed Autoregressive Moving Average Model

e that the series is partly autoregressive and partly moving average, we
ite general time series model. In general, if

(4.4.1)

 {Yt} is a mixed autoregressive moving average process of orders p and q,
; we abbreviate the name to ARMA(p,q). As usual, we discuss an important
 first.†

(1,1) Model

g equation can be written

(4.4.2)

ve Yule-Walker type equations, we first note that

γ0

σe
2

1 φ1ρ1– φ2ρ2– …– φpρp–
---------------------------------------------------------------------=

σe
2

φ1Yt 1– φ2Yt 2–
… φpYt p– et+ + + + θ1et 1– θ2et 2––

…– θqet q––
–

Yt φYt 1– et θet 1––+=

E etYt( ) E et φYt 1– et θet 1––+( )[ ]=

σe
2=
ed models, we assume that there are no common factors in the autoregressive and
g average polynomials. If there were, we could cancel them and the model would

e to an ARMA model of lower order. For ARMA(1,1), this means θ ≠ φ.
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ultiply Equation (4.4.2) by Yt−k and take expectations, we have

(4.4.3)

 first two equations yields

(4.4.4)

 the simple recursion gives

(4.4.5)

at this autocorrelation function decays exponentially as the lag k increases.
g factor is φ, but the decay starts from initial value ρ1, which also depends

is in contrast to the AR(1) autocorrelation, which also decays with damping
t always from initial value ρ0 = 1. For example, if φ = 0.8 and θ = 0.4, then
, ρ2 = 0.418, ρ3 = 0.335, and so on. Several shapes for ρk are possible,
on the sign of ρ1 and the sign of φ.
neral linear process form of the model can be obtained in the same manner
quation (4.3.8). We find

, (4.4.6)

uld now mention the obvious stationarity condition , or equivalently
 the AR characteristic equation 1 − φx = 0 must exceed unity in absolute

 general ARMA(p,q) model, we state the following facts without proof:
he condition that et is independent of Yt − 1, Yt − 2, Yt − 3,…, a stationary solu-

E et 1– Yt( ) E et 1– φYt 1– et θet 1––+( )[ ]=

φσe
2 θσe

2–=

φ θ–( )σe
2=

γ0 φγ1 1 θ φ θ–( )–[ ]σe
2+=

γ1 φγ0 θσe
2–=

γk φγk 1–     for k 2≥= ⎭
⎪
⎬
⎪
⎫

γ0
1 2φθ– θ2+( )

1 φ2–
------------------------------------σe

2=

ρk
1 θφ–( ) φ θ–( )
1 2θφ– θ2+

-------------------------------------φk 1–     for k 1≥=

Yt et φ θ–( ) φ j 1– et j–
j 1=

∞
∑+=

ψj φ θ–( )φ j 1–= for j 1≥

φ 1<
ation (4.4.1) exists if and only if all the roots of the AR characteristic equa-
0 exceed unity in modulus.
tationarity conditions are satisfied, then the model can also be written as a
ar process with ψ-coefficients determined from
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(4.4.7)

ke ψj = 0 for j < 0 and θj = 0 for j > q.
assuming stationarity, the autocorrelation function can easily be shown to

(4.4.8)

ations can be developed for k = 1, 2, 3, ... , q that involve θ1, θ2, ... , θq. An
uitable for numerical computation of the complete autocorrelation function
Appendix C on page 85. (This algorithm is implemented in the R function
Aacf.)

ertibility

en that for the MA(1) process we get exactly the same autocorrelation func-
replaced by 1/θ. In the exercises, we find a similar problem with nonunique-
e MA(2) model. This lack of uniqueness of MA models, given their

tion functions, must be addressed before we try to infer the values of param-
observed time series. It turns out that this nonuniqueness is related to the
nrelated question stated next.

oregressive process can always be reexpressed as a general linear process
 ψ-coefficients so that an AR process may also be thought of as an infi-
oving average process. However, for some purposes, the autoregressive rep-

s are also convenient. Can a moving average model be reexpressed as an
ion?
ideas, consider an MA(1) model:

(4.5.1)

ing this as et = Yt + θet−1 and then replacing t by t − 1 and substituting for
, we get

ψ0 1=

ψ1 θ1– φ1+=

ψ2 θ2– φ2 φ1ψ1+ +=

...

ψj θj– φpψj p– φp 1– ψj p– 1+
… φ1ψj 1–+ + + += ⎭

⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎫

ρk φ1ρk 1– φ2ρk 2–
… φpρk p–+ + += for k q>

Yt et θet 1––=

et Yt θ Yt 1– θet 2–+( )+=

Yt θYt 1– θ2et 2–+ +=
e may continue this substitution “infinitely” into the past and obtain the
[compare with Equations (4.3.7) and (4.3.8)]

et Yt θYt 1– θ2Yt 2–
…+ + +=
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(4.5.2)

e see that the MA(1) model can be inverted into an infinite-order autoregres-
 We say that the MA(1) model is invertible if and only if .
eneral MA(q) or ARMA(p,q) model, we define the MA characteristic

l as

(4.5.3)

responding MA characteristic equation

(4.5.4)

e shown that the MA(q) model is invertible; that is, there are coefficients πj

(4.5.5)

 if the roots of the MA characteristic equation exceed 1 in modulus. (Com-
th stationarity of an AR model.)
 also be shown that there is only one set of parameter values that yield an
MA process with a given autocorrelation function. For example, Yt =
nd Yt = et + ½et − 1 both have the same autocorrelation function, but only the

 with root −2 is invertible. From here on, we will restrict our attention to the
ensible class of invertible models.
eneral ARMA(p,q) model, we require both stationarity and invertibility.

mmary

er introduces the simple but very useful autoregressive, moving average
ime series models. The basic statistical properties of these models were
articular for the important special cases of moving averages of orders 1 and
egressive processes of orders 1 and 2. Stationarity and invertibility issues
ursued for these cases. Properties of mixed ARMA models have also been
. You should be well-versed in the autocorrelation properties of these mod-

various representations of the models.

Yt θYt 1–– θ2Yt 2–– θ3Yt 3–
…––( ) et+=

θ 1<

θ x( ) 1 θ1x– θ2x2– θ3x3– …– θqxq–=

1 θ1x– θ2x2– θ3x3– …– θqxq– 0=

Yt π1Yt 1– π2Yt 2– π3Yt 3–
… et+ + + +=
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ES

irst principles to find the autocorrelation function for the stationary process
ed by

h the autocorrelation functions for the following MA(2) models with param-
 as specified:

1 = 0.5 and θ2 = 0.4.

1 = 1.2 and θ2 = −0.7.

1 = −1 and θ2 = −0.6.
y that for an MA(1) process

 that when θ is replaced by 1/θ, the autocorrelation function for an MA(1)
ss does not change.
late and sketch the autocorrelation functions for each of the following
) models. Plot for sufficient lags that the autocorrelation function has nearly

out.

1 = 0.6.

1 = −0.6.

1 = 0.95. (Do out to 20 lags.)

1 = 0.3.
ose that {Yt} is an AR(1) process with −1 < φ < +1.
ind the autocovariance function for Wt = ∇Yt = Yt − Yt−1 in terms of φ and

.
 particular, show that Var(Wt) = 2 /(1+φ).

ribe the important characteristics of the autocorrelation function for the fol-
g models: (a) MA(1), (b) MA(2), (c) AR(1), (d) AR(2), and (e) ARMA(1,1).
Yt} be an AR(2) process of the special form Yt = φ2Yt − 2 + et. Use first prin-
s to find the range of values of φ2 for which the process is stationary.
the recursive formula of Equation (4.3.13) to calculate and then sketch the
orrelation functions for the following AR(2) models with parameters as
fied. In each case, specify whether the roots of the characteristic equation are
r complex. If the roots are complex, find the damping factor, R, and fre-

cy, Θ, for the corresponding autocorrelation function when expressed as in
tion (4.3.17), on page 73.

1 = 0.6 and φ2 = 0.3.

1 = −0.4 and φ2 = 0.5.

1 = 1.2 and φ2 = −0.7.

Yt 5 et
1
2
---et 1–– 1

4
---et 2–+ +=

max  ρ1
∞ θ ∞< <–

0.5= and min  ρ1
∞ θ ∞< <–

0.5–=

e
2

σe
2

1 = −1 and φ2 = −0.6.

1 = 0.5 and φ2 = −0.9.

1 = −0.5 and φ2 = −0.6.
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h the autocorrelation functions for each of the following ARMA models:
RMA(1,1) with φ = 0.7 and θ = 0.4.
RMA(1,1) with φ = 0.7 and θ = −0.4.

he ARMA(1,2) model Yt = 0.8Yt − 1 + et + 0.7et − 1 + 0.6et − 2, show that

k = 0.8ρk−1 for k > 2.

2 = 0.8ρ1 + 0.6 /γ0.
ider two MA(2) processes, one with θ1 = θ2 = 1/6 and another with θ1 = −1

2 = 6.
how that these processes have the same autocorrelation function.
ow do the roots of the corresponding characteristic polynomials compare?
Yt} be a stationary process with ρk = 0 for k > 1. Show that we must have
½. (Hint: Consider Var(Yn + 1 + Yn + + Y1) and then Var(Yn + 1 − Yn +

 −  ± Y1). Use the fact that both of these must be nonnegative for all n.)
ose that {Yt} is a zero mean, stationary process with |ρ1| < 0.5 and ρk = 0 for
. Show that {Yt} must be representable as an MA(1) process. That is, show
here is a white noise sequence {et} such that Yt = et − θet − 1, where ρ1 is cor-
nd et is uncorrelated with Yt − k for k > 0. (Hint: Choose θ such that |θ| < 1

1 = −θ/(1 + θ2); then let . If we assume that {Yt} is a nor-
rocess, et will also be normal, and zero correlation is equivalent to indepen-

e.)
ider the AR(1) model Yt = φYt − 1 + et. Show that if |φ| = 1 the process cannot
tionary. (Hint: Take variances of both sides.)

ider the “nonstationary” AR(1) model Yt = 3Yt−1 + et.
how that  satisfies the AR(1) equation.
how that the process defined in part (a) is stationary.
 what way is this solution unsatisfactory?
ider a process that satisfies the AR(1) equation Yt = ½Yt − 1 + et.
how that Yt = 10(½)t + et + ½et − 1 + (½)2et − 2 + is a solution of the AR(1)
quation.
 the solution given in part (a) stationary?
ider a process that satisfies the zero-mean, “stationary” AR(1) equation Yt =
1 + et with −1 < φ < +1. Let c be any nonzero constant, and define Wt = Yt +

how that E(Wt) = cφt.
how that {Wt} satisfies the “stationary” AR(1) equation Wt = φWt − 1 + et.
 {Wt} stationary?
ider an MA(6) model with θ1 = 0.5, θ2 = −0.25, θ3 = 0.125, θ4 = −0.0625,
0.03125, and θ6 = −0.015625. Find a much simpler model that has nearly the
 ψ-weights.
ider an MA(7) model with θ1 = 1, θ2 = −0.5, θ3 = 0.25, θ4 = −0.125,

σe
2

…
…

et θ jYt j–j 0=

∞∑=

Yt
1
3
---( ) jet j+j 1=

∞∑–=

…

0.0625, θ6 = −0.03125, and θ7 = 0.015625. Find a much simpler model that
early the same ψ-weights.
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ider the model Yt = et − 1 − et − 2 + 0.5et − 3.
ind the autocovariance function for this process.
how that this is a certain ARMA(p,q) process in disguise. That is, identify
alues for p and q and for the θ’s and φ’s such that the ARMA(p,q) process
as the same statistical properties as {Yt}.

 that the statement “The roots of  are
er than 1 in absolute value” is equivalent to the statement “The roots of

 are less than 1 in absolute value.” (Hint: If
a root of one equation, is 1/G a root of the other?)
ose that {Yt} is an AR(1) process with ρ1 = φ. Define the sequence {bt} as

t − φYt + 1.
how that Cov(bt,bt − k) = 0 for all t and k.
how that Cov(bt,Yt + k) = 0 for all t and k > 0.
et} be a zero-mean, unit-variance white noise process. Consider a process
egins at time t = 0 and is defined recursively as follows. Let Y0 = c1e0 and

c2Y0 + e1. Then let Yt = φ1Yt − 1 + φ2Yt − 2 + et for t > 1 as in an AR(2) pro-

how that the process mean is zero.
or particular values of φ1 and φ2 within the stationarity region for an AR(2)
odel, show how to choose c1 and c2 so that both Var(Y0) = Var(Y1) and the
g 1 autocorrelation between Y1 and Y0 match that of a stationary AR(2) pro-

ess with parameters φ1 and φ2.
nce the process {Yt} is generated, show how to transform it to a new process
at has any desired mean and variance. (This exercise suggests a convenient
ethod for simulating stationary AR(2) processes.)
ider an “AR(1)” process satisfying Yt = φYt − 1 + et, where φ can be any num-
nd {et} is a white noise process such that et is independent of the past {Yt − 1,
,…}. Let Y0 be a random variable with mean μ0 and variance .
how that for t > 0 we can write

Yt = et + φet − 1 + φ2et − 2 + φ3et − 3 + + φt−1e1 + φtY0.

how that for t > 0 we have E(Yt) = φtμ0.
how that for t > 0

uppose now that μ0 = 0. Argue that, if {Yt} is stationary, we must have .
ontinuing to suppose that μ0 = 0, show that, if {Yt} is stationary, then

1 φ1x– φ2x2 …– φpxp–– 0=

φ1xp 1– φ2xp 2– …– φp–– 0=

σ0
2

…

Var Yt( )

1 φ2t–
1 φ2–
----------------σe

2 φ2tσ0
2+ for φ 1≠

tσe
2 σ0

2+ for φ 1=⎩
⎪
⎨
⎪
⎧

=

φ 1≠

2 2
 and so we must have |φ| <1.ar Yt( ) σe 1 φ–( )⁄=
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ix B: The Stationarity Region for an AR(2) Process

d-order case, the roots of the quadratic characteristic polynomial are easily

(4.B.1)

tionarity we require that these roots exceed 1 in absolute value. We now
is will be true if and only if three conditions are satisfied:

(4.B.2)

he reciprocals of the roots be denoted G1 and G2. Then

 divide the proof into two cases corresponding to real and complex roots.
ill be real if and only if .
 Roots: for i = 1 and 2 if and only if

.

er just the first inequality. Now   if and only if
 if and only if  if and only if ,

.

lity  is treated similarly and leads to .
equations together with  define the stationarity region for the
se shown in Exhibit 4.17.

φ1 φ1
2 4φ2+±

2φ2–
-------------------------------------

φ1 φ2 1,<+ φ2 φ1 1,<– and φ2 1<

1

2φ2

φ1– φ1
2 4φ2+–

------------------------------------------
2φ2

φ1– φ1
2 4φ2+–

------------------------------------------
φ1– φ1

2 4φ2++

φ1– φ1
2 4φ2++

------------------------------------------= =

2φ2 φ1– φ1
2 4φ2++( )

φ1
2 φ1

2 4φ2+( )–
--------------------------------------------------------=

φ1 φ1
2 4φ2+–

2
-------------------------------------=

G2

φ1 φ1
2 4φ2++

2
-------------------------------------=

φ1
2 4φ2 0≥+

Gi 1<

1
φ1 φ1

2 4φ2+–

2
-------------------------------------

φ1 φ1
2 4φ2++

2
------------------------------------- 1< < <–

2 φ1 φ1
2 4φ2+ φ1 φ1

2 4φ2++ 2< <–<–

2 φ1 φ1
2 4φ2+–<–

φ1 2+< φ1
2 4φ2+ φ1

2 4φ1 4+ +< φ2 φ1 1+<
1

φ1 φ1
2 4φ2++ 2< φ2 φ1+ 1<

φ1
2 4φ2 0≥+

2
plex Roots: Now . Here G1 and G2 will be complex conju-
if and only if . But

hat . This together with the inequality  defines the part
narity region for complex roots shown in Exhibit 4.17 and establishes Equa-
). This completes the proof.

φ1 4φ2 0<+

1 G2 1<= G1
2 1< G1

2 φ1
2 φ1

2– 4φ2–( )+[ ] 4⁄=
φ2 1–> φ1

2 4φ2 0<+
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ix C: The Autocorrelation Function for ARMA(p,q)

 a stationary, invertible ARMA(p,q) process. Recall that we can always write
ess in general linear process form as

(4.C.1)

-weights can be obtained recursively from Equations (4.4.7), on page 79.
ve

(4.C.2)

tocovariance must satisfy

(4.C.3)

 −1 and the last sum is absent if k > q. Setting k = 0, 1, …, p and using γ−k =
 + 1 linear equations in γ0, γ1, …, γp.

(4.C.4)

0 if j > q.
iven set of parameter values , φ’s, and θ’s (and hence ψ’s), we can solve
quations to obtain γ0, γ1,…, γp. The values of γk for k > p can then be evalu-
e recursion in Equations (4.4.8), on page 79. Finally, ρk is obtained from ρk

Yt ψjet j–
j 0=

∞
∑=

E Yt k+ et( ) E ψjet k j–+ e
t

j 0=

∞
∑

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

ψkσe
2  for k 0≥= =

k E Yt k+ Yt( ) E φjYt k j–+
j 1=

p

∑ θjet k j–+
j 0=

q

∑–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

Yt= =

φjγk j–
j 1=

p

∑ σe
2 θjψj k–

j k=

q

∑–=

γ1 φ2γ2
… φpγp σe

2 θ0 θ1ψ1
… θqψq+ + +( )–+ + +

γ0 φ2γ1
… φpγp 1– σe

2 θ1 θ2ψ1
… θqψq 1–+ + +( )–+ + +

γp 1– φ2γp 2–
… φpγ0 σe

2 θp θp 1+ ψ1
… θqψq p–+ + +( )–+ + + ⎭

⎪
⎪
⎬
⎪
⎪
⎫

σe
2
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ries without a constant mean over time is nonstationary. Models of the form

Yt = μt + Xt

 a nonconstant mean function and Xt is a zero-mean, stationary series, were
 in Chapter 3. As stated there, such models are reasonable only if there are
s for believing that the deterministic trend is appropriate “forever.” That is,

e a segment of the series looks like it is increasing (or decreasing) approxi-
arly, do we believe that the linearity is intrinsic to the process and will persist
e? Frequently in applications, particularly in business and economics, we
timately assume a deterministic trend. Recall the random walk displayed in
, on page 14. The time series appears to have a strong upward trend that
near in time. However, also recall that the random walk process has a con-

ean and contains no deterministic trend at all. 
example consider the monthly price of a barrel of crude oil from January
h January 2006. Exhibit 5.1 displays the time series plot. The series displays
e variation, especially since 2001, and a stationary model does not seem to
ble. We will discover in Chapters 6, 7, and 8 that no deterministic trend
ks well for this series but one of the nonstationary models that have been
s containing stochastic trends does seem reasonable. This chapter discusses
s. Fortunately, as we shall see, many stochastic trends can be modeled with
w parameters.
87
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1 Monthly Price of Oil: January 1986–January 2006 

ph(width=4.875,height=3,pointsize=8)
l.price)
l.price, ylab='Price per Barrel',type='l')

tionarity Through Differencing

ain the AR(1) model
(5.1.1)

en that assuming et is a true “innovation” (that is, et is uncorrelated with
,…), we must have |φ| < 1. What can we say about solutions to Equation

| ≥ 1? Consider in particular the equation

(5.1.2)

to the past as we have done before yields

(5.1.3)

t the influence of distant past values of Yt and et does not die out—indeed,
 applied to Y0 and e1 grow exponentially large. In Exhibit 5.2, we show the
 very short simulation of such a series. Here the white noise sequence was
s standard normal variables and we used Y0 = 0 as an initial condition.

2 Simulation of the Explosive “AR(1) Model” 

Time

1990 1995 2000 2005

Yt φYt 1– et+=

Yt 3Yt 1– et+=

Yt et 3et 1– 32et 2–
… 3t 1– e1 3tY0+ + + + +=

Yt 3Yt 1– et+=
2 3 4 5 6 7 8

3 −1.25 1.80 1.51 1.56 0.62 0.64 −0.98

3 0.64 3.72 12.67 39.57 119.33 358.63 1074.91
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t 5.3 shows the time series plot of this explosive AR(1) simulation.

3 An Explosive “AR(1)” Series

plode.s)
plode.s,ylab=expression(Y[t]),type='o')

plosive behavior of such a model is also reflected in the model’s variance
nce functions. These are easily found to be

(5.1.4)

(5.1.5)

. Notice that we have

me general exponential growth or explosive behavior will occur for any φ
| > 1. A more reasonable type of nonstationarity obtains when φ = 1. If φ = 1,

odel equation is
(5.1.6)

● ● ● ●
●

●

●

●

Time

1 2 3 4 5 6 7 8

Var Yt( ) 1
8
--- 9 t 1–( )σe

2=

Cov Yt Yt k–,( ) 3k

8
----- 9 t k– 1–( )σe

2=

orr Yt Yt k–,( ) 3k 9t k– 1–

9t 1–
-------------------- 1≈= for large t and moderate k

Yt Yt et+=
relationship satisfied by the random walk process of Chapter 2 (Equation
age 12). Alternatively, we can rewrite this as

(5.1.7)∇Yt et=
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 is the first difference of Yt. The random walk then is easily
o a more general model whose first difference is some stationary pro-
ust white noise.
l somewhat different sets of assumptions can lead to models whose first dif-
 stationary process. Suppose

(5.1.8)

s a series that is changing only slowly over time. Here Mt could be either
ic or stochastic. If we assume that Mt is approximately constant over every
utive time points, we might estimate (predict) Mt at t by choosing β0 so that

d. This clearly leads to

trended” series at time t is then

nstant multiple of the first difference, ∇Yt.
†

nd set of assumptions might be that Mt in Equation (5.1.8) is stochastic and
wly over time governed by a random walk model. Suppose, for example, that

(5.1.9)

and {εt} are independent white noise series. Then

d have the autocorrelation function of an MA(1) series with

(5.1.10)

 these situations, we are led to the study of ∇Yt as a stationary process.
ing to the oil price time series, Exhibit 5.4 displays the time series plot of the
 of logarithms of that series.‡ The differenced series looks much more sta-
n compared with the original time series shown in Exhibit 5.1, on page 88. 

Yt Yt 1––=

Yt Mt Xt+=

Yt j– β0 t,–( )2

j 0=

1
∑

M̂t
1
2
--- Yt Yt 1–+( )=

Yt M̂t– Yt
1
2
--- Yt Yt 1–+( )–

1
2
--- Yt Yt 1––( ) 1

2
---∇Yt= = =

Yt Mt et+= with Mt Mt 1– εt+=

Yt∇ Mt∇ et∇+=

εt et et 1––+=

ρ1 1 2 σε
2 σe

2⁄( )+[ ]⁄{ }–=
e complete labeling of this difference would be that it is a first difference at lag 1.
tion 5.4 on page 98 we will see why logarithms are often a convenient transforma-
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so see later that there are outliers in this series that need to be considered to
 adequate model.)

4 The Difference Series of the Logs of the Oil Price Time 

ff(log(oil.price)),ylab='Change in Log(Price)',type='l')

 also make assumptions that lead to stationary second-difference models.
ssume that Equation (5.1.8) on page 90, holds, but now assume that Mt is lin-
over three consecutive time points. We can now estimate (predict) Mt at the
 point t by choosing and to minimize

n yields

 detrended series is

Time

1990 1995 2000 2005

β0 t, β1 t,

Yt j– β0 t, jβ1 t,+( )–( )2

j 1–=

1

∑

M̂t
1
3
--- Yt 1+ Yt Yt 1–+ +( )=

Yt M̂t– Yt

Yt 1+ Yt Yt 1–+ +

3
------------------------------------------⎝ ⎠

⎛ ⎞–=

1
3
---–⎝ ⎠

⎛ ⎞ Yt 1+ 2Yt– Yt 1–+( )=

1
3
---–⎝ ⎠

⎛ ⎞ Yt 1+∇( )∇=

1---–⎛ ⎞ ∇2 Y( )=
ultiple of the centered second difference of Yt. Notice that we have differ-
, but both differences are at lag 1.
tively, we might assume that

3⎝ ⎠ t 1+
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(5.1.11)

nd {εt} independent white noise time series. Here the stochastic trend Mt is
 “rate of change,” ∇Mt, is changing slowly over time. Then

he autocorrelation function of an MA(2) process. The important point is that
difference of the nonstationary process {Yt} is stationary. This leads us to the
inition of the important integrated autoregressive moving average time series

IMA Models

ies {Yt} is said to follow an integrated autoregressive moving average
 dth difference Wt = ∇dYt is a stationary ARMA process. If {Wt} follows an
) model, we say that {Yt} is an ARIMA(p,d,q) process. Fortunately, for
rposes, we can usually take d = 1 or at most 2.
er then an ARIMA(p,1,q) process. With Wt = Yt − Yt − 1, we have

(5.2.1)

 of the observed series,

ay rewrite as

(5.2.2)

 the difference equation form of the model. Notice that it appears to be an
1,q) process. However, the characteristic polynomial satisfies

et,+ where Mt Mt 1– Wt+= and Wt Wt 1– εt+=

Yt∇ Mt∇ et∇+ Wt et∇+= =

∇2Yt Wt∇ ∇2et+=

εt et et 1––( ) et 1– et 2––( )–+=

εt et 2et 1–– et 2–+ +=

φ1Wt 1– φ2Wt 2–
… φpWt p– et+ + + + θ1et 1– θ2et 2––

…– θqet q––
–

1– φ1 Yt 1– Yt 2––( ) φ2 Yt 2– Yt 3––( ) … φp Yt p– Yt p– 1––( )+ + +=

et+ θ1et 1– θ2et 2–– …– θqet q–––

1 φ1+ )Yt 1– φ2 φ1–( )Yt 2– φ3 φ2–( )Yt 3–
…+ + +

p φp 1–– )Yt p– φpYt p– 1–– et θ1et 1– θ2et 2–– …– θqet q–––+

2 3 … p p 1+
1 φ1+ )x φ2 φ1–( )x– φ3 φ2–( )x– – φp φp 1––( )x– φpx+

1 φ1x– φ2x2– …– φpxp–( ) 1 x–( )=
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be easily checked. This factorization clearly shows the root at x = 1, which
stationarity. The remaining roots, however, are the roots of the characteristic
 of the stationary process ∇Yt.
it representations of the observed series in terms of either Wt or the white
 underlying Wt are more difficult than in the stationary case. Since nonsta-

cesses are not in statistical equilibrium, we cannot assume that they go infi-
he past or that they start at . However, we can and shall assume that
 some time point , say, where  is earlier than time t = 1, at which
st observed the series. For convenience, we take Yt = 0 for t < −m. The differ-
on Yt − Yt − 1 = Wt can be solved by summing both sides from  to t =
representation

(5.2.3)

MA(p,1,q) process.
IMA(p,2,q) process can be dealt with similarly by summing twice to get the

ons

(5.2.4)

esentations have limited use but can be used to investigate the covariance
f ARIMA models and also to express Yt in terms of the white noise series
fer the calculations until we evaluate specific cases.
rocess contains no autoregressive terms, we call it an integrated moving
 abbreviate the name to IMA(d,q). If no moving average terms are present,

the model as ARI(p,d). We first consider in detail the important IMA(1,1)

,1) Model

 IMA(1,1) model satisfactorily represents numerous time series, especially
g in economics and business. In difference equation form, the model is

(5.2.5)

 explicitly as a function of present and past noise values, we use Equation
the fact that Wt = et − θet − 1 in this case. After a little rearrangement, we can

(5.2.6)

t ∞–=
t m–= m–

t m–=

Yt Wj
j m–=

t

∑=

Yt Wi
i m–=

j

∑
j m–=

t

∑=

j 1+( )Wt j–
j 0=

t m+

∑=

Yt Yt 1– et θet 1––+=

et 1 θ–( )et 1– 1 θ–( )et 2–
… 1 θ–( )e m– θe m– 1––+ + + +
 in contrast to our stationary ARMA models, the weights on the white noise
t die out as we go into the past. Since we are assuming that −m < 1 and 0 < t,
fully think of Yt as mostly an equally weighted accumulation of a large num-
 noise values.
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quation (5.2.6), we can easily derive variances and correlations. We have

(5.2.7)

(5.2.8)

 as t increases,  increases and could be quite large. Also, the correla-
n Yt and Yt − k will be strongly positive for many lags k = 1, 2, … .

,2) Model

tions of Equation (5.1.11) led to an IMA(2,2) model. In difference equation
ve

(5.2.9)

ntation of Equation (5.2.4) may be used to express Yt in terms of et, et − 1,….
 tedious algebra, we find that

(5.2.10)

 1 + θ2 + (1 − θ1 − θ2) j for j = 1, 2, 3,…, t + m. Once more we see that the
o not die out but form a linear function of j.

 variances and correlations for Yt can be obtained from the representation
uation (5.2.10), but the calculations are tedious. We shall simply note that the
 Yt increases rapidly with t and again  is nearly 1 for all mod-

sults of a simulation of an IMA(2,2) process are displayed in Exhibit 5.5.
mooth change in the process values (and the unimportance of the zero-mean
he increasing variance and the strong, positive neighboring correlations

e appearance of the time series plot. 

Var Yt( ) 1 θ2 1 θ–( )2 t m+( )+ +[ ]σe
2=

Corr Yt Yt k–,( ) 1 θ– θ2 1 θ–( )2 t m k–+( )+ +

Var Yt( )Var Yt k–( )[ ]1 2/
----------------------------------------------------------------------------=

t m k–+
t m+

---------------------≈

1≈ for large m and moderate k

Var Yt( )

∇2Yt et θ1et 1–– θ2et 2––=

Yt 2Yt 1– Yt 2–– et θ1et 1–– θ2et 2––+=

t et ψjet j–
j 1=

t m+

∑ t m 1+ +( )θ1 t m+( )θ2+[ ]e m– 1––+=

t m 1+ +( )θ2e m– 2––

Corr Yt Yt k–,( )
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5 Simulation of an IMA(2,2) Series with θ1 = 1 and θ2 = −0.6 

a22.s)
a22.s,ylab='IMA(2,2) Simulation',type='o')

t 5.6 shows the time series plot of the first difference of the simulated series.
is also nonstationary, as it is governed by an IMA(1,2) model.

6 First Difference of the Simulated IMA(2,2) Series

ff(ima22.s),ylab='First Difference',type='o')

, the second differences of the simulated IMA(2,2) series values are plotted
.7. These values arise from a stationary MA(2) model with θ1 = 1 and θ2 =
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 Equation (4.2.3) on page 63, the theoretical autocorrelations for this model
.678 and ρ2 = 0.254. These correlation values seem to be reflected in the

 of the time series plot.
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7 Second Difference of the Simulated IMA(2,2) Series

ff(ima22.s,difference=2),ylab='Differenced 
',type='o')

,1) Model

1) process will satisfy

(5.2.11)

(5.2.12)

 1.†

 the ψ-weights in this case, we shall use a technique that will generalize to
RIMA models. It can be shown that the ψ-weights can be obtained by equat-

ers of x in the identity:

(5.2.13)

case, this relationship reduces to

ke powers of x on both sides, we obtain
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Yt Yt 1–– φ Yt 1– Yt 2––( ) et+=

Yt 1 φ+( )Yt 1– φYt 2–– et+=

1x φ2x2– …– φpxp– ) 1 x–( )d 1 ψ1x ψ2x2 ψ3x3 …+ + + +( )

1 θ1x– θ2x2– θ3x3– …– θqxq–( )=

1 φx–( ) 1 x–( ) 1 ψ1x ψ2x2 ψ3x3 …+ + + +( ) 1=

1 1 φ+( )x– φx2+[ ] 1 ψ1x ψ2x2 ψ3x3 …+ + + +( ) 1=
 that this looks like a special AR(2) model. However, one of the roots of the corre-
ing AR(2) characteristic polynomial is 1, and this is not allowed in stationary AR(2)
ls.
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eral,
(5.2.14)

 and ψ1 = 1 + φ. This recursion with starting values allows us to compute as
ights as necessary. It can also be shown that in this case an explicit solution
sion is given as

(5.2.15)

or example, to show that this expression satisfies Equation (5.2.14).

nstant Terms in ARIMA Models

MA(p,d,q) model, ∇dYt = Wt is a stationary ARMA(p,q) process. Our stan-
ption is that stationary models have a zero mean; that is, we are actually
th deviations from the constant mean. A nonzero constant mean, μ, in a sta-
MA model {Wt} can be accommodated in either of two ways. We can

t

tively, we can introduce a constant term θ0 into the model as follows:

ected values on both sides of the latter expression, we find that

(5.3.16)

ly, that

(5.3.17)

1 φ+( )– ψ1+ 0=

φ 1 φ+( )ψ1 ψ2+– 0=

ψk 1 φ+( )ψk 1– φψk 2––= for k 2≥

ψk
1 φk 1+–

1 φ–
----------------------  for k 1≥=

Wt μ– φ1 Wt 1– μ–( ) φ2 Wt 2– μ–( ) … φp Wt p– μ–( )+ + +=

et+ θ1et 1– θ2et 2–– …– θqet q–––

Wt θ0 φ1Wt 1– φ2Wt 2–
… φpWt p–+ + ++=

et θ1et 1– θ2et 2–– …– θqet q–––+ 

μ θ0 φ1 φ2
… φp+ + +( )μ+=

μ
θ0

1 φ1 φ2– …– φp––
--------------------------------------------------=

θ0 μ 1 φ1 φ2– …– φp––( )=
lternative representations are equivalent, we shall use whichever parameter-
nvenient.
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ill be the effect of a nonzero mean for Wt on the undifferenced series Yt?
e IMA(1,1) case with a constant term. We have

bstituting into Equation (5.2.3) on page 93 or by iterating into the past, we

(5.3.18)

 this with Equation (5.2.6), we see that we have an added linear deterministic
t + m + 1)θ0 with slope θ0.
ivalent representation of the process would then be

s an IMA(1,1) series with E  = 0 and E  = β1. 
eneral ARIMA(p,d,q) model where E  ≠ 0, it can be argued that Yt =
here μt is a deterministic polynomial of degree d and  is ARIMA(p,d,q)
 0. With d = 2 and θ0 ≠ 0, a quadratic trend would be implied.

er Transformations

en how differencing can be a useful transformation for achieving stationarity.
e logarithm transformation is also a useful method in certain circumstances.
tly encounter series where increased dispersion seems to be associated with
ls of the series—the higher the level of the series, the more variation there is
 level and conversely.
cally, suppose that Yt > 0 for all t and that

(5.4.1)

(5.4.2)

lts follow from taking expected values and variances of both sides of the
pansion

Yt Yt 1– θ0 et θet 1––+ +=

Wt θ0 et θet 1––+=

et 1 θ–( )et 1– 1 θ–( )et 2–
… 1 θ–( )e m– θe m– 1––+ + + +

t m 1+ +( )θ0+

Yt Yt' β0 β1t+ +=

Yt'∇( ) Yt∇( )
∇dYt( )

Yt'

E Yt( ) μt= and Var Yt( ) μtσ=

E Yt( )log[ ] μt( )log≈ and Var Yt( )log( ) σ2≈

Yt( )log μt( )log
Yt μt–
---------------+≈
 the standard deviation of the series is proportional to the level of the series,
rming to logarithms will produce a series with approximately constant vari-
ime. Also, if the level of the series is changing roughly exponentially, the

μt



5.4  Other

log-transfor
first differe
follows.

Percentag

Suppose Yt
the next. Sp

where 100X

If Xt is rest
then, to a g

will be rela
we take log
literature, th

As an e
total month
The higher 

Exhibit 5.

> data(el

E
le

ct
ric

ity

15
00

00
25

00
00

35
00

00
 Transformations 99

med series will exhibit a linear time trend. Thus, we might then want to take
nces. An alternative set of assumptions leading to differences of logged data

e Changes and Logarithms

 tends to have relatively stable percentage changes from one time period to
ecifically, assume that

t is the percentage change (possibly negative) from Yt−1 to Yt. Then

ricted to, say, |Xt| < 0.2 (that is, the percentage changes are at most ±20%),
ood approximation, log(1+Xt) ≈ Xt. Consequently,

(5.4.3)

tively stable and perhaps well-modeled by a stationary process. Notice that
s first and then compute first differences—the order does matter. In financial
e differences of the (natural) logarithms are usually called returns.
xample, consider the time series shown in Exhibit 5.8. This series gives the
ly electricity generated in the United States in millions of kilowatt-hours.
values display considerably more variation than the lower values.

8 U.S. Electricity Generated by Month

Yt 1 Xt+( )Yt 1–=

Yt( )log Yt 1–( )log–
Yt

Yt 1–
------------⎝ ⎠

⎛ ⎞log=

1 Xt+( )log=

∇ Yt( )log[ ] Xt≈

1975 1980 1985 1990 1995 2000 2005
ectricity); plot(electricity)

Time
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Models for Nonstationary Time Series

t 5.9 displays the time series plot of the logarithms of the electricity values.
 the amount of variation around the upward trend is now much more uniform
 and low values of the series.

9 Time Series Plot of Logarithms of Electricity Values

g(electricity),ylab='Log(electricity)')

fferences of the logarithms of the electricity values are displayed in Exhibit
e basis of this plot, we might well consider a stationary model as appropriate.

10 Difference of Logarithms for Electricity Time Series

ff(log(electricity)), 

Time

1975 1980 1985 1990 1995 2000 2005

Time

1975 1980 1985 1990 1995 2000 2005
'Difference of Log(electricity)')
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nsformations

family of transformations, the power transformations, was introduced by
x (1964). For a given value of the parameter λ, the transformation is defined

(5.4.4)

λ is the important part of the first expression, but subtracting 1 and dividing
 g(x) change smoothly as λ approaches zero. In fact, a calculus argument†

 as λ , (xλ − 1)/λ log(x). Notice that λ = ½ produces a square root
tion useful with Poisson-like data, and λ = −1 corresponds to a reciprocal
ion.
wer transformation applies only to positive data values. If some of the values
 or zero, a positive constant may be added to all of the values to make them
before doing the power transformation. The shift is often determined subjec-
example, for nonnegative catch data in biology, the occurrence of zeros is
with by adding a constant equal to the smallest positive data value to all of
ues. An alternative approach consists of using transformations applicable to
positive or not. A drawback of this alternative approach is that interpretations
nsformations are often less straightforward than the interpretations of the
sformations. See Yeo and Johnson (2000) and the references contained

 consider λ as an additional parameter in the model to be estimated from the
ta. However, precise estimation of λ is usually not warranted. Evaluation of
ransformations based on a grid of λ values, say ±1, ±1/2, ±1/3, ±1/4, and 0,
 suffice and may have some intuitive meaning.
re allows us to consider a range of lambda values and calculate a log-likeli-
for each lambda value based on a normal likelihood function. A plot of these
own in Exhibit 5.11 for the electricity data. The 95% confidence interval for
the value of λ = 0 quite near its center and strongly suggests a logarithmic
ion (λ = 0) for these data.

g x( )
xλ 1–

λ
-------------- for λ 0≠

xlog for λ 0=⎩
⎪
⎨
⎪
⎧

=

0→ →
ise (5.17) asks you to verify this.



102

Exhibit 5.

> BoxCox.

5.5 Su

This chapte
nonstationa
average m
explored. O
considered
introduced 
Models for Nonstationary Time Series

11 Log-likelihood versus Lambda

ar(electricity)
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r introduced the concept of differencing to induce stationarity on certain
ry processes. This led to the important integrated autoregressive moving

odels (ARIMA). The properties of these models were then thoroughly
ther transformations, namely percentage changes and logarithms, were then

. More generally, power transformations or Box-Cox transformations were
as useful transformations to stationarity and often normality.
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ES

ify the following as specific ARIMA models. That is, what are p, d, and q
hat are the values of the parameters (the φ’s and θ’s)?

t = Yt − 1 − 0.25Yt − 2 + et − 0.1et − 1.

t = 2Yt − 1 − Yt−2 + et.

t = 0.5Yt − 1 − 0.5Yt − 2 + et − 0.5et − 1+ 0.25et − 2.
ach of the ARIMA models below, give the values for E(∇Yt) and Var(∇Yt).

t = 3 + Yt − 1 + et − 0.75et − 1.

t = 10 + 1.25Yt − 1 − 0.25Yt − 2 + et − 0.1et − 1.

t = 5 + 2Yt − 1 − 1.7Yt − 2 + 0.7Yt − 3 + et − 0.5et − 1+ 0.25et − 2.
ose that {Yt} is generated according to Yt = et + cet − 1+ cet − 2+ cet − 3+ +
r t > 0.

ind the mean and covariance functions for {Yt}. Is {Yt} stationary?
ind the mean and covariance functions for {∇Yt}. Is {∇Yt} stationary?
entify {Yt} as a specific ARIMA process.
ose that Yt = A + Bt + Xt, where {Xt} is a random walk. First suppose that A
 are constants.
 {Yt} stationary?
 {∇Yt} stationary?
uppose that A and B are random variables that are independent of the random 
Xt}.
 {Yt} stationary?
 {∇Yt} stationary?

g the simulated white noise values in Exhibit 5.2, on page 88, verify the val-
hown for the explosive process Yt.
ider a stationary process {Yt}. Show that if ρ1 < ½, ∇Yt has a larger variance
does Yt.
ider two models:
 0.9Yt − 1 + 0.09Yt − 2 + et.
 Yt − 1 + et − 0.1et − 1.
entify each as a specific ARIMA model. That is, what are p, d, and q and

 are the values of the parameters, φ’s and θ’s?
 what ways are the two models different?
 what ways are the two models similar? (Compare ψ-weights and

-weights.)

…
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Models for Nonstationary Time Series

ider a nonstationary “AR(1)” process defined as a solution to Equation
) on page 88, with |φ| > 1.
erive an equation similar to Equation (5.1.3) on page 88, for this more gen-
ase. Use Y0 = 0 as an initial condition.
erive an equation similar to Equation (5.1.4) on page 89, for this more gen-

ral case.
erive an equation similar to Equation (5.1.5) on page 89, for this more gen-

ral case.
 it true that for any |φ| > 1, for large t and moderate k?
y Equation (5.1.10) on page 90.
tationary ARIMA series can be simulated by first simulating the correspond-
tationary ARMA series and then “integrating” it (really partially summing
se statistical software to simulate a variety of IMA(1,1) and IMA(2,2) series
a variety of parameter values. Note any stochastic “trends” in the simulated
s.
data file winnebago contains monthly unit sales of recreational vehicles
) from Winnebago, Inc., from November 1966 through February 1972.
isplay and interpret the time series plot for these data.
ow take natural logarithms of the monthly sales figures and display the time
ries plot of the transformed values. Describe the effect of the logarithms on
e behavior of the series.
alculate the fractional relative changes, (Yt − Yt − 1)/Yt − 1, and compare them
ith the differences of (natural) logarithms,∇log(Yt) = log(Yt) − log(Yt − 1).
ow do they compare for smaller values and for larger values?
data file SP contains quarterly Standard & Poor’s Composite Index stock
 values from the first quarter of 1936 through the fourth quarter of 1977.
isplay and interpret the time series plot for these data.
ow take natural logarithms of the quarterly values and display and the time
ries plot of the transformed values. Describe the effect of the logarithms on
e behavior of the series.
alculate the (fractional) relative changes, (Yt − Yt − 1)/Yt − 1, and compare
em to the differences of (natural) logarithms, ∇log(Yt). How do they com-

are for smaller values and for larger values?
data file airpass contains international airline passenger monthly totals (in
ands) flown from January 1960 through December 1971. This is a classic
series analyzed in Box and Jenkins (1976).
isplay and interpret the time series plot for these data.
ow take natural logarithms of the monthly values and display and the time
ries plot of the transformed values. Describe the effect of the logarithms on
e behavior of the series.

Corr Yt Yt k–,( ) 1≈
alculate the (fractional) relative changes, (Yt − Yt − 1)/Yt − 1, and compare
em to the differences of (natural) logarithms,∇log(Yt). How do they com-

are for smaller values and for larger values?
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ider the annual rainfall data for Los Angeles shown in Exhibit 1.1, on page 2.
uantile-quantile normal plot of these data, shown in Exhibit 3.17, on page

onvinced us that the data were not normal. The data are in the file larain.
se software to produce a plot similar to Exhibit 5.11, on page 102, and deter-
 the “best” value of λ for a power transformation of the data.
isplay a quantile-quantile plot of the transformed data. Are they more nor-
al?
roduce a time series plot of the transformed values.
se the transformed values to display a plot of Yt versus Yt − 1 as in Exhibit
.2, on page 2. Should we expect the transformation to change the dependence
r lack of dependence in the series?
terly earnings per share for the Johnson & Johnson Company are given in the
file named JJ. The data cover the years from 1960 through 1980.
isplay a time series plot of the data. Interpret the interesting features in the

se software to produce a plot similar to Exhibit 5.11, on page 102, and deter-
ine the “best” value of λ for a power transformation of these data.
isplay a time series plot of the transformed values. Does this plot suggest
at a stationary model might be appropriate?
isplay a time series plot of the differences of the transformed values. Does
is plot suggest that a stationary model might be appropriate for the differ-

nces?
ile named gold contains the daily price of gold (in dollars per troy ounce) for
52 trading days of year 2005.
isplay the time series plot of these data. Interpret the plot.
isplay the time series plot of the differences of the logarithms of these data.
terpret this plot.
alculate and display the sample ACF for the differences of the logarithms of
ese data and argue that the logarithms appear to follow a random walk
odel.
isplay the differences of logs in a histogram and interpret.
isplay the differences of logs in a quantile-quantile normal plot and inter-
ret.
alculus to show that, for any fixed x > 0, as . λ 0 xλ 1–( ) λ⁄ xlog→,→



106

Append

Many other
operator to
operates on
series.† In p

The backsh
is easy to se

Consid

where θ(B)
Since B

= BYt − 1 = 

More gener

for any pos

or

where, agai
For aut

left-hand si

and then wr

or

† Somet
Models for Nonstationary Time Series

ix D: The Backshift Operator

 books and much of the time series literature use what is called the backshift
 express and manipulate ARIMA models. The backshift operator, denoted B,
 the time index of a series and shifts time back one time unit to form a new
articular,

ift operator is linear since for any constants a, b, and c and series Yt and Xt, it
e that

er now the MA(1) model. In terms of B, we can write

 is the MA characteristic polynomial “evaluated” at B.
Yt is itself a time series, it is meaningful to consider BBYt. But clearly BBYt

Yt − 2, and we can write

ally, we have

itive integer m. For a general MA(q) model, we can then write

n, θ(B) is the MA characteristic polynomial evaluated at B.
oregressive models AR(p), we first move all of the terms involving Y to the
de

ite

BYt Yt 1–=

B aYt bXt c+ +( ) aBYt bBXt c+ +=

Yt et θet 1–– et θBet– 1 θB–( )et= = =

θ B( )et=

B2Yt Yt 2–=

BmYt Yt m–=

Yt et θ1et 1–– θ2et 2–– … θqet q–––=

et θ1Bet– θ2B2et– … θqBqet––=

1 θ1B– θ2B2– … θqBq––( )et=

Yt θ B( )et=

Yt φ1Yt 1–– φ2Yt 2–– …– φpYt p–– et=

Yt φ1BYt– φ2B2Yt– …– φpBpYt– et=
imes B is called a Lag operator.
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e expressed as

 is the AR characteristic polynomial evaluated at B.
ning the two, the general ARMA(p,q) model may be written compactly as

g can also be conveniently expressed in terms of B. We have

 differences given by

 ∇ = 1 − B and ∇2 = (1 − B)2.
neral ARIMA(p,d,q) model is expressed concisely as

literature, one must carefully distinguish from the context the use of B as a
perator and its use as an ordinary real (or complex) variable. For example,
rity condition is frequently given by stating that the roots of φ(B) = 0 must be
 1 in absolute value or, equivalently, must lie outside the unit circle in the

ane. Here B is to be treated as a dummy variable in an equation rather than as
ft operator.

1 φ1B– φ2B2– …– φpBp–( )Yt et=

φ B( )Yt et=

φ B( )Yt θ B( )et=

Yt∇ Yt Yt 1–– Yt BYt–= =

1 B–( )Yt=

∇2Yt 1 B–( )2Yt=

φ B( ) 1 B–( )dYt θ B( )et=
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veloped a large class of parametric models for both stationary and nonsta-
e series—the ARIMA models. We now begin our study and implementation
l inference for such models. The subjects of the next three chapters, respec-

to choose appropriate values for p, d, and q for a given series;

to estimate the parameters of a specific ARIMA(p,d,q) model;

to check on the appropriateness of the fitted model and improve it if needed.

erall strategy will first be to decide on reasonable—but tentative—values
d q. Having done so, we shall estimate the φ’s, θ’s, and σe for that model in
ficient way. Finally, we shall look critically at the fitted model thus obtained
 adequacy, in much the same way that we did in Section 3.6 on page 42. If
ppears inadequate in some way, we consider the nature of the inadequacy to
ct another model. We proceed to estimate that new model and check it for

 few iterations of this model-building strategy, we hope to arrive at the best
odel for a given series. The book by George E. P. Box and G. M. Jenkins
opularized this technique that many authors call the procedure the “Box-

thod.” We begin by continuing our investigation of the properties of the sam-
relation function.

perties of the Sample Autocorrelation Function

 page 46 the definition of the sample or estimated autocorrelation function.
erved series Y1, Y2,…, Yn, we have

(6.1.1)rk

Yt Y
 _

–( ) Yt k– Y
 _

–( )
t k 1+=

n

∑

Y Y
 _

–( )2
n

---------------------------------------------------------------= for k = 1, 2, ...
109

al is to recognize, to the extent possible, patterns in rk that are characteristic
n patterns in ρk for common ARMA models. For example, we know that

 > q in an MA(q) model. However, as the rk are only estimates of the ρk, we

t
t 1=
∑
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estigate their sampling properties to facilitate the comparison of estimated
 with theoretical correlations.
he definition of rk, a ratio of quadratic functions of possibly dependent vari-
uld be apparent that the sampling properties of rk will not be obtained easily.
pected value of rk is difficult to determine—recall that the expected value of
t the ratio of the respective expected values. We shall be content to accept a
e-sample result and consider its implications in special cases. Bartlett (1946)
the original work. We shall take a more general result from Anderson (1971).
scussion of these results may be found in Shumway and Stoffer (2006, p.

pose that

t are independent and identically distributed with zero means and finite, non-
on variances. We assume further that

 be satisfied by any stationary ARMA model.)
or any fixed m, the joint distribution of

, as , a joint normal distribution with zero means, variances cjj , and
 cij,where

(6.1.2)

, we would say that rk is approximately normally distributed with mean ρk
e ckk /n. Furthermore, . Notice that the approxi-

nce of rk is inversely proportional to the sample size, but  is
ely constant for large n.
quation (6.1.2) is clearly difficult to interpret in its present generality, we
er some important special cases and simplifications. Suppose first that {Yt}
se. Then Equation (6.1.2) reduces considerably, and we obtain

(6.1.3)

uppose that {Yt} is generated by an AR(1) process with ρk = φk for k > 0.

Yt μ ψjet j–
j 0=

∞
∑+=

ψj
j 0=

∞
∑ ∞< and jψj

2

j 0=

∞
∑ ∞<

n r1 ρ1–( ) n r2 ρ2–( ) … n rm ρm–( ), , ,

n ∞→

ρk i+ ρk j+ ρk i– ρk j+ 2ρiρkρk j+– 2ρjρkρk i+– 2ρiρjρk
2+ +( )

∞–

∞

Corr rk rj,( ) ckj ckkcjj⁄≈
Corr rk rj,( )

Var rk( ) 1
n
---  and  Corr rk  rj,( ) 0 for k j≠≈≈
 considerable algebra and summing several geometric series, Equation
 i = j yields

(6.1.4)Var rk( ) 1
n
--- 1 φ2+( ) 1 φ2k–( )

1 φ2–
------------------------------------------ 2kφ2k–≈
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r,

(6.1.5)

 the closer φ is to ±1, the more precise our estimate of ρ1 (= φ) becomes.
ge lags, the terms in Equation (6.1.4) involving φk may be ignored, and we

(6.1.6)

 here, in contrast to Equation (6.1.5), values of φ close to ±1 imply large vari-

k. Thus we should not expect nearly as precise estimates of ρk = for
e do of ρk = φk for small k.
 AR(1) model, Equation (6.1.2) can also be simplified (after much algebra)
0 < i < j as

(6.1.7)

r, we find

(6.1.8)

on Equations (6.1.4) through (6.1.8), Exhibit 6.1 gives approximate standard
nd correlations for several lags and a few values of φ in AR(1) models.

1 Large Sample Results for Selected rk from an AR(1) Model

 MA(1) case, Equation (6.1.2) simplifies as follows:

(6.1.9)

e,

(6.1.10)

 ±0.97

±0.89

±0.66

±0.38

Var r1( ) 1 φ2–
n

--------------≈

Var rk( ) 1
n
--- 1 φ2+

1 φ2–
---------------≈   for large k

φk 0≈

cij
φ j i– φ j i+–( ) 1 φ2+( )

1 φ2–
----------------------------------------------------- j i–( )φ j i– j i+( )φ j i+–+=

Corr r1 r2,( ) 2φ 1 φ2–

1 2φ2 3φ4–+
---------------------------------≈

Var r1( ) Var r2( ) Corr r1 r2,( ) Var r10( )
0.44 n⁄ 0.807 n⁄ 2.44 n⁄

0.71 n⁄ 1.12 n⁄ 1.70 n⁄

0.92 n⁄ 1.11 n⁄ 1.18 n⁄

0.98 n⁄ 1.04 n⁄ 1.04 n⁄

c11 1 3ρ1
2– 4ρ1

4    and    ckk+ 1 2ρ1
2  for k 1>+= =

c12 2ρ1 1 ρ1
2–( )=
ese expressions, Exhibit 6.2 lists large-sample standard deviations and cor-
r the sample autocorrelations for several lags and several θ-values. Notice
he sample autocorrelations can be highly correlated and that the standard
f rk is larger for k > 1 than for k = 1.
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2 Large-Sample Results for Selected rk from an MA(1) Model

eneral MA(q) process and i = j = k, Equation (6.1.2) reduces to

(6.1.11)

 observed time series, we can replace ρ’s by r’s, take the square root, and
stimated standard deviation of rk, that is, the standard error of rk for large
 of the hypothesis that the series is MA(q) could be carried out by comparing
d minus two standard errors. We would reject the null hypothesis if and only

tside these bounds. In general, we should not expect the sample autocorrela-
ic the true autocorrelation in great detail. Thus, we should not be surprised to
or “trends” in rk that have no counterparts in the ρk.

 Partial and Extended Autocorrelation Functions

A(q) models the autocorrelation function is zero for lags beyond q, the sam-
relation is a good indicator of the order of the process. However, the autocor-
 an AR(p) model do not become zero after a certain number of lags—they
er than cut off. So a different function is needed to help determine the order
essive models. Such a function may be defined as the correlation between Yt
fter removing the effect of the intervening variables Yt − 1, Yt − 2, Yt − 3,…,
his coefficient is called the partial autocorrelation at lag k and will be denoted
e reason for the seemingly redundant double subscript on φkk will become
ter on in this section.)
re several ways to make this definition precise. If {Yt} is a normally distrib-
ries, we can let

Var r1( ) Var rk( ) for k 1> Corr r1 r2,( )
0.71 n⁄ 1.22 n⁄ 0.86+−

0.73 n⁄ 1.20 n⁄ 0.84+−

0.79 n⁄ 1.15 n⁄ 0.74+−

0.89 n⁄ 1.11 n⁄ 0.53+−

ckk 1 2 ρj
2  for k q>

j 1=

q

∑+=

Var rk( ) 1
n
--- 1 2 ρj

2

j 1=

q

∑+   for k q>=
(6.2.1)

 is the correlation in the bivariate distribution of Yt and Yt − k conditional on
,…, Yt − k + 1.

φkk Corr Yt Yt k– |Yt 1– Yt 2– … Yt k– 1+, , ,,( )=
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rnative approach, not based on normality, can be developed in the following
der predicting Yt based on a linear function of the intervening variables Yt − 1,

t − k + 1, say, β1Yt − 1+ β2Yt − 2 + + βk − 1Yt − k + 1, with the β’s chosen to
he mean square error of prediction. If we assume that the β’s have been so
 then think backward in time, it follows from stationarity that the best “pre-
Yt − k based on the same Yt − 1, Yt − 2,…, Yt − k +1 will be β1Yt − k +1+

+ + βk − 1Yt − 1. The partial autocorrelation function at lag k is then
e the correlation between the prediction errors; that is,

(6.2.2)

lly distributed series, it can be shown that the two definitions coincide.) By
 we take φ11 = 1.
example, consider φ22. It is shown in Appendix F on page 218 that the best
ction of Yt based on Yt − 1 alone is just ρ1Yt − 1. Thus, according to Equation
will obtain φ22 by computing

at, for any stationary process, the lag 2 partial autocorrelation can be
s

(6.2.3)

er now an AR(1) model. Recall that ρk = φk so that

on see that for the AR(1) case, φkk = 0 for all k > 1. Thus the partial autocor-
nonzero for lag 1, the order of the AR(1) process, but is zero for all lags
 1. We shall show this to be generally the case for AR(p) models. Sometimes
 the partial autocorrelation function for an AR(p) process cuts off after the
 the order of the process.

…

…

k Corr Y( t β1Yt 1–– β2Yt 2–
…–– βk 1– Y

t 2–
,–=

                  Yt k– β1Y
t k– 1+

– β2Yt k– 2+
… β– k 1– Yt 1– )––

t ρ1Yt 1–– Yt 2– ρ1Yt 1––, ) γ0 ρ2 ρ1
2– ρ1

2– ρ1
2+( ) γ0 ρ2 ρ1

2–( )= =

Var Yt ρ1Yt 1––( ) Var Yt 2– ρ1Yt 1––( )=

γ0 1 ρ1
2 2ρ1

2–+( )=

γ0 1 ρ1
2–( )=

φ22

ρ2 ρ1
2–

1 ρ1
2–

------------------=

φ22
φ2 φ2–
1 φ2–
----------------- 0= =
er a general AR(p) case. It will be shown in Chapter 9 that the best linear
 Yt based on a linear function of the variables Yt − 1, Yt − 2,…, Yp,…, Yt − k + 1
 φ1Yt − 1 + φ2Yt − 2 + + φpYt − p. Also, the best linear predictor of Yt − k is
ion of Yt − 1,Yt − 2,…,Yp,…,Yt − k + 1, call it h(Yt − 1,Yt − 2,…,Yp,…,Yt − k + 1).
riance between the two prediction errors is

…
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ve established the key fact that, for an AR(p) model,

(6.2.4)

MA(1) model, Equation (6.2.3) quickly yields

(6.2.5)

e, for the MA(1) case, it may be shown that

(6.2.6)

 the partial autocorrelation of an MA(1) model never equals zero but essen-
s to zero exponentially fast as the lag increases—rather like the autocorrela-
n of the AR(1) process. More generally, it can be shown that the partial

tion of an MA(q) model behaves very much like the autocorrelation of an
el.
ral method for finding the partial autocorrelation function for any stationary
h autocorrelation function ρk is as follows (see Anderson 1971, pp. 187–188,
e). For a given lag k, it can be shown that the φkk satisfy the Yule-Walker
which first appeared in Chapter 4 on page 79):

(6.2.7)

itly, we can write these k linear equations as

(6.2.8)

e treating ρ1, ρ2,…, ρk as given and wish to solve for φk1, φk2,…, φkk (dis-
but φkk).
equations yield φkk for any stationary process. However, if the process is in

Cov Y( t φ1Yt 1–– φ2Yt 2–
…–– φpYt p  – ,–

                                  Yt k– h Yt k– 1+ Yt k– 2+ … Yt 1–, , ,( ) )–

Cov et  Yt k– h Yt k– 1+ Yt k– 2+ … Yt 1–, , ,( )–,( )=

0  since et is independent of Yt k– Yt k– 1+ Yt k– 2+ … Yt 1–, , , ,=

φkk 0  for  k p>=

φ22
θ2–

1 θ2 θ4+ +
---------------------------=

φkk
θk 1 θ2–( )

1 θ2 k 1+( )–
----------------------------  for  k 1≥–=

k1ρj 1– φk2ρj 2– φk3ρj 3–
… φkkρj k–     for j 1 2 … k, , ,=+ + + +

φk1 +

ρ1φ
k1

+

...

ρk 1– φ
k1

+

ρ1φk2 +

φk2 +

ρk 2– φ
k2

+

ρ2φk3

ρ1φk3

ρk 3– φk3

…+ +

…+ +

…+ +

ρk 1– φkk

ρk 2– φkk

φkk

ρ1=

ρ2=

ρk= ⎭
⎪
⎪
⎬
⎪
⎪
⎫

, then since for k = p Equations (6.2.8) are just the Yule-Walker equations
hich the AR(p) model is known to satisfy, we must have φpp = φp. In addi-

have already seen by an alternative derivation, φkk = 0 for k > p. Thus the par-
relation effectively displays the correct order p of an autoregressive process
st lag k before φkk becomes zero.
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le Partial Autocorrelation Function

rved time series, we need to be able to estimate the partial autocorrelation
 a variety of lags. Given the relationships in Equations (6.2.8), an obvious
o estimate the ρ’s with sample autocorrelations, the corresponding r’s, and
he resulting linear equations for k = 1, 2, 3,… to get estimates of φkk. We call
ed function the sample partial autocorrelation function (sample PACF)
it by .
on (1947) and Durbin (1960) gave an efficient method for obtaining the solu-
ations (6.2.8) for either theoretical or sample partial autocorrelations. They

ependently that Equations (6.2.8) can be solved recursively as follows:

(6.2.9)

e, using φ11 = ρ1 to get started, we have

with , which is needed for the next step.

y thus calculate numerically as many values for φkk as desired. As stated,
sive equations give us the theoretical partial autocorrelations, but by replac-
 r’s, we obtain the estimated or sample partial autocorrelations.
ss the possible magnitude of the sample partial autocorrelations, Quenoulle
shown that, under the hypothesis that an AR(p) model is correct, the sample
correlations at lags greater than p are approximately normally distributed
eans and variances 1/n. Thus, for k > p,  can be used as critical limits

est the null hypothesis that an AR(p) model is correct.

dels and the Extended Autocorrelation Function

φ̂kk

φkk

ρk φk 1– j, ρk j–
j 1=

k 1–

∑–

1 φk 1– j, ρj
j 1=

k 1–

∑–

--------------------------------------------------=

φk j, φk 1– j, φkkφk 1– k j–,     for j– 1 2 … k 1–, , ,= =

φ22

ρ2 φ11ρ1–

1 φ11ρ1–
--------------------------

ρ2 ρ1
2–

1 ρ1
2–

------------------= =

φ21 φ11 φ22φ11–=

φ33

ρ3 φ21ρ2– φ22ρ1–

1 φ21ρ1– φ22ρ2–
----------------------------------------------=

2 n⁄±
 summarizes the behavior of the autocorrelation and partial autocorrelation
at is useful in specifying models.
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3 General Behavior of the ACF and PACF for ARMA Models

ded Autocorrelation Function

 ACF and PACF provide effective tools for identifying pure AR(p) or MA(q)
wever, for a mixed ARMA model, its theoretical ACF and PACF have infi-
 nonzero values, making it difficult to identify mixed models from the sam-
d PACF. Many graphical tools have been proposed to make it easier to
 ARMA orders, for example, the corner method (Becuin et al., 1980), the
utocorrelation (EACF) method (Tsay and Tiao, 1984), and the smallest
orrelation (SCAN) method (Tsay and Tiao, 1985), among others. We shall
EACF method, which seems to have good sampling properties for moder-

 sample sizes according to a comparative simulation study done by W. S.
). 
CF method uses the fact that if the AR part of a mixed ARMA model is

tering out” the autoregression from the observed time series results in a pure
s that enjoys the cutoff property in its ACF. The AR coefficients may be esti-
finite sequence of regressions. We illustrate the procedure for the case where
del is an ARMA(1,1) model: 

case, a simple linear regression of Yt on Yt − 1 results in an inconsistent esti-
 even with infinitely many data. Indeed, the theoretical regression coefficient
 (φ − θ)(1 − φθ)/(1 − 2φθ + θ2), not φ. But the residuals from this regression
information about the error process {et}. A second multiple regression is per-
 consists of regressing Yt on Yt − 1 and on the lag 1 of the residuals from the

sion. The coefficient of Yt − 1 in the second regression, denoted by , turns
consistent estimator of φ. Define , which is then approxi-
A(1) process. For an ARMA(1,2) model, a third regression that regresses Yt

, the lag 1 of the residuals from the second regression, and the lag 2 of the
om the first regression leads to the coefficient of Yt − 1 being a consistent esti-
 Similarly, the AR coefficients of an ARMA(p,q) model can be consistently
ia a sequence of q regressions. 
AR and MA orders are unknown, an iterative procedure is required. Let

(6.2.10)

AR(p) MA(q) ARMA(p,q), p>0, and q>0

Tails off Cuts off after lag q Tails off

Cuts off after lag p Tails off Tails off

Yt φYt 1– e+
t

θet 1––=

φ~

Wt Yt φ~Yt 1––=

Wt k j, , Yt φ~1Yt 1–
… φ~kYt k––––=
regressive residuals defined with the AR coefficients estimated iteratively
e AR order is k and the MA order is j. The sample autocorrelations of Wt, k, j
 to as the extended sample autocorrelations. For k = p and j ≥ q, {Wt, k, j} is
ely an MA(q) model, so that its theoretical autocorrelations of lag q + 1 or
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qual to zero. For k > p, an overfitting problem occurs, and this increases the
or the W process by the minimum of k − p and j − q. Tsay and Tiao (1984)
ummarizing the information in the sample EACF by a table with the element
w and jth column equal to the symbol X if the lag j + 1 sample correlation of
gnificantly different from 0 (that is, if its magnitude is greater than

 since the sample autocorrelation is asymptotically N(0,1/(n − k − j)) if
 approximately an MA(j) process) and 0 otherwise. In such a table, an

rocess will have a theoretical pattern of a triangle of zeroes, with the upper
rtex corresponding to the ARMA orders. Exhibit 6.4 displays the schematic

an ARMA(1,1) model. The upper left-hand vertex of the triangle of zeros is
h the symbol 0* and is located in the p = 1 row and q = 1 column—an indica-
RMA(1,1) model.

4 Theoretical Extended ACF (EACF) for an ARMA(1,1) Model

rse, the sample EACF will never be this clear-cut. Displays like Exhibit 6.4
 8×14 = 112 different estimated correlations, and some will be statistically

y different from zero by chance (see Exhibit 6.17 on page 124, for an exam-
ll illustrate the use of the EACF in the next two sections and throughout the
f the book.

ecification of Some Simulated Time Series

 the theory of Sections 6.1 and 6.2, we shall consider the sample autocorre-
ample partial correlation of some simulated time series.
t 6.5 displays a graph of the sample autocorrelation out to lag 20 for the sim-

j k–

0 1 2 3 4 5 6 7 8 9 10 11 12 13

x x x x x x x x x x x x x x

x 0* 0 0 0 0 0 0 0 0 0 0 0 0

x x 0 0 0 0 0 0 0 0 0 0 0 0

x x x 0 0 0 0 0 0 0 0 0 0 0

x x x x 0 0 0 0 0 0 0 0 0 0

x x x x x 0 0 0 0 0 0 0 0 0

x x x x x x 0 0 0 0 0 0 0 0

x x x x x x x 0 0 0 0 0 0 0
 series that we first saw in Exhibit 4.5 on page 61. This series, of length 120,
ted from an MA(1) model with θ = 0.9. From Exhibit 4.1 on page 58, the the-
ocorrelation at lag 1 is −0.4972. The estimated or sample value shown at lag
ph is −0.474. Using Exhibit 6.2 on page 112, the approximate standard error
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ate is 0.71/  = 0.71/  = 0.065, so the estimate is well within two stan-
of the true value.

5 Sample Autocorrelation of an MA(1) Process with θ = 0.9

1.1.s)
ph(width=4.875,height=3,pointsize=8)
.1.s,xaxp=c(0,20,10))

shed horizontal lines in Exhibit 6.5, plotted at = ±0.1826, are
 give critical values for testing whether or not the autocorrelation coefficients
antly different from zero. These limits are based on the approximate large
dard error that applies to a white noise process, namely . Notice that

ACF values exceed these rough critical values at lags 1, 5, and 14. Of course,
ocorrelations at lags 5 and 14 are both zero.
t 6.6 displays the same sample ACF but with critical bounds based on plus
two of the more complex standard errors implied by Equation (6.1.11) on
n using Equation (6.1.11), we replace ρ’s by r’s, let q equal 1, 2, 3,… succes-
take the square root to obtain these standard errors. 

n 120

2 4 6 8 10 12 14 16 18 20

Lag

2 n⁄±

1 n⁄
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6 Alternative Bounds for the Sample ACF for the MA(1) 
Process

.1.s,ci.type='ma',xaxp=c(0,20,10))

e sample ACF value at lag 14 is insignificant and the one at lag 5 is just
ificant. The lag 1 autocorrelation is still highly significant, and the informa-
n these two plots taken together leads us to consider an MA(1) model for this
ember that the model is tentative at this point and we would certainly want to
her “nearby” alternative models when we carry out model diagnostics.
cond example, Exhibit 6.7 shows the sample ACF for the series shown in

 on page 59, generated by an MA(1) model with θ = −0.9. The critical values
e very approximate standard errors point to an MA(1) model for this series

7 Sample Autocorrelation for an MA(1) Process with θ = −0.9 

2 4 6 8 10 12 14 16 18 20

Lag

2 4 6 8 10 12 14 16 18 20
1.2.s); acf(ma1.2.s,xaxp=c(0,20,10))

Lag



120

For our
simulated f
significance

Exhibit 6.

> data(ma

Exhibi
bounds. No
be applicab
cess to see 
these data.

Exhibit 6.

> acf(ma2

−
0.

6
−

0.
2

0.
0

0.
2

A
C

F

−
0.

6
−

0.
2

0.
0

0.
2

A
C

F

Model Specification

 third example, we use the data shown in Exhibit 4.8 on page 63, which were
rom an MA(2) model with θ1 = 1 and θ2 = −0.6. The sample ACF displays
 at lags 1, 2, 5, 6, 7, and 14 when we use the simple standard error bounds.

8 Sample ACF for an MA(2) Process with θ1 = 1 and θ2 = −0.6

2.s); acf(ma2.s,xaxp=c(0,20,10))

t 6.9 displays the sample ACF with the more sophisticated standard error
w the lag 2 ACF is no longer significant, and it appears that an MA(1) may
le. We will have to wait until we get further along in the model-building pro-
that the MA(2) model—the correct one—is the most appropriate model for

9 Alternative Bounds for the Sample ACF for the MA(2) 
Process

2 4 6 8 10 12 14 16 18 20

Lag

2 4 6 8 10 12 14 16 18 20
.s,ci.type='ma',xaxp=c(0,20,10))

Lag
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o these techniques work for autoregressive models? Exhibit 6.10 gives the
F for the simulated AR(1) process we saw in Exhibit 4.13 on page 68. The
ple ACF values at lags 1, 2, and 3 reflect the strength of the lagged relation-
e saw earlier in Exhibits 4.14, 4.15, and 4.16. However, notice that the sam-
creases more linearly than exponentially as theory suggests. Also contrary to
sample ACF goes negative at lag 10 and remains so for many lags.

10 Sample ACF for an AR(1) Process with φ = 0.9

1.s); acf(ar1.s,xaxp=c(0,20,10))

mple partial autocorrelation (PACF) shown in Exhibit 6.11, gives a much
ure about the nature of the generating model. Based on this graph, we would
tertain an AR(1) model for this time series.

11 Sample Partial ACF for an AR(1) Process with φ = 0.9
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1.s,xaxp=c(0,20,10))

t 6.12 displays the sample ACF for our AR(2) time series. The time series
s series was shown in Exhibit 4.19 on page 74. The sample ACF does look
like the damped wave that Equation (4.3.17) on page 73, and Exhibit 4.18
wever, the sample ACF does not damp down nearly as quickly as theory pre-

12 Sample ACF for an AR(2) Process with φ1 = 1.5 and φ2 = −0.75

.s,xaxp=c(0,20,10))

mple PACF in Exhibit 6.13 gives a strong indication that we should consider
odel for these data. The seemingly significant sample PACF at lag 9 would
nvestigated further during model diagnostics.

13 Sample PACF for an AR(2) Process with φ1 = 1.5 and 
φ2 = −0.75
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Lag
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Lag
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2.s,xaxp=c(0,20,10))

nal example, we simulated 100 values of a mixed ARMA(1,1) model with φ
 = −0.3. The time series plot is shown in Exhibit 6.14 and the sample ACF
 are shown in Exhibit 6.15 and Exhibit 6.16, respectively. These seem to indi-
 AR(1) model should be specified.

14 Simulated ARMA(1,1) Series with φ = 0.6 and θ = −0.3.

ma11.s)
ma11.s, type='o',ylab=expression(Y[t]))

15 Sample ACF for Simulated ARMA(1,1) Series
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16 Sample PACF for Simulated ARMA(1,1) Series

ma11.s,xaxp=c(0,20,10))

er, the triangular region of zeros shown in the sample EACF in Exhibit 6.17
ite clearly that a mixed model with q = 1 and with p = 1 or 2 would be more
. We will illustrate further uses of the EACF when we specify some real
ction 6.6.

17 Sample EACF for Simulated ARMA(1,1) Series
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nstationarity

d in Chapter 5, many series exhibit nonstationarity that can be explained by
RMA models. The nonstationarity will frequently be apparent in the time
f the series. A review of Exhibits 5.1, 5.5, and 5.8 is recommended here.

mple ACF computed for nonstationary series will also usually indicate the
arity. The definition of the sample autocorrelation function implicitly
tionarity; for example, we use lagged products of deviations from the overall
the denominator assumes a constant variance over time. Thus it is not at all
the sample ACF is estimating for a nonstationary process. Nevertheless, for
ary series, the sample ACF typically fails to die out rapidly as the lags
is is due to the tendency for nonstationary series to drift slowly, either up or

 apparent “trends.” The values of rk need not be large even for low lags, but
re.
er the oil price time series shown in Exhibit 5.1 on page 88. The sample ACF
rithms of these data is displayed in Exhibit 6.18. All values shown are “sig-

ar from zero,” and the only pattern is perhaps a linear decrease with increas-
 sample PACF (not shown) is also indeterminate. 

18 Sample ACF for the Oil Price Time Series

l.price)
vector(oil.price),xaxp=c(0,24,12))

mple ACF computed on the first differences of the logs of the oil price series
 Exhibit 6.19. Now the pattern emerges much more clearly—after differenc-
ng average model of order 1 seems appropriate. The model for the original
ries would then be a nonstationary IMA(1,1) model. (The “significant” ACF

2 4 6 8 10 12 14 16 18 20 22

Lag
6, and 20 are ignored for now.)
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19 Sample ACF for the Difference of the Log Oil Price Series

f(as.vector(log(oil.price))),xaxp=c(0,24,12))

irst difference of a series and its sample ACF do not appear to support a sta-
MA model, then we take another difference and again compute the sample

CF to look for characteristics of a stationary ARMA process. Usually one
wo differences, perhaps combined with a logarithm or other transformation,
plish this reduction to stationarity. Additional properties of the sample ACF
n nonstationary data are given in Wichern (1973), Roy (1977), and Hasza
 also Box, Jenkins, and Reinsel (1994, p. 218).

encing

ise 2.6 on page 20, we know that the difference of any stationary time series
onary. However, overdifferencing introduces unnecessary correlations into a
ill complicate the modeling process.
mple, suppose our observed series, {Yt}, is in fact a random walk so that one
ould lead to a very simple white noise model

 we difference once more (that is, overdifference) we have

 MA(1) model but with θ = 1. If we take two differences in this situation we
ly have to estimate the unknown value of θ. Specifying an IMA(2,1) model
be appropriate here. The random walk model, which can be thought of as
ith θ = 0, is the correct model.† Overdifferencing also creates a noninvert-

2 4 6 8 10 12 14 16 18 20 22

Lag

Yt∇ Yt Yt 1–– et= =

∇2Yt et et 1––=
ndom walk model can also be thought of as an ARI(1,1) with φ = 0 or as a nonsta-
y AR(1) with φ = 1.
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—see Section 4.5 on page 79.† Noninvertible models also create serious
hen we attempt to estimate their parameters—see Chapter 7.
strate overdifferencing, consider the random walk shown in Exhibit 2.1 on
king one difference should lead to white noise—a very simple model. If we
 take two differences (that is, overdifference) and compute the sample ACF,
he graph shown in Exhibit 6.20. Based on this plot, we would likely specify
MA(2,1) model for the original series and then estimate the unnecessary MA
We also have a significant sample ACF value at lag 7 to think about and deal

20 Sample ACF of Overdifferenced Random Walk

alk)
f(rwalk,difference=2),ci.type='ma', xaxp=c(0,18,9))

rast, Exhibit 6.21 displays the sample ACF of the first difference of the ran-
series. Viewing this graph, we would likely want to consider the correct
e first difference looks very much like white noise.

2 4 6 8 10 12 14 16

Lag
kshift notation, if the correct model is , overdifferencing
to , say, where 
e “forbidden” root in at B = 1 is obvious.

φ B( ) 1 B–( )Yt θ B( )et=
φ B( ) 1 B–( )2Yt θ B( ) 1 B–( )et θ' B( )et= = θ' B( ) 1 B–( )θ B( )=

θ' B( )
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21 Sample ACF of Correctly Differenced Random Walk

f(rwalk),ci.type='ma',xaxp=c(0,18,9))

id overdifferencing, we recommend looking carefully at each difference in
and keeping the principle of parsimony always in mind—models should be
not too simple.

y-Fuller Unit-Root Test

pproximate linear decay of the sample ACF is often taken as a symptom that
ing time series is nonstationary and requires differencing, it is also useful to
 evidence of nonstationarity in the data-generating mechanism. This can be
pothesis testing. Consider the model 

for t = 1, 2, …

 is a stationary process. The process {Yt} is nonstationary if the coefficient α
s stationary if |α| < 1. Suppose that {Xt} is an AR(k) process: Xt = φ1Xt − 1 +

k + et. Under the null hypothesis that α = 1, Xt = Yt − Yt − 1. Letting a = α −

(6.4.1)

 under the hypothesis that Yt is difference nonstationary. On the other hand,
ationary so that −1 < α < 1, then it can be verified that Yt still satisfies an

milar to the equation above but with different coefficients; for example, a =

2 4 6 8 10 12 14 16

Lag

Yt αYt 1– Xt  +=

1– (α 1)Yt 1–– Xt+=

 aYt 1– φ1Xt 1–
… φkXt k– et+ + + +=

 aYt 1– φ1 Yt 1– Yt 2––( ) … φk Yt k– Yt k 1–––( ) et  + + + +=
− φk)(1 − α) < 0. Indeed, {Yt} is then an AR(k + 1) process whose AR char-
uation is given by Φ(x)(1 − αx) = 0, where Φ(x) = 1 − φ1x −…− φkx

k. So, the
esis corresponds to the case where the AR characteristic polynomial has a
d the alternative hypothesis states that it has no unit roots. Consequently, the
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erencing amounts to testing for a unit root in the AR characteristic polyno-
. 

 analysis above, the null hypothesis that α = 1 (equivalently a = 0) can be
egressing the first difference of the observed time series on lag 1 of the
ries and on the past k lags of the first difference of the observed series. We
ether the coefficient a = 0—the null hypothesis being that the process is dif-
stationary. That is, the process is nonstationary but becomes stationary after
ncing. The alternative hypothesis is that a < 0 and hence {Yt} is stationary.
nted Dickey-Fuller (ADF) test statistic is the t-statistic of the estimated coef-
from the method of least squares regression. However, the ADF test statistic
ximately t-distributed under the null hypothesis; instead, it has a certain non-

rge-sample distribution under the null hypothesis of a unit root. Fortunately,
points of this limit (null) distribution have been tabulated; see Fuller (1996). 
tice, even after first differencing, the process may not be a finite-order AR
t it may be closely approximated by some AR process with the AR order
with the sample size. Said and Dickey (1984) (see also Chang and Park,
ed that with the AR order increasing with the sample size, the ADF test has
rge-sample null distribution as the case where the first difference of the time
inite-order AR process. Often, the approximating AR order can be first esti-
d on some information criteria (for example, AIC or BIC) before carrying
 test. See Section 6.5 on page 130 for more information on the AIC and BIC

e cases, the process may be trend nonstationary in the sense that it has a
tic trend (for example, some linear trend) but otherwise is stationary. A
st may be conducted with the aim of discerning difference stationarity from
narity. This can be done by carrying out the ADF test with the detrended
alently, this can be implemented by regressing the first difference on the
efining the trend, the lag 1 of the original data, and the past lags of the first
f the original data. The t-statistic based on the coefficient estimate of the lag
ginal data furnishes the ADF test statistic, which has another nonstandard
le null distribution. See Phillips and Xiao (1998) for a survey of unit root

 illustrate the ADF test with the simulated random walk shown in Exhibit
 14. First, we consider testing the null hypothesis of a unit root versus the

hypothesis that the time series is stationary with unknown mean. Hence, the
defined by Equation (6.4.1) is augmented with an intercept to allow for the
nzero mean under the alternative hypothesis. (For the alternative hypothesis
ocess is a stationary process of zero mean, the ADF test statistic can be
 running the unaugmented regression defined by Equation (6.4.1).) To carry
, we must determine k.† Using the AIC with the first difference of the data,

t k = 8, in which case the ADF test statistic becomes −0.601, with the p-value

e: ar(diff(rwalk))
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er than 0.1.† On the other hand, setting k = 0 (the true order) leads to the
ic −1.738, with p-value still greater than 0.1.‡ Thus, there is strong evidence
 the unit-root hypothesis. Second, recall that the simulated random walk
have a linear trend. Hence, linear trend plus stationary error forms another
alternative to the null hypothesis of unit root (difference nonstationarity). For
e include both an intercept term and the covariate time in the regression
 Equation (6.4.1). With k = 8, the ADF test statistic equals −2.289 with
ater than 0.1††; that is, we do not reject the null hypothesis of unit root. On
nd, setting k = 0, the true order that is unknown in practice, the ADF test sta-
es −3.49 with p-value equal to 0.0501.‡‡ Hence, there is weak evidence that
 is linear-trend nonstationary; that is, the process equals linear time trend
ary error, contrary to the truth that the process is a random walk, being dif-
stationary! This example shows that with a small sample size, it may be hard
iate between trend nonstationarity and difference nonstationarity.

er Specification Methods

f other approaches to model specification have been proposed since Box and
minal work. One of the most studied is Akaike’s (1973) Information Crite-
. This criterion says to select the model that minimizes

(6.5.1)

 + q + 1 if the model contains an intercept or constant term and k = p + q oth-
ximum likelihood estimation is discussed in Chapter 7. The addition of the
q +1) or 2(p + q) serves as a “penalty function” to help ensure selection of
us models and to avoid choosing models with too many parameters.
IC is an estimator of the average Kullback-Leibler divergence of the esti-
el from the true model. Let p(y1,y2,…,yn) be the true pdf of Y1, Y2, …, Yn ,

2,…,yn) be the corresponding pdf under the model with parameter θ. The
eibler divergence of qθ from p is defined by the formula 

timates , where  is the maximum likelihood estimator of the
meter θ. However, the AIC is a biased estimator, and the bias can be appre-
rge parameter per data ratios. Hurvich and Tsai (1989) showed that the bias

roximately eliminated by adding another nonstochastic penalty term to the
ing in the corrected AIC, denoted by AICc and defined by the formula

AIC 2 maximum likelihood( )log– 2k+=

) … p y1 y2 … yn, , ,( )
p y1 y2 … yn, , ,( )
qθ y1 y2 … yn, , ,( )
----------------------------------------- y1 y2… yndddlog

∞–

∞
∫

∞–

∞
∫

∞–

∞
∫=

E D p q
θ̂

,( )[ ] θ̂
e: library(uroot); ADF.test(rwalk,selectlags=list 
mode=c(1,2,3,4,5,6,7,8),Pmax=8),itsd=c(1,0,0))
.test(rwalk,selectlags=list(Pmax=0),itsd=c(1,0,0))
.test(rwalk,selectlags=list 
mode=c(1,2,3,4,5,6,7,8),Pmax=8),itsd=c(1,1,0))
.test(rwalk,selectlags=list(Pmax=0),itsd=c(1,1,0))
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(6.5.2)

e (effective) sample size and again k is the total number of parameters as
ding the noise variance. Simulation results by Hurvich and Tsai (1989) sug-
r cases with k/n greater than 10%, the AICc outperforms many other model
iteria, including both the AIC and BIC. 
r approach to determining the ARMA orders is to select a model that mini-
chwarz Bayesian Information Criterion (BIC) defined as

(6.5.3)

rocess follows an ARMA(p,q) model, then it is known that the orders speci-
imizing the BIC are consistent; that is, they approach the true orders as the
 increases. However, if the true process is not a finite-order ARMA process,
izing AIC among an increasingly large class of ARMA models enjoys the
roperty that it will lead to an optimal ARMA model that is closest to the true
ong the class of models under study.† 
less of whether we use the AIC or BIC, the methods require carrying out
likelihood estimation. However, maximum likelihood estimation for an
del is prone to numerical problems due to multimodality of the likelihood
d the problem of overfitting when the AR and MA orders exceed the true
nan and Rissanen (1982) proposed an interesting and practical solution to
. Their procedure consists of first fitting a high-order AR process with the

mined by minimizing the AIC. The second step uses the residuals from the
 proxies for the unobservable error terms. Thus, an ARMA(k, j) model can be
ely estimated by regressing the time series on its own lags 1 to k together
s 1 to j of the residuals from the high order autoregression; the BIC of this

ive model is an estimate of the BIC obtained with maximum likelihood esti-
nnan and Rissanen (1982) demonstrated that minimizing the approximate
ds to consistent estimation of the ARMA orders. 
etermination is related to the problem of finding the subset of nonzero coef-
n ARMA model with sufficiently high ARMA orders. A subset ARMA(p,q)
 ARMA(p,q) model with a subset of its coefficients known to be zero. For
e model

Yt = 0.8Yt−12 + et + 0.7et−12 (6.5.4)

 ARMA(12,12) model useful for modeling some monthly seasonal time
ARMA models of very high orders, such as the preceding ARMA(12,12)
ing a subset ARMA model that adequately approximates the underlying pro-
e important from a practical standpoint than simply determining the ARMA
 method of Hannan and Rissanen (1982) for estimating the ARMA orders

AICc AIC 2 k 1+( ) k 2+( )
n k 2––

-------------------------------------+=

BIC 2 maximum likelihood( )log– k n( )log+=
nded to solving the problem of finding an optimal subset ARMA model.

ness is measured in terms of the Kullback-Leibler divergence—a measure of dispar-
ween models. See Shibata (1976) and the discussion in Stenseth et al. (2004).
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veral model selection criteria (including AIC and BIC) of the subset
) models (2p + q of them!) can be approximately, exhaustively, and quickly
y the method of regression by leaps and bounds (Furnival and Wilson, 1974)
he subset regression of Yt on its own lags and on lags of the residuals from a
autoregression of {Yt}. 
udent to examine a few best subset ARMA models (in terms of, for example,
er to arrive at some helpful tentative models for further study. The pattern of
of the observed time series and which of the error process enter into the var-
bset models can be summarized succinctly in a display like that shown in

2. This table is based on a simulation of the ARMA(12,12) model shown in
.5.4). Each row in the exhibit corresponds to a subset ARMA model where
 the variables selected for the model are shaded. The models are sorted
o their BIC, with better models (lower BIC) placed in higher rows and with
es. The top row tells us that the subset ARMA(14,14) model with the small-
tains only lags 8 and 12 of the observed time series and lag 12 of the error
e next best model contains lag 12 of the time series and lag 8 of the errors,
ird best model contains lags 4, 8, and 12 of the time series and lag 12 of the
ur simulated time series, the second best model is the true subset model.
e BIC values for these three models are all very similar, and all three (plus
est model) are worthy of further study. However, lag 12 of the time series
the errors are the two variables most frequently found in the various subset
marized in the exhibit, suggesting that perhaps they are the more important

s we know they are! 

22 Best Subset ARMA Selection Based on BIC
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d(92397)
ima.sim(model=list(ar=c(rep(0,11),.8), 
rep(0,11),0.7)),n=120)
asubsets(y=test,nar=14,nma=14,y.name='test', 
thod='ols')
s)

ecification of Some Actual Time Series

w specification of models for some of the actual time series that we saw in
ters. 

ngeles Annual Rainfall Series

l rainfall amounts for Los Angeles were shown in Exhibit 1.1 on page 2. In
e noted in Exhibit 3.17 on page 50, that rainfall amounts were not normally

 As is shown in Exhibit 6.23, taking logarithms improves the normality dra-

23 QQ Normal Plot of the Logarithms of LA Annual Rainfall

rain); win.graph(width=2.5,height=2.5,pointsize=8)
log(larain)); qqline(log(larain))
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t 6.24 displays the sample autocorrelations for the logarithms of the annual
es.

24 Sample ACF of the Logarithms of LA Annual Rainfall

ph(width=4.875,height=3,pointsize=8)
(larain),xaxp=c(0,20,10))

g transformation has improved the normality, but there is no discernable
 in this time series. We could model the logarithm of annual rainfall amount
ent, normal random variables with mean 2.58 and standard deviation 0.478.

values are in units of log(inches).

ical Process Color Property Series

rial chemical process color property displayed in Exhibit 1.3 on page 3,
e promise of interesting time series modeling—especially in light of the
e of successive batches shown in Exhibit 1.4 on page 4. The sample ACF
xhibit 6.25 might at first glance suggest an MA(1) model, as only the lag 1
tion is significantly different from zero.

2 4 6 8 10 12 14 16 18 20

Lag
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25 Sample ACF for the Color Property Series

lor); acf(color,ci.type='ma')

er, the damped sine wave appearance of the plot encourages us to look fur-
sample partial autocorrelation. Exhibit 6.26 displays that plot, and now we
that an AR(1) model is worthy of first consideration. As always, our speci-
 are tentative and subject to modification during the model diagnostics stage
ilding.

26 Sample Partial ACF for the Color Property Series

lor)
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Lag
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al Abundance of Canadian Hare Series

eries of annual abundance of hare of the Hudson Bay in Canada was dis-
xhibit 1.5 on page 5, and the year-to-year dependence was demonstrated in
. It has been suggested in the literature that a transformation might be used to
ood model for these data. Exhibit 6.27 displays the log-likelihood as a func-
ower parameter, λ. The maximum occurs at λ = 0.4, but a square root trans-
ith λ = 0.5 is well within the confidence interval for λ. We will take the

 of the abundance values for all further analyses.

27 Box-Cox Power Transformation Results for Hare Abundance

ph(width=3,height=3,pointsize=8)
re); BoxCox.ar(hare)

t 6.28 shows the sample ACF for this transformed series. The fairly strong
orrelation dominates but, again, there is a strong indication of damped oscil-
vior.
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28 Sample ACF for Square Root of Hare Abundance 

e^.5)

mple partial autocorrelation for the transformed series is shown in Exhibit
s strong evidence to support an AR(2) or possibly an AR(3) model for these

29 Sample Partial ACF for Square Root of Hare Abundance

re^.5)
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ice Series

5, we began to look at the monthly oil price time series and argued graphi-
e difference of the logarithms could be considered stationary—see Exhibit
 88. Software implementation of the Augmented Dickey-Fuller unit-root test
he logs of the original prices leads to a test statistic of −1.1119 and a p-value

ith stationarity as the alternative hypothesis, this provides strong evidence
onarity and the appropriateness of taking a difference of the logs. For this
ftware chose a value of k = 6 in Equation (6.4.1) on page 128 based on
le theory.
t 6.30 shows the summary EACF table for the differences of the logarithms
ice data. This table suggests an ARMA model with p = 0 and q = 1.

30 Extended ACF for Difference of Logarithms of Oil Price 
Series

ff(log(oil.price)))
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ults of the best subsets ARMA approach are displayed in Exhibit 6.31. 

31 Best Subset ARMA Model for Difference of Log(Oil)

asubsets(y=diff(log(oil.price)),nar=7,nma=7, 
e='test', ar.method='ols')
s)

e suggestion is that Yt = ∇log(Oilt) should be modeled in terms of Yt − 1 and
at no lags are needed in the error terms. The second best model omits the lag

hat an ARIMA(1,1,0) model on the logarithms should also be investigated
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Model Specification

t 6.32 suggests that we specify an MA(1) model for the difference of the log
nd Exhibit 6.33 says to consider an AR(2) model (ignoring some significant
gs 15, 16, and 20). We will want to look at all of these models further when
 parameters and perform diagnostic tests in Chapters 7 and 8. (We will see
 obtain a suitable model for the oil price series, the outliers in the series will
ealt with. (Can you spot the outliers in Exhibit 5.4 on page 91?)

32 Sample ACF of Difference of Logged Oil Prices

vector(diff(log(oil.price))),xaxp=c(0,22,11))

33 Sample PACF of Difference of Logged Oil Prices

.vector(diff(log(oil.price))),xaxp=c(0,22,11))

2 4 6 8 10 12 14 16 18 20 22

Lag

2 4 6 8 10 12 14 16 18 20 22

Lag



Exercises

6.7 Su

In this chap
for observe
d, and q) fo
the sample
function, w
unit-root te
ary series. T

EXERCIS

6.1 Verif
6.2 Verif
6.3 Verif
6.4 Add 

(a) φ
(b) φ
(c) φ

6.5 Verif
6.6 Verif
6.7 Add 

(a) θ
(b) θ
(c) θ

6.8 Verif
6.9 Use E

relati
6.10 Show

MA(
recur

6.11 Use E
funct

6.12 From
−0.2
mode

6.13 A sta
=

alone
6.14 For a

and r

φ̂11
141

mmary

ter, we considered the problem of specifying reasonable but simple models
d times series. In particular, we investigated tools for choosing the orders (p,
r ARIMA(p,d,q) models. Three tools, the sample autocorrelation function,

 partial autocorrelation function, and the sample extended autocorrelation
ere introduced and studied to help with this difficult task. The Dickey-Fuller
st was also introduced to help distinguish between stationary and nonstation-
hese ideas were all illustrated with both simulated and actual time series.

ES

y Equation (6.1.3) on page 110 for the white noise process.
y Equation (6.1.4) on page 110 for the AR(1) process.
y the line in Exhibit 6.1 on page 111, for the values φ = ±0.9.
new entries to Exhibit 6.1 on page 111, for the following values:
 = ±0.99.
 = ±0.5.
 = ±0.1.
y Equation (6.1.9) on page 111 and Equation (6.1.10) for the MA(1) process.
y the line in Exhibit 6.2 on page 112, for the values θ = ±0.9.
new entries to Exhibit 6.2 on page 112, for the following values:
 = ±0.99.
 = ±0.8.
 = ±0.2.
y Equation (6.1.11) on page 112, for the general MA(q) process.
quation (6.2.3) on page 113, to verify the value for the lag 2 partial autocor-

on function for the MA(1) process given in Equation (6.2.5) on page 114.
 that the general expression for the partial autocorrelation function of an

1) process given in Equation (6.2.6) on page 114, satisfies the Yule-Walker
sion given in Equation (6.2.7).
quation (6.2.8) on page 114, to find the (theoretical) partial autocorrelation

ion for an AR(2) model in terms of φ1 and φ2 and lag k = 1, 2, 3, … .
 a time series of 100 observations, we calculate r1 = −0.49, r2 = 0.31, r3 =

1, r4 = 0.11, and |rk| < 0.09 for k > 4. On this basis alone, what ARIMA
l would we tentatively specify for the series?
tionary time series of length 121 produced sample partial autocorrelation of
 0.8, = −0.6, = 0.08, and = 0.00. Based on this information
, what model would we tentatively specify for the series?

φ̂22 φ̂33 φ̂44
 series of length 169, we find that r1 = 0.41, r2 = 0.32, r3 = 0.26, r4 = 0.21,

5 = 0.16. What ARIMA model fits this pattern of autocorrelations?
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Model Specification

sample ACF for a series and its first difference are given in the following
. Here n = 100.

 on this information alone, which ARIMA model(s) would we consider for
ies?
 series of length 64, the sample partial autocorrelations are given as:

 models should we consider in this case?
ider an AR(1) series of length 100 with φ = 0.7.
ould you be surprised if r1 = 0.6?
ould r10 = −0.15 be unusual?

ose the {Xt} is a stationary AR(1) process with parameter φ but that we can
observe Yt = Xt + Nt where {Nt} is the white noise measurement error inde-
ent of {Xt}.
ind the autocorrelation function for the observed process in terms of φ, ,
nd .

hich ARIMA model might we specify for {Yt}?
ime plots of two series are shown below.
or each of the series, describe r1 using the terms strongly positive, moder-
tely positive, near zero, moderately negative, or strongly negative. Do you
eed to know the scale of measurement for the series to answer this?
epeat part (a) for r2.

1 2 3 4 5 6

0.97 0.97 0.93 0.85 0.80 0.71

t −0.42 0.18 −0.02 0.07 −0.10 −0.09

1 2 3 4 5

0.47 −0.34 0.20 0.02 −0.06
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late an AR(1) time series with n = 48 and with φ = 0.7.
alculate the theoretical autocorrelations at lag 1 and lag 5 for this model.
alculate the sample autocorrelations at lag 1 and lag 5 and compare the val-
es with their theoretical values. Use Equations (6.1.5) and (6.1.6) page 111,
 quantify the comparisons. 
epeat part (b) with a new simulation. Describe how the precision of the esti-
ate varies with different samples selected under identical conditions.
 software permits, repeat the simulation of the series and calculation of r1
nd r5 many times and form the sampling distributions of r1 and r5. Describe
ow the precision of the estimate varies with different samples selected under
entical conditions. How well does the large-sample variance given in Equa-
on (6.1.5) on page 111, approximate the variance in your sampling distribu-
on?
late an MA(1) time series with n = 60 and with θ = 0.5.
alculate the theoretical autocorrelation at lag 1 for this model.
alculate the sample autocorrelation at lag 1, and compare the value with its
eoretical value. Use Exhibit 6.2 on page 112, to quantify the comparisons. 
epeat part (b) with a new simulation. Describe how the precision of the esti-
ate varies with different samples selected under identical conditions.
 software permits, repeat the simulation of the series and calculation of r1
any times and form the sampling distribution of r1. Describe how the preci-
on of the estimate varies with different samples selected under identical con-
itions. How well does the large-sample variance given in Exhibit 6.2 on page
12, approximate the variance in your sampling distribution?
late an AR(1) time series with n = 48, with 
 = 0.9, and calculate the theoretical autocorrelations at lag 1 and lag 5;
 = 0.6, and calculate the theoretical autocorrelations at lag 1 and lag 5;
 = 0.3, and calculate the theoretical autocorrelations at lag 1 and lag 5.
or each of the series in parts (a), (b), and (c), calculate the sample autocorre-
tions at lag 1 and lag 5 and compare the values with their theoretical values.
se Equations (6.1.5) and 6.1.6, page 111, to quantify the comparisons. In
eneral, describe how the precision of the estimate varies with the value of φ.
late an AR(1) time series with φ = 0.6, with
 = 24, and estimate ρ1 = φ = 0.6 with r1;
 = 60, and estimate ρ1 = φ = 0.6 with r1;
 = 120, and estimate ρ1 = φ = 0.6 with r1.
or each of the series in parts (a), (b), and (c), compare the estimated values
ith the theoretical value. Use Equation (6.1.5) on page 111, to quantify the

omparisons. In general, describe how the precision of the estimate varies
ith the sample size.
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Model Specification

late an MA(1) time series with θ = 0.7, with
 = 24, and estimate ρ1 with r1;
 = 60, and estimate ρ1 with r1;
 = 120, and estimate ρ1 with r1.
or each of the series in parts (a), (b), and (c), compare the estimated values of

1 with the theoretical value. Use Exhibit 6.2 on page 112, to quantify the
omparisons. In general, describe how the precision of the estimate varies
ith the sample size.
late an AR(1) time series of length n = 36 with φ = 0.7.
alculate and plot the theoretical autocorrelation function for this model. Plot
fficient lags until the correlations are negligible.
alculate and plot the sample ACF for your simulated series. How well do the
alues and patterns match the theoretical ACF from part (a)?
hat are the theoretical partial autocorrelations for this model?

alculate and plot the sample ACF for your simulated series. How well do the
alues and patterns match the theoretical ACF from part (a)? Use the
rge-sample standard errors reported in Exhibit 6.1 on page 111, to quantify
our answer.
alculate and plot the sample PACF for your simulated series. How well do
e values and patterns match the theoretical PACF from part (c)? Use the
rge-sample standard errors reported on page 115 to quantify your answer.
late an MA(1) time series of length n = 48 with θ = 0.5.
hat are the theoretical autocorrelations for this model?

alculate and plot the sample ACF for your simulated series. How well do the
alues and patterns match the theoretical ACF from part (a)?
alculate and plot the theoretical partial autocorrelation function for this
odel. Plot sufficient lags until the correlations are negligible. (Hint: See
quation (6.2.6) on page 114.)
alculate and plot the sample PACF for your simulated series. How well do
e values and patterns match the theoretical PACF from part (c)?
late an AR(2) time series of length n = 72 with φ1 = 0.7 and φ2 = −0.4.
alculate and plot the theoretical autocorrelation function for this model. Plot
fficient lags until the correlations are negligible.
alculate and plot the sample ACF for your simulated series. How well do the
alues and patterns match the theoretical ACF from part (a)?
hat are the theoretical partial autocorrelations for this model?

alculate and plot the sample ACF for your simulated series. How well do the
alues and patterns match the theoretical ACF from part (a)?
alculate and plot the sample PACF for your simulated series. How well do
e values and patterns match the theoretical PACF from part (c)?
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late an MA(2) time series of length n = 36 with θ1 = 0.7 and θ2 = −0.4.
hat are the theoretical autocorrelations for this model?

alculate and plot the sample ACF for your simulated series. How well do the
alues and patterns match the theoretical ACF from part (a)?
lot the theoretical partial autocorrelation function for this model. Plot suffi-
ient lags until the correlations are negligible. (We do not have a formula for
is PACF. Instead, perform a very large sample simulation, say n = 1000, for
is model and calculate and plot the sample PACF for this simulation.)
alculate and plot the sample PACF for your simulated series of part (a). How
ell do the values and patterns match the “theoretical” PACF from part (c)?
late a mixed ARMA(1,1) model of length n = 60 with φ = 0.4 and θ = 0.6.
alculate and plot the theoretical autocorrelation function for this model. Plot
fficient lags until the correlations are negligible.
alculate and plot the sample ACF for your simulated series. How well do the
alues and patterns match the theoretical ACF from part (a)?
alculate and interpret the sample EACF for this series. Does the EACF help
ou specify the correct orders for the model?
epeat parts (b) and (c) with a new simulation using the same parameter val-
es and sample size.
epeat parts (b) and (c) with a new simulation using the same parameter val-
es but sample size n = 36.
epeat parts (b) and (c) with a new simulation using the same parameter val-
es but sample size n = 120.
late a mixed ARMA(1,1) model of length n = 100 with φ = 0.8 and θ = 0.4.
alculate and plot the theoretical autocorrelation function for this model. Plot
fficient lags until the correlations are negligible.
alculate and plot the sample ACF for your simulated series. How well do the
alues and patterns match the theoretical ACF from part (a)?
alculate and interpret the sample EACF for this series. Does the EACF help
ou specify the correct orders for the model?
epeat parts (b) and (c) with a new simulation using the same parameter val-
es and sample size.
epeat parts (b) and (c) with a new simulation using the same parameter val-
es but sample size n = 48.
epeat parts (b) and (c) with a new simulation using the same parameter val-
es but sample size n = 200.
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Model Specification

late a nonstationary time series with n = 60 according to the model
A(0,1,1) with θ = 0.8.

erform the (augmented) Dickey-Fuller test on the series with k = 0 in Equa-
on (6.4.1) on page 128. (With k = 0, this is the Dickey-Fuller test and is not
ugmented.) Comment on the results.
erform the augmented Dickey-Fuller test on the series with k chosen by the
ftware—that is, the “best” value for k. Comment on the results.
epeat parts (a) and (b) but use the differences of the simulated series. Com-
ent on the results. (Here, of course, you should reject the unit root hypothe-
s.)
late a stationary time series of length n = 36 according to an AR(1) model
φ = 0.95. This model is stationary, but just barely so. With such a series and a
 history, it will be difficult if not impossible to distinguish between stationary
onstationary with a unit root.
lot the series and calculate the sample ACF and PACF and describe what you
e.

erform the (augmented) Dickey-Fuller test on the series with k = 0 in Equa-
on (6.4.1) on page 128. (With k = 0 this is the Dickey-Fuller test and is not
ugmented.) Comment on the results.
erform the augmented Dickey-Fuller test on the series with k chosen by the
ftware—that is, the “best” value for k. Comment on the results.
epeat parts (a), (b), and (c) but with a new simulation with n = 100.
data file named deere1 contains 82 consecutive values for the amount of
tion (in 0.000025 inch units) from a specified target value that an industrial
ining process at Deere & Co. produced under certain specified operating

itions.
isplay the time series plot of this series and comment on any unusual points.
alculate the sample ACF for this series and comment on the results.
ow replace the unusual value by a much more typical value and recalculate
e sample ACF. Comment on the change from what you saw in part (b).
alculate the sample PACF based on the revised series that you used in part
). What model would you specify for the revised series? (Later we will
vestigate other ways to handle outliers in time series modeling.)

data file named deere2 contains 102 consecutive values for the amount of
tion (in 0.0000025 inch units) from a specified target value that another
trial machining process produced at Deere & Co.
isplay the time series plot of this series and comment on its appearance.
ould a stationary model seem to be appropriate?
isplay the sample ACF and PACF for this series and select tentative orders
r an ARMA model for the series.
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ata file named deere3 contains 57 consecutive measurements recorded from
plex machine tool at Deere & Co. The values given are deviations from a

t value in units of ten millionths of an inch. The process employs a control
anism that resets some of the parameters of the machine tool depending on
agnitude of deviation from target of the last item produced.
isplay the time series plot of this series and comment on its appearance.
ould a stationary model be appropriate here?
isplay the sample ACF and PACF for this series and select tentative orders
r an ARMA model for the series.
ata file named robot contains a time series obtained from an industrial robot.

robot was put through a sequence of maneuvers, and the distance from a
ed ending point was recorded in inches. This was repeated 324 times to form
me series.
isplay the time series plot of the data. Based on this information, do these
ata appear to come from a stationary or nonstationary process?
alculate and plot the sample ACF and PACF for these data. Based on this
dditional information, do these data appear to come from a stationary or non-
ationary process?
alculate and interpret the sample EACF.
se the best subsets ARMA approach to specify a model for these data. Com-
are these results with what you discovered in parts (a), (b), and (c).
late and interpret the sample EACF for the logarithms of the Los Angeles
ll series. The data are in the file named larain. Do the results confirm that the

are white noise?
late and interpret the sample EACF for the color property time series. The

are in the color file. Does the sample EACF suggest the same model that was
fied by looking at the sample PACF?
ata file named days contains accounting data from the Winegard Co. of Bur-
n, Iowa. The data are the number of days until Winegard receives payment

30 consecutive orders from a particular distributor of Winegard products.
 name of the distributor must remain anonymous for confidentiality reasons.)
lot the time series, and comment on the display. Are there any unusual val-
es?
alculate the sample ACF and PACF for this series.
ow replace each of the unusual values with a value of 35 days—much more
pical values—and repeat the calculation of the sample ACF and PACF.
hat ARMA model would you specify for this series after removing the out-

ers? (Later we will investigate other ways to handle outliers in time series
odeling.)
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r deals with the problem of estimating the parameters of an ARIMA model
e observed time series Y1, Y2,…, Yn. We assume that a model has already
ied; that is, we have specified values for p, d, and q using the methods of

ith regard to nonstationarity, since the d th difference of the observed series
to be a stationary ARMA(p,q) process, we need only concern ourselves with
 of estimating the parameters in such stationary models. In practice, then we
 difference of the original time series as the time series from which we esti-
rameters of the complete model. For simplicity, we shall let Y1, Y2,…, Yn

observed stationary process even though it may be an appropriate difference
nal series. We first discuss the method-of-moments estimators, then the least
mators, and finally full maximum likelihood estimators.

 Method of Moments

 of moments is frequently one of the easiest, if not the most efficient, meth-
taining parameter estimates. The method consists of equating sample
 corresponding theoretical moments and solving the resulting equations to
ates of any unknown parameters. The simplest example of the method is to
tationary process mean by a sample mean. The properties of this estimator
d extensively in Chapter 3.

ssive Models

rst the AR(1) case. For this process, we have the simple relationship ρ1 = φ.
od of moments, ρ1 is equated to r1, the lag 1 sample autocorrelation. Thus
mate φ by

(7.1.1)

onsider the AR(2) case. The relationships between the parameters φ1 and φ2
 moments are given by the Yule-Walker equations (4.3.13) on page 72:

φ̂ r1=
149

 of moments replaces ρ1 by r1 and ρ2 by r2 to obtain

ρ1 φ1 ρ1φ2  and  ρ2+ ρ1φ1 φ2+= =

r1 φ1 r1φ2  and  r2+ r1φ1 φ2+= =
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al AR(p) case proceeds similarly. Replace ρk by rk throughout the
r equations on page 79 (or page 114) to obtain

(7.1.3)

r equations are then solved for . The Durbin-Levinson recur-
ation (6.2.9) on page 115 provides a convenient method of solution but is
ubstantial round-off errors if the solution is close to the boundary of the sta-
gion. The estimates obtained in this way are also called Yule-Walker esti-

verage Models

y, the method of moments is not nearly as convenient when applied to mov-
e models. Consider the simple MA(1) case. From Equations (4.2.2) on
 know that

 to r1, we are led to solve a quadratic equation in θ. If |r1| < 0.5, then the two
re given by

asily checked, the product of the two solutions is always equal to 1; there-
ne of the solutions satisfies the invertibility condition |θ| < 1. 
urther algebraic manipulation, we see that the invertible solution can be writ-

(7.1.4)

, unique, real solutions exist, namely , but neither is invertible. If |r1| > 0.5

φ̂1

r1 1 r2–( )

1 r1
2–

------------------------  and  φ̂2

r2 r1
2–

1 r1
2–

----------------==

φ1 +

r1φ
1

+

rp 1– φ
1

+

r1φ2 +

φ2 +

rp 2– φ
2

+

r2φ3

r1φ3

rp 3– φ3

…+ +

…+ +

…+ +

rp 1– φp+

rp 2– φp+

φp

r1=

r2=

...

rp= ⎭
⎪
⎪
⎬
⎪
⎪
⎫

φ̂1 φ̂2 … φ̂p, , ,

ρ1
θ

1 θ2+
---------------–=

1
2r1
--------– 1

4r1
2

-------- 1–±

θ̂
1– 1 4r1

2–+

2r1
-----------------------------------=

1+−

ertainly possible even though |ρ1| < 0.5), no real solutions exist, and so the

oments fails to yield an estimator of θ. Of course, if |r1| > 0.5, the specifica-
A(1) model would be in considerable doubt.
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her-order MA models, the method of moments quickly gets complicated.
 Equations (4.2.5) on page 65 and replace ρk by rk for k = 1, 2,…, q, to

uations in q unknowns θ1, θ2,..., θq. The resulting equations are highly non-
e θ’s, however, and their solution would of necessity be numerical. In addi-
will be multiple solutions, of which only one is invertible. We shall not
further since we shall see in Section 7.4 that, for MA models, the method of
enerally produces poor estimates.

dels

r only the ARMA(1,1) case. Recall Equation (4.4.5) on page 78, 

 ρ2 /ρ1 = φ, we can first estimate φ as

(7.1.5)

e so, we can then use

(7.1.6)

 . Note again that a quadratic equation must be solved and only the invert-
n, if any, retained.

 of the Noise Variance

arameter to be estimated is the noise variance, . In all cases, we can first
 process variance, γ0 = Var(Yt), by the sample variance

(7.1.7)

wn relationships from Chapter 4 among γ0, , and the θ’s and φ’s to esti-

 AR(p) models, Equation (4.3.31) on page 77 yields

(7.1.8)

r, for an AR(1) process,

.

ρk
1 θφ–( ) φ θ–( )
1 2θφ– θ2+

-------------------------------------φk 1–     for k 1≥=

φ̂̂
r2

r1
----=

r1
1 θφ̂–( ) φ̂ θ–( )
1 2θφ̂– θ2+

-------------------------------------=

θ̂

σe
2

s2 1
n 1–
------------ Yt Y

 _
–( )2

t 1=

n

∑=

σe
2

σ̂e
2 1 φ̂1r1– φ̂2r2– …– φ̂prp–( )s2=

σ̂e
2 1 r1

2–( )s2=

r1

 MA(q) case, we have, using Equation (4.2.4) on page 65,

(7.1.9)σ̂e
2 s2

1 θ̂1
2 θ̂2

2 … θ̂q
2+ + + +

----------------------------------------------------=
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MA(1,1) process, Equation (4.4.4) on page 78 yields

(7.1.10)

l Examples

 Exhibit 7.1 displays method-of-moments estimates for the parameters from
ulated time series. Generally speaking, the estimates for all the autoregres-
s are fairly good but the estimates for the moving average models are not
 It can be shown that theory confirms this observation—method-of-moments
re very inefficient for models containing moving average terms.

1 Method-of-Moments Parameter Estimates for Simulated 
Series

1.2.s); data(ma1.1.s); data(ma1.3.s); data(ma1.4.s)
e.ma1.mom(ma1.2.s); estimate.ma1.mom(ma1.1.s)
e.ma1.mom(ma1.3.s); estimate.ma1.mom(ma1.4.s)
a1.4.s,order=c(0,0,1),method='CSS',include.mean=F)
1.s); data(ar1.2.s)
s,order.max=1,AIC=F,method='yw')
2.s,order.max=1,AIC=F,method='yw')
2.s)
s,order.max=2,AIC=F,method='yw')

True Parameters
Method-of-Moments 

Estimates

θ φ1 φ2 θ φ1 φ2 n

−0.9 −0.554 120

0.9 0.719 120

−0.9 NA†

thod-of-moments estimate exists since r1 = 0.544 for this simulation.

60

0.5 −0.314 60

0.9 0.831 60

0.4 0.470 60

1.5 −0.75 1.472 −0.767 120

σ̂e
2 1 φ̂2–

1 2φ̂θ̂– θ̂2+
------------------------------s2=
er now some actual time series. We start with the Canadian hare abundance
e we found in Exhibit 6.27 on page 136 that a square root transformation was
 here, we base all modeling on the square root of the original abundance
e illustrate the estimation of an AR(2) model with the hare data, even
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hall show later that an AR(3) model provides a better fit to the data. The first
 autocorrelations displayed in Exhibit 6.28 on page 137 are r1 = 0.736 and r2
ing Equations (7.1.2), the method-of-moments estimates of φ1 and φ2 are

(7.1.11)

(7.1.12)

 mean and variance of this series (after taking the square root) are found to
 5.88, respectively. Then, using Equation (7.1.8), we estimate the noise vari-

(7.1.13)

ted model (in original terms) is then

(7.1.14)

(7.1.15)

ted noise variance of 1.97.
er now the oil price series. Exhibit 6.32 on page 140 suggested that we spec-
1) model for the first differences of the logarithms of the series. The lag 1
correlation in that exhibit is 0.212, so the method-of-moments estimate of θ

(7.1.16)

f the differences of the logs is 0.004 and the variance is 0.0072. The esti-
el is

(7.1.17)

(7.1.18)

ted noise variance of 

φ̂1

r1 1 r2–( )

1 r1
2–

------------------------ 0.736 1 0.304–( )
1 0.736( )2–

----------------------------------------- 1.1178= = =

φ̂2

r2 r1
2–

1 r1
2–

---------------- 0.304 0.736( )2–
1 0.736( )2–

---------------------------------------- 0.519–= = =

σ̂e2 1 φ̂1r1– φ̂2r2–( )s2=

1 1.1178( ) 0.736( )– 0.519–( ) 0.304( )–[ ] 5.88( )=

1.97=

5.82– 1.1178 Yt 1– 5.82–( ) 0.519 Yt 2– 5.82–( )– et+=

Yt 2.335 1.1178 Yt 1– 0.519 Yt 2–– et+ +=

θ̂ 1– 1 4 0.212( )2–+
2 0.212( )

--------------------------------------------------- 0.222–= =

∇ Yt( )log 0.004 et 0.222et 1–+ +=

Yt( )log Yt 1–( )log 0.004 et 0.222et 1–+ + +=
(7.1.19)σ̂e2
s2

1 θ̂2+
--------------- 0.0072

1 0.222–( )2+
--------------------------------- 0.00686= = =
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tion (3.2.3) on page 28 with estimated parameters yields a standard error of
 mean of 0.0060. Thus, the observed sample mean of 0.004 is not signifi-
rent from zero and we would remove the constant term from the model, giv-
odel of

(7.1.20)

st Squares Estimation

e method of moments is unsatisfactory for many models, we must consider
ods of estimation. We begin with least squares. For autoregressive models,
e quite straightforward. At this point, we introduce a possibly nonzero mean,
stationary models and treat it as another parameter to be estimated by least

ssive Models

e first-order case where

(7.2.1)

w this as a regression model with predictor variable Yt − 1 and response vari-
st squares estimation then proceeds by minimizing the sum of squares of the

Y1, Y2,…, Yn are observed, we can only sum from t = 2 to t = n. Let

(7.2.2)

ally called the conditional sum-of-squares function. (The reason for the
tional will become apparent later on.) According to the principle of least
 estimate φ and μ by the respective values that minimize Sc(φ,μ) given the
lues of Y1, Y2,…, Yn.
er the equation . We have

ing and solving for μ,

(7.2.3)

Yt( )log Yt 1–( )log et 0.222et 1–+ +=

Yt μ– φ Yt 1– μ–( ) et+=

Yt μ–( ) φ Yt 1– μ–( )–

Sc φ μ,( ) Yt μ–( ) φ Yt 1– μ–( )–[ ]2

t 2=

n

∑=

Sc∂ μ∂⁄ 0=

μ∂
∂Sc 2 Yt μ–( ) φ Yt 1– μ–( )–[ ] 1– φ+( )

t 2=

n

∑ 0= =

μ 1---------------------------------- Yt

n

∑ φ Yt 1–

n

∑–=

n 1–( ) 1 φ–( ) t 2= t 2=
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rge n,

dless of the value of φ, Equation (7.2.3) reduces to

(7.2.4)

es say, except for end effects, .
er now the minimization of with respect to φ. We have

 equal to zero and solving for φ yields

one term missing in the denominator, namely , this is the same as
e missing term is negligible for stationary processes, and thus the least
 method-of-moments estimators are nearly identical, especially for large

 general AR(p) process, the methods used to obtain Equations (7.2.3) and
easily be extended to yield the same result, namely

(7.2.5)

ze the estimation of the φ’s, we consider the second-order model. In accor-
Equation (7.2.5), we replace μ by  in the conditional sum-of-squares func-

(7.2.6)

, we have

(7.2.7)

1
n 1–
------------ Yt

t 2=

n

∑
1

n 1–
------------ Yt 1–

t 2=

n

∑ Y
 _

≈ ≈

μ̂ 1
1 φ–
------------ Y

 _
φY

 _
–( )≈ Y

 _
=

μ̂ Y
 _

=
Sc φ Y

 _
,( )

Sc φ Y
 _

,( )∂
φ∂

----------------------- 2 Yt Y
 _

–( ) φ Yt 1– Y
 _

–( )–[ ] Yt 1– Y
 _

–( )
t 2=

n

∑=

φ̂

Yt Y
 _

–( ) Yt 1– Y
 _

–( )
t 2=

n

∑

Yt 1– Y
 _

–( )2

t 2=

n

∑
--------------------------------------------------------=

Yn Y
 _

–( )2

μ̂ Y
 _

=

Y
 _

φ1 φ2 Y
 _

, , ) Yt Y
 _

–( ) φ1 Yt 1– Y
 _

–( )– φ2 Yt 2– Y
 _

–( )–[ ]2

t 3=

n

∑=

φ1∂⁄ 0=

Yt Y
 _

–( ) φ1 Yt 1– Y
 _

–( )– φ2 Yt 2– Y
 _

–( )–[ ] Yt 1– Y
 _

–( )
3=

n

∑ 0=
an rewrite as
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(7.2.8)

 the lagged products is very nearly the numerator of

e missing one product, . A similar situation exists for

, but here we are missing . If we divide

f Equation (7.2.8) by , then, except for end effects, which are

nder the stationarity assumption, we obtain

(7.2.9)

ting in a similar way with the equation leads to

(7.2.10)

ons (7.2.9) and (7.2.10) are just the sample Yule-Walker equations for an
el.
y analogous results follow for the general stationary AR(p) case: To an
proximation, the conditional least squares estimates of the φ’s are obtained

the sample Yule-Walker equations (7.1.3).†

verage Models

w the least-squares estimation of θ in the MA(1) model:

(7.2.11)

nce, it is not apparent how a least squares or regression method can be
uch models. However, recall from Equation (4.4.2) on page 77 that invert-
 models can be expressed as

essive model but of infinite order. Thus least squares can be meaningfully
by choosing a value of θ that minimizes

Yt Y
 _

–( ) Yt 1– Y
 _

–( )
3=

n
Yt 1– Y

 _
–( )2

t 3=

n

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

φ1=

Yt 1– Y
 _

–( ) Yt 2– Y
 _

–( )
t 3=

n

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

φ2+ 

Yt Y
 _

–( ) Yt 1– Y
 _

–( )
t 3=

n

∑

Y2 Y
 _

–( ) Y1 Y
 _

–( )

Y
 _

– ) Yt 2– Y
 _

–( ) Yn Y
 _

–( ) Yn 1– Y
 _

–( )

Yt Y
 _

–( )2

t 3=

n

∑

r1 φ1 r1φ2+=

Sc∂ φ2∂⁄ 0=

r2 r1φ1 φ2+=

Yt et θet 1––=

Yt θYt 1–– θ2Yt 2–– θ3Yt 3–   …–– et+=
te that Lai and Wei (1983) established that the conditional least squares estimators
nsistent even for nonstationary autoregressive models where the Yule-Walker equa-

do not apply.
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(7.2.12)

licitly, et = et(θ) is a function of the observed series and the unknown param-

ar from Equation (7.2.12) that the least squares problem is nonlinear in the
 We will not be able to minimize Sc(θ) by taking a derivative with respect to
 to zero, and solving. Thus, even for the simple MA(1) model, we must resort
es of numerical optimization. Other problems exist in this case: We have not
icit limits on the summation in Equation (7.2.12) nor have we said how to
e infinite series under the summation sign.
ress these issues, consider evaluating Sc(θ) for a single given value of θ. The
e have available are our observed series, Y1, Y2,…, Yn. Rewrite Equation

(7.2.13)

equation, e1, e2,…, en can be calculated recursively if we have the initial
 common approximation is to set e0 = 0—its expected value. Then, condi-
 = 0, we can obtain

(7.2.14)

lculate , conditional on e0 = 0, for that single given value of

 simple case of one parameter, we could carry out a grid search over the
ange (−1,+1) for θ to find the minimum sum of squares. For more general
els, a numerical optimization algorithm, such as Gauss-Newton or Nelder-

be needed. 
her-order moving average models, the ideas are analogous and no new diffi-
. We compute et = et(θ1, θ2,…, θq) recursively from

(7.2.15)

−1 = = e− q = 0. The sum of squares is minimized jointly in θ1, θ2,…, θq
tivariate numerical method.

dels

θ) et( )2∑ Yt θYt 1– θ2Yt 2– θ3Yt 3–
…+ + + +[ ]2∑= =

et Yt θet 1–+=

e1 Y1=

e2 Y2 θe1+=

e3 Y3 θe2+=

...

en Yn θen 1–+= ⎭
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎫

Sc θ( ) et( )2∑=

et Yt θ1e
t 1–

θ2e
t 2–

… θqet q–+ + + +=

…

e ARMA(1,1) case

(7.2.16)Yt φYt 1– et θet 1––+=
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re MA case, we consider et = et(φ,θ) and wish to minimize  .
rite Equation (7.2.16) as

(7.2.17)

1, we now have an additional “startup” problem, namely Y0. One approach is
0 or to  if our model contains a nonzero mean. However, a better approach
the recursion at t = 2, thus avoiding Y0 altogether, and simply minimize

eral ARMA(p,q) model, we compute

(7.2.18)

p − 1 = = ep + 1 − q = 0 and then minimize Sc(φ1,φ2,…,φp,θ1,θ2,…,θq)
 to obtain the conditional least squares estimates of all the parameters.
ameter sets θ1, θ2,…, θq corresponding to invertible models, the start-up val-

1,…, ep + 1 − q will have very little influence on the final estimates of the
for large samples.

ximum Likelihood and Unconditional Least Squares

f moderate length and also for stochastic seasonal models to be discussed in
, the start-up values ep = ep − 1 = = ep + 1 − q = 0 will have a more pro-
ect on the final estimates for the parameters. Thus we are led to consider the

ult problem of maximum likelihood estimation.
vantage of the method of maximum likelihood is that all of the information
is used rather than just the first and second moments, as is the case with least
nother advantage is that many large-sample results are known under very
ditions. One disadvantage is that we must for the first time work specifically
nt probability density function of the process.

 Likelihood Estimation

 of observations, Y1, Y2,…, Yn, time series or not, the likelihood function L is
e the joint probability density of obtaining the data actually observed. How-
onsidered as a function of the unknown parameters in the model with the
ta held fixed. For ARIMA models, L will be a function of the φ’s, θ’s, μ, and

he observations Y1, Y2,…, Yn. The maximum likelihood estimators are then

Sc φ θ,( ) = et
2∑

et Yt φYt 1–– θet 1–+=

Y
 _

Sc φ θ,( ) et
2

t 2=

n
∑=

et Yt φ1Y
t 1–

– φ2Y
t 2–

– …– φpYt p––=

θ1e
t 1–

θ2e
t 2–

… θqet q–+ + ++ 

…

…

hose values of the parameters for which the data actually observed are most
s, the values that maximize the likelihood function.
in by looking in detail at the AR(1) model. The most common assumption is

ite noise terms are independent, normally distributed random variables with
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 and common standard deviation . The probability density function (pdf)
 then

ependence, the joint pdf for e2, e3,…, en is

(7.3.1)

er

(7.3.2)

tion on Y1 = y1, Equation (7.3.2) defines a linear transformation between e2,
d Y2, Y3,…, Yn (with Jacobian equal to 1). Thus the joint pdf of Y2, Y3,…, Yn
y1 can be obtained by using Equation (7.3.2) to substitute for the e’s in terms
 Equation (7.3.1). Thus we get

(7.3.3)

er the (marginal) distribution of Y1. It follows from the linear process repre-
 the AR(1) process (Equation (4.3.8) on page 70) that Y1 will have a normal
 with mean μ and variance . Multiplying the conditional pdf in
.3.3) by the marginal pdf of Y1 gives us the joint pdf of Y1, Y2,…, Yn that we

erpreted as a function of the parameters φ, μ, and , the likelihood function
) model is given by

(7.3.4)

σe

2πσe
2( ) 1 2/–

et
2

2σe
2

---------–
⎝ ⎠
⎜ ⎟
⎛ ⎞

  for  ∞ et ∞< <–exp

2πσe
2( ) n 1–( ) 2⁄– 1

2σe
2

--------- et
2

t 2=

n

∑–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

exp

Y2 μ– φ Y1 μ–( ) e2+=

Y3 μ– φ Y2 μ–( ) e3+=

...

Yn μ– φ Yn 1– μ–( ) en+= ⎭
⎪
⎪
⎬
⎪
⎪
⎫

y3 … yn|y1, , , ) 2πσe
2( ) n 1–( ) 2⁄–=

1

2σe
2

--------- yt μ–( ) φ yt 1– μ–( )–[ ]2

t 2=

n

∑–

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

exp×

σe
2 1 φ2–( )⁄

σe
2

L φ μ σe
2, ,( ) 2πσe

2( ) n 2⁄– 1 φ2–( )1 2/ 1
2σe

2
---------S φ μ,( )–exp=

2
n

2
 (7.3.5)

n S(φ,μ) is called the unconditional sum-of-squares function.
eneral rule, the logarithm of the likelihood function is more convenient to

φ μ,( ) Yt μ–( ) φ Yt 1– μ–( )–[ ]
t 2=
∑ 1 φ–( ) Y1 μ–( )+=
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than the likelihood itself. For the AR(1) case, the log-likelihood function,
, is given by

(7.3.6)

en values of φ and μ,  can be maximized analytically with respect
rms of the yet-to-be-determined estimators of φ and μ. We obtain

(7.3.7)

 other similar contexts, we usually divide by n − 2 rather than n (since we are
two parameters, φ and μ) to obtain an estimator with less bias. For typical
sample sizes, there will be very little difference.
er now the estimation of φ and μ. A comparison of the unconditional
ares function S(φ,μ) with the earlier conditional sum-of-squares function
quation (7.2.2) on page 154, reveals one simple difference:

(7.3.8)

μ) involves a sum of n − 1 components, whereas  does not
e shall have . Thus the values of φ and μ that minimize

c(φ,μ) should be very similar, at least for larger sample sizes. The effect of
st term in Equation (7.3.8) will be more substantial when the minimum for φ
 the stationarity boundary of ±1.

onal Least Squares

omise between conditional least squares estimates and full maximum likeli-
ates, we might consider obtaining unconditional least squares estimates; that
s minimizing S(φ,μ). Unfortunately, the term  causes the

 and to be nonlinear in φ and μ, and reparameteriza-
nstant term θ0 = μ(1 − φ) does not improve the situation substantially. Thus
n must be carried out numerically. The resulting estimates are called uncon-
st squares estimates.
rivation of the likelihood function for more general ARMA models is con-
ore involved. One derivation may be found in Appendix H: State Space

page 222. We refer the reader to Brockwell and Davis (1991) or Shumway
 (2006) for even more details.

perties of the Estimates

μ σe
2, , )

σe
2, ) n

2
--- 2π( )log–

n
2
--- σe

2( )log–
1
2
--- 1 φ2–( )log

1
2σe

2
---------S φ μ,( )–+=

l φ μ σe
2, ,( )

σ̂e
2 S φ̂ μ̂,( )

n
-----------------=

S φ μ,( ) Sc φ μ,( ) 1 φ2–( ) Y1 μ–( )2+=

1 φ2–( ) Y1 μ–( )2

S φ μ,( ) Sc φ μ,( )≈

1 φ2–( ) Y1 μ–( )2

S φ∂⁄ 0= S∂ μ∂⁄ 0=
ample properties of the maximum likelihood and least squares (conditional
tional) estimators are identical and can be obtained by modifying standard
likelihood theory. Details can be found in Shumway and Stoffer (2006, pp.

e shall look at the results and their implications for simple ARMA models.
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ge n, the estimators are approximately unbiased and normally distributed.
es and correlations are as follows:

AR(1): (7.4.9)

AR(2): (7.4.10)

MA(1): (7.4.11)

MA(2): (7.4.12)

ARMA(1,1): (7.4.13)

 that, in the AR(1) case, the variance of the estimator of φ decreases as φ
 ±1. Also notice that even though an AR(1) model is a special case of an
el, the variance of shown in Equations (7.4.10) shows that our estimation
enerally suffer if we erroneously fit an AR(2) model when, in fact, φ2 = 0.
ments could be made about fitting an MA(2) model when an MA(1) would

tting an ARMA(1,1) when an AR(1) or an MA(1) is adequate.
 ARMA(1,1) case, note the denominator of φ − θ in the variances in Equa-
3). If φ and θ are nearly equal, the variability in the estimators of φ and θ can
y large.
at in all of the two-parameter models, the estimates can be highly correlated,

ry large sample sizes.

Var φ̂( ) 1 φ2–
n

--------------≈

Var φ̂1( ) Var φ̂2( )
1 φ2

2–

n
---------------≈ ≈

Corr φ̂1 φ̂2,( )
φ1

1 φ2–
--------------–≈ ρ1–=

⎩
⎪
⎪
⎨
⎪
⎪
⎧

Var θ̂( ) 1 θ2–
n

--------------≈

Var θ̂1( ) Var θ̂2( )
1 θ2

2–

n
---------------≈ ≈

Corr θ̂1 θ̂2,( )
θ1

1 θ2–
--------------–≈

⎩
⎪
⎪
⎨
⎪
⎪
⎧

Var φ̂( ) 1 φ2–
n

-------------- 1 φθ–
φ θ–

---------------
2

≈

Var θ̂( ) 1 θ2–
n

-------------- 1 φθ–
φ θ–

---------------
2

≈

Corr φ̂ θ̂,( ) 1 φ2–( ) 1 θ2–( )
1 φθ–

-------------------------------------------≈
⎩
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎧

φ̂1
le shown in Exhibit 7.2 gives numerical values for the large-sample approx-
ard deviations of the estimates of φ in an AR(1) model for several values of
al sample sizes. Since the values in the table are equal to , they
lly well to standard deviations computed according to Equations (7.4.10),

1 φ2–( ) n⁄
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d (7.4.12). 
n estimating an AR(1) model with, for example, n = 100 and φ = 0.7, we can
% confident that our estimate of φ is in error by no more than ±2(0.07) =

2 AR(1) Model Large-Sample Standard Deviations of 

tionary autoregressive models, the method of moments yields estimators
o least squares and maximum likelihood, at least for large samples. For mod-
ng moving average terms, such is not the case. For an MA(1) model, it can
hat the large-sample variance of the method-of-moments estimator of θ is

(7.4.14)

 Equation (7.4.14) with that of Equation (7.4.11), we see that the variance for
-of-moments estimator is always larger than the variance of the maximum
stimator. The table in Exhibit 7.3 displays the ratio of the large-sample stan-

ions for the two methods for several values of θ. For example, if θ is 0.5, the
moments estimator has a large-sample standard deviation that is 42% larger
ndard deviation of the estimator obtained using maximum likelihood. It is
hese ratios that the method-of-moments estimator should not be used for the
del. This same advice applies to all models that contain moving average

3 Method of Moments (MM) vs. Maximum Likelihood (MLE) in 
MA(1) Models

n

50 100 200
0.13 0.09 0.06

0.10 0.07 0.05

0.06 0.04 0.03

SDMM/SDMLE

1.07

1.42

2.66

φ̂

Var θ̂( ) 1 θ2 4θ4 θ6 θ8+ + + +

n 1 θ2–( )2
-------------------------------------------------------≈
5.33
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strations of Parameter Estimation

e simulated MA(1) series with θ = −0.9. The series was displayed in Exhibit
 59, and we found the method-of-moments estimate of θ to be a rather poor
 Exhibit 7.1 on page 152. In contrast, the maximum likelihood estimate is
 unconditional sum-of-squares estimate is −0.923, and the conditional least
mate is −0.879. For this series, the maximum likelihood estimate of −0.915
 the true value used in the simulation. Using Equation (7.4.11) on page 161

ng θ by its estimate, we have a standard error of about 

 the maximum likelihood, conditional sum-of-squares, or unconditional
ares estimates are significantly far from the true value of −0.9.
cond MA(1) simulation with θ = 0.9 produced the method-of-moments esti-
19 shown in Exhibit 7.1. The conditional sum-of-squares estimate is 0.958,
itional sum-of-squares estimate is 0.983, and the maximum likelihood esti-
00. These all have a standard error of about 0.04 as above. Here the maxi-
hood estimate of is a little disconcerting since it corresponds to a
le model.
rd MA(1) simulation with θ = −0.9 produced a method-of-moments estimate
see Exhibit 7.1). The maximum likelihood estimate here is −0.894 with a

ror of about

ata, the conditional sum-of-squares estimate is −0.979 and the unconditional
ares estimate is −0.961. Of course, with a standard error of this magnitude, it
 report digits in the estimates of θ beyond the tenths place.

r simulated autoregressive models, the results are reported in Exhibits 7.4

4 Parameter Estimation for Simulated AR(1) Models

φ

Method-of-
Moments 
Estimate

Conditional 
SS 

Estimate

Unconditional 
SS

Estimate

Maximum 
Likelihood 
Estimate n

0.831 0.857 0.911 0.892 60

0.470 0.473 0.473 0.465 60

Var̂ θ̂( )
1 θ̂2–

n
--------------≈ 1 0.91( )2–

120
--------------------------- 0.04≈=

θ̂ 1=

Var̂ θ̂( ) 1 0.894( )2–
60

------------------------------ 0.06≈ ≈
1.s); data(ar1.2.s)
s,order.max=1,AIC=F,method='yw')
s,order.max=1,AIC=F,method='ols')
s,order.max=1,AIC=F,method='mle')
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2.s,order.max=1,AIC=F,method='yw')
2.s,order.max=1,AIC=F,method='ols')
2.s,order.max=1,AIC=F,method='mle')

quation (7.4.9) on page 161, the standard errors for the estimates are

. Considering the magnitude of these standard errors, all four methods esti-
ably well for AR(1) models.

5 Parameter Estimation for a Simulated AR(2) Model

2.s)
s,order.max=2,AIC=F,method='yw')
s,order.max=2,AIC=F,method='ols')
s,order.max=2,AIC=F,method='mle')

quation (7.4.10) on page 161, the standard errors for the estimates are

idering the size of the standard errors, all four methods estimate reasonably
(2) models.

nal example using simulated data, consider the ARMA(1,1) shown in Exhibit
ge 123. Here φ = 0.6, θ = −0.3, and n = 100. Estimates using the various
e shown in Exhibit 7.6.

Method-of-
Moments 
Estimates

Conditional 
SS 

Estimates

Unconditional 
SS

Estimates

Maximum 
Likelihood 
Estimate n

1.472 1.5137 1.5183 1.5061 120

−0.767 −0.8050 −0.8093 −0.7965 120

Var̂ φ̂( ) 1 φ̂2–
n

--------------≈ 1 0.831( )2–
60

------------------------------ 0.07≈=

Var̂ φ̂( ) 1 0.470( )2–
60

------------------------------ 0.11≈=

Var̂ φ̂1( ) Var̂ φ̂2( )
1 φ2

2–

n
---------------≈ ≈ 1 0.75( )2–

120
--------------------------- 0.06≈=
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6 Parameter Estimation for a Simulated ARMA(1,1) Model

ma11.s)
rma11.s, order=c(1,0,1),method='CSS')
rma11.s, order=c(1,0,1),method='ML')

t’s look at some real time series. The industrial chemical property time series
own in Exhibit 1.3 on page 3. The sample PACF displayed in Exhibit 6.26
5, strongly suggested an AR(1) model for this series. Exhibit 7.7 shows the
mates of the φ parameter using four different methods of estimation.

7 Parameter Estimation for the Color Property Series

lor)
r,order.max=1,AIC=F,method='yw')
r,order.max=1,AIC=F,method='ols')
r,order.max=1,AIC=F,method='mle')

e standard error of the estimates is about

 estimates are comparable.
econd example, consider again the Canadian hare abundance series. As
 base all modeling on the square root of the original abundance numbers.
he partial autocorrelation function shown in Exhibit 6.29 on page 137, we
te an AR(3) model. For this illustration, we use maximum likelihood estima-
w the results obtained from the R software in Exhibit 7.8.

Method-of-
Moments 
Estimates

Conditional 
SS 

Estimates

Unconditional 
SS

Estimates

Maximum 
Likelihood 
Estimate n

0.637 0.5586 0.5691 0.5647 100

−0.2066 −0.3669 −0.3618 −0.3557 100

Method-of-
Moments 
Estimate

Conditional 
SS 

Estimate

Unconditional 
SS

Estimate

Maximum 
Likelihood 
Estimate n

0.5282 0.5549 0.5890 0.5703 35

Var̂ φ̂( ) 1 0.57( )2–
35

--------------------------- 0.14≈ ≈
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8 Maximum Likelihood Estimates from R Software: Hare 
Series

re)
qrt(hare),order=c(3,0,0))

e see that = 1.0519, = −0.2292, and = −0.3930. We also see that the
oise variance is = 1.066. Noting the standard errors, the estimates of the
g 3 autoregressive coefficients are significantly different from zero, as is the
rm, but the lag 2 autoregressive parameter estimate is not significant.
timated model would be written

the hare abundance in year t in original terms. Since the lag 2 autoregressive
gnificant, we might drop that term (that is, set φ2 = 0) and obtain new esti-

 and φ3 with this subset model.
st example, we return to the oil price series. The sample ACF shown in

2 on page 140, suggested an MA(1) model on the differences of the logs of
Exhibit 7.9 gives the estimates of θ by the various methods and, as we have
r, the method-of-moments estimate differs quite a bit from the others. The
early equal given their standard errors of about 0.07.

9 Estimation for the Difference of Logs of the Oil Price Series

fficients: ar1 ar2 ar3 Intercept†

tercept here is the estimate of the process mean μ—not of θ0.

1.0519 −0.2292 −0.3931 5.6923

s.e. 0.1877 0.2942 0.1915 0.3371

estimated as 1.066: log-likelihood = -46.54, AIC = 101.08

Method-of-
Moments 
Estimate

Conditional 
SS 

Estimate

Unconditional 
SS

Estimate

Maximum 
Likelihood 
Estimate n

−0.2225 −0.2731 −0.2954 −0.2956 241

φ̂1 φ̂2 φ̂3
σ̂e2

t 5.6923– 1.0519 Yt 1– 5.6923–( ) 0.2292 Yt 2– 5.6923–( )–=

0.3930 Yt 3– 5.6923–( )– et+

Yt 3.25 1.0519 Yt 1– 0.2292 Yt 2–– 0.3930 Yt 3–– et+ +=
l.price)
og(oil.price),order=c(0,1,1),method='CSS')
og(oil.price),order=c(0,1,1),method='ML')
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otstrapping ARIMA Models

7.4, we summarized some approximate normal distribution results for the
, where γ is the vector consisting of all the ARMA parameters. These normal
ions are accurate for large samples, and statistical software generally uses
ts in calculating and reporting standard errors. The standard error of some
nction of the model parameters, for example the quasi-period of the model, if
then usually obtained by the delta method. However, the general theory pro-
ractical guidance on how large the sample size should be for the normal
ion to be reliable. Bootstrap methods (Efron and Tibshirani, 1993; Davison
y, 2003) provide an alternative approach to assessing the uncertainty of an
nd may be more accurate for small samples. There are several variants of the
ethod for dependent data—see Politis (2003). We shall confine our discus-
parametric bootstrap that generates the bootstrap time series , 
on from the fitted ARIMA(p,d,q) model. (The bootstrap may be done by fix-
 p + d initial values of Y* to those of the observed data. For stationary mod-
native procedure is to simulate stationary realizations from the fitted model,
e done approximately by simulating a long time series from the fitted model

eleting the transient initial segment of the simulated data—the so-called
 the errors are assumed to be normally distributed, the errors may be drawn
nd with replacement from . For the case of an unknown error distri-
errors can be drawn randomly and with replacement from the residuals of the
l. For each bootstrap series, let be the estimator computed based on the
ime series data using the method of full maximum likelihood estimation
tationarity. (Other estimation methods may be used.) The bootstrap is repli-

 times. (For example, B = 1000.) From the B bootstrap parameter estimates,
 an empirical distribution and use it to calibrate the uncertainty in . Sup-

e interested in estimating some function of γ, say h(γ)—for example, the
ficient. Using the percentile method, a 95% bootstrap confidence interval for
 obtained as the interval from the 2.5 percentile to the 97.5 percentile of the
istribution of . 
strate the bootstrap method with the hare data. The bootstrap 95% confi-
vals reported in the first row of the table in Exhibit 7.10 are based on the
btained by conditioning on the initial three observations and assuming nor-
Those in the second row are obtained using the same method except that the
rawn from the residuals. The third and fourth rows report the confidence
sed on the stationary bootstrap with a normal error distribution for the third
 empirical residual distribution for the fourth row. The fifth row in the table
heoretical 95% confidence intervals based on the large-sample distribution
the estimators. In particular, the bootstrap time series for the first bootstrap

Y1
* Y2

* … Yn
*, ,

N 0 σ̂e2,( )

γ̂ *

γ̂

h γ̂*( )
enerated recursively using the equation

(7.6.1)Yt
* φ̂1Yt 1–

* φ̂2Yt 2–
* φ̂3Yt 3–

*––– θ̂0 et
*+=
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,…, 31, where the  are chosen independently from , ,
; and the parameters are set to be the estimates from the AR(3)

d to the (square root transformed) hare data with .
are based on about 1000 bootstrap replications, but full maximum likelihood
fails for 6.3%, 6.3%, 3.8%, and 4.8% of 1000 cases for the four bootstrap
II, III, and IV, respectively.

10 Bootstrap and Theoretical Confidence Intervals for the AR(3) 
Model Fitted to the Hare Data

he Chapter 7 R scripts file for the extensive code 
red to generate these results.

r methods yield similar bootstrap confidence intervals, although the condi-
trap approach generally yields slightly narrower confidence intervals. This is
s the conditional bootstrap time series bear more resemblance to each other
 are subject to identical initial conditions. The bootstrap confidence intervals
ly slightly wider than their theoretical counterparts that are derived from the
le results. Overall, we can draw the inference that the φ2 coefficient estimate
ant, whereas both the φ1 and φ3 coefficient estimates are significant at the

ance level. 
otstrap method has the advantage of allowing easy construction of confi-
vals for a model characteristic that is a nonlinear function of the model
. For example, the characteristic AR polynomial of the fitted AR(3) model
 data admits a pair of complex roots. Indeed, the roots are 0.84 ± 0.647i and
re . The two complex roots can be written in polar form: 1.06exp(±
 in the discussion of the quasi-period for the AR(2) model on page 74, the
d of the fitted AR(3) model can be defined as 2π/0.657 = 9.57. Thus, the fit-
uggests that the hare abundance underwent cyclical fluctuation with a period
7 years. The interesting question of constructing a 95% confidence interval
i-period could be studied using the delta method. However, this will be quite
 the quasi-period is a complicated function of the parameters. But the boot-
es a simple solution: For each set of bootstrap parameter estimates, we can

ar1 ar2 ar3 intercept noise var. 

(0.593, 1.269) (−0.655, 0.237) (−0.666, −0.018) (5.115, 6.394) (0.551, 1.546) 

(0.612, 1.296) (−0.702, 0.243) (−0.669, −0.026) (5.004, 6.324) (0.510, 1.510) 

(0.699, 1.369) (−0.746, 0.195) (−0.666, −0.021) (5.056, 6.379) (0.499, 1.515) 

(0.674, 1.389) (−0.769, 0.194) (−0.665, −0.002) (4.995, 6.312) (0.477, 1.530) 

 (0.684, 1.42) (−0.8058, 0.3474) (−0.7684,−0.01776) (5.032, 6.353) (0.536, 1.597) 

et
* N 0 σ̂e2,( ) Y1

* Y1=
Y3

* Y3=
θ̂0 μ̂ 1 φ̂1 φ̂2 φ̂3–––( )=

i 1–=
he quasi-period and hence obtain the bootstrap distribution of the
d. Confidence intervals for the quasi-period can then be constructed using
ile method, and the shape of the distribution can be explored via the histo-
 bootstrap quasi-period estimates. (Note that the quasi-period will be unde-
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ever the roots of the AR characteristic equation are all real numbers.) Among
ationary bootstrap time series obtained by simulating from the fitted model
ors drawn randomly from the residuals with replacement, 952 series lead to
full maximum likelihood estimation. All but one of the 952 series have
d quasi-periods, and the histogram of these is shown in Exhibit 7.11. The
hows that the sampling distribution of the quasi-period estimate is slightly
he right.† The Q-Q normal plot (Exhibit 7.12) suggests that the quasi-period
as, furthermore, a thick-tailed distribution. Thus, the delta method and the
ing normal distribution approximation may be inappropriate for approximat-
pling distribution of the quasi-period estimator. Finally, using the percentile
5% confidence interval of the quasi-period is found to be (7.84,11.34).

11 Histogram of Bootstrap Quasi-period Estimates

ph(width=3.9,height=3.8,pointsize=8)
riod.replace,prob=T,xlab='Quasi-period',axes=F, 
c(5,16))
; axis(1,c(4,6,8,10,12,14,16),c(4,6,8,10,12,14,NA))

Quasi−period

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

6 8 10 12 14
ver, see the discussion below Equation (13.5.9) on page 338 where it is argued that,
the perspective of frequency domain, there is a small parametric region correspond-
 complex roots and yet the associated quasi-period may not be physically meaning-
his illustrates the subtlety of the concept of quasi-period.
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12 Q-Q Normal Plot of Bootstrap Quasi-period Estimates

ph(width=2.5,height=2.5,pointsize=8)
period.replace); qqline(period.replace)

mmary

r delved into the estimation of the parameters of ARIMA models. We con-
imation criteria based on the method of moments, various types of least
d maximizing the likelihood function. The properties of the various estima-
iven, and the estimators were illustrated both with simulated and actual time
 Bootstrapping with ARIMA models was also discussed and illustrated.

ES

 a series of length 100, we have computed r1 = 0.8, r2 = 0.5, r3 = 0.4, = 2,
 sample variance of 5. If we assume that an AR(2) model with a constant
is appropriate, how can we get (simple) estimates of φ1, φ2, θ0, and ?
ming that the following data arise from a stationary process, calculate
od-of-moments estimates of μ, γ0, and ρ1: 6, 5, 4, 6, 4.

t} satisfies an AR(1) model with φ of about 0.7, how long of a series do we
 to estimate φ = ρ1 with 95% confidence that our estimation error is no more
±0.1?
ider an MA(1) process for which it is known that the process mean is zero.
d on a series of length n = 3, we observe Y  = 0, Y  = −1, and Y  = ½.
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how that the conditional least-squares estimate of θ is ½.
ind an estimate of the noise variance. (Hint: Iterative methods are not needed
 this simple case.)
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n the data Y1 = 10, Y2 = 9, and Y3 = 9.5, we wish to fit an IMA(1,1) model
ut a constant term.

ind the conditional least squares estimate of θ. (Hint: Do Exercise 7.4 first.)
stimate .
ider two different parameterizations of the AR(1) process with nonzero
:

el I. Yt − μ = φ(Yt−1 − μ) + et.

el II. Yt = φYt−1 + θ0 + et.

nt to estimate φ and μ or φ and θ0 using conditional least squares conditional
 Show that with Model I we are led to solve nonlinear equations to obtain the
tes, while with Model II we need only solve linear equations.

y Equation (7.1.4) on page 150.
ider an ARMA(1,1) model with φ = 0.5 and θ = 0.45.
or n = 48, evaluate the variances and correlation of the maximum likelihood
stimators of φ and θ using Equations (7.4.13) on page 161. Comment on the
sults.
epeat part (a) but now with n = 120. Comment on the new results.
late an MA(1) series with θ = 0.8 and n = 48.
ind the method-of-moments estimate of θ.
ind the conditional least squares estimate of θ and compare it with part (a).
ind the maximum likelihood estimate of θ and compare it with parts (a) and
).
epeat parts (a), (b), and (c) with a new simulated series using the same
arameters and same sample size. Compare your results with your results
om the first simulation.
late an MA(1) series with θ = −0.6 and n = 36.
ind the method-of-moments estimate of θ.
ind the conditional least squares estimate of θ and compare it with part (a).
ind the maximum likelihood estimate of θ and compare it with parts (a) and
).
epeat parts (a), (b), and (c) with a new simulated series using the same
arameters and same sample size. Compare your results with your results
om the first simulation.
late an MA(1) series with θ = −0.6 and n = 48.
ind the maximum likelihood estimate of θ.
 your software permits, repeat part (a) many times with a new simulated
ries using the same parameters and same sample size.

orm the sampling distribution of the maximum likelihood estimates of θ.
re the estimates (approximately) unbiased?

σe2
alculate the variance of your sampling distribution and compare it with the
rge-sample result in Equation (7.4.11) on page 161.
at Exercise 7.11 using a sample size of n = 120.
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late an AR(1) series with φ = 0.8 and n = 48.
ind the method-of-moments estimate of φ.
ind the conditional least squares estimate of φ and compare it with part (a).
ind the maximum likelihood estimate of φ and compare it with parts (a) and
).
epeat parts (a), (b), and (c) with a new simulated series using the same
arameters and same sample size. Compare your results with your results
om the first simulation.
late an AR(1) series with φ = −0.5 and n = 60.
ind the method-of-moments estimate of φ.
ind the conditional least squares estimate of φ and compare it with part (a).
ind the maximum likelihood estimate of φ and compare it with parts (a) and
).
epeat parts (a), (b), and (c) with a new simulated series using the same
arameters and same sample size. Compare your results with your results
om the first simulation.
late an AR(1) series with φ = 0.7 and n = 100.
ind the maximum likelihood estimate of φ.
 your software permits, repeat part (a) many times with a new simulated
ries using the same parameters and same sample size.

orm the sampling distribution of the maximum likelihood estimates of φ.
re the estimates (approximately) unbiased?
alculate the variance of your sampling distribution and compare it with the
rge-sample result in Equation (7.4.9) on page 161.
late an AR(2) series with φ1 = 0.6, φ2 = 0.3, and n = 60.
ind the method-of-moments estimates of φ1 and φ2.
ind the conditional least squares estimates of φ1 and φ2 and compare them
ith part (a).
ind the maximum likelihood estimates of φ1 and φ2 and compare them with
arts (a) and (b).
epeat parts (a), (b), and (c) with a new simulated series using the same
arameters and same sample size. Compare these results to your results from
e first simulation.
late an ARMA(1,1) series with φ = 0.7, θ = 0.4, and n = 72.
ind the method-of-moments estimates of φ and θ.
ind the conditional least squares estimates of φ and θ and compare them with
art (a).
ind the maximum likelihood estimates of φ and θ and compare them with
arts (a) and (b).
epeat parts (a), (b), and (c) with a new simulated series using the same

arameters and same sample size. Compare your new results with your results
om the first simulation.
late an AR(1) series with φ = 0.6, n = 36 but with error terms from a t-distri-
n with 3 degrees of freedom.
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isplay the sample PACF of the series. Is an AR(1) model suggested?
stimate φ from the series and comment on the results.
epeat parts (a) and (b) with a new simulated series under the same condi-
ons.
late an MA(1) series with θ = −0.8, n = 60 but with error terms from a t-dis-
ion with 4 degrees of freedom.
isplay the sample ACF of the series. Is an MA(1) model suggested?
stimate θ from the series and comment on the results.
epeat parts (a) and (b) with a new simulated series under the same condi-
ons.
late an AR(2) series with φ1 = 1.0, φ2 = −0.6, n = 48 but with error terms
 a t-distribution with 5 degrees of freedom.
isplay the sample PACF of the series. Is an AR(2) model suggested?
stimate φ1 and φ2 from the series and comment on the results.
epeat parts (a) and (b) with a new simulated series under the same condi-
ons.
late an ARMA(1,1) series with φ = 0.7, θ = −0.6, n = 48 but with error terms
 a t-distribution with 6 degrees of freedom.
isplay the sample EACF of the series. Is an ARMA(1,1) model suggested?
stimate φ and θ from the series and comment on the results.
epeat parts (a) and (b) with a new simulated series under the same condi-
ons.
late an AR(1) series with φ = 0.6, n = 36 but with error terms from a
quare distribution with 6 degrees of freedom.
isplay the sample PACF of the series. Is an AR(1) model suggested?
stimate φ from the series and comment on the results.
epeat parts (a) and (b) with a new simulated series under the same condi-
ons.
late an MA(1) series with θ = −0.8, n = 60 but with error terms from a
quare distribution with 7 degrees of freedom.
isplay the sample ACF of the series. Is an MA(1) model suggested?
stimate θ from the series and comment on the results.
epeat parts (a) and (b) with a new simulated series under the same condi-
ons.
late an AR(2) series with φ1 = 1.0, φ2 = −0.6, n = 48 but with error terms
 a chi-square distribution with 8 degrees of freedom.
isplay the sample PACF of the series. Is an AR(2) model suggested?
stimate φ1 and φ2 from the series and comment on the results.
epeat parts (a) and (b) with a new simulated series under the same condi-
ons.

late an ARMA(1,1) series with φ = 0.7, θ = −0.6, n = 48 but with error terms
 a chi-square distribution with 9 degrees of freedom.
isplay the sample EACF of the series. Is an ARMA(1,1) model suggested?
stimate φ and θ from the series and comment on the results.
epeat parts (a) and (b) with a new series under the same conditions.
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Parameter Estimation

ider the AR(1) model specified for the color property time series displayed
hibit 1.3 on page 3. The data are in the file named color. 
ind the method-of-moments estimate of φ.
ind the maximum likelihood estimate of φ and compare it with part (a).
bit 6.31 on page 139 suggested specifying either an AR(1) or possibly an
) model for the difference of the logarithms of the oil price series. The data
 the file named oil.price.
stimate both of these models using maximum likelihood and compare it with
e results using the AIC criteria.
xhibit 6.32 on page 140 suggested specifying an MA(1) model for the differ-
nce of the logs. Estimate this model by maximum likelihood and compare to
our results in part (a).
data file named deere3 contains 57 consecutive values from a complex
ine tool at Deere & Co. The values given are deviations from a target value
its of ten millionths of an inch. The process employs a control mechanism
esets some of the parameters of the machine tool depending on the magni-
of deviation from target of the last item produced.
stimate the parameters of an AR(1) model for this series.
stimate the parameters of an AR(2) model for this series and compare the
sults with those in part (a).
ata file named robot contains a time series obtained from an industrial robot.

robot was put through a sequence of maneuvers, and the distance from a
ed ending point was recorded in inches. This was repeated 324 times to form
me series.
stimate the parameters of an AR(1) model for these data.
stimate the parameters of an IMA(1,1) model for these data.
ompare the results from parts (a) and (b) in terms of AIC.
ata file named days contains accounting data from the Winegard Co. of Bur-
n, Iowa. The data are the number of days until Winegard receives payment

30 consecutive orders from a particular distributor of Winegard products.
 name of the distributor must remain anonymous for confidentiality reasons.)
ime series contains outliers that are quite obvious in the time series plot.
eplace each of the unusual values with a value of 35 days, a much more typ-
al value, and then estimate the parameters of an MA(2) model.
ow assume an MA(5) model and estimate the parameters. Compare these
sults with those obtained in part (a).
late a time series of length n = 48 from an AR(1) model with φ = 0.7. Use
eries as if it were real data. Now compare the theoretical asymptotic distri-
n of the estimator of φ with the distribution of the bootstrap estimator of φ.
ndustrial color property time series was fitted quite well by an AR(1) model.

ever, the series is rather short, with n = 35. Compare the theoretical asymp-
distribution of the estimator of φ with the distribution of the bootstrap esti-
r of φ. The data are in the file named color.
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L DIAGNOSTICS

w discussed methods for specifying models and for efficiently estimating the
 in those models. Model diagnostics, or model criticism, is concerned with
oodness of fit of a model and, if the fit is poor, suggesting appropriate mod-
e shall present two complementary approaches: analysis of residuals from

odel and analysis of overparameterized models; that is, models that are more
n the proposed model but that contain the proposed model as a special case.

sidual Analysis

 used the basic ideas of residual analysis in Section 3.6 on page 42 when we
 adequacy of fitted deterministic trend models. With autoregressive models,

re defined in direct analogy to that earlier work. Consider in particular an
el with a constant term:

(8.1.1)

mated φ1, φ2, and θ0, the residuals are defined as

(8.1.2)

eral ARMA models containing moving average terms, we use the inverted,
regressive form of the model to define residuals. For simplicity, we assume

ero. From the inverted form of the model, Equation (4.5.5) on page 80, we

esiduals are defined as

(8.1.3)

s are not estimated directly but rather implicitly as functions of the φ’s and
 the residuals are not calculated using this equation but as a by-product of the

Yt φ1Yt 1– φ2Yt 2– θ0 et+ + +=

ê t Yt φ̂1Yt 1– φ̂2Yt 2––– θ̂0–=

Yt π1Yt 1– π2Yt 2– π3Yt 3–
… et+ + + +=

ê t Yt π̂1Yt 1– π̂2Yt 2––– π̂3Yt 3–– …–=
175

of the φ’s and θ’s. In Chapter 9, we shall argue, that

Ŷ t π̂1Yt 1– π̂2Yt 2– π̂3Yt 3–
…+ + +=
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Model Diagnostics

orecast of Yt based on Yt − 1, Yt − 2, Yt − 3,… . Thus Equation (8.1.3) can be

residual = actual − predicted

alogy with regression models. Compare this with Section 3.6 on page 42.
odel is correctly specified and the parameter estimates are reasonably close

values, then the residuals should have nearly the properties of white noise.
d behave roughly like independent, identically distributed normal variables
eans and common standard deviations. Deviations from these properties can
over a more appropriate model.

e Residuals

agnostic check is to inspect a plot of the residuals over time. If the model is
e expect the plot to suggest a rectangular scatter around a zero horizontal
o trends whatsoever.
t 8.1 shows such a plot for the standardized residuals from the AR(1) model
 industrial color property series. Standardization allows us to see residuals of
e much more easily. The parameters were estimated using maximum likeli-
plot supports the model, as no trends are present.

1 Standardized Residuals from AR(1) Model of Color

ph(width=4.875,height=3,pointsize=8)
lor)
r=arima(color,order=c(1,0,0)); m1.color
tandard(m1.color),ylab ='Standardized Residuals', 
'o'); abline(h=0)
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cond example, we consider the Canadian hare abundance series. We esti-
et AR(3) model with φ2 set to zero, as suggested by the discussion following
 on page 166. The estimated model is
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(8.1.4)

e series plot of the standardized residuals from this model is shown in
. Here we see possible reduced variation in the middle of the series and
ariation near the end of the series—not exactly an ideal plot of residuals.†

2 Standardized Residuals from AR(3) Model for Sqrt(Hare)

re)
=arima(sqrt(hare),order=c(3,0,0)); m1.hare
=arima(sqrt(hare),order=c(3,0,0),fixed=c(NA,0,NA,NA)) 

that the intercept term given in R is actually the mean 
e centered form of the ARMA model; that is, if 
sqrt(hare)-intercept, then the model is 
0.919*y(t-1)-0.5313*y(t-3)+e(t) 
e 'true' intercept equals 5.6889*(1-0.919+0.5313)=3.483
tandard(m2.hare),ylab='Standardized Residuals',type='o')
h=0)

t 8.3 displays the time series plot of the standardized residuals from the
odel estimated for the logarithms of the oil price time series. The model was
 maximum likelihood estimation. There are at least two or three residuals
 series with magnitudes larger than 3—very unusual in a standard normal
.‡ Ideally, we should go back to those months and try to learn what outside
 have influenced unusually large drops or unusually large increases in the

Yt 3.483 0.919 Yt 1– 0.5313 Yt 3–– et++=
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emingly large negative standardized residuals are not outliers according to the Bon-
i outlier criterion with critical values ±3.15.
onferroni critical values with n = 241 and α = 0.05 are ±3.71, so the outliers do

r to be real. We will model them in Chapter 11.
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3 Standardized Residuals from Log Oil Price IMA(1,1) Model

l.price)
arima(log(oil.price),order=c(0,1,1))
tandard(m1.oil),ylab='Standardized residuals',type='l')
h=0)

 of the Residuals

 in Chapter 3, quantile-quantile plots are an effective tool for assessing nor-
e we apply them to residuals.
tile-quantile plot of the residuals from the AR(1) model estimated for the
olor property series is shown in Exhibit 8.4. The points seem to follow the
 fairly closely—especially the extreme values. This graph would not lead us
rmality of the error terms in this model. In addition, the Shapiro-Wilk nor-
applied to the residuals produces a test statistic of W = 0.9754, which corre-
 p-value of 0.6057, and we would not reject normality based on this test.

Time

1990 1995 2000 2005
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4 Quantile-Quantile Plot: Residuals from AR(1) Color Model

ph(width=2.5,height=2.5,pointsize=8)
residuals(m1.color)); qqline(residuals(m1.color))

antile-quantile plot for the residuals from the AR(3) model for the square
hare abundance time series is displayed in Exhibit 8.5. Here the extreme val-
spect. However, the sample is small (n = 31) and, as stated earlier, the Bon-
ria for outliers do not indicate cause for alarm.

5 Quantile-Quantile Plot: Residuals from AR(3) for Hare

residuals(m1.hare)); qqline(residuals(m1.hare))

t 8.6 gives the quantile-quantile plot for the residuals from the IMA(1,1)

●
●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

−2 −1 0 1 2

−
10

−
5

0
5

10

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

−2 −1 0 1 2

−
2

−
1

0
1

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

was used to model the logarithms of the oil price series. Here the outliers are
nent, and we will deal with them in Chapter 11.
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6 Quantile-Quantile Plot: Residuals from IMA(1,1) Model for 
Oil

residuals(m1.oil)); qqline(residuals(m1.oil))

lation of the Residuals

n the independence of the noise terms in the model, we consider the sample
ation function of the residuals, denoted . From Equation (6.1.3) on
e know that for true white noise and large n, the sample autocorrelations are

ely uncorrelated and normally distributed with zero means and variance 1/n.
ely, even residuals from a correctly specified model with efficiently esti-
meters have somewhat different properties. This was first explored for multi-
ion models in a series of papers by Durbin and Watson (1950, 1951, 1971)
regressive models in Durbin (1970). The key reference on the distribution of
tocorrelations in ARIMA models is Box and Pierce (1970), the results of
 generalized in McLeod (1978).
lly speaking, the residuals are approximately normally distributed with zero
ever, for small lags k and j, the variance of can be substantially less than
 estimates and can be highly correlated. For larger lags, the approxi-
ce 1/n does apply, and further and  are approximately uncorrelated.
example of these results, consider a correctly specified and efficiently esti-
1) model. It can be shown that, for large n,

(8.1.5)

(8.1.6)
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r̂ k

r̂ k
r̂ k r̂ j

r̂ k r̂ j

Var r̂ 1( ) φ2

n
-----≈

Var r̂ k( ) 1 1 φ2–( )φ2k 2––--------------------------------------------  for  k 1>≈
(8.1.7)

n

Corr r̂ 1 r̂ k,( ) sign φ( ) 1 φ2–( )φk 2–

1 1 φ2–( )φ2k 2––
--------------------------------------------  for  k 1>–≈
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n Exhibit 8.7 illustrates these formulas for a variety of values of φ and k.
 is a reasonable approximation for k ≥ 2 over a wide range of

7 Approximations for Residual Autocorrelations in AR(1) 
Models

pply these results to the AR(1) model that was estimated for the industrial
rty time series with = 0.57 and n = 35, we obtain the results shown in

. 

8 Approximate Standard Deviations of Residual ACF values

h of the sample ACF of these residuals is shown in Exhibit 8.9. The dashed
ines plotted are based on the large lag standard error of ± . There is no

3 0.5 0.7 0.9 φ 0.3 0.5 0.7 0.9

Standard deviation of 
times 

Correlation  with 

0 0.50 0.70 0.90 1.00 1.00 1.00 1.00

6 0.90 0.87 0.92 −0.95 −0.83 −0.59 −0.21

0 0.98 0.94 0.94 −0.27 −0.38 −0.38 −0.18

0 0.99 0.97 0.95 −0.08 −0.19 −0.26 −0.16

0 1.00 0.99 0.96 −0.02 −0.09 −0.18 −0.14

0 1.00 0.99 0.97 −0.01 −0.05 −0.12 −0.13

0 1.00 1.00 0.97 −0.00 −0.02 −0.09 −0.12

0 1.00 1.00 0.98 −0.00 −0.01 −0.06 −0.10

0 1.00 1.00 0.99 −0.00 −0.00 −0.03 −0.08

1 2 3 4 5 > 5

0.096 0.149 0.163 0.167 0.168 0.169

sign φ( )
  1   if  φ 0>
  0   if  φ 0=

1   if  φ 0<–⎩
⎪
⎨
⎪
⎧

=

Var r̂ 1( ) 1 n⁄≈

r̂ k
n

r̂ 1 r̂ k

φ̂

)

2 n⁄

 autocorrelation in the residuals of this model.
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9 Sample ACF of Residuals from AR(1) Model for Color

ph(width=4.875,height=3,pointsize=8)
iduals(m1.color))

AR(2) model, it can be shown that

(8.1.8)

(8.1.9)

) parameters are not too close to the stationarity boundary shown in Exhibit
e 72, then

(8.1.10)

it an AR(2) model† by maximum likelihood to the square root of the hare
series, we find that = 1.351 and = −0.776. Thus we have

2 4 6 8 10 12 14

Lag

Var r̂ 1( )
φ2

2

n
------≈

Var r̂ 2( )
φ2

2 φ1
2 1 φ2+( )2+

n
-----------------------------------------≈

Var r̂ k( ) 1
n
---   for k 3≥≈

φ̂1 φ̂̂2

Var̂ r̂ 1( ) 0.776–

35
-------------------≈ 0.131=

Var̂ r̂ 2( ) 0.776–( )2 1.351( )2 1 0.776–( )+( )2+
35

------------------------------------------------------------------------------------------≈ 0.141=

Var̂ r̂ k( ) 1 35⁄≈ 0.169 for k 3≥=
R(2) model is not quite as good as the AR(3) model that we estimated earlier, but it
ts quite well and serves as a reasonable example here.
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0 displays the sample ACF of the residuals from the AR(2) model of the
 of the hare abundance. The lag 1 autocorrelation here equals −0.261, which
 standard errors below zero but not quite. The lag 4 autocorrelation equals

 its standard error is 0.169. We conclude that the graph does not show statis-
ificant evidence of nonzero autocorrelation in the residuals.†

10 Sample ACF of Residuals from AR(2) Model for Hare

iduals(arima(sqrt(hare),order=c(2,0,0))))

onthly data, we would pay special attention to possible excessive autocorre-
 residuals at lags 12, 24, and so forth. With quarterly series, lags 4, 8, and so
 merit special attention. Chapter 10 contains examples of these ideas.
e shown that results analogous to those for AR models hold for MA models.
r, replacing φ by θ in Equations (8.1.5), (8.1.6), and( 8.1.7) gives the results
(1) case. Similarly, results for the MA(2) case can be stated by replacing φ1

1 and θ2, respectively, in Equations (8.1.8), (8.1.9), and (8.1.10). Results for
MA models may be found in Box and Pierce (1970) and McLeod (1978).

-Box Test

to looking at residual correlations at individual lags, it is useful to have a test
to account their magnitudes as a group. For example, it may be that most of
 autocorrelations are moderate, some even close to their critical values, but,

her, they seem excessive. Box and Pierce (1970) proposed the statistic

(8.1.11)

this possibility. They showed that if the correct ARMA(p,q) model is esti-

2 4 6 8 10 12 14

Lag

Q n r̂ 1
2 r̂ 2

2 … r̂ K
2+ + +( )=
, for large n, Q has an approximate chi-square distribution with K − p − q

l that an AR(3) model fits these data even better and has even less autocorrelation in
iduals, see Exercise 8.7.
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reedom. Fitting an erroneous model would tend to inflate Q. Thus, a general
au” test would reject the ARMA(p,q) model if the observed value of Q
 appropriate critical value in a chi-square distribution with K − p − q degrees

. (Here the maximum lag K is selected somewhat arbitrarily but large enough
eights are negligible for j > K.)

i-square distribution for Q is based on a limit theorem as , but Ljung
978) subsequently discovered that even for n = 100, the approximation is not
. By modifying the Q statistic slightly, they defined a test statistic whose null
n is much closer to chi-square for typical sample sizes. The modified
, or Ljung-Box, statistic is given by

(8.1.12)

 since (n + 2)/(n − k) > 1 for every k ≥ 1, we have Q* > Q, which partly
y the original statistic Q tended to overlook inadequate models. More details
t distributions of Q* and Q for finite samples can be found in Ljung and Box
 also Davies, Triggs, and Newbold (1977).
t 8.11 lists the first six autocorrelations of the residuals from the AR(1) fitted
he color property series. Here n = 35.

11 Residual Autocorrelation Values from AR(1) Model for Color

iduals(m1.color),plot=F)$acf
acf(residuals(m1.color),plot=F)$acf[1:6],2)
ay the first 6 acf values to 2 significant digits

Box test statistic with K = 6 is equal to

rred to a chi-square distribution with 6 − 1 = 5 degrees of freedom. This leads
 of 0.998, so we have no evidence to reject the null hypothesis that the error

ncorrelated.
t 8.12 shows three of our diagnostic tools in one display—a sequence plot of
dized residuals, the sample ACF of the residuals, and p-values for the

1 2 3 4 5 6

CF −0.051 0.032 0.047 0.021 −0.017 −0.019

n ∞→

Q* n n 2+( )
r̂ 1

2

n 1–
------------

r̂ 2
2

n 2–
------------ … r̂ K

2

n K–
-------------+ + +⎝ ⎠

⎛ ⎞=

Q* 35 35 2+( ) 0.051–( )2

35 1–
------------------------ 0.032( )2

35 2–
--------------------- 0.047( )2

35 3–
---------------------+ +⎝

⎛=

0.021( )2

35 4–
--------------------- 0.017–( )2

35 5–
------------------------ 0.019–( )2

35 6–
------------------------+ ++ ⎠

⎞ 0.28≈
 test statistic for a whole range of values of K from 5 to 15. The horizontal
 at 5% helps judge the size of the p-values. In this instance, everything looks
The estimated AR(1) model seems to be capturing the dependence structure
 property time series quite well.
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12 Diagnostic Display for the AR(1) Model of Color Property

ph(width=4.875,height=4.5)
m1.color,gof=15,omit.initial=F)

hapter 3, the runs test may also be used to assess dependence in error terms
duals. Applying the test to the residuals from the AR(3) model for the Cana-
bundance series, we obtain expected runs of 16.09677 versus observed runs
corresponding p-value is 0.602, so we do not have statistically significant
ainst independence of the error terms in this model.

erfitting and Parameter Redundancy

 basic diagnostic tool is that of overfitting. After specifying and fitting what
 to be an adequate model, we fit a slightly more general model; that is, a
se by” that contains the original model as a special case. For example, if an
el seems appropriate, we might overfit with an AR(3) model. The original
el would be confirmed if:

stimate of the additional parameter, φ , is not significantly different from
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stimates for the parameters in common, φ1 and φ2, do not change signifi-
y from their original estimates.
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example, we have specified, fitted, and examined the residuals of an AR(1)
he industrial color property time series. Exhibit 8.13 displays the output from
are from fitting the AR(1) model, and Exhibit 8.14 shows the results from
R(2) model to the same series. First note that, in Exhibit 8.14, the estimate of
atistically different from zero. This fact supports the choice of the AR(1)
ondly, we note that the two estimates of φ1 are quite close—especially when
o account the magnitude of their standard errors. Finally, note that while the
el has a slightly larger log-likelihood value, the AR(1) fit has a smaller AIC
penalty for fitting the more complex AR(2) model is sufficient to choose the
(1) model.

13 AR(1) Model Results for the Color Property Series

14 AR(2) Model Results for the Color Property Series

olor,order=c(2,0,0))

rent overfit for this series would be to try an ARMA(1,1) model. Exhibit
s the results of this fit. Notice that the standard errors of the estimated coef-

this fit are rather larger than what we see in Exhibits 8.13 and 8.14. Regard-
timate of φ1 from this fit is not significantly different from the estimate in
3. Furthermore, as before, the estimate of the new parameter, θ, is not signif-
rent from zero. This adds further support to the AR(1) model.

Coefficients:†

olor # R code to obtain table

ar1 Intercept‡

 that the intercept here is the estimate of the process mean μ—not θ0.

0.5705 74.3293

s.e. 0.1435  1.9151

gma^2 estimated as 24.83: log-likelihood = -106.07, AIC = 216.15

oefficients: ar1 ar2 Intercept

0.5173 0.1005 74.1551

s.e. 0.1717 0.1815 2.1463

stimated as 24.6: log-likelihood = -105.92, AIC = 217.84
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15 Overfit of an ARMA(1,1) Model for the Color Series

olor,order=c(1,0,1))

have noted, any ARMA(p,q) model can be considered as a special case of a
al ARMA model with the additional parameters equal to zero. However,
ralizing ARMA models, we must be aware of the problem of parameter
y or lack of identifiability.
e these points clear, consider an ARMA(1,2) model:

(8.2.1)

e t by t − 1 to obtain

(8.2.2)

ply both sides of Equation (8.2.2) by any constant c and then subtract it from
.2.1), we obtain (after rearranging)

ntly defines an ARMA(2,3) process. But notice that we have the factoriza-

R and MA characteristic polynomials in the ARMA(2,3) process have a
ctor of (1 − cx). Even though Yt does satisfy the ARMA(2,3) model, clearly
ters in that model are not unique—the constant c is completely arbitrary. We
 have parameter redundancy in the ARMA(2,3) model.†

plications for fitting and overfitting models are as follows:

ify the original model carefully. If a simple model seems at all promising,
 it out before trying a more complicated model.

n overfitting, do not increase the orders of both the AR and MA parts of the
l simultaneously.

oefficients: ar1 ma1 Intercept

0.6721 −0.1467 74.1730

s.e. 0.2147 0.2742 2.1357

gma^2 estimated as 24.63: log-likelihood = -105.94, AIC = 219.88

Yt φYt 1– et θ1et 1–– θ2et 2––+=

Yt 1– φYt 2– et 1– θ1et 2–– θ2et 3––+=

c+ )Yt 1– φcYt 2–+ et θ1 c+( )et 1–– θ2 θ1c–( )et 2–– cθ2et 3–+=

1 φ c+( )x– φcx2+ 1 φx–( ) 1 cx–( )=

θ1 c+( )x– θ2 cθ1–( )x2– cθ2x3+ 1 θ1x– θ2x2–( ) 1 cx–( )=
kshift notation, if is a correct model, then so is  =
for any constant c. To have unique parameterization in an ARMA model,

st cancel any common factors in the AR and MA characteristic polynomials.

φ B( )Yt θ B( )et= 1 cB–( )φ B( )Yt
B)θ B( )et
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d the model in directions suggested by the analysis of the residuals. For
ple, if after fitting an MA(1) model, substantial correlation remains at lag 2
 residuals, try an MA(2), not an ARMA(1,1).

xample, consider the color property series once more. We have seen that an
el fits quite well. Suppose we try an ARMA(2,1) model. The results of this
n in Exhibit 8.16. Notice that even though the estimate of and the

od and AIC values are not too far from their best values, the estimates of φ1,
e way off, and none would be considered different from zero statistically.

16 Overfitted ARMA(2,1) Model for the Color Property Series

olor,order=c(2,0,1))

mmary

f residual analysis begun in Chapter 3 were considerably expanded in this
 looked at various plots of the residuals, checking the error terms for con-
ce, normality, and independence. The properties of the sample autocorrela-

residuals play a significant role in these diagnostics. The Ljung-Box statistic
u test was discussed as a summary of the autocorrelation in the residuals.
ideas of overfitting and parameter redundancy were presented.

ES

n AR(1) model with and n = 100, the lag 1 sample autocorrelation of
siduals is 0.5. Should we consider this unusual? Why or why not?
at Exercise 8.1 for an MA(1) model with and n = 100.
d on a series of length n = 200, we fit an AR(2) model and obtain residual
orrelations of = 0.13, = 0.13, and = 0.12. If = 1.1 and = −0.8,
ese residual autocorrelations support the AR(2) specification? Individually?
ly?

oefficients: ar1 ar2 ma1 Intercept

0.2189 0.2735 0.3036 74.1653

s.e. 2.0056 1.1376 2.0650 2.1121

gma^2 estimated as 24.58: log-likelihood = −105.91, AIC = 219.82

σe
2

φ 0.5≈

θ 0.5≈

r̂ 1 r̂ 2 r̂ 3 φ̂1 φ̂2
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late an AR(1) model with n = 30 and φ = 0.5.
it the correctly specified AR(1) model and look at a time series plot of the
siduals. Does the plot support the AR(1) specification?
isplay a normal quantile-quantile plot of the standardized residuals. Does
e plot support the AR(1) specification?
isplay the sample ACF of the residuals. Does the plot support the AR(1)
ecification?
alculate the Ljung-Box statistic summing to K = 8. Does this statistic sup-
ort the AR(1) specification?
late an MA(1) model with n = 36 and θ = −0.5.
it the correctly specified MA(1) model and look at a time series plot of the
siduals. Does the plot support the MA(1) specification?
isplay a normal quantile-quantile plot of the standardized residuals. Does
e plot support the MA(1) specification?
isplay the sample ACF of the residuals. Does the plot support the MA(1)
ecification?
alculate the Ljung-Box statistic summing to K = 6. Does this statistic sup-
ort the MA(1) specification?
late an AR(2) model with n = 48, φ1 = 1.5, and φ2 = −0.75.
it the correctly specified AR(2) model and look at a time series plot of the
siduals. Does the plot support the AR(2) specification?
isplay a normal quantile-quantile plot of the standardized residuals. Does
e plot support the AR(2) specification?
isplay the sample ACF of the residuals. Does the plot support the AR(2)
ecification?
alculate the Ljung-Box statistic summing to K = 12. Does this statistic sup-
ort the AR(2) specification?
 AR(3) model by maximum likelihood to the square root of the hare abun-

e series (filename hare).
lot the sample ACF of the residuals. Comment on the size of the correlations.
alculate the Ljung-Box statistic summing to K = 9. Does this statistic sup-
ort the AR(3) specification?
erform a runs test on the residuals and comment on the results.
isplay the quantile-quantile normal plot of the residuals. Comment on the
lot.
erform the Shapiro-Wilk test of normality on the residuals.
ider the oil filter sales data shown in Exhibit 1.8 on page 7. The data are in
le named oilfilters.
it an AR(1) model to this series. Is the estimate of the φ parameter signifi-
antly different from zero statistically?

isplay the sample ACF of the residuals from the AR(1) fitted model. Com-
ent on the display.
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ata file named robot contains a time series obtained from an industrial robot.
robot was put through a sequence of maneuvers, and the distance from a
ed ending point was recorded in inches. This was repeated 324 times to form
me series. Compare the fits of an AR(1) model and an IMA(1,1) model for
 data in terms of the diagnostic tests discussed in this chapter.
data file named deere3 contains 57 consecutive values from a complex
ine tool at Deere & Co. The values given are deviations from a target value
its of ten millionths of an inch. The process employs a control mechanism
esets some of the parameters of the machine tool depending on the magni-
of deviation from target of the last item produced. Diagnose the fit of an
) model for these data in terms of the tests discussed in this chapter.

bit 6.31 on page 139, suggested specifying either an AR(1) or possibly an
) model for the difference of the logarithms of the oil price series. (The file-
 is oil.price).
stimate both of these models using maximum likelihood and compare the
sults using the diagnostic tests considered in this chapter.
xhibit 6.32 on page 140, suggested specifying an MA(1) model for the dif-
rence of the logs. Estimate this model by maximum likelihood and perform
e diagnostic tests considered in this chapter.
hich of the three models AR(1), AR(4), or MA(1) would you prefer given
e results of parts (a) and (b)?
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primary objectives of building a model for a time series is to be able to fore-
ues for that series at future times. Of equal importance is the assessment of
n of those forecasts. In this chapter, we shall consider the calculation of fore-
eir properties for both deterministic trend models and ARIMA models. Fore-
odels that combine deterministic trends with ARIMA stochastic components
red also.
 most part, we shall assume that the model is known exactly, including spe-
 for all the parameters. Although this is never true in practice, the use of esti-
meters for large sample sizes does not seriously affect the results.

imum Mean Square Error Forecasting

e available history of the series up to time t, namely Y1, Y2,…, Yt − 1, Yt, we
to forecast the value of Yt + l that will occur l time units into the future. We
he forecast origin and l the lead time for the forecast, and denote the fore-
s .
wn in Appendix F, the minimum mean square error forecast is given by

(9.1.1)

s E and F on page 218 review the properties of conditional expectation and
ean square error prediction.)

mputation and properties of this conditional expectation as related to fore-
 be our concern for the remainder of this chapter.

terministic Trends

ce more the deterministic trend model of Chapter 3,

(9.2.1)

Ŷ t l( )

Ŷ t l( ) E Y
t l+

 |Y1 Y2 … Yt, , ,( )=

Yt μt Xt+=
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stochastic component, Xt, has a mean of zero. For this section, we shall
t {Xt} is in fact white noise with variance γ0. For the model in Equation
have
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(9.2.2)

 1, Xt + l is independent of Y1, Y2,…, Yt − 1, Yt and has expected value zero.
is simple case, forecasting amounts to extrapolating the deterministic time
e future.
 linear trend case, μt = β0 + β1t, the forecast is

(9.2.3)

hasized in Chapter 3, this model assumes that the same linear time trend per-
e future, and the forecast reflects that assumption. Note that it is the lack of
dependence between Yt + l and Y1, Y2,…, Yt − 1, Yt that prevents us from
n μt + l as a forecast.
sonal models where, say, , our forecast is  =

 Thus the forecast will also be periodic, as desired.
recast error, et(l), is given by

 forecasts are unbiased. Also

(9.2.4)

ast error variance for all lead times l.
sine trend model for the average monthly temperature series was estimated
3 on page 35 as

s measured in years with a starting value of January 1964, frequency f = 1 per

Ŷ t l( ) E μ
t l+

X
t l+

+ |Y
1

Y2 … Yt, , ,( )=

E μ
t l+

|Y1 Y2 … Yt, , ,( ) E X
t l+

|Y
1

Y2 … Yt, , ,( )+=

μ
t l+

E X
t l+

( )+=

Ŷ t l( ) μ
t l+

=

Ŷ t l( ) β0 β1 t l+( )+=

μt μt 12+= Ŷ t l( ) μ
t 12 l+ +

=

et l( ) Y
t l+

Ŷ t l( )–=

μ
t l+

X
t l+

μ
t l+

–+=

X
t l+

=

E et l( )( ) E X
t l+

( ) 0= =

Var et l( )( ) Var X
t l+

( ) γ0= =

μ̂t 46.2660 26.7079–( ) 2πt( )cos 2.1697–( ) 2πt( )sin+ +=
e final observed value is for December 1975. To forecast the June 1976 tem-
lue, we use t = 1976.41667 as the time value† and obtain

s the fifth month of the year, and 5/12 ≈ 0.416666666… .
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r other months are obtained similarly.

IMA Forecasting

A models, the forecasts can be expressed in several different ways. Each
contributes to our understanding of the overall forecasting procedure with
omputing, updating, assessing precision, or long-term forecasting behavior.

st illustrate many of the ideas with the simple AR(1) process with a nonzero
atisfies

(9.3.1)

e problem of forecasting one time unit into the future. Replacing t by t + 1 in
.3.1), we have

(9.3.2)

2,…, Yt − 1, Yt, we take the conditional expectations of both sides of Equation
obtain

(9.3.3)

the properties of conditional expectation, we have

(9.3.4)

 et + 1 is independent of Y1, Y2, …, Yt − 1, Yt, we obtain

(9.3.5)

tion (9.3.3) can be written as

(9.3.6)

 proportion φ of the current deviation from the process mean is added to the
an to forecast the next process value.
onsider a general lead time l. Replacing t by t + l in Equation (9.3.1) and tak-
ditional expectations of both sides produces

60 26.7079–( ) 2π 1976.41667( )( )cos 2.1697–( ) 2π 1976.41667( )( )sin+ +

 °F

Yt μ– φ Yt 1– μ–( ) et+=

Yt 1+ μ– φ Yt μ–( ) et 1++=

) μ– φ E Yt |Y1 Y2 … Yt, , ,( ) μ–[ ] E et 1+ |Y1 Y2 … Yt, , ,( )+=

E Yt |Y1 Y2 … Yt, , ,( ) Yt=

E et 1+ |Y1 Y2 … Yt, , ,( ) E et 1+( ) 0= =

Ŷ t 1( ) μ φ Yt μ–( )+=
(9.3.7)

and, for l ≥ 1, et + l is independent of Y1,

1, Yt.

Ŷ t l( ) μ φ Ŷ t l 1–( ) μ–[ ]+=    for l 1≥

l 1–+ |Y1 Y2 … Yt, , , ) Ŷ t l 1–( )=
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on (9.3.7), which is recursive in the lead time l, shows how the forecast for
e l can be built up from the forecasts for shorter lead times by starting with

orecast computed using Equation (9.3.6). The forecast is then
om , then from , and so on until the

is found. Equation (9.3.7) and its generalizations for other ARIMA models
nvenient for actually computing the forecasts. Equation (9.3.7) is sometimes
ifference equation form of the forecasts.
er, Equation (9.3.7) can also be solved to yield an explicit expression for the
 terms of the observed history of the series. Iterating backward on l in Equa-
, we have

(9.3.8)

t deviation from the mean is discounted by a factor φl, whose magnitude
ith increasing lead time. The discounted deviation is then added to the pro-
o produce the lead l forecast.
merical example, consider the AR(1) model that we have fitted to the indus-
roperty time series. The maximum likelihood estimation results were par-
 in Exhibit 7.7 on page 165, but more complete results are shown in Exhibit

1 Maximum Likelihood Estimation of an AR(1) Model for Color

lor)
r=arima(color,order=c(1,0,0))
r

oefficients: ar1 intercept†

ber that the intercept here is the estimate of the process mean μ—not θ0.

0.5705 74.3293

s.e. 0.1435 1.9151

^2 estimated as 24.8: log-likelihood = −106.07, AIC = 216.15

Ŷ t 1( ) Ŷ t 2( )
Ŷ t 2( ) μ φ Ŷ t 1( ) μ–[ ]+= Ŷ t 3( ) Ŷ t 2( )

l)

Ŷ t l( ) φ Ŷ t l 1–( ) μ–[ ] μ+=

φ φ Ŷ t l 2–( ) μ–[ ]{ } μ+=
...

φl 1– Ŷ t 1( ) μ–[ ] μ+=

Ŷ t l( ) μ φl Yt μ–( )+=
tion purposes, we assume that the estimates φ = 0.5705 and μ = 74.3293 are
 The final forecasts may then be rounded.
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t observed value of the color property is 67, so we would forecast one time
d as†

e 2, we have from Equation (9.3.7)

ly, we can use Equation (9.3.8):

 5, we have

 10 the forecast is

ry nearly μ (= 74.3293). In reporting these forecasts we would probably
 nearest tenth.
ral, since |φ| < 1, we have simply

(9.3.9)

all see that Equation (9.3.9) holds for all stationary ARMA models.
er now the one-step-ahead forecast error, . From Equations (9.3.2)
 we have

(9.3.10)

Ŷ t 1( ) 74.3293 0.5705( ) 67 74.3293–( )+=

74.3293 4.181366–=

70.14793=

Ŷ t 2( ) 74.3293 0.5705 70.14793 74.3293–( )+=

74.3293 2.385472–=

71.94383=

Ŷ t 2( ) 74.3293 0.5705( )2 67 74.3293–( )+=

71.92823=

Ŷ t 5( ) 74.3293 0.5705( )5 67 74.3293–( )+=

73.88636=

Ŷ t 10( ) 74.30253=

Ŷ t l( ) μ  for large l≈

et 1( )

et 1( ) Yt 1+ Ŷ t 1( )–=

φ Yt μ–( ) μ et 1++ +[ ] φ Yt μ–( ) μ+[ ]–=

et 1( ) et 1+=
nd off error will accumulate, you should use many decimal places when performing
ive calculations.
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oise process {et} can now be reinterpreted as a sequence of one-step-ahead
rors. We shall see that Equation (9.3.10) persists for completely general
dels. Note also that Equation (9.3.10) implies that the forecast error  is
t of the history of the process Y1, Y2, …, Yt − 1, Yt up to time t. If this were
ependence could be exploited to improve our forecast.

on (9.3.10) also implies that our one-step-ahead forecast error variance is

(9.3.11)

ate the properties of the forecast errors for longer leads, it is convenient to
 AR(1) model in general linear process, or MA( ), form. From Equation
age 70, we recall that

(9.3.12)

ions (9.3.8) and (9.3.12) together yield

(9.3.13)

lso be written as

(9.3.14)

.3.14) will be shown to hold for all ARIMA models (see Equation (9.3.43)
).
at ; thus the forecasts are unbiased. Furthermore, from Equa-
), we have

(9.3.15)

t the forecast error variance increases as the lead l increases. Contrast this
ult given in Equation (9.2.4) on page 192, for deterministic trend models.
icular, for the AR(1) case,

(9.3.16)

et 1( )

Var et 1( )( ) σe
2=

∞

Yt et φet 1– φ2et 2– φ3et 3–
…+ + + +=

et l( ) Y
t l+

μ– φl Yt μ–( )–=

e
t l+

φe
t l 1–+

… φl 1– et 1+ φlet+ + + +=

… φl et φet 1–
…+ +( )–+ 

et l( ) e
t l+

φe
t l 1–+

… φl 1– et 1++ + +=

et l( ) e
t l+

ψ1e
t l 1–+

ψ2e
t l 2–+

… ψl 1–
et 1++ + + +=

E et l( )( ) 0=

Var et l( )( ) σe
2 1 ψ1

2 ψ2
2 … ψl 1–

2+ + + +( )=

Var et l( )( ) σe
2 1 φ2l–

1 φ2–
----------------=
btain by summing a finite geometric series.
g lead times, we have
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(9.3.17)

tion (4.3.3), page 66,

(9.3.18)

.3.18) will be shown to be valid for all stationary ARMA processes (see
.3.39) on page 201).

e how to solve the problems that arise in forecasting moving average or
els, consider the MA(1) case with nonzero mean:

cing t by t + 1 and taking conditional expectations of both sides, we have

(9.3.19)

r an invertible model, Equation (4.5.2) on page 80 shows that et is a function
, Yt and so

(9.3.20)

pproximation is involved in this equation since we are conditioning only on
Yt and not on the infinite history of the process. However, if, as in practice, t
 the model is invertible, the error in the approximation will be very small. If
s not invertible—for example, if we have overdifferenced the data—then
.3.20) is not even approximately valid; see Harvey (1981c, p.161).
Equations (9.3.19) and (9.3.20), we have the one-step-ahead forecast for an
A(1) expressed as

(9.3.21)

tation of et will be a by-product of estimating the parameters in the model.
 once more that the one-step-ahead forecast error is

ion (9.3.10), and thus Equation (9.3.11) also obtains.

Var et l( )( )
σe

2

1 φ2–
--------------  for large l≈

Var et l( )( ) Var Yt( ) γ0   for large l=≈

Yt μ et θet 1––+=

Ŷ t 1( ) μ θE et|Y1 Y2 … Yt, , ,( )–=

E et |Y1 Y2 … Yt, , ,( ) et=

Ŷ t 1( ) μ θet–=

et 1( ) Yt 1+ Ŷ t 1( )–=

μ et 1+ θet–+( ) μ θet–( )–=

et 1+=
ger lead times, we have

Ŷ t l( ) μ E e
t l+

|Y1 Y2 … Yt, , ,( )+ θE e
t l 1–+

|Y1 Y2 … Yt, , ,( )–=
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 1, both et + l and et + l − 1 are independent of Y1, Y2,…, Yt. Consequently,
tional expected values are the unconditional expected values, namely zero,
e

(9.3.22)

 that Equation (9.3.9) on page 195 holds exactly for the MA(1) case when l >
 this model we trivially have ψ1 = −θ and ψj = 0 for j > 1, Equations (9.3.14)
) also hold.

om Walk with Drift

e forecasting with nonstationary ARIMA series, consider the random walk
efined by

(9.3.23)

(9.3.24)

he difference equation form for the lead l forecast is

(9.3.25)

g backward on l yields the explicit expression

(9.3.26)

to Equation (9.3.9) on page 195, if θ0 ≠ 0, the forecast does not converge for
ut rather follows a straight line with slope θ0 for all l.
at the presence or absence of the constant term θ0 significantly alters the
e forecast. For this reason, constant terms should not be included in nonsta-
IMA models unless the evidence is clear that the mean of the differenced
nificantly different from zero. Equation (3.2.3) on page 28 for the variance
le mean will help assess this significance.
er, as we have seen in the AR(1) and MA(1) cases, the one-step-ahead fore-

Ŷ t l( ) μ  for l 1>=

Yt Yt 1– θ0 et+ +=

Ŷ t 1( ) E Yt|Y1 Y2 … Yt, , ,( ) θ0 E et 1+ |Y1 Y2 … Yt, , ,( )+ +=

Ŷ t 1( ) Yt θ0+=

Ŷ t l( ) Ŷ t l 1–( ) θ0  for l 1≥+=

Ŷ t l( ) Yt θ0l  for l 1≥+=

et 1( ) Yt 1+ Ŷ t 1( )– et 1+= =



9.3  ARIM

which agre
(See Equati

So, as 

In contrast
lead time l i
variance fo

ARMA(p,q

For the gen
ing forecas

where

We note tha
tion (9.3.20
invertible m
expressed a
the π-weigh
gible for j >

As an e

with

and, more g

Ŷ t l( )
A Forecasting 199

es with Equation (9.3.14) on page 196 since in this model ψj = 1 for all j.
on (5.2.6) on page 93 with θ = 0.)
in Equation (9.3.15), we have

(9.3.27)

 to the stationary case, here grows without limit as the forecast
ncreases. We shall see that this property is characteristic of the forecast error
r all nonstationary ARIMA processes.

)

eral stationary ARMA(p,q) model, the difference equation form for comput-
ts is given by

(9.3.28)

(9.3.29)

t is a true forecast for j > 0, but for j ≤ 0, . As in Equa-
) on page 197, Equation (9.3.29) involves some minor approximation. For an
odel, Equation (4.5.5) on page 80 shows that, using the π-weights, et can be
s a linear combination of the infinite sequence Yt, Yt − 1, Yt − 2,…. However,
ts die out exponentially fast, and the approximation assumes that πj is negli-
 t − q.
xample, consider an ARMA(1,1) model. We have

(9.3.30)

et l( ) Y
t l+

Ŷ t l( )–=

Yt lθ0 et 1+
… e

t l+
+ + + +( ) Yt lθ0+( )–=

et 1+ et 2+
… e

t l+
+ + +=

Var et l( )( ) σe
2 ψj

2

j 0=

l 1–

∑ lσe
2= =

Var et l( )( )

φ1Ŷ t l 1–( ) φ2Ŷ t l 2–( ) … φpŶ t l p–( ) θ0+ + + +=

θ1E e
t l 1–+

|Y1 Y2 … Yt, , ,( )– θ2E e
t l 2–+

|Y1 Y2 … Yt, , ,( )–

…– θqE e
t l q–+

|Y1 Y2 … Yt, , ,( )–

E et j+ |Y1 Y2 … Yt, , ,( )
0

et j+⎩
⎨
⎧

=
for j 0>
for j 0≤

Ŷ t j( ) Ŷ t j( ) Yt j+=

Ŷ t 1( ) φYt θ0 θet–+=
enerally,

Ŷ t 2( ) φŶ t 1( ) θ0+=
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(9.3.31)

tion (9.3.30) to get the recursion started.
ons (9.3.30) and (9.3.31) can be rewritten in terms of the process mean and
 by iteration to get the alternative explicit expression

(9.3.32)

ns (9.3.28) and (9.3.29) indicate, the noise terms et − (q − 1),…, et − 1, et
ctly in the computation of the forecasts for leads l = 1, 2,…, q. However, for
toregressive portion of the difference equation takes over, and we have

(9.3.33)

neral nature of the forecast for long lead times will be determined by the
ive parameters φ1, φ2,…, φp (and the constant term, θ0, which is related to
 the process).
ng from Equation (5.3.17) on page 97 that ,
rite Equation (9.3.33) in terms of deviations from μ as 

(9.3.34)

on of lead time l, follows the same Yule-Walker recursion as the
tion function ρk of the process (see Equation (4.4.8), page 79). Thus, as in
 on page 66 and Section 4.4 on page 77, the roots of the characteristic equa-
termine the general behavior of for large lead times. In particular,
an be expressed as a linear combination of exponentially decaying terms in l
ding to the real roots) and damped sine wave terms (corresponding to the

plex roots).
or any stationary ARMA model,  decays to zero as l increases, and
rm forecast is simply the process mean μ as given in Equation (9.3.9) on
This agrees with common sense since for stationary ARMA models the
 dies out as the time span between observations increases, and this depen-
 only reason we can improve on the “naive” forecast of using μ alone.

ue the validity of Equation (9.3.15) for in the present generality, we
sider a new representation for ARIMA processes. Appendix G shows that
 model can be written in truncated linear process form as

(9.3.35)

Ŷ t l( ) φŶ t l 1–( ) θ0  for l 2≥+=

Ŷ t l( ) μ φl Yt μ–( ) φl 1– et  for l 1≥–+=

φ1Ŷ t l 1–( ) φ2Ŷ t l 2–( ) … φpŶ t l p–( ) θ0  for l q>+ + + +=

θ0 μ 1 φ1 φ2– …– φp––( )=

Ŷ t l( ) μ– φ1 Ŷ t l 1–( ) μ–[ ] φ2 Ŷ t l 2–( ) μ–[ ] …+ +=

φp Ŷ t l p–( ) μ–[ ]  for l q>+ 

Ŷ t l( ) μ–

Ŷ t l( ) μ–

Ŷ t l( ) μ–

et l( )

Y
t l+

Ct l( ) It l( )  for l 1>+=
ur present purposes, we need only know that Ct(l) is a certain function of Yt,

(9.3.36)e
t l+

ψ1e
t l 1–+

ψ2e
t l 2–+

… ψl 1–
et 1+   for l 1≥+ + + +=
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e, for invertible models with t reasonably large, Ct(l) is a certain function of
story Yt, Yt − 1,…, Y1. Thus we have

general invertible ARIMA process,

(9.3.37)

(9.3.38)

quations (4.1.4) and (9.3.38), we see that for long lead times in stationary
dels, we have

(9.3.39)

nary Models

om walk shows, forecasting for nonstationary ARIMA models is quite simi-
asting for stationary ARMA models, but there are some striking differences.
 Equation (5.2.2) on page 92 that an ARIMA(p,1,q) model can be written as
ary ARMA(p+1,q) model, We shall write this as

(9.3.40)

cript coefficients ϕ are directly related to the block φ coefficients. In particu-

Ŷ t l( ) E Ct l( )|Y1 Y2 … Yt, , ,( ) E It l( ) |Y1 Y2 … Yt, , ,( )+=

Ct l( )=

et l( ) Y
t l+

Ŷ t l( )–=

Ct l( ) It l( )+[ ] Ct l( )–=

It l( )=

e
t l+

ψ1e
t l 1–+

ψ2e
t l 2–+

… ψl 1–
et 1++ + + +=

E et l( )[ ] 0  for l 1≥=

Var et l( )( ) σe
2 ψj

2  for l 1≥
j 0=

l 1–

∑=

Var et l( )( ) σe
2 ψj

2

j 0=

∞
∑≈

Var et l( )( ) γ0  for large l≈

ϕ1Yt 1– ϕ2Yt 2– ϕ3Yt 3–
… ϕpYt p– ϕp 1+ Yt p– 1–+ + + + +

et θ1et 1– θ2et 2–– …– θqet q–––+ 
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(9.3.41)

al order of differencing d, we would have p + d of the ϕ coefficients.
his representation, we can immediately extend Equations (9.3.28), (9.3.29),
) on page 199 to cover the nonstationary cases by replacing p by p + d and φj

example of the necessary calculations, consider the ARIMA(1,1,1) case.

(9.3.42)

eral invertible ARIMA model, the truncated linear process representation
uations (9.3.35) and (9.3.36) and the calculations following these equations
e can write

(9.3.43)

(9.3.44)

(9.3.45)

or nonstationary series, the ψj-weights do not decay to zero as j increases.
e, for the random walk model, ψj = 1 for all j; for the IMA(1,1) model, ψj =
 1; for the IMA(2,2) case, ψj = 1 + θ2 + (1 − θ1 − θ2)j for j ≥ 1; and for the
odel, ψj = (1 − φ j+1)/(1 − φ) for j ≥ 1 (see Chapter 5).
or any nonstationary model, Equation (9.3.45) shows that the forecast error

ϕ1 1 φ1 ϕj φj φj 1–   for j– 1 2 … p, , ,= =,+=

and

ϕp 1+ φp–= ⎭
⎪
⎬
⎪
⎫

Yt Yt 1–– φ Yt 1– Yt 2––( ) θ0 et θet 1––+ +=

Yt 1 φ+( )Yt 1– φYt 2–– θ0 et θet 1––+ +=

Ŷ t 1( ) 1 φ+( )Yt φYt 1–– θ0 θet–+=

Ŷ t 2( ) 1 φ+( )Ŷ t 1( ) φYt– θ0+=

and

Ŷ t l( ) 1 φ+( )Ŷ t l 1–( ) φŶ t l 2–( )– θ0+= ⎭
⎪
⎪
⎬
⎪
⎪
⎫

e
t l+

ψ1e
t l 1–+

ψ2e
t l 2–+

… ψl 1–
et 1+   for l 1≥+ + + +=

E et l( )( ) 0  for l 1≥=

Var et l( )( ) σe
2 ψj

2  for l 1≥
j 0=

l 1–

∑=
ill grow without bound as the lead time l increases. This fact should not be
ng since with nonstationary series the distant future is quite uncertain.
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diction Limits

tistical endeavors, in addition to forecasting or predicting the unknown Yt + l ,
ike to assess the precision of our predictions.

stic Trends

erministic trend model with a white noise stochastic component {Xt}, we

astic component is normally distributed, then the forecast error

(9.4.1)

ally distributed. Thus, for a given confidence level 1 − α, we could use a
rmal percentile, z1 − α/2, to claim that

ntly,

e may be (1 − α)100% confident that the future observation Yt + l  will be
ithin the prediction limits

(9.4.2)

umerical example, consider the monthly average temperature series once
age 192, we used the cosine model to predict the June 1976 average temper-
3°F. The estimate of for this model is 3.7°F. Thus 95%
imits for the average June 1976 temperature are

s who are familiar with standard regression analysis will recall that since the
olves estimated regression parameters, the correct forecast error variance is
[1 + (1/n) +cn, l], where cn, l is a certain function of the sample size n and the

Ŷ t l( ) μ
t l+

=

Var et l( )( ) Var X
t l+

( ) γ0= =

et l( ) Y
t l+

Ŷ t l( )– X
t l+

= =

P z1 α 2⁄––
Y

t l+
Ŷ t l( )–

Var et l( )( )
----------------------------- z1 α 2⁄–< < 1 α–=

) z1 α 2⁄– Var et l( )( )– Y
t l+

Ŷ t l( ) z1 α 2⁄– Var et l( )( )+< < ] 1 α–=

Ŷ t l( ) z1 α 2⁄– Var et l( )( )±

Var et l( )( ) γ0=

68.3 1.96 3.7( )± 68.3 7.252  or  61.05°F  to  75.55°F±=
 However, it may be shown that for the types of trends that we are consider-
, cosines and polynomials in time) and for large sample sizes n, the 1/n and
 negligible relative to 1. For example, with a cosine trend of period 12 over
ears, we have that cn, l = 2/n; thus the correct forecast error variance is
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] rather than our approximate γ0. For the linear time trend model, it can be
cn, l = 3(n + 2l − 1)2/[n(n2 − 1)] ≈ 3/n for moderate lead l and large n. Thus,
pproximation seems justified.

dels

 noise terms {et} in a general ARIMA series each arise independently from a
tribution, then from Equation (9.3.43) on page 202, the forecast error
lso have a normal distribution, and the steps leading to Equation (9.4.2)
d. However, in contrast to the deterministic trend model, recall that in the

e

 will be unknown and must be estimated from the observed time series.
ary ψ-weights are, of course, also unknown since they are certain functions
own φ’s and θ’s. For large sample sizes, these estimations will have little
e actual prediction limits given above.
merical example, consider the AR(1) model that we estimated for the indus-

property series. From Exhibit 9.1 on page 194, we use φ = 0.5705, μ =
d = 24.8. For an AR(1) model, we recall Equation (9.3.16) on page 196

tep-ahead prediction, we have

head, we obtain

 this prediction interval is wider than the previous interval. Forecasting ten
 leads to

 both the forecast and the forecast limits have settled down to their long-lead

ecasting Illustrations

 showing forecast and forecast limit calculations, it is often more instructive

Var et l( )( ) σe
2 ψj

2

j 0=

l 1–

∑=

σe
2

σe
2

Var et l( )( ) σe
2 1 φ2l–

1 φ2–
----------------=

.14793 1.96 24.8± 70.14793 9.760721  or  60.39  to  79.91±=

71.86072 11.88343  or  60.71  to  83.18±

74.173934 11.88451  or  62.42  to  86.19±
ppropriate plots of the forecasts and their limits.
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stic Trends

 displays the last four years of the average monthly temperature time series
ith forecasts and 95% forecast limits for two additional years. Since the
uite well with a relatively small error variance, the forecast limits are quite

 fitted trend forecast.

2 Forecasts and Limits for the Temperature Cosine Trend

mpdub)
1=ts(c(tempdub,rep(NA,24)),start=start(tempdub), 
frequency(tempdub)) 
rmonic(tempdub,1)
dub=arima(tempdub,order=c(0,0,0),xreg=har.)
=harmonic(ts(rep(1,24), start=c(1976,1),freq=12),1)
ph(width=4.875, height=2.5,pointsize=8)
.tempdub,n.ahead=24,n1=c(1972,1),newxreg=newhar., 
'b',ylab='Temperature',xlab='Year')

dels

 industrial color property series as our first illustration of ARIMA forecast-
t 9.3 displays this series together with forecasts out to lead time 12 with the
ower 95% prediction limits for those forecasts. In addition, a horizontal line
ate for the process mean is shown. Notice how the forecasts approach the
nentially as the lead time increases. Also note how the prediction limits
width.
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3 Forecasts and Forecast Limits for the AR(1) Model for Color

lor)
r=arima(color,order=c(1,0,0))
.color,n.ahead=12,type='b',xlab='Time',
'Color Property')
h=coef(m1.color)[names(coef(m1.color))=='intercept'])

nadian hare abundance series was fitted by working with the square root of
nce numbers and then fitting an AR(3) model. Notice how the forecasts
pproximate cycle in the actual series even when we forecast with a lead time
ars in Exhibit 9.4.

4 Forecasts from an AR(3) Model for Sqrt(Hare)
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re)
=arima(sqrt(hare),order=c(3,0,0))
.hare, n.ahead=25,type='b', 
'Year',ylab='Sqrt(hare)')
h=coef(m1.hare)[names(coef(m1.hare))=='intercept'])
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dating ARIMA Forecasts

 are forecasting a monthly time series. Our last observation is, say, for Feb-
e forecast for March, April, and May. As time goes by, the actual value for

omes available. With this new value in hand, we would like to update or
, one hopes, improve) our forecasts for April and May. Of course, we could
w forecasts from scratch. However, there is a simpler way.
eneral forecast origin t and lead time l + 1, our original forecast is denoted
nce the observation at time t + 1 becomes available, we would like to update

t as . Equations (9.3.35) and (9.3.36) on page 200 yield

1) and et + 1 are functions of Yt + 1, Yt,…, whereas et + l + 1, et + l,…, et + 2 are
t of Yt + 1, Yt,…, we quickly obtain the expression

, and, of course, . Thus we have
 updating equation

(9.6.1)

 is the actual forecast error at time t + 1 once has been

merical example, consider the industrial color property time series. Follow-
t 9.1 on page 194, we fit an AR(1) model to forecast one step ahead as

 and two steps ahead as . If now the next color
es available as Yt + 1 = Y36 = 65, then we update the forecast for time t = 37

ecast Weights and Exponentially Weighted
ving Averages

 models without moving average terms, it is clear how the forecasts are
etermined from the observed series Yt, Yt − 1,…, Y1. However, for any model
the noise terms appear in the forecasts, and the nature of the forecasts explic-
s of Yt, Yt − 1,…, Y1 is hidden. To bring out this aspect of the forecasts, we
e inverted form of any invertible ARIMA process, namely

Ŷ t 1+ l( )

l 1+ +
Ct l 1+( ) e

t l 1+ +
ψ1e

t l+
ψ2e

t l 1–+
… ψl et 1++ + + + +=

Ŷ t 1+ l( ) Ct l 1+( ) ψlet 1++=

^
t l 1+( ) Ct l 1+( )= et 1+ Yt 1+ Ŷ t 1( )–=

Ŷ t 1+ l( ) Ŷ t l 1+( ) ψl Yt 1+ Ŷ t 1( )–[ ]+=

Yt 1+ Ŷ t 1( )–[ ] Yt 1+

0.096 Ŷ 35 2( ) 71.86072=

1 1( ) Ŷ36 1( ) 71.86072 0.5705 65 70.096–( )+ 68.953452= = =
on (4.5.5) on page 80.) Thus we can also write

Yt π1Yt 1– π2Yt 2– π3Yt 3–
… et+ + + +=
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ditional expectations of both sides, given Yt, Yt − 1, …, Y1, we obtain

(9.7.1)

uming the t is sufficiently large and/or that the π-weights die out sufficiently
hat πt, πt + 1,… are all negligible.)
 invertible ARIMA model, the π-weights can be calculated recursively from

ions

(9.7.2)

 value π0 = −1. (Compare this with Equations (4.4.7) on page 79 for the

er in particular the nonstationary IMA(1,1) model

 d = 1, q = 1, with ϕ1 = 1; thus

lly,

ve explicitly

(9.7.3)

 Equation (9.7.1), we can write

(9.7.4)

, the π-weights decrease exponentially, and furthermore,

Yt 1+ π1Yt π2Yt 1– π3Yt 2–
… et 1++ + + +=

Ŷ t 1( ) π1Yt π2Yt 1– π3Yt 2–
…+ + +=

πj

θiπj i–
i 1=

min j q,( )

∑ ϕj  for  1 j p d+≤ ≤+

θiπj i–   for j p d+>
i 1=

min j q,( )

∑
⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

=

Yt Yt 1– et θet 1––+=

π1 θπ0 1+ 1 θ–= =

π2 θπ1 θ 1 θ–( )= =

πj θπj 1–   for j 1>=

πj 1 θ–( )θ j 1–   for j 1≥=

Ŷ t 1( ) 1 θ–( )Yt 1 θ–( )θYt 1– 1 θ–( )θ2Yt 2–
…+ + +=

πj
j 1=

∞
∑ 1 θ–( ) θ j 1–

j 1=

∞
∑ 1 θ–

1 θ–
------------ 1= = =
is called an exponentially weighted moving average (EWMA).
 algebra shows that we can also write

(9.7.5)Ŷ t 1( ) 1 θ–( )Yt θŶ t 1– 1( )+=
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(9.7.6)

9.7.5) and (9.7.6) show how to update forecasts from origin t − 1 to origin t,
press the result as a linear combination of the new observation and the old
in terms of the old forecast and the last observed forecast error.
EWMA to forecast time series has been advocated, mostly on an ad hoc
number of years; see Brown (1962) and Montgomery and Johnson (1976).
rameter 1 − θ is called the smoothing constant in EWMA literature, and its
estimation) is often quite arbitrary. From the ARIMA model-building
e let the data indicate whether an IMA(1,1) model is appropriate for the

r consideration. If so, we then estimate θ in an efficient manner and compute
forecast that we are confident is the minimum mean square error forecast. A
sive treatment of exponential smoothing methods and their relationships with
dels is given in Abraham and Ledolter (1983).

ecasting Transformed Series

ng

 are interested in forecasting a series whose model involves a first difference
tationarity. Two methods of forecasting can be considered:

asting the original nonstationary series, for example by using the difference 
tion form of Equation (9.3.28) on page 199, with φ’s replaced by ϕ’s 
ghout, or

asting the stationary differenced series Wt = Yt − Yt − 1 and then “undoing” 
ifference by summing to obtain the forecast in original terms.

ow that both methods lead to the same forecasts. This follows essentially
ferencing is a linear operation and because conditional expectation of a lin-
ation is the same linear combination of the conditional expectations.
er in particular the IMA(1,1) model. Basing our work on the original nonsta-
es, we forecast as

(9.8.1)

(9.8.2)

ow the differenced stationary MA(1) series Wt = Yt − Yt − 1. We would fore-
s

Ŷ t 1( ) Ŷ t 1– 1( ) 1 θ–( ) Yt Ŷ t 1– 1( )–[ ]+=

Ŷ t 1( ) Yt θet–=

Ŷ t l( ) Ŷ t l 1–( )  for l 1>=
(9.8.3)

(9.8.4)

Ŵt 1( ) θet–=

Ŵt l( ) 0  for l 1>=
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; thus  is equivalent to 

imilarly, , and Equation (9.8.4) becomes Equation
e have claimed.

me result would apply to any model involving differences of any order and
ny type of linear transformation with constant coefficients. (Certain linear
ions other than differencing may be applicable to seasonal time series. See

.)

formations

 earlier, it is frequently appropriate to model the logarithms of the original
onlinear transformation. Let Yt denote the original series value and let Zt =
an be shown that we always have

(9.8.5)

ty holding only in trivial cases. Thus, the naive forecast  is not the
ean square error forecast of Yt + l. To evaluate the minimum mean square

st in original terms, we shall find the following fact useful: If X has a normal
 with mean μ and variance , then

s, for example, from the moment-generating function for X.) In our applica-

w from Equations (9.3.35) and (9.3.36) (applied to Zt) and the fact that 
n of Zt, Zt − 1,…, whereas et(l) is independent of Zt, Zt − 1,… . Thus the mini-
 square error forecast in the original series is given by

^
t 1( ) Ŷ t 1( ) Yt–= Ŵt 1( ) θet–= Ŷ t 1( ) Yt θet–=

Ŵt l( ) Ŷ t l( ) Ŷ t l 1–( )–=

E Y
t l+

|Yt Yt 1– … Y1, , ,( ) E Z
t l+

|Zt Zt 1– … Z1, , ,( )[ ]exp≥

Ẑ t l( )[ ]exp

σ2

E X( )exp[ ] μ σ2

2
------+exp=

μ E Z
t l+

|Zt Zt 1– … Z1, , ,( )=

σ2 Var Z
t l+

|Zt Zt 1– … Z1, , ,( )=

Var et l( ) Ct l( )|Zt Zt 1– … Z1, , ,+[ ]=

Var et l( )|Zt Zt 1– … Z1, , ,[ ] Var Ct l( )|Zt Zt 1– … Z1, , ,[ ]+=

Var et l( )|Zt Zt 1– … Z1, , ,[ ]=

Var et l( )[ ]=

Ct l( )

⎧ ⎫

(9.8.6)

t our discussion of forecasting, we have assumed that minimum mean square
or is the criterion of choice. For normally distributed variables, this is an

Ẑ t l( ) 1
2
---Var et l( )[ ]+

⎩ ⎭
⎨ ⎬exp
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iterion. However, if Zt has a normal distribution, then Yt = exp(Zt) has a log-
ribution, for which a different criterion may be desirable. In particular, since
mal distribution is asymmetric and has a long right tail, a criterion based on
solute error may be more appropriate. For this criterion, the optimal forecast
an of the distribution of Zt+ l conditional on Zt, Zt − 1,…, Z1. Since the log
tion preserves medians and since, for a normal distribution, the mean and
 identical, the naive forecast  is the optimal forecast for Yt + l in
at it minimizes the mean absolute forecast error.

mmary of Forecasting with Certain ARIMA Models

ing together various forecasting results for special ARIMA models.

Ẑ t l( )[ ]exp

μ φ Yt 1– μ–( ) et+ +=

Ŷ t l( ) μ φ Ŷ t l 1–( ) μ–[ ]+=    for l 1≥

μ φl Yt μ–( )+   for l 1≥=

Ŷ t l( ) μ  for large l≈

et l( ) e
t l+

φe
t l 1–+

… φl 1– et 1++ + +=

Var et l( )( ) σe
2 1 φ2l–

1 φ2–
----------------=

Var et l( )( )
σe

2

1 φ2–
--------------≈ γ0  for large l=

ψj φ j  for j 0>=

μ et θet 1––+=

Ŷ t 1( ) μ θet–=

Ŷ t l( ) μ  for l 1>=

et 1( ) et 1+=

et l( ) e
t l+

θe
t l 1–+

  for l 1>–=
Var et l( )( )
σe

2  for l 1=

σe
2 1 θ2+( )  for l 1>⎩

⎨
⎧

=
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with Constant Term: 

 θ0 ≠ 0, the forecasts follow a straight line with slope θ0, but if θ0 = 0, which
 case, then the forecast is the same for all lead times, namely

(9.9.1)

(9.9.2)

(9.9.3)

(9.9.4)

e forecasts follow a quadratic curve in l, but if θ0 = 0, the forecasts form a
e with slope  and will pass through the two initial forecasts

ψj
θ  for j– 1=

0  for j 1>⎩
⎨
⎧

=

Yt Yt 1– θ0 et θet 1––+ +=

Ŷ t l( ) Ŷ t l 1–( ) θ0 θet–+=

Yt lθ0 θet–+=

1 θ–( )Yt 1 θ–( )θYt 1– 1 θ–( )θ2Yt 2–
… the EWMA for ( θ0+ + + 0 )=

e
t l+

1 θ–( )e
t l 1–+

1 θ–( )e
t l 2–+

… 1 θ–( )et 1+   for l 1≥+ + + +=

Var et l( )( ) σe
2 1 l 1–( ) 1 θ–( )2+[ ]=

ψj 1 θ  for j 0>–=

Ŷ t l( ) Yt θet–=

Yt 2Yt 1– Yt 2–– θ0 et θ1et 1–– θ2et 2––+ +=

Ŷ t 1( ) 2Yt Yt 1–– θ0 θ1et– θ2et 1––+=

Ŷ t 2( ) 2Ŷ t 1( ) Yt– θ0 θ2et–+=

Ŷ t l( ) 2Ŷ t l 1–( ) Ŷ t l 2–( )– θ0  for l 2>+= ⎭
⎪
⎬
⎪
⎫

Ŷ t l( ) A Bl
θ0

2
----- l2+ +=

A 2Ŷ t 1( ) Ŷ t 2( )– θ0+=

B Ŷ t 2( ) Ŷ t 1( )–
3
2
---θ0–=

^ 2( ) Ŷ 1( )–

. It can be shown that is a certain cubic function of l ; see

s, and Reinsel (1994, p. 156). We also have

(9.9.5)

Y t t^
t 2( ) Var et l( )( )

ψj 1 θ2 1 θ1– θ2–( )j  for j 0>+ +=
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be shown that forecasting the special case with θ1 = 2ω and θ2 = −ω2 is
o so-called double exponential smoothing with smoothing constant 1 − ω;
m and Ledolter (1983).

mmary

 or predicting future as yet unobserved values is one of the main reasons for
 time series models. Methods discussed in this chapter are all based on mini-
mean square forecasting error. When the model is simply deterministic trend
ean white noise error, forecasting amounts to extrapolating the trend. How-
model contains autocorrelation, the forecasts exploit the correlation to pro-
 forecasts than would otherwise be obtained. We showed how to do this with
odels and investigated the computation and properties of the forecasts. In
s, the computation and properties of the forecasts are especially interesting

sented them separately. Prediction limits are especially important to assess
l accuracy (or otherwise) of the forecasts. Finally, we addressed the problem
ng time series for which the models involve transformation of the original

ES

n AR(1) model with Yt = 12.2, φ = −0.5, and μ = 10.8,
ind .
alculate  in two different ways.
alculate .
ose that annual sales (in millions of dollars) of the Acme Corporation follow
R(2) model  with .
 sales for 2005, 2006, and 2007 were $9 million, $11 million, and $10 mil-
on, respectively, forecast sales for 2008 and 2009.
how that  for this model.
alculate 95% prediction limits for your forecast in part (a) for 2008.
 sales in 2008 turn out to be $12 million, update your forecast for 2009.
g the estimated cosine trend on page 192:
orecast the average monthly temperature in Dubuque, Iowa, for April 1976. 
ind a 95% prediction interval for that April forecast. (The estimate of 
r this model is 3.719°F.)
hat is the forecast for April, 1977? For April 2009?

g the estimated cosine trend on page 192:
orecast the average monthly temperature in Dubuque, Iowa, for May 1976. 

Ŷ t 1( )
Ŷ t 2( )
Ŷ t 10( )

Yt 5 1.1Yt 1– 0.5Yt 2–– et+ += σe
2 2=

ψ1 1.1=

γ0
ind a 95% prediction interval for that May 1976 forecast. (The estimate of
 for this model is 3.719°F.)γ0
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g the seasonal means model without an intercept shown in Exhibit 3.3 on
 32:
orecast the average monthly temperature in Dubuque, Iowa, for April, 1976. 
ind a 95% prediction interval for that April forecast. (The estimate of 
r this model is 3.419°F.)
ompare your forecast with the one obtained in Exercise 9.3.
hat is the forecast for April 1977? April 2009?

g the seasonal means model with an intercept shown in Exhibit 3.4 on page

orecast the average monthly temperature in Dubuque, Iowa, for April 1976. 
ind a 95% prediction interval for that April forecast. (The estimate of 
r this model is 3.419°F.)
ompare your forecast with the one obtained in Exercise 9.5.
g the seasonal means model with an intercept shown in Exhibit 3.4 on page

orecast the average monthly temperature in Dubuque, Iowa, for January
976. 
ind a 95% prediction interval for that January forecast. (The estimate of 
r this model is 3.419°F.)
ider the monthly electricity generation time series shown in Exhibit 5.8 on
 99. The data are in the file named electricity.
it a deterministic trend model containing seasonal means together with a lin-
ar time trend to the logarithms of the electricity values.
lot the last five years of the series together with two years of forecasts and
e 95% forecast limits. Interpret the plot.
late an AR(1) process with φ = 0.8 and μ = 100. Simulate 48 values but set
 the last 8 values to compare forecasts to actual values.
sing the first 40 values of the series, find the values for the maximum likeli-
ood estimates of φ and μ.
sing the estimated model, forecast the next eight values of the series. Plot
e series together with the eight forecasts. Place a horizontal line at the esti-
ate of the process mean.
ompare the eight forecasts with the actual values that you set aside.
lot the forecasts together with 95% forecast limits. Do the actual values fall
ithin the forecast limits?
epeat parts (a) through (d) with a new simulated series using the same values
f the parameters and the same sample size.
late an AR(2) process with φ1 = 1.5, φ2 = −0.75, and μ = 100. Simulate 52
s but set aside the last 12 values to compare forecasts to actual values.
sing the first 40 values of the series, find the values for the maximum likeli-

γ0

γ0

γ0
ood estimates of the φ’s and μ.
sing the estimated model, forecast the next 12 values of the series. Plot the
ries together with the 12 forecasts. Place a horizontal line at the estimate of
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e process mean.
ompare the 12 forecasts with the actual values that you set aside.
lot the forecasts together with 95% forecast limits. Do the actual values fall
ithin the forecast limits?
epeat parts (a) through (d) with a new simulated series using the same values
f the parameters and same sample size.
late an MA(1) process with θ = 0.6 and μ = 100. Simulate 36 values but set
 the last 4 values to compare forecasts to actual values.
sing the first 32 values of the series, find the values for the maximum likeli-
ood estimates of the θ and μ.
sing the estimated model, forecast the next four values of the series. Plot the
ries together with the four forecasts. Place a horizontal line at the estimate

f the process mean.
ompare the four forecasts with the actual values that you set aside.
lot the forecasts together with 95% forecast limits. Do the actual values fall
ithin the forecast limits?
epeat parts (a) through (d) with a new simulated series using the same values
f the parameters and same sample size.
late an MA(2) process with θ1 = 1, θ2 = −0.6, and μ = 100. Simulate 36 val-
ut set aside the last 4 values with compare forecasts to actual values.
sing the first 32 values of the series, find the values for the maximum likeli-
ood estimates of the θ’s and μ.
sing the estimated model, forecast the next four values of the series. Plot the
ries together with the four forecasts. Place a horizontal line at the estimate

f the process mean.
hat is special about the forecasts at lead times 3 and 4?

ompare the four forecasts with the actual values that you set aside.
lot the forecasts together with 95% forecast limits. Do the actual values fall
ithin the forecast limits?
epeat parts (a) through (e) with a new simulated series using the same values
f the parameters and same sample size.
late an ARMA(1,1) process with φ = 0.7, θ = −0.5, and μ = 100. Simulate 50
s but set aside the last 10 values to compare forecasts with actual values.
sing the first 40 values of the series, find the values for the maximum likeli-
ood estimates of φ, θ, and μ.
sing the estimated model, forecast the next ten values of the series. Plot the
ries together with the ten forecasts. Place a horizontal line at the estimate of
e process mean.
ompare the ten forecasts with the actual values that you set aside.
lot the forecasts together with 95% forecast limits. Do the actual values fall

ithin the forecast limits?
epeat parts (a) through (d) with a new simulated series using the same values
f the parameters and same sample size.
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late an IMA(1,1) process with θ = 0.8 and θ0 = 0. Simulate 35 values, but set
 the last five values to compare forecasts with actual values.
sing the first 30 values of the series, find the value for the maximum likeli-
ood estimate of θ.
sing the estimated model, forecast the next five values of the series. Plot the
ries together with the five forecasts. What is special about the forecasts?
ompare the five forecasts with the actual values that you set aside.
lot the forecasts together with 95% forecast limits. Do the actual values fall
ithin the forecast limits?
epeat parts (a) through (d) with a new simulated series using the same values
f the parameters and same sample size.
late an IMA(1,1) process with θ = 0.8 and θ0 = 10. Simulate 35 values, but
ide the last five values to compare forecasts to actual values.
sing the first 30 values of the series, find the values for the maximum likeli-
ood estimates of θ and θ0.
sing the estimated model, forecast the next five values of the series. Plot the
ries together with the five forecasts. What is special about these forecasts?
ompare the five forecasts with the actual values that you set aside.
lot the forecasts together with 95% forecast limits. Do the actual values fall
ithin the forecast limits?
epeat parts (a) through (d) with a new simulated series using the same values
f the parameters and same sample size.
late an IMA(2,2) process with θ1 = 1, θ2 = −0.75, and θ0 = 0. Simulate 45
s, but set aside the last five values to compare forecasts with actual values.
sing the first 40 values of the series, find the value for the maximum likeli-
ood estimate of θ1 and θ2.
sing the estimated model, forecast the next five values of the series. Plot the
ries together with the five forecasts. What is special about the forecasts?
ompare the five forecasts with the actual values that you set aside.
lot the forecasts together with 95% forecast limits. Do the actual values fall
ithin the forecast limits?
epeat parts (a) through (d) with a new simulated series using the same values
f the parameters and same sample size.
late an IMA(2,2) process with θ1 = 1, θ2 = −0.75, and θ0 = 10. Simulate 45
s, but set aside the last five values to compare forecasts with actual values.
sing the first 40 values of the series, find the values for the maximum likeli-
ood estimates of θ1, θ2, and θ0.
sing the estimated model, forecast the next five values of the series. Plot the
ries together with the five forecasts. What is special about these forecasts?
ompare the five forecasts with the actual values that you set aside.

lot the forecasts together with 95% forecast limits. Do the actual values fall
ithin the forecast limits?
epeat parts (a) through (d) with a new simulated series using the same values
f the parameters and same sample size.
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ider the model , where . We assume

0, β1, and φ are known. Show that the minimum mean square error forecast l
 ahead can be written as .
y Equation (9.3.16) on page 196.
y Equation (9.3.32) on page 200.
data file named deere3 contains 57 consecutive values from a complex
ine tool process at Deere & Co. The values given are deviations from a tar-
alue in units of ten millionths of an inch. The process employs a control
anism that resets some of the parameters of the machine tool depending on
agnitude of deviation from target of the last item produced.
sing an AR(1) model for this series, forecast the next ten values.
lot the series, the forecasts, and 95% forecast limits, and interpret the results.
ata file named days contains accounting data from the Winegard Co. of Bur-
n, Iowa. The data are the number of days until Winegard receives payment

30 consecutive orders from a particular distributor of Winegard products.
 name of the distributor must remain anonymous for confidentiality reasons.)
time series contains outliers that are quite obvious in the time series plot.
ace each of the unusual values at “times” 63, 106, and 129 with the much
 typical value of 35 days.
se an MA(2) model to forecast the next ten values of this modified series.
lot the series, the forecasts, and 95% forecast limits, and interpret the results.
ime series in the data file robot gives the final position in the “x-direction”
 an industrial robot has finished a planned set of exercises. The measure-
s are expressed as deviations from a target position. The robot is put through
lanned set of exercises in the hope that its behavior is repeatable and thus
ctable.
se an IMA(1,1) model to forecast five values ahead. Obtain 95% forecast
mits also.
isplay the forecasts, forecast limits, and actual values in a graph and inter-
ret the results.
ow use an ARMA(1,1) model to forecast five values ahead and obtain 95%
recast limits. Compare these results with those obtained in part (a).

bit 9.4 on page 206 displayed the forecasts and 95% forecast limits for the
e root of the Canadian hare abundance. The data are in the file named hare.

uce a similar plot in original terms. That is, plot the original abundance val-
gether with the squares of the forecasts and squares of the forecast limits.

ider the seasonal means plus linear time trend model for the logarithms of
onthly electricity generation time series in Exercise 9.8. (The data are in the
amed electricity.)
ind the two-year forecasts and forecast limits in original terms. That is, expo-

Yt β0 β1t Xt+ += Xt φXt 1– et+=

Ŷ t l( ) β0 β1 t l+( ) φl Yt β0– β1t–( )+ +=
entiate (antilog) the results obtained in Exercise 9.8.
lot the last five years of the original time series together with two years of
recasts and the 95% forecast limits, all in original terms. Interpret the plot.
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ix E: Conditional Expectation

have joint pdf f(x,y) and we denote the marginal pdf of X by f(x), then the
l pdf of Y given X = x is given by

 value of x, the conditional pdf has all of the usual properties of a pdf. In par-
conditional expectation of Y given X = x is defined as

cted value or mean, the conditional expectation of Y given X = x has all of
operties. For example,

(9.E.1)

(9.E.2)

 several new properties arise:

(9.E.3)

en X = x, the random variable h(X) can be treated like a constant h(x). More

(9.E.4)

, then g(X) is a random variable and we can consider
can be shown that

ten written as
(9.E.5)

d X are independent, then

(9.E.6)

ix F: Minimum Mean Square Error Prediction

is a random variable with mean μY and variance . If our object is to pre-
 only a constant c, what is the best choice for c? Clearly, we must first define

f y x( ) f x y,( )
f x( )

---------------=

E Y X=x( ) yf y x( ) yd
∞–
∞∫=

E aY bZ c+ + X=x( ) aE Y X=x( ) bE Z X=x( ) c+ +=

E h Y( ) X = x[ ] yf y x( ) xd
∞–
∞∫=

E h X( ) X=x[ ] h x( )=

E h X Y,( ) X=x[ ] E h x Y,( ) X=x( )=

Y X=x( ) g x( )=

E g X( )[ ] E Y( )=

E E Y X( )[ ] E Y( )=

E Y X( ) E Y( )=

σY
2

mon (and convenient) criterion is to choose c to minimize the mean square
ediction, that is, to minimize

g c( ) E Y c–( )2[ ]=
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d g(c), we have

is quadratic in c and opens upward, solving will produce the
nimum. We have

ptimal c is
(9.F.1)

at

(9.F.2)

onsider the situation where a second random variable X is available and we
 the observed value of X to help predict Y. Let ρ = Corr (X,Y). We first sup-

plicity, that only linear functions a + bX can be used for the prediction. The
e error is then given by

ing we gave

 quadratic in a and b and opens upward. Thus we can find the point of mini-
ving simultaneous linear equations  and  = 0.

ewrite as

 the first equation by E(X) and subtracting yields

(9.F.3)

(9.F.4)

et be the minimum mean square error prediction of Y based on a linear

g c( ) E Y2( ) 2cE Y( )– c2+=

g' c( ) 0=

g' c( ) 2E Y( )– 2c+=

c E Y( ) μ= =

 min
∞ c ∞< <–

g c( ) E Y μ–( )2 σY
2= =

g a b,( ) E Y a– bX–( )2=

a b, ) E Y2( ) a2 b2E X2( ) 2aE Y( )– 2abE X( ) 2bE XY( )–+ + +=

g a b,( )∂ a∂⁄ 0= g a b,( )∂ b∂⁄

g a b,( )∂ a∂⁄ 2a 2E Y( )– 2bE X( )+ 0= =

g a b,( )∂ b∂⁄ 2bE X2( ) 2aE X( ) 2E XY( )–+ 0= =

a E X( )b+ E Y( )=

E X( )a E X2( )b+ EXY=

b E XY( ) E X( )E Y( )–
E X2( ) E X( )[ ]2–

----------------------------------------------- Cov X Y,( )
Var X( )

------------------------- ρ
σY

σX
------= = =

a E Y( ) bE X( )– μY ρ
σY

σX
------μX–= =

Ŷ

 X, then we can write

(9.F.5)Ŷ μY ρ
σY

σX
------μX– ρ

σY

σX
------μX X+=
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(9.F.6)

standardized variables and , we have simply .
sing Equations (9.F.3) and (9.F.4), we find

(9.F.7)

ides a proof that −1 ≤ ρ ≤ +1 since g(a,b) ≥ 0.
ompare Equation (9.F.7) with Equation (9.F.2), we see that the minimum
e error obtained when we use a linear function of X to predict Y is reduced by
 − ρ2 compared with that obtained by ignoring X and simply using the con-

 our prediction.
now consider the more general problem of predicting Y with an arbitrary
X. Once more our criterion will be to minimize the mean square error of pre-
 need to choose the function h(X), say, that minimizes

(9.F.8)

tion (9.E.5), we can write this as

(9.F.9)

tion (9.E.4), the inner expectation can be written as

(9.F.10)

lue of x, h(x) is a constant, and we can apply the result of Equation (9.F.1) to
nal distribution of Y given X = x. Thus, for each x, the best choice of h(x) is

(9.F.11)

hoice of h(x) minimizes the inner expectation in Equation (9.F.9), it must
e the overall minimum of Equation (9.F.8). Thus

(9.F.12)

redictor of Y of all functions of X.
d Y have a bivariate normal distribution, it is well-known that

solutions given in Equations (9.F.12) and (9.F.5) coincide. In this case, the
ctor is the best of all functions.
enerally, if Y is to be predicted by a function of X1, X2,…, Xn, then it can be

Ŷ μY–

σY
---------------- ρ

X μX–

σX
----------------=

Ŷ
*

X
*

Ŷ
* ρX

*
=

min g a b,( ) σY
2 1 ρ2–( )=

E Y h X( )–[ ]2

E Y h X( )–[ ]2 E E Y h X( )–[ ]2 X{ }( )=

E Y h X( )–[ ]2 X = x{ } E Y h x( )–[ ]2 X = x{ }=

h x( ) E Y X = x( )=

h X( ) E Y X( )=

E Y X( ) μY ρ
σY

σX
------ X μX–( )+=
d that the minimum square error predictor is given by

(9.F.13)E Y X1 X2 … Xn, , ,( )
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ix G: The Truncated Linear Process

t} satisfies the general ARIMA(p,d,q) model with AR characteristic polyno-
A characteristic polynomial θ(x), and constant term θ0. Then the truncated

ess representation for {Yt} is given by

(9.G.1)

(9.G.2)

(9.G.3)

, i = 1, 2,…, r, j = 1, 2,…, pi , are constant in l and depend only on Yt,
As always, the ψ-weights are defined by the identity

(9.G.4)

(9.G.5)

ll show that the representation given by Equation (9.G.1) is valid by arguing
ed t, is essentially the complementary function of the defining differ-
on, that is,

(9.G.6)

is a particular solution (without θ0):

(9.G.7)

contains p + d arbitrary constants (the A’s and the B’s), summing  and
 the general solution of the ARIMA equation. Specific values for the A’s and
determined by initial conditions on the {Yt} process.
e that Ad is not arbitrary. We have

(9.G.8)

Yt l+ Ct l( ) It l( )  for l 1≥+=

It l( ) ψjet l j–+
  for l 1≥

j 0=

l 1–

∑=

Ct l( ) Ai l
i

i 0=

d

∑ Bij l
j Gi( )l

j 0=

pi 1–

∑
i 1=

r

∑+=

φ x( ) 1 x–( )d 1 ψ1x ψ2x2 …+ + +( ) θ x( )=

ϕ x( ) 1 ψ1x ψ2x2 …+ + +( ) θ x( )=

Ct l( )

1Ct l 1–( ) ϕ2Ct l 2–( )– …– ϕp d+ Ct l p– d–( )– θ0  for l 0≥=

l)

l) ϕ1It l 1–( ) ϕ2It l 2–( ) …– ϕp d+ It l p– d–( )–––

e
t l+

θ1et l 1–+– θ2et l 2–+– …– θqet l q–+   for l q>–=

Ct l( )

Ad

θ0

1 φ1 φ2– …– φp––( )d!
------------------------------------------------------------=
hat  as given by Equation (9.G.2) is the complementary function and
uation (9.G.6) is a standard result from the theory of difference equations

nly property of the Ct(l) that we need is that it depends only on Yt, Yt − 1,… .

Ct l( )
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ample, Goldberg, 1958). We shall show that the particular solution 
Equation (9.G.2) does satisfy Equation (9.G.7).
venience of notation, we let  = 0 for j > p + d. Consider the left-hand side
 (9.G.7). It can be written as:

(9.G.9)

ing together common et terms and picking off their coefficients, we obtain

ient of et + l − 1 : 
ient of et + l − 2 : 
ient of et + l − 3 : 

ient of et + 1 : 

e can match these coefficients to the corresponding coefficients on the
side of Equation (9.G.7) to obtain the relationships

(9.G.10)

y comparing these relationships with Equation (9.G.5), we see that Equa-
10) are precisely the equations defining the ψ-weights and thus Equation
stablished as required.

ix H: State Space Models

ory engineers have developed and successfully used so-called state space
d Kalman filtering since Kalman published his seminal work in 1960.
rences include Durbin and Koopman (2001) and Harvey et al. (2004). 
er a general stationary and invertible ARMA(p,q) process {Zt}. Put m =

It l( )

ϕj

ψ1e
t l 1–+

… ψl 1–
et 1++ + ) ϕ1 ψ0e

t l 1–+
( ψ1e

t l 2–+
…+ +–

ψl 2–
et 1++ ) …– ϕp d+ ψ( 0e

t l p– d–+
–

ψ1e
t l p– d– 1–+

… ψl p– d– 1–
et 1+ )+ ++ 

⎭
⎪
⎪
⎬
⎪
⎪
⎫

ψ0
ψ1 ϕ1ψ0–
ψ2 ϕ1ψ1– ϕ2ψ0–

...

ψl 1–
ϕ1ψl 2–

– ϕ2ψl 3–
– …– ϕp d+ ψl p– d– 1–

–

ψ0 1=

ψ1 ϕ1ψ0– θ1–=

ψ2 ϕ1ψ1– ϕ2ψ0– θ2–=

...

ψq ϕ1ψq 1–– ϕ2ψq 2–– …– ϕqψ0– θq–=

ϕ1ψl 2–
– ϕ2ψl 3–

– …– ϕp d+ ψl p– d– 1–
– 0  for  l q>= ⎭

⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎫

1) and define the state of the process at time t as the column vector of
hose jth element is the forecast for j = 0, 1, 2,…, m − 1, based on Zt,
ote that the lead element of is just = Zt. 
the updating Equation (9.6.1) on page 207, which in the present context can

Z t( )
Ẑ j( )

Z t( ) Ẑ 0( )
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(9.H.1)

e this expression directly for l = 0, 1, 2,…, m − 2. For l = m − 1, we have

(9.H.2)

ast expression comes from Equation (9.3.34) on page 200, with μ = 0.
trix formulation of Equations (9.H.1) and (9.H.2) relating  to 
called the equations of state (or Akaike’s Markovian representation), is

(9.H.3)

(9.H.4)

(9.H.5)

for j > p. Note that the simplicity of Equation (9.H.3) is obtained at the
having to deal with vector-valued processes. Because the state space formu-
usually allows for measurement error, we do not observe Zt directly but only
hrough the observational equation

(9.H.6)

 [1, 0, 0,…, 0] and is another zero-mean white noise process indepen-

Ẑ t 1+ l( ) Ẑ t l 1+( ) ψl et 1++=
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...

ψm 1–

=

0

Yt HZ t( ) εt+=

εt{ }

. The special case of no measurement error is obtained by setting in
.H.6). Equivalently, this case is obtained by taking  in subsequent
ore general state space models allow , , and to be more general, pos-
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ition: The covariance matrix for a vector of random variables X of dimen-
 defined to be the n×n matrix whose ij th element is the covariance between
jth components of X.
AX + B, then it is easily shown that the covariance matrix for Y is AVAT,
the covariance matrix for X and the superscript T denotes matrix transpose.
 back to the Kalman filter, we let denote the m×1 vector whose
ent is for j = 0, 1, 2,…, m − 1. Similarly, let

he vector whose j th component is for j = 0, 1,
.
since et + 1 is independent of Zt, Zt − 1,…, and hence also of Yt, Yt − 1,…, we
uation (9.H.3) that

(9.H.7)

  be the covariance matrix for the “forecast error” −
and  be the covariance matrix for the “forecast error” ,
m Equation (9.H.3) that

(9.H.8)

servational equation (Equation (9.H.6)) and then replacing t + 1 by t,

(9.H.9)
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ow be shown that the following relationships hold (see, for example, Har-
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(9.H.11)

(9.H.12)

, Equations (9.H.10), (9.H.11), and (9.H.12) are referred to as the Kalman
ions. The quantity

(9.H.13)

 (9.H.10) is the prediction error and is independent of (or at least uncorre-
the past observations Yt, Yt − 1,… . Since we are allowing for measurement
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E Ẑt j( ) |Yt Yt 1– … Y1, , ,[ ]
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P t 1|t+( ) F P t|t( )[ ]F
T σe
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=
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der the likelihood function for the observed series Y1, Y2,…, Yn. From the
f the conditional probability density function, we can write

g logs,

(9.H.15)

e now that we are dealing with normal distributions, that is, that and
rmal white noise processes. Then it is known that the distribution of Yn con-
Y1 = y1, Y2 = y2,…, Yn − 1 = yn − 1, is also normal with mean and
. In the remainder of this section and the next, we write  for the
alue of .The second term on the right-hand side of Equation
n then be written
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 becomes the prediction error decomposition of the likelihood, namely
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and v1 = Var(Y1).
erall strategy for computing the likelihood for a given set of parameter val-
 the Kalman filter equations to generate recursively the prediction errors and
ces and then use the prediction error decomposition of the likelihood func-
ne point remains: We need initial values and to get the recur-
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 State Covariance Matrix
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 Equation (9.H.18) by Z0 and taking expected values yields
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ly Equation (9.H.18) by itself with j replaced by i and take expected values.
at the e’s are independent of past Z’s and assuming 0 < i ≤ j, we obtain
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 Equations (9.H.19) and (9.H.20), we have as the required elements of
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-weights are obtained from the recursion of Equation (4.4.7) on page 79,
 autocovariance function for the {Zt} process, is obtained as in Appendix C

riance  can be removed from the problem by dividing  by . The
rror variance vt is then replaced by  in the log-likelihood of Equation
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-likelihood
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e minimized analytically with respect to . We obtain
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 see that such a series is stationary and has nonzero autocorrelations only at

lizing these ideas, we define a seasonal MA(Q) model of order Q with sea-
d s by

(10.1.1)

al MA characteristic polynomial

(10.1.2)

t that such a series is always stationary and that the autocorrelation function
zero only at the seasonal lags of s, 2s, 3s,…, Qs. In particular,

(10.1.3)

his with Equation (4.2.5) on page 65 for the nonseasonal MA process.) For
o be invertible, the roots of Θ(x) = 0 must all exceed 1 in absolute value.
eful to note that the seasonal MA(Q) model can also be viewed as a special
nseasonal MA model of order q = Qs but with all θ-values zero except at the
s s, 2s, 3s,…, Qs.
al autoregressive models can also be defined. Consider

(10.1.4)

 1 and et is independent of Yt − 1, Yt − 2,… . It can be shown that |Φ| < 1
tionarity. Thus it is easy to argue that E(Yt) = 0; multiplying Equation
Yt − k , taking expectations, and dividing by γ0 yields

(10.1.5)

ally,
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e, setting k = 1 and then k = 11 in Equation (10.1.5) and using ρk = ρ−k gives
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-----------------------------------------------------------------------------------------------------------  for k 1 2 … Q, , ,=
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n AR(1) model.
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riod s by

(10.1.7)

al characteristic polynomial

(10.1.8)

 we require et to be independent of Yt − 1, Yt − 2,…, and, for stationarity, that
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3 displays the autocorrelation functions for the model of Equation (10.2.1)
.5 and Θ = −0.8 as given by Equations (10.2.2)–(10.2.5).

.3 Autocorrelations from Equations (10.2.2)-(10.2.5)
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nstationary Seasonal ARIMA Models

nt tool in modeling nonstationary seasonal processes is the seasonal differ-
easonal difference of period s for the series {Yt} is denoted ∇sYt and is

(10.3.1)

e, for monthly series we consider the changes from January to January, Feb-
bruary, and so forth for successive years. Note that for a series of length n,
l difference series will be of length n − s; that is, s data values are lost due to
fferencing.
example where seasonal differencing is appropriate, consider a process gen-
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(10.3.3)

and {εt} are independent white noise series. Here {St} is a “seasonal random
if , {St} would model a slowly changing seasonal component.
 the nonstationarity of {St}, clearly {Yt} is nonstationary. However, if we sea-
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culation shows that ∇sYt is stationary and has the autocorrelation function of
model.
odel described by Equations (10.3.2) and (10.3.3) could also be generalized
or a nonseasonal, slowly changing stochastic trend. Consider

(10.3.5)
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, {εt}, and {ξt} are mutually independent white noise series. Here we take
nal difference and an ordinary nonseasonal difference to obtain†
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uld be noted that ∇sYt will in fact be stationary and ∇∇sYt will be noninvertible. We
quations (10.3.5), (10.3.6), and (10.3.7) merely to help motivate multiplicative sea-
ARIMA models.
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s defined here is stationary and has nonzero autocorrelation only at lags 1,
 s + 1, which agrees with the autocorrelation structure of the multiplicative

odel ARMA(0,1)×(0,1) with seasonal period s.
examples lead to the definition of nonstationary seasonal models. A process
 to be a multiplicative seasonal ARIMA model with nonseasonal (regular)
 and q, seasonal orders P, D, and Q, and seasonal period s if the differenced

(10.3.9)

 ARMA(p,q)×(P,Q)s model with seasonal period s.† We say that {Yt} is an
d,q)×(P,D,Q)s model with seasonal period s.
y, such models represent a broad, flexible class from which to select an
 model for a particular time series. It has been found empirically that many
e adequately fit by these models, usually with a small number of parameters,
 four.

del Specification, Fitting, and Checking

ification, fitting, and diagnostic checking for seasonal models follow the
al techniques developed in Chapters 6, 7, and 8. Here we shall simply high-
plication of these ideas specifically to seasonal models and pay special atten-
easonal lags.

ecification

 a careful inspection of the time series plot is the first step. Exhibit 10.1 on
splays monthly carbon dioxide levels in northern Canada. The upward trend
d lead us to specify a nonstationary model. Exhibit 10.5 shows the sample
tion function for that series. The seasonal autocorrelation relationships are
 prominently in this display. Notice the strong correlation at lags 12, 24, 36,
n addition, there is substantial other correlation that needs to be modeled.

Yt ∇ Mt Mt s–– εt et et s––+ +( )=

ξt εt et+ +( ) εt 1– et 1–+( )– ξt s– et s–+( )– et s– 1–+=

Wt ∇d∇s
DYt=
 the backshift operator notation of Appendix D, page 106, we may write the general
A(p,d,q)×(P,D,Q)s model as φ(B)Φ(B)∇d∇s

DYt = θ(B)Θ(B)et.
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.5 Sample ACF of CO2 Levels

vector(co2),lag.max=36)

t 10.6 shows the time series plot of the CO2 levels after we take a first differ-

.6 Time Series Plot of the First Differences of CO2 Levels

ff(co2),ylab='First Difference of CO2',xlab='Time')

neral upward trend has now disappeared but the strong seasonality is still
evidenced by the behavior shown in Exhibit 10.7. Perhaps seasonal differ-
 bring us to a series that may be modeled parsimoniously.

5 10 15 20 25 30 35

Lag

Time

994 1996 1998 2000 2002 2004
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.7 Sample ACF of First Differences of CO2 Levels

vector(diff(co2)),lag.max=36)

t 10.8 displays the time series plot of the CO2 levels after taking both a first
nd a seasonal difference. It appears that most, if not all, of the seasonality is

.8 Time Series Plot of First and Seasonal Differences of CO2

ff(diff(co2),lag=12),xlab='Time', 
'First and Seasonal Difference of CO2')

5 10 15 20 25 30 35

Lag

Time

1996 1998 2000 2002 2004
t 10.9 confirms that very little autocorrelation remains in the series after
ifferences have been taken. This plot also suggests that a simple model

rporates the lag 1 and lag 12 autocorrelations might be adequate.
ll consider specifying the multiplicative, seasonal ARIMA(0,1,1)×(0,1,1)12
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(10.4.10)

rporates many of these requirements. As usual, all models are tentative and
evision at the diagnostics stage of model building.

.9 Sample ACF of First and Seasonal Differences of CO2

vector(diff(diff(co2),lag=12)),lag.max=36,ci.type='ma')

ing

cified a tentative seasonal model for a particular time series, we proceed to
e parameters of that model as efficiently as possible. As we have remarked
ltiplicative seasonal ARIMA models are just special cases of our general
dels. As such, all of our work on parameter estimation in Chapter 7 carries

seasonal case.
t 10.10 gives the maximum likelihood estimates and their standard errors for
(0,1,1)×(0,1,1)12 model for CO2 levels.

.10 Parameter Estimates for the CO2 Model

t θ Θ

0.5792 0.8206

error 0.0791 0.1137

46: log-likelihood = −139.54, AIC = 283.08

∇12∇Y
t

et θet 1–– Θet 12–– θΘet 13–+=

0 5 10 15 20 25 30 35

Lag
arima(co2,order=c(0,1,1),seasonal=list(order=c(0,1,1), 

d=12))
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ient estimates are all highly significant, and we proceed to check further on

c Checking

e estimated the ARIMA(0,1,1)×(0,1,1)12 model, we first look at the time
of the residuals. Exhibit 10.11 gives this plot for standardized residuals.
some strange behavior in the middle of the series, this plot does not suggest
rregularities with the model, although we may need to investigate the model
utliers, as the standardized residual at September 1998 looks suspicious. We

this further in Chapter 11.

.11 Residuals from the ARIMA(0,1,1)×(0,1,1)12 Model

ndow(rstandard(m1.co2),start=c(1995,2)), 
'Standardized Residuals',type='o')
h=0)

k further, we graph the sample ACF of the residuals in Exhibit 10.12. The
tically significant” correlation is at lag 22, and this correlation has a value of
 a very small correlation. Furthermore, we can think of no reasonable inter-
r dependence at lag 22. Finally, we should not be surprised that one autocor-
 of the 36 displayed is statistically significant. This could easily happen by
e. Except for marginal significance at lag 22, the model seems to have cap-
sence of the dependence in the series.
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.12 ACF of Residuals from the ARIMA(0,1,1)×(0,1,1)12 Model

vector(window(rstandard(m1.co2),start=c(1995,2))), 
ax=36)

ung-Box test for this model gives a chi-squared value of 25.59 with 22
freedom, leading to a p-value of 0.27—a further indication that the model
d the dependence in the time series.
e investigate the question of normality of the error terms via the residuals.
.13 displays the histogram of the residuals. The shape is somewhat
d” but certainly not ideal. Perhaps a quantile-quantile plot will tell us more.

.13 Residuals from the ARIMA(0,1,1)×(0,1,1)12 Model

5 10 15 20 25 30 35

Lag

Standardized Residuals

F
re

qu
en

cy

−3 −2 −1 0 1 2 3 4

0
10

20
30

40
ph(width=3, height=3,pointsize=8)
ndow(rstandard(m1.co2),start=c(1995,2)), 
'Standardized Residuals')
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t 10.14 displays the QQ-normal plot for the residuals.

.14 Residuals: ARIMA(0,1,1)×(0,1,1)12 Model

ph(width=2.5,height=2.5,pointsize=8)
window(rstandard(m1.co2),start=c(1995,2)))
window(rstandard(m1.co2),start=c(1995,2)))

e again see the one outlier in the upper tail, but the Shapiro-Wilk test of nor-
 test statistic of W = 0.982, leading to a p-value of 0.11, and normality is not
ny of the usual significance levels.
 further check on the model, we consider overfitting with an ARIMA(0,1,2)
odel with the results shown in Exhibit 10.15.

.15 ARIMA(0,1,2)×(0,1,1)12 Overfitted Model

arima(co2,order=c(0,1,2),seasonal=list(order=c(0,1,1), 
d=12))

we compare these results with those reported in Exhibit 10.10 on page 237,
 the estimates of θ1 and Θ have changed very little—especially when the size

t θ1 θ2 Θ

0.5714 0.0165 0.8274

error 0.0897 0.0948 0.1224

27: log-likelihood = −139.52, AIC = 285.05
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ard errors is taken into consideration. In addition, the estimate of the new
θ2, is not statistically different from zero. Note also that the estimate and
lihood have not changed much while the AIC has actually increased. 
IMA(0,1,1)×(0,1,1)12 model was popularized in the first edition of the sem-

f Box and Jenkins (1976) when it was found to characterize the logarithms of

σ̂e2
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Ŷ

Y

casting Seasonal Models 241

irline passenger time series. This model has come to be known as the airline
 ask you to analyze the original airline data in the exercises.

ecasting Seasonal Models

 forecasts with seasonal ARIMA models is, as expected, most easily carried
vely using the difference equation form for the model, as in Equations
.3.29) on page 199 and (9.3.40) on page 201. For example, consider the

MA(0,1,1)×(1,0,1)12.

(10.5.1)

ewrite as

(10.5.2)

p-ahead forecast from origin t is then

(10.5.3)

t one is

(10.5.4)

. The noise terms et − 13, et − 12, et − 11,…, et (as residuals) will enter into the
r lead times l = 1, 2,…, 13, but for l > 13 the autoregressive part of the model
nd we have

(10.5.5)

erstand the general nature of the forecasts, we consider several special cases.

AR(1)12

al AR(1)12 model is

(10.5.6)

 have

(10.5.7)

erating back on l, we can also write

(10.5.8)

t 1– Φ Yt 12– Yt 13––( ) et θet 1–– Θet 12–– θΘet 13–+ +=

Yt 1– ΦYt 12– ΦYt 13–– et θet 1–– Θet 12–– θΘet 13–+ + +

t 1( ) Yt ΦYt 11– ΦYt 12–– θet– Θet 11–– θΘet 12–+ +=

t 2( ) Ŷ t 1( ) ΦYt 10– ΦYt 11–– Θet 10–– θΘet 11–+ +=

^
t l( ) Ŷ t l 1–( ) ΦŶ t l 12–( ) ΦŶ t l 13–( )  for  l 13>–+=

Yt ΦYt 12– et+=

Ŷ t l( ) ΦŶ t l 12–( )=

Ŷ t l( ) Φ k 1+ Yt r 11–+=
 r are defined by l = 12k + r + 1 with 0 ≤ r < 12 and k = 0, 1, 2,… . In other
the integer part of (l − 1)/12 and r/12 is the fractional part of (l − 1)/12. If our
tion is in December, then the next January value is forecast as Φ times the
d January value, February is forecast as Φ times the last observed February
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o on. Two Januarys ahead is forecast as Φ2 times the last observed January.
t at January values, the forecasts into the future will decay exponentially at a
ined by the magnitude of Φ. All of the forecasts for each month will behave
ut with different initial forecasts depending on the particular month under
n.

Equation (9.3.38) on page 201 and the fact that the ψ-weights are nonzero
ltiple of 12, namely,

(10.5.9)

t the forecast error variance can be written as

(10.5.10)

efore, k is the integer part of (l − 1)/12.

MA(1)12

onal MA(1)12 model, we have

(10.5.11)

, we see that

(10.5.12)

(10.5.13)

tain different forecasts for the months of the first year, but from then on all
e given by the process mean.
s model, ψ0 = 1, ψ12 = −Θ, and ψj = 0 otherwise. Thus, from Equation

 page 201, 

(10.5.14)

ψj
Φ j 12/ for j 0 12 24 …, , ,=

0         otherwise⎩
⎨
⎧

=

Var et l( )( ) 1 Φ2k 2+–
1 Φ2–

-------------------------- σe
2=

Yt et Θet 12–– θ0+=

Ŷ t 1( ) Θet 11–– θ0+=

Ŷ t 2( ) Θet 10–– θ0+=
...

Ŷ t 12( ) Θet– θ0+=
⎭
⎪
⎪
⎬
⎪
⎪
⎫

Ŷ t l( ) θ0  for  l 12>=

Var et l( )( )
σe

2 1 l 12≤ ≤

1 Θ2+( )σe
2 12 l<⎩

⎨
⎧

=

0,0)×(0,1,1)12

A(0,0,0)×(0,1,1)12 model is

(10.5.15)Yt Yt 12–– et Θet 12––=
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(10.5.16)

(10.5.17)

hat all Januarys will forecast identically, all Februarys identically, and so

nvert this model, we find that

tly, we can write

(10.5.18)

epresentation, we see that the forecast for each January is an exponentially
oving average of all observed Januarys, and similarly for each of the other

case, we have ψj = 1 − Θ for j = 12, 24,…, and zero otherwise. The forecast
ce is then

(10.5.19)

he integer part of (l − 1)/12.

Y
t l+

Y
t l 12–+

e
t l+

Θe
t l 12–+

–+=

Ŷ t 1( ) Yt 11– Θet 11––=

Ŷ t 2( ) Yt 10– Θet 10––=

...

Ŷ t 12( ) Yt Θet–= ⎭
⎪
⎪
⎬
⎪
⎪
⎫

Ŷ t l( ) Ŷ t l 12–( )  for  l 12>=

Yt 1 Θ–( ) Yt 12– ΘYt 24– Θ2Yt 36–
…+ + +( ) et+=

Ŷ t 1( ) 1 Θ–( ) ΘjYt 11– 12j–
j 0=

∞

∑=

Ŷ t 2( ) 1 Θ–( ) ΘjYt 10– 12j–
j 0=

∞

∑=

...

Ŷ t 12( ) 1 Θ–( ) ΘjYt 12j–
j 0=

∞

∑= ⎭
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎫

Var et l( )( ) 1 k 1 Θ–( )2+[ ]σe
2=
1,1)×(0,1,1)12

IMA(0,1,1)×(0,1,1)12 model

(10.5.20)Yt 1– Yt 12– Yt 13–– et θet 1–– Θet 12–– θΘet 13–+ + +
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s satisfy

(10.5.21)

(10.5.22)

nd the general pattern of these forecasts, we can use the representation

(10.5.23)

’s and B’s are dependent on Yt, Yt − 1,…, or, alternatively, determined from
orecasts , ,…, . This result follows from the general the-
rence equations and involves the roots of (1 − x)(1 − x12) = 0.
 that Equation (10.5.23) reveals that the forecasts are composed of a linear
 lead time plus a sum of periodic components. However, the coefficients Ai
more dependent on recent data than on past data and will adapt to changes in
 as our forecast origin changes and the forecasts are updated. This is in stark
forecasting with deterministic time trend plus seasonal components, where
ents depend rather equally on both recent and past data and remain the same
e forecasts.

 Limits

limits are obtained precisely as in the nonseasonal case. We illustrate this
bon dioxide time series. Exhibit 10.16 shows the forecasts and 95% forecast
 lead time of two years for the ARIMA(0,1,1)×(0,1,1)12 model that we fit.
o years of observed data are also shown. The forecasts mimic the stochastic
in the data quite well, and the forecast limits give a good feeling for the pre-
e forecasts.

) Yt=

) Ŷ t 1( )=

...

) Ŷ t 11( )=

) Ŷ t 12( )=

Yt 11–+ 

Yt 10–+ 

Yt+ 

Ŷ t 1( )+ 

Yt 12––

Yt 11––

Yt 1––

Yt–

θet– Θet 11––

Θet 10––

Θet–

θΘet 12–+ 

θΘet 11–+ 

θΘet 1–+ 

θΘet+ 
⎭
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎫

Ŷ t l( ) Ŷ t l 1–( ) Ŷ t l 12–( ) Ŷ t l 13–( )  for  l 13>–+=

^
t l( ) A1 A2l B1j

2πjl
12

----------⎝ ⎠
⎛ ⎞cos B2j

2πjl
12

----------⎝ ⎠
⎛ ⎞sin+

j 0=

6

∑+ +=

Ŷ t 1( ) Ŷ t 2( ) Ŷ t 13( )
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.16 Forecasts and Forecast Limits for the CO2 Model

ph(width=4.875,height=3,pointsize=8)
.co2,n1=c(2003,1),n.ahead=24,xlab='Year',type='o', 
'CO2 Levels')

t 10.17 displays the last year of observed data and forecasts out four years.
 time, it is easy to see that the forecast limits are getting wider, as there is
tainty in the forecasts.

.17 Long-Term Forecasts for the CO2 Model

.co2,n1=c(2004,1),n.ahead=48,xlab='Year',type='b', 
'CO2 Levels')
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mmary

tive seasonal ARIMA models provide an economical way to model time
e seasonal tendencies are not as regular as we would have with a determinis-
l trend model which we covered in Chapter 3. Fortunately, these models are
ial ARIMA models so that no new theory is needed to investigate their prop-
llustrated the special nature of these models with a thorough modeling of an
 series.

ES

d on quarterly data, a seasonal model of the form

een fit to a certain time series.
ind the first four ψ-weights for this model.
uppose that θ1 = 0.5, θ2 = −0.25, and σe = 1. Find forecasts for the next four
uarters if data for the last four quarters are

ind 95% prediction intervals for the forecasts in part (b).
R model has AR characteristic polynomial

 the model stationary?
entify the model as a certain seasonal ARIMA model.
ose that {Yt} satisfies

 St is deterministic and periodic with period s and {Xt} is a seasonal
A(p,0,q)×(P,1,Q)s series. What is the model for Wt = Yt −Yt − s?

he seasonal model with |Φ| < 1, find γ0 and ρk.
ify the following as certain multiplicative seasonal ARIMA models:

.
.

y Equations (10.2.11) on page 232.

arter I II III IV

eries 25 20 25 40

sidual 2 1 2 3

Yt Yt 4– et θ1et 1–– θ2et 2––+=

1 1.6x– 0.7x2+( ) 1 0.8x12–( )

Yt a bt St Xt+ + +=

Yt ΦYt 4– ee θet 1––+=

t 0.5Yt 1– Yt 4– 0.5Yt 5–– et 0.3et 1––+ +=

t Yt 1– Yt 12– Yt 13– et 0.5et 1–– 0.5et 12–– 0.25et 13–+ +–+=
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ose that the process {Yt} develops according to  with Yt = et
= 1, 2, 3, and 4.
ind the variance function for {Yt}.
ind the autocorrelation function for {Yt}.
entify the model for {Yt} as a certain seasonal ARIMA model.
ider the Alert, Canada, monthly carbon dioxide time series shown in Exhibit
on page 227. The data are in the file named co2.
it a deterministic seasonal means plus linear time trend model to these data.
re any of the regression coefficients “statistically significant”?
hat is the multiple R-squared for this model?
ow calculate the sample autocorrelation of the residuals from this model.
terpret the results.

monthly airline passenger time series, first investigated in Box and Jenkins
), is considered a classic time series. The data are in the file named airpass.
isplay the time series plots of both the original series and the logarithms of
e series. Argue that taking logs is an appropriate transformation.
isplay and interpret the time series plots of the first difference of the logged
ries.
isplay and interpret the time series plot of the seasonal difference of the first
ifference of the logged series.
alculate and interpret the sample ACF of the seasonal difference of the first
ifference of the logged series.
it the “airline model” (ARIMA(0,1,1)×(0,1,1)12 ) to the logged series.
vestigate diagnostics for this model, including autocorrelation and normality

f the residuals.
roduce forecasts for this series with a lead time of two years. Be sure to
clude forecast limits.

bit 5.8 on page 99 displayed the monthly electricity generated in the United
s. We argued there that taking logarithms was appropriate for modeling.
bit 5.10 on page 100 showed the time series plot of the first differences for
eries. The filename is electricity.
alculate the sample ACF of the first difference of the logged series. Is the
asonality visible in this display?

lot the time series of seasonal difference and first difference of the logged
ries. Does a stationary model seem appropriate now?
isplay the sample ACF of the series after a seasonal difference and a first
ifference have been taken of the logged series. What model(s) might you
onsider for the electricity series?

Yt Yt 4– et+=
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uarterly earnings per share for 1960–1980 of the U.S. company Johnson &
son, are saved in the file named JJ. 
lot the time series and also the logarithm of the series. Argue that we should
ansform by logs to model this series.
he series is clearly not stationary. Take first differences and plot that series.
oes stationarity now seem reasonable?
alculate and graph the sample ACF of the first differences. Interpret the
sults.
isplay the plot of seasonal differences and the first differences. Interpret the
lot. Recall that for quarterly data, a season is of length 4.
raph and interpret the sample ACF of seasonal differences with the first dif-
rences.
it the model ARIMA(0,1,1)×(0,1,1)4, and assess the significance of the esti-
ated coefficients.
erform all of the diagnostic tests on the residuals.
alculate and plot forecasts for the next two years of the series. Be sure to
clude forecast limits.

file named boardings contains monthly data on the number of people who
ed transit vehicles (mostly light rail trains and city buses) in the Denver,

rado, region for August 2000 through December 2005.
roduce the time series plot for these data. Be sure to use plotting symbols
at will help you assess seasonality. Does a stationary model seem reason-

ble?
alculate and plot the sample ACF for this series. At which lags do you have
gnificant autocorrelation?
it an ARMA(0,3)×(1,0)12 model to these data. Assess the significance of the
stimated coefficients.
verfit with an ARMA(0,4)×(1,0)12 model. Interpret the results.
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ter, we introduce several useful ideas that incorporate external information
ries modeling. We start with models that include the effects of interventions
ies’ normal behavior. We also consider models that assimilate the effects of
bservations, either in the observed series or in the error terms, that are highly
ative to normal behavior. Lastly, we develop methods to look for and deal
us correlation—correlation between series that is artificial and will not help
nderstand the time series of interest. We will see that prewhitening of series
d meaningful relationships.

rvention Analysis 

1 shows the time plot of the logarithms of monthly airline passenger-miles in
States from January 1996 through May 2005. The time series is highly sea-
aying the fact that air traffic is generally higher during the summer months
cember holidays and lower in the winter months.† Also, air traffic was
omewhat linearly overall until it had a sudden drop in September 2001. The
p in the number of air passengers in September 2001 and several months
as triggered by the terrorist acts on September 11, 2001, when four planes
ed, three of which were crashed into the twin towers of the World Trade

 the Pentagon and the fourth into a rural field in Pennsylvania. The terrorist
eptember 2001 deeply depressed air traffic around that period, but air traffic
gained the losses as time went on. This is an example of an intervention that
change in the trend of a time series.
ention analysis, introduced by Box and Tiao (1975), provides a framework
g the effect of an intervention on a time series under study. It is assumed that
tion affects the process by changing the mean function or trend of a time
ventions can be natural or man-made. For example, some animal population
ed to a very low level in a particular year because of extreme climate in that
ostcrash annual population level may then be expected to be different from
recrash period. Another example is the increase of the speed limit from 65
249

our to 70 miles per hour on an interstate highway. This may make driving on

 exercises, we ask you to display the time series plot using seasonal plotting symbols
ull-screen graph, where the seasonality is quite easy to see.
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y more dangerous. On the other hand, drivers may stay on the highway for a
gth of time because of the faster speed, so the net effect of the increased
change is unclear. The effect of the increase in speed limit may be studied by
he mean function of some accident time series data; for example, the quar-
r of fatal car accidents on some segment of an interstate highway. (Note that
ariance function of the time series might also be changed by the intervention,
sibility will not be pursued here.)

.1 Monthly U.S. Airline Miles: January 1996 through May 2005

ph(width=4.875,height=2.5,pointsize=8)
rmiles)
g(airmiles),ylab='Log(airmiles)',xlab='Year')

t consider the simple case of a single intervention. The general model for the
{Yt}, perhaps after suitable transformation, is given by

(11.1.1)

 the change in the mean function and Nt is modeled as some ARIMA pro-
bly seasonal. The process {Nt} represents the underlying time series were
ervention. It is referred to as the natural or unperturbed process, and it may
y or nonstationary, seasonal or nonseasonal. Suppose the time series is sub-
tervention that takes place at time T. Before T, mt is assumed to be identi-

The time series {Yt, t < T} is referred to as the preintervention data and can
pecify the model for the unperturbed process Nt.
on subject matter considerations, the effect of the intervention on the mean
n often be specified up to some parameters. A useful function in this specifi-

Year

1996 1998 2000 2002 2004

Yt mt Nt+=
 step function

(11.1.2)St
T( ) 1 if t T≥,

0 otherwise,⎩
⎨
⎧

=
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ring the preintervention period and 1 throughout the postintervention period.
unction

(11.1.3)

t = T and 0 otherwise. That is,  is the indicator or dummy variable flag-
e that the intervention takes place. If the intervention results in an immedi-
anent shift in the mean function, the shift can be modeled as

(11.1.4)

the unknown permanent change in the mean due to the intervention. Testing
= 0 or not is similar to testing whether the population means are the same
n the form of two independent random samples from the two populations.
e major difference here is that the pre- and postintervention data cannot gen-

sumed to be independent and identically distributed. The inherent serial cor-
the data makes the problem more interesting but at the same time more

 there is a delay of d time units before the intervention takes effect and d is
n we can specify

(11.1.5)

 the intervention may affect the mean function gradually, with its full force
ly in the long run. This can be modeled by specifying mt as an AR(1)-type

 the error term replaced by a multiple of the lag 1 of :

(11.1.6)

tial condition m0 = 0. After some algebra, it can be shown that

(11.1.7)

 is selected in the range 1 > δ > 0. In that case, mt approaches ω/(1 − δ) for
ich is the ultimate change (gain or loss) for the mean function. Half of the
ange is attained when 1 − δ t−T = 0.5; that is, when t = T + log(0.5)/log(δ).
n log(0.5)/log(δ) is called the half-life of the intervention effect, and the

, the quicker the ultimate change is felt by the system. Exhibit 11.2 displays
 as a function of δ, which shows that the half-life increases with δ. Indeed,
 becomes infinitely large when δ approaches 1.

Pt
T( )

St
T( )

St 1–
T( )

–=

Pt
T( )

mt ωSt
T( )

=

mt ωSt d–
T( )

=

St
T( )

mt δmt 1– ωSt 1–
T( )

+=

mt
ω1 δt T–

–
1 δ–

--------------------- for t T>,

0 otherwise,⎩
⎪
⎨
⎪
⎧

=

.2 Half-life based on an AR(1) Process with Step Function Input

0.2 0.4 0.6 0.8 0.9 1 

0.43 0.76 1.46 3.11 6.58 ∞



252

It is int
0 otherwise
This specifi
postinterve
Exhibit 11.

Short-l

For exampl

Interventio
cation

That is, mt 
subsequent
δ; see Exhi
tion. For ex
and the effe

Again, we a
It is us

where Bmt 

Recall 

† The re
D on p

1 –(
Time Series Regression Models

eresting to note the limiting case when δ = 1. Then mt = ω(T − t) for t ≥ T and
. The time sequence plot of mt displays the shape of a ramp with slope ω.
cation implies that the intervention changes the mean function linearly in the
ntion period. This ramp effect (with a one time unit delay) is shown in

3 (c).
ived intervention effects may be specified using the pulse dummy variable

(11.1.8)

e, if the intervention impacts the mean function only at t = T, then

(11.1.9)

n effects that die out gradually may be specified via the AR(1)-type specifi-

(11.1.10)

= ωδT− t for t ≥ T so that the mean changes immediately by an amount ω and
ly the change in the mean decreases geometrically by the common factor of
bit 11.4 (a). Delayed changes can be incorporated by lagging the pulse func-
ample, if the change in the mean takes place after a delay of one time unit
ct dies out gradually, we can specify

(11.1.11)

ssume the initial condition m0 = 0.
eful to write† the preceding model in terms of the backshift operator B,

= mt − 1 and . Then . Or, we can write

(11.1.12)

, which can be rewritten as .

Pt
T( ) 1 if t, T=

0 otherwise,⎩
⎨
⎧

=

mt ωPt
T( )

=

mt δmt 1– ωPt
T( )

+=

mt δmt 1– ωPt 1–
T( )

+=

BPt
T( )

Pt 1–
T( )

= 1 δB–( )mt ωBPt
T( )

=

mt
ωB

1 δB–
----------------Pt

T( )
=

B)St
T( )

Pt
T( )

= St
T( ) 1

1 B–
------------Pt

T( )
=

mainder of this chapter makes use of the backshift operator introduced in Appendix
age 106. You may want to review that appendix before proceeding further.



11.1  Inter

Exhibit 11

Severa
effects. 

For exa

depicts the 
zero, and

may model
may model
initially so 
can model t

where ω(B
model for m

(a)
ωBSt

T(

(b)
ωB

1 δB–
----------------

(c) 
ωB

1 B–
------------S
vention Analysis 253

.3 Some Common Models for Step Response Interventions 
(All are shown with a delay of 1 time unit)

l specifications can be combined to model more sophisticated intervention

mple,

(11.1.13)

situation displayed in Exhibit 11.4 (b) where ω1 and ω2 are both greater than

(11.1.14)

 situations like Exhibit 11.4 (c) with ω1 and ω2 both negative. This last case
 the interesting situation where a special sale may cause strong rush buying,
much so that the sale is followed by depressed demand. More generally, we
he change in the mean function by an ARMA-type specification

(11.1.15)

) and δ(B) are some polynomials in B. Because , the

t can be specified in terms of either the pulse or step dummy variable.

● ● ● ● ●
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●
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●

●

●

●

)

St
T( )

t
T( )

0

ω

0

0

T

T

T

ω/(1−δ)

ω

slope = ω

mt

ω1B

1 δB–
----------------Pt

T( ) ω2B

1 B–
------------Pt

T( )
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mt ω0Pt
T( ) ω1B

1 δB–
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.4 Some Common Models for Pulse Response Interventions 
(All are shown with a delay of 1 time unit)

tion of the parameters of an intervention model may be carried out by the
maximum likelihood estimation. Indeed, Yt − mt is a seasonal ARIMA pro-
 the likelihood function equals the joint pdf of Yt − mt, t = 1, 2,…, n, which
puted by methods studied in Chapter 7 or else by the state space modeling
 Appendix H on page 222.

 revisit the monthly passenger-airmiles data. Recall that the terrorist acts in
2001 had lingering depressing effects on air traffic. The intervention may be
s an AR(1) process with the pulse input at September 2001. But the unex-
 of events in September 2001 had a strong instantaneous chilling effect on air
s, we model the intervention effect (the 9/11 effect) as

notes September 2001. In this specification, ω0 + ω1 represents the instanta-
 effect, and, for k ≥ 1,  gives the 9/11 effect k months afterward. It
specify the seasonal ARIMA structure of the underlying unperturbed pro-
 on the preintervention data, an ARIMA(0,1,1)×(0,1,0)12 model was tenta-
fied for the unperturbed process; see Exhibit 11.5.
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.5 Sample ACF for (1−B)(1−B12) Log(Air Passenger Miles) Over 
the Preintervention Period

vector(diff(diff(window(log(airmiles),end=c(2001,8)), 
,lag.max=48)

 diagnostics of the fitted model suggested that a seasonal MA(1) coefficient
 and the existence of some additive outliers occurring in December 1996,
7, and December 2002. (Outliers will be discussed in more detail later; here

tliers may be regarded as interventions of unknown nature that have a pulse
nction.) Hence, the model is specified as an ARIMA(0,1,1)×(0,1,1)12 plus
tervention and three additive outliers. The fitted model is summarized in
6.

.6 Estimation of Intervention Model for Logarithms of Air Miles 
(Standard errors are shown below the estimates)

arimax(log(airmiles),order=c(0,1,1), 
nal=list(order=c(0,1,1),period=12), 
sf=data.frame(I911=1*(seq(airmiles)==69), 
1*(seq(airmiles)==69)),transfer=list(c(0,0),c(1,0)), 
data.frame(Dec96=1*(seq(airmiles)==12), 

10 20 30 40

Lag

Θ Dec96 Jan97 Dec02 ω0 ω1 ω2 

0.650 0.099 −0.069 0.081 −0.095 −0.27 0.814 

(0.119) (0.023) (0.022) (0.020) (0.046) (0.044) (0.098)

σ2 estimated as 0.000672: log-likelihood = 219.99, AIC= −423.98
=1*(seq(airmiles)==13),Dec02=1*(seq(airmiles)==84)), 
d='ML')
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 diagnostics suggested that the fitted model above provides a good fit to the
pen circles in the time series plot shown in Exhibit 11.7 represent the fitted
 the final estimated model. They indicate generally good agreement between
nd the data.

.7 Logs of Air Passenger Miles and Fitted Values

g(airmiles),ylab='Log(airmiles)')
fitted(air.m1)) 

ted model estimates that the 9/11 intervention reduced air traffic by 31% =
0.0949−0.2715)}×100% in September 2001, and air traffic k months later
d by {1 − exp(−0.2715×0.8139k )}×100%. Exhibit 11.8 graphs the estimated
s on air traffic, which indicate that air traffic regained its losses toward the
.

.8 The Estimated 9/11 Effects for the Air Passenger Series
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r(Nine11p,filter=.8139,method='recursive', side=1)* 
715),frequency=12,start=1996),ylab='9/11 Effects', 
'h'); abline(h=0)

tliers 

fer to atypical observations that may arise because of measurement and/or
ors or because of abrupt, short-term changes in the underlying process. For
, two kinds of outliers can be distinguished, namely additive outliers and
 outliers. These two kinds of outliers are often abbreviated as AO and IO,
. An additive outlier occurs at time T if the underlying process is perturbed
t time T so that the data equal

(11.2.1)

 is the unperturbed process. Henceforth in this section, Y ′ denotes the
rocess that may be affected by some outliers and Y the unperturbed process
e be no outliers. Thus,  but  otherwise, so the time
ly affected at time T if it has an additive outlier at T. An additive outlier can
ted as an intervention that has a pulse response at T so that .
 other hand, an innovative outlier occurs at time t if the error (also known as
on) at time t is perturbed (that is, the errors equal , where et
ean white noise process). So,  but  otherwise. Suppose
erturbed process is stationary and admits an MA(∞) representation

tly, the perturbed process can be written

(11.2.2)

 1 and ψj = 0 for negative j. Thus, an innovative outlier at T perturbs all
s on and after T, although with diminishing effect, as the observation is fur-
rom the origin of the outlier.
ct whether an observation is an AO or IO, we use the AR(∞) representation

rturbed process to define the residuals:

Yt
′ Yt ωAPt

T( )
+=

YT
′ YT ωA+= Yt

′ Yt=

mt ωAPt
T( )=

et
′ et ωIPt

T( )+=
eT

′ eT ωI+= et
′ et=

Yt et ψ1et 1– ψ2et 2–
…+ + +=

Yt
′ et

′ ψ1et 1–
′ ψ2et 2–

′ …+ + +=

 et ψ1et 1– ψ2et 2–
…+ + +[ ] ψt T– ωI+=

Yt
′ Yt ψt T– ωI+=

′ ′ ′
 (11.2.3)

ity, we assume the process has zero mean and that the parameters are known.
 the unknown parameter values are replaced by their estimates from the pos-
bed data. Under the null hypothesis of no outliers and for large samples, this

at Yt π1Yt 1– π2Yt 2–
…–––=
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gible effect on the properties of the test procedures described below. If the
xactly one IO at time T, then the residual aT = ωI + eT but at = et otherwise.
e estimated by  with variance equal to σ2. Thus, a test statistic for
n IO at T is

(11.2.4)

approximately) a standard normal distribution under the null hypothesis that
 outliers in the time series. When T is known beforehand, the observation in
declared an outlier if the corresponding standardized residual exceeds 1.96
e at the 5% significance level. In practice, there is often no prior knowledge

d the test is applied to all observations. In addition, σ will need to be esti-
mple conservative procedure is to use the Bonferroni rule for controlling the
r rate of multiple tests. Let

λ1 = max1≤ t≤n |λ1,t | (11.2.5)

 at t = T. Then the T th observation is deemed an IO if λ1 exceeds the upper
0 percentile of the standard normal distribution. This procedure guarantees
 at most a 5% probability of a false detection of an IO. Note that an outlier
the maximum likelihood estimate of σ, so if there is no adjustment for outli-
er of most tests is usually reduced. A robust estimate of the noise standard
ay be used in lieu of the maximum likelihood estimate to increase the power
or example, σ can be more robustly estimated by the mean absolute residual
.

tection of an AO is more complex. Suppose that the process admits an AO at
erwise free of outliers. Then it can be shown that

(11.2.6)

 −1 and πj = 0 for negative j. Hence, at = et for t < T, aT = ωA + eT,
π1 + eT+1, aT+2 = −ωAπ2 + eT+2, and so forth. A least squares estimator of ωA

(11.2.7)

, with the variance of the estimate being
2. We can then define

(11.2.8)

tatistic for testing the null hypothesis that the time series has no outliers ver-
rnative hypothesis of an AO at T. As before, ρ and σ will need to be esti-

ω̃I aT=

λ1 T,
aT

σ
-----=

at ωAπt T–– et+=

ω̃T A, ρ2
–= πt T– at

t 1=

n

∑

(1 π1
2 π2

2 … πn T–
2

)
1–

+ + + +=

λ2 T,
ω̃T A,

ρσ
------------=
 test statistic λ2,T is approximately distributed as N(0,1) under the null
 Again, T is often unknown, and the test is applied repeatedly to each time
Bonferroni rule may again be applied to control the overall error rate. Fur-
e nature of an outlier is not known beforehand. In the case where an outlier
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at T, it may be classified to be an IO if |λ1,T| > | λ2,T| and an AO otherwise.
 et al. (1988) for another approach to classifying the nature of an outlier.
tlier is found, it can be incorporated into the model, and the outlier-detection
an then be repeated with the refined model until no more outliers are found.
irst example, we simulated a time series of length n = 100 from the
0,1) model with φ = 0.8 and θ = −0.5. We then changed the 10th observation
 to 10 (that is, ωA = 12.13); see Exhibit 11.9. Based on the sample ACF,

EACF, an AR(1) model was tentatively identified. Based on the Bonferroni
h, 10th, and 11th observations were found to be possible additive outliers
rresponding robustified test statistics being −3.54, 9.55, and −5.20. The test
aled that the 10th and 11th observations may be IO, with the corresponding
test statistics being 7.11 and −6.64. Because among the tests for AO and IO

agnitude occurs for the test for AO at T = 10, the 10th observation was ten-
rked as an AO. Note that the nonrobustified test statistic for AO at T = 10
, which is substantially less than the more robust test value of 9.55, showing
fying the estimate of the noise standard deviation does increase the power of
ter incorporating the AO in the model, no more outliers were found. How-
 1 residual ACF was significant, suggesting the need for an MA(1) compo-
, an ARIMA(1,0,1) + AO at T = 10 model was fitted to the data. This model
o have no additional outliers and passed all model diagnostic checks.

.9 Simulated ARIMA(1,0,1) Process with an Additive Outlier

ensive R code for the simulation and analysis of this 
le may be found in the R code script file for Chapter 11.

eal example, we return to the seasonal ARIMA(0,1,1)×(0,1,1)12 model that
 the carbon dioxide time series in Chapter 10. The time series plot of the
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AO
d residuals from this model, shown in Exhibit 10.11 on page 238, showed a
y large standardized residual in September 1998. Calculation shows that
evidence of an additive outlier, as λ2, t is not significantly large for any t.
e robustified λ1 = max1≤ t≤n |λ1, t | = 3.7527, which is attained at t = 57, cor-
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 to September 1998. The Bonferroni critical value with α = 5% and n = 132
o our observed λ1 is large enough to claim significance for an innovation

eptember 1998. Exhibit 11.10 shows the results of fitting the ARIMA(0,1,1)
model with an IO at t = 57 to the CO2 time series. These results should be
ith the earlier results shown in Exhibit 10.10 on page 237, where the outlier

en into account. Notice that the estimates of θ and Θ have not changed very
IC is better (that is, smaller), and the IO effect is highly significant. Diag-
d on this model turn out to be excellent, no further outliers are detected, and
ery adequate model for this seasonal time series.

.10 ARIMA(0,1,1)×(0,1,1)12 Model with IO at t = 57 for CO2 Series

arima(co2,order=c(0,1,1),seasonal=list(order=c(0,1,1), 
d=12)); m1.co2
O(m1.co2); detectIO(m1.co2)
arimax(co2,order=c(0,1,1),seasonal=list(order=c(0,1,1), 
d=12),io=c(57)); m4.co2

urious Correlation

rpose of building a time series model is for forecasting, and the ARIMA
 this by exploiting the autocorrelation pattern in the data. Often, the time
r study may be related to, or led by, some other covariate time series. For
tige et al. (2006) found that pasture production in Africa is generally related
matic indices. In such cases, better understanding of the underlying process
e accurate forecasts may be achieved by incorporating relevant covariates
e series model.
 {Yt} be the time series of the response variable and X = {Xt} be a covariate
that we hope will help explain or forecast Y. To explore the correlation struc-
n X and Y and their lead-led relationship, we define the cross-covariance

s(X,Y) = Cov(Xt,Ys) for each pair of integers t and s. Stationarity of a univari-
ies can be easily extended to the case of multivariate time series. For exam-
 Y are jointly (weakly) stationary if their means are constant and the
γt,s(X,Y) is a function of the time difference t − s. For jointly stationary pro-
cross-correlation function between X and Y at lag k can then be defined by

θ Θ IO-57

0.5925 0.8274 2.6770

rror 0.0775 0.1016 0.7246

9: log-likelihood = −133.08, AIC = 272.16
Corr(Xt ,Yt − k) = Corr(Xt + k ,Yt). Note that if Y = X, the cross-correlation
e autocorrelation of Y at lag k. The coefficient ρ0(Y,X) measures the contem-
linear association between X and Y, whereas ρk(X,Y) measures the linear
 between Xt and that of Yt − k. Recall that the autocorrelation function is an
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ion, that is, ρk(Y,Y) = ρ−k(Y,Y). (This is because Corr(Yt,Yt − k) =
Yt) = Corr(Yt ,Yt + k), by stationarity.) However, the cross-correlation function
 not an even function since Corr(Xt,Yt − k) need not equal Corr(Xt ,Yt + k).
llustration, consider the regression model

(11.3.1)

’s are independent, identically distributed random variables with variance
e’s are also white noise with variance  and are independent of the X’s. It
cked that the cross-correlation function (CCF) ρk(X,Y) is identically zero
ag k = −d, where

(11.3.2)

, the theoretical CCF is nonzero only at lag −d, reflecting the fact that X is
 by d units of time. The CCF can be estimated by the sample cross-correla-
on (sample CCF) defined by

(11.3.3)

ummations are done over all data where the summands are available. The
F becomes the sample ACF when Y = X. The covariate X is independent of Y
if β1 = 0, in which case the sample autocorrelation rk(X,Y) is approximately
stributed with zero mean and variance 1/n, where n is the sample size—the
pairs of (Xt,Yt) available. Sample cross-correlations that are larger than
n magnitude are then deemed significantly different from zero.
e simulated 100 pairs of (Xt,Yt) from the model of Equation (11.3.1) with d
 and β1 = 1. The X’s and e’s are generated as normal random variables dis-
N(0,1) and N(0,0.25), respectively. Theoretically, the CCF should then be
t at lag −2, where it equals = 0.8944. Exhibit
s the sample CCF of the simulated data, which is significant at lags −2 and 3.
ple CCF at lag 3 is quite small and only marginally significant. Such a false
t unexpected as the exhibit displays a total of 33 sample CCF values out of
ay expect 33×0.05 = 1.65 false alarms on average.

Yt β0 β1Xt d– et+ +=

σe
2

ρ d– X Y,( )
β1σX

β1
2σX

2 σe
2

+

-----------------------------=

rk X Y,( )
Xt X

_
–( ) Yt k– Y

 _
–( )∑

(Xt X
_

)
2

–∑ (Yt Y
 _

)
2

–∑
------------------------------------------------------------------=

ρ 2– X Y,( ) 1 1 0.25+⁄=
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.11 Sample Cross-Correlation from Equation (11.3.1) with d = 2

ph(width=4.875,height=2.5,pointsize=8)
d(12345); X=rnorm(105); Y=zlag(X,2)+.5*rnorm(105)
-(1:5)],start=1,freq=1); Y=ts(Y[-(1:5)],start=1,freq=1)
,ylab='CCF')

hough Xt − 2 correlates with Yt , the regression model considered above is
ictive, as X and Y are each white noise series. For stationary time series, the
riable and the covariate are each generally autocorrelated, and the error term
ssion model is also generally autocorrelated. Hence a more useful regression
ven by

(11.3.4)

ay follow some ARIMA(p,d,q) model. Even if the processes X and Y are
t of each other (β1 = 0), the autocorrelations in Y and X have the unfortunate
e of implying that the sample CCF is no longer approximately N(0,1/n).
ssumption that both X and Y are stationary and that they are independent of
it turns out that the sample variance tends to be different from 1/n. Indeed, it
wn that the variance of is approximately

(11.3.5)

) is the autocorrelation of X at lag k and ρk(Y) is similarly defined for the
or refinement of this asymptotic result, see Box et al. (1994, p. 413). Sup-

 Y are both AR(1) processes with AR(1) coefficients φX and φY, respectively.
) is approximately normally distributed with zero mean, but the variance is
imately equal to

−15 −10 −5 0 5 10 15

Lag

Yt β0 β1Xt d– Zt+ +=

nrk X Y,( )

1 2+ ρk X( )ρk Y( )
k 1=

∞

∑

(11.3.6)
1 φXφY+

n 1 φXφY–( )
-----------------------------
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both AR(1) coefficients are close to 1, the ratio of the sampling variance of
he nominal value of 1/n approaches infinity. Thus, the unquestioned use of
 in deciding the significance of the sample CCF may lead to many more false
an the nominal 5% error rate, even though the response and covariate time
dependent of each other. Exhibit 11.12 shows some numerical results for the

 φX = φY = φ.

.12 Asymptotic Error Rates of a Nominal 5% Test of 
Independence for a Pair of AR(1) Processes

(0,.95,.15)
on=2*(1-pnorm(1.96*sqrt((1-phi^2)/(1+phi^2))))
f(rbind(phi,rejection),2)
s(M)=c('phi', 'Error Rate')

oblem of inflated variance of the sample cross-correlation coefficients
ore acute for nonstationary data. In fact, the sample cross-correlation coeffi-
 no longer be approximately normally distributed even with a large sample
it 11.13 displays the histogram of 1000 simulated lag zero cross-correlations
o independent IMA(1,1) processes each of size 500. An MA(1) coefficient
as used for both simulated processes. Note that the distribution of r0(X,Y) is

rmal and widely dispersed between −1 and 1. See Phillips (1998) for a rele-
tical discussion.

.13 Histogram of 1000 Sample Lag Zero Cross-Correlations of 
Two Independent IMA(1,1) Processes Each of Size 500

 φY 0.00 0.15 0.30 0.45 0.60 0.75 0.90

te 5% 6% 7% 11% 18% 30% 53%
r0((X,,  Y))

−1.0 −0.5 0.0 0.5 1.0
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d(23457)
tion.v=NULL; B=1000; n=500
in 1:B) {x=cumsum(arima.sim(model=list(ma=.8),n=n))
m(arima.sim(model=list(ma=.8),n=n))
tion.v=c(correlation.v,ccf(x,y,lag.max=1, 
F)$acf[2])}
rrelation.v,prob=T,xlab=expression(r[0](X,Y)))

results provide insight into why we sometimes obtain nonsense (spurious)
between time series variables. The phenomenon of spurious correlation was
 systematically by Yule (1926).

example, the monthly milk production and the logarithms of monthly elec-
uction in the United States from January 1994 to December 2005 are shown
1.14. Both series have an upward trend and are highly seasonal.

.14 Monthly Milk Production and Logarithms of Monthly 
Electricity Production in the U.S.

lk); data(electricity)
ectricity=ts.intersect(milk,log(electricity))
lk.electricity,yax.flip=T)

ation shows that these series have a cross-correlation coefficient at lag zero
ich is “statistically significantly different from zero” as judged against the
ror criterion of . Exhibit 11.15 displays the strong cross-
 between these two variables at a large number of lags.
ss to say, it is difficult to come up with a plausible reason for the relationship
nthly electricity production and monthly milk production. The nonstationar-
ilk production series and in the electricity series is more likely the cause of

12
.4

12
.7

994 1996 1998 2000 2002 2004 2006

Lo
g(

el
ec
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ity
)

Time

1.96 n⁄ 0.16=
s correlations found between the two series. The following section contains
ussion of this example.
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.15 Sample Cross-Correlation Between Monthly Milk Production 
and Logarithm of Monthly Electricity Production in the U.S.

vector(milk.electricity[,1]), 
ctor(milk.electricity[,2]),ylab='CCF')

whitening and Stochastic Regression

ding section, we found that with strongly autocorrelated data it is difficult to
ependence between the two processes. Thus, it is pertinent to disentangle the
iation between X and Y, say, from their autocorrelation. A useful device for
s prewhitening. Recall that, for the case of stationary X and Y that are inde-
each other, the variance of is approximately

(11.4.1)

tion of this formula reveals that the approximate variance is 1/n if either one
 X or Y is a white noise process. In practice, the data may be nonstationary,
y be transformed to approximately white noise by replacing the data by the
om a fitted ARIMA model. For example, if X follows an ARIMA(1,1,0)
 no intercept term, then

(11.4.2)

se. More generally, if Xt follows some invertible ARIMA(p,d,q) model, then
 AR(∞) representation

−15 −10 −5 0 5 10 15

Lag

rk X Y,( )

1
n
--- 1 2+ ρk X( )ρk Y( )

k 1=

∞

∑

Xt Xt 1– φ Xt 1– Xt 2––( )–– 1 1 φB+( )– φB
2

+ ]Xt= =
’s are white noise. The process of transforming the X’s to the ’s via the fil-
 − π1B − π2B2 −  is known as whitening or prewhitening. We now can

X̃t 1 π1B π2B
2 …–––( )Xt π B( )Xt= =

X̃
…
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CF between X and Y by prewhitening the Y and X using the same filter based
ocess and then computing the CCF of  and ; that is, the prewhitened Y
e prewhitening is a linear operation, any linear relationships between the

ies will be preserved after prewhitening. Note that we have abused the termi-
 need not be white noise because the filter π(B) is tailor-made only to trans-

 white noise process—not Y. We assume, furthermore, that  is stationary.
ch has two advantages: (i) the statistical significance of the sample CCF of

ened data can be assessed using the cutoff , and (ii) the theoretical
 of the CCF so estimated is proportional to certain regression coefficients.
 (ii), consider a more general regression model relating X to Y and, without
rality, assume both processes have zero mean:

(11.4.3)

 independent of Z and the coefficients β are such that the process is
d. In this model, the coefficients βk could be nonzero for any integer k. How-
l applications, the doubly infinite sum is often a finite sum so that the model
o

(11.4.4)

 be assumed below even though we retain the doubly infinite summation
 ease of exposition. If the summation ranges only over a finite set of positive
n X leads Y and the covariate X serves as a useful leading indicator for
pplying the filter π(B) to both sides of this model, we get

(11.4.5)

.The prewhitening procedure thus orthogonal-
ious lags of X in the original regression model. Because  is a white noise
nd  is independent of , the theoretical cross-correlation coefficient
 and  at lag k equals . In other words, the theoretical cross-
of the prewhitened processes at lag k is proportional to the regression coeffi-

uick preliminary analysis, an approximate prewhitening can be done easily
erencing the data (if needed) and then fitting an approximate AR model with
termined by minimizing the AIC. For example, for the milk production and
onsumption data, both are highly seasonal and contain trends. Consequently,
 differenced with both regular differencing and seasonal differencing, and

Ỹ X̃

˜

Ỹ

1.96 n⁄

Yt  = βjXt j– Zt+
j ∞–=

∞

∑

Yt  = βjXt j– Zt+  ,
j m1=

m2

∑

Ỹt  = βkX̃t k– Z̃t+
k ∞–=

∞

∑

Zt π1Zt 1– π2Zt 2–
…–––

X̃
X̃ Z̃

Ỹ β k– σ
X̃

σ
Ỹ

⁄( )
whitening can be carried out by filtering both differenced series by an AR
 to the differenced milk data. Exhibit 11.16 shows the sample CCF between

ened series. None of the cross-correlations are now significant except for lag
s just marginally significant. The lone significant cross-correlation is likely a
 since we expect about 1.75 false alarms out of the 35 sample cross-correla-
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ned. Thus, it seems that milk production and electricity consumption are in
 uncorrelated, and the strong cross-correlation pattern found between the raw
is indeed spurious.

.16 Sample CCF of Prewhitened Milk and Electricity Production

ts.intersect(diff(diff(milk,12)), 
diff(log(electricity),12)))
en(as.vector(me.dif[,1]),as.vector(me.dif[,2]), 
'CCF')

odel defined by Equation (11.3.4) on page 262 is known variously as the
nction model, the distributed-lag model, or the dynamic regression model.
cation of which lags of the covariate enter into the model is often done by
the sample cross-correlation function based on the prewhitened data. When
ppears to require a fair number of lags of the covariate, the regression coeffi-
be parsimoniously specified via an ARMA specification similar to the case
ion analysis; see Box et al. (1994, Chapter 11) for some details. We illustrate
 below with two examples where only one lag of the covariate appears to be
e specification of the stochastic noise process Zt can be done by examining
ls from an ordinary least squares (OLS) fit of Y on X using the techniques
arlier chapters.
st example of this section is a sales and price dataset of a certain potato chip
ird Foods Ltd., New Zealand. The data consist of the log-transformed

t sales of large packages of standard potato chips sold and the weekly aver-
ver a period of 104 weeks from September 20, 1998 through September 10,
xhibit 11.17. The logarithmic transformation is needed because the sales
hly skewed to the right. These data are clearly nonstationary. Exhibit 11.18

−15 −10 −5 0 5 10 15

Lag
 after differencing and using prewhitened data, the CCF is significant only at
sting a strong contemporaneous negative relationship between lag 1 of price
igher prices are associated with lower sales.
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.17  Weekly Log(Sales) and Price for Bluebird Potato Chips

uebird)
uebird,yax.flip=T)

.18 Sample Cross Correlation Between Prewhitened Differenced 
Log(Sales) and Price of Bluebird Potato Chips

en(y=diff(bluebird)[,1],x=diff(bluebird)[,2],ylab='CCF')

t 11.19 reports the estimates from the OLS regression of log(sales) on price.
ls are, however, autocorrelated, as can be seen from their sample ACF and
ayed in Exhibits 11.20 and 11.21, respectively. Indeed, the sample autocor-
 the residuals are significant for the first four lags, whereas the sample partial
tions are significant at lags 1, 2, 4, and 14.
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.19 OLS Regression Estimates of Log(Sales) on Price

luebird[,1]; price=bluebird[,2]
=lm(sales~price,data=bluebird)
(chip.m1)

.20 Sample ACF of Residuals from OLS Regression of 
Log(Sales) on Price

iduals(chip.m1),ci.type='ma')

.21 Sample PACF of Residuals from OLS Regression of 
Log(Sales) on Price

Estimate Std. Error t value Pr(>)

15.90 0.2170 73.22 < 0.0001

−2.489 0.1260 −19.75 < 0.0001

5 10 15 20

Lag
siduals(chip.m1))

5 10 15 20

Lag
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mple EACF of the residuals, shown in Exhibit 11.22, contains a triangle of
a vertex at (1,4), thereby suggesting an ARMA(1,4) model. Hence, we fit a

odel of log(sales) on price with an ARMA(1,4) error.

.22 The Sample EACF of the Residuals from the OLS 
Regression of Log(Sales) on Price

siduals(chip.m1))

 out that the estimates of the AR(1) coefficient and the MA coefficients θ1
not significant, and hence a model fixing these coefficients to be zero was
ly fitted and reported in Exhibit 11.23.

.23 Maximum Likelihood Estimates of a Regression Model of 
Log(sales) on Price with a Subset MA(4) for the Errors

=arima(sales,order=c(1,0,4),xreg=data.frame(price))

=arima(sales,order=c(1,0,4),xreg=data.frame(price), 
=c(NA,0,NA,0,NA,NA,NA)); chip.m3
=arima(sales,order=c(0,0,4),xreg=data.frame(price), 
=c(0,NA,0,NA,NA,NA)); chip.m4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

x x x x 0 0 x x 0 0 0 0 0 0 

x 0 0 x 0 0 0 0 0 0 0 0 0 0 

x x 0 x 0 0 0 0 0 0 0 0 0 0 

x x 0 x 0 0 0 0 0 0 0 0 0 0 

0 x x 0 0 0 0 0 0 0 0 0 0 0 

x x x 0 x 0 0 0 0 0 0 0 0 0 

x x 0 x x x 0 0 0 0 0 0 0 0 

x 0 x 0 0 0 0 0 0 0 0 0 0 0 

r θ1 θ2 θ3 θ4 Intercept Price 

0 −0.2884 0 −0.5416 15.86 −2.468

rror 0 0.0794 0 0 0.1167 0.1909 0.1100

d as 0.02623: log likelihood = 41.02, AIC = −70.05 
at the regression coefficient estimate on Price is similar to that from the OLS
it earlier, but the standard error of the estimate is about 10% lower than that

ple OLS regression. This illustrates the general result that the simple OLS
 consistent but the associated standard error is generally not trustworthy.
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siduals from this fitted model by and large pass various model diagnostic
t that the residual ACF is significant at lag 14. As a result, some Box-Ljung
s have p-values bordering on 0.05 when 14 or more lags of the residual auto-
 are included in the test. Even though the significant ACF at lag 14 may sug-
erly effect, we do not report a more complex model including lag 14 because
s do not exactly make a quarter and (2) adding a seasonal MA(1) component
 only results in marginal improvement in terms of model diagnostics.

econd example, we study the impact of higher gasoline price on public trans-
sage. The dataset consists of the monthly number of boardings on public
on in the Denver, Colorado, region together with the average monthly gaso-
n Denver from August 2000 through March 2006. Both variables are skewed
and hence are log-transformed. As we shall see below, the logarithmic trans-
lso makes the final fitted model more interpretable. The time series plots,

xhibit 11.24, display the increasing trends for both variables and the seasonal
 in the number of boardings. Based on the sample ACF and PACF, an

1,0) model was fitted to the gasoline price data. This fitted model was then
r the boardings data before computing their sample CCF which is shown in

25. The sample CCF is significant at lags 0 and 15, suggesting positive con-
us correlation between gasoline price and public transportation usage. The

CCF at lag 15, however, is unlikely to be real, as it is hard to imagine why the
oardings might lead the gasoline price with a lag of 15 months. In this case,

reliminary approach of prewhitening the series by fitting a long AR model,
owed that none of the CCFs are significant. It turns out that even after differ-
data, the AIC selects an AR(16) model. The higher order selected coupled
atively short time span may substantially weaken the power to detect correla-
en the two variables. Incidentally, this example warns against simply relying
 to select a high-order AR model to do prewhitening, especially with rela-
 time series data.

.24 Logarithms of Monthly Public Transit Boardings and 
Gasoline Prices in Denver, August 2000 through March 2006

4.
8

5.
4
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.25 Sample CCF of Prewhitened Log(Boardings) and Log(Price)

a(boardings[,2],order=c(2,1,0))
en(x=boardings[,2],y=boardings[,1],x.model=m1)

on the sample ACF, PACF, and EACF of the residuals from a linear model of
n gasoline price, a seasonal ARIMA(2,0,0)×(1,0 ,0)12 model was tentatively
r the error process in the regression model. However, the φ2 coefficient esti-
ot significant, and hence the AR order was reduced to p = 1. Using the outlier
chniques discussed in Section 11.2, we found an additive outlier for March
 innovative outlier for March 2004. Because the test statistic for the additive

 a larger magnitude than that of the innovative outlier (−4.09 vs. 3.65), we
d the additive outlier in the model.† Diagnostics of the subsequent fitted
als that the residual ACF was significant at lag 3, which suggests the error
 seasonal ARIMA(1,0,3)×(1,0,0)12 + outlier process. As the estimates of

ents θ1 and θ2 were found to be insignificant, they were suppressed from the
odel that is reported in Exhibit 11.26.

stics of the final fitted model suggest a good fit to the data. Also, no further
re detected. A 95% confidence interval for the regression coefficient on
 is (0.0249, 0.139). Note the interpretation of the fitted model: a 100%
the price of gasoline will lead to about an 8.2% increase in public transporta-

−1.0 −0.5 0.0 0.5 1.0

Lag
quent investigation revealed that a 30 inch snowstorm in March 2003 completely shut
Denver for one full day. It remained partially shut down for a few more days.
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.26 Maximum Likelihood Estimates of the Regression Model of 
Log(Boardings) on Log(Price) with ARMA Errors

rdings=boardings[,1]
ce=boardings[,2]
gs.m1=arima(log.boardings,order=c(1,0,0), 
nal=list(order=c(1,0,0),period=12), 
data.frame(log.price))
gs.m1
O(boardings.m1); detectIO(boardings.m1)
gs.m2=arima(log.boardings,order=c(1,0,3), 
nal=list(order=c(1,0,0),period=12), 
data.frame(log.price,outlier=c(rep(0,31),1,rep(0,36))), 
=c(NA,0,0,rep(NA,5)))
gs.m2
O(boardings.m2); detectIO(boardings.m2)
boardings.m2,tol=.15,gof.lag=24)

o of interest to note that dropping the outlier term from the model results in
ession estimate on Log(Price) of 0.0619 with a standard error of 0.0372.
 the outlier is not properly modeled, the regression coefficient ceases to be

at the 5% level. As demonstrated by this example, the presence of an outlier
ly affect inference in time series modeling.

mmary

ter, we used information from other events or other time series to help model
ies of main interest. We began with the so-called intervention models, which
ncorporate known external events that we believe have a significant effect on
ries of interest. Various simple but useful ways of modeling the effects of
entions were discussed. Outliers are observations that deviate rather substan-
the general pattern of the data. Models were developed to detect and incorpo-
 in time series. The material in the section on spurious correlation illustrates
lt it is to assess relationships between two time series, but methods involving
g were shown to help in this regard. Several substantial examples were used

φ1 θ3 Φ1 Intercept Log(Price) Outlier 

0.8782 0.3836 0.8987 12.12 0.0819 −0.0643

rror 0.0645 0.1475 0.0395 0.1638 0.0291 0.0109

ted as 0.0004094: log-likelihood = 158.02, AIC = −304.05
 the methods and techniques discussed.
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ES

uce a time series plot of the air passenger miles over the period January 1996
gh May 2005 using seasonal plotting symbols. Display the graph full-screen
iscuss the seasonality that is displayed. The data are in the file named

les.
 that the expression given for mt in Equation (11.1.7) on page 251 satisfies
R(1)” recursion given in Equation (11.1.6) with the initial condition m0 = 0.

the “half-life” for the intervention effect specified in Equation (11.1.6) on
 251 when δ = 0.7.
 that the “half-life” for the intervention effect specified in Equation (11.1.6)
ge 251 increases without bound as δ increases to 1.
 that for the intervention effect specified by Equation (11.1.6) on page 251

ider the intervention effect displayed in Exhibit 11.3, (b), page 253.
how that the jump at time T + 1 is of height ω as displayed.
how that, as displayed, the intervention effect tends to ω/(1 − δ) as t
creases without bound.
ider the intervention effect displayed in Exhibit 11.3, (c), page 253. Show
he effect increases linearly starting at time T + 1 with slope ω as displayed.
ider the intervention effect displayed in Exhibit 11.4, (a), page 254.
how that the jump at time T + 1 is of height ω as displayed.
how that, as displayed, the intervention effect tends to go back to 0 as t
creases without bound.
ider the intervention effect displayed in Exhibit 11.4, (b), page 254.
how that the jump at time T + 1 is of height ω1 + ω2 as displayed.
how that, as displayed, the intervention effect tends to ω2 as t increases with-
ut bound.
ider the intervention effect displayed in Exhibit 11.4, (c), page 254.
how that the jump at time T is of height ω0 as displayed.
how that the jump at time T + 1 is of height ω1 + ω2 as displayed.
how that, as displayed, the intervention effect tends to ω2 as t increases with-
ut bound.
late 100 pairs of (Xt,Yt) from the model of Equation (11.3.1) on page 261
d = 3, β0 = 0, and β1 = 1. Use σX = 2 and σe = 1. Display and interpret the
le CCF between these two series.
 that when the X and Y are independent AR(1) time series with parameters
d φY, respectively, Equation (11.3.5) on page 262 reduces to give Equation

mtδ 1→
lim

ω T t–( ) for t T≥,
0 otherwise,⎩

⎨
⎧

=

.6).
 that for the process defined by Equation (11.4.5) on page 266, the
-correlation between  and  at lag k is given by .X̃ Ỹ β k– σ

X̃
σ

Ỹ
⁄( )
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late an AR time series with φ = 0.7, μ = 0, = 1, and of length n = 48. Plot
me series, and inspect the sample ACF and PACF of the series.
ow add a step function response of ω = 1 unit height at time t = 36 to the
mulated series. The series now has a theoretical mean of zero from t = 1 to
5 and a mean of 1 from t = 36 on. Plot the new time series and calculate the
mple ACF and PACF for the new series. Compare these with the results for
e original series.
epeat part (a) but with an impulse response at time t = 36 of unit height, ω =
. Plot the new time series, and calculate the sample ACF and PACF for the
ew series. Compare these with the results for the original series. See if you
an detect the additive outlier at time t = 36 assuming that you do not know
here the outlier might occur.
ider the air passenger miles time series discussed in this chapter. The file is
d airmiles. Use only the preintervention data (that is, data prior to September
) for this exercise.
erify that the sample ACF for the twice differenced series of the logarithms
f the preintervention data is as shown in Exhibit 11.5 on page 255.
he plot created in part (a) suggests an ARIMA(0,1,1)×(0,1,0)12. Fit this
odel and assess its adequacy. In particular, verify that additive outliers are

etected in December 1996, January 1997, and December 2002.
ow fit an ARIMA(0,1,1)×(0,1,0)12 + three outliers model and assess its ade-
uacy.
inally, fit an ARIMA(0,1,1)×(0,1,1)12 + three outliers model and assess its
dequacy.
he logarithms of the Denver region public transportation boardings and Den-
asoline price series. The data are in the file named boardings.
isplay the time series plot of the monthly boardings using seasonal plotting
mbols. Interpret the plot.
isplay the time series plot of the monthly average gasoline prices using sea-
nal plotting symbols. Interpret the plot.

data file named deere1 contains 82 consecutive values for the amount of
tion (in 0.000025 inch units) from a specified target value that an industrial
ining process at Deere & Co. produced under certain specified operating
itions. These data were first used in Exercise 6.33, page 146, where we
ved an obvious outlier at time t = 27.
it an AR(2) model using the original data including the outlier.
est the fitted AR(2) model of part (a) for both AO and IO outliers.
ow fit the AR(2) model incorporating a term in the model for the outlier.
ssess the fit of the model in part (c) using all of our diagnostic tools. In par-
cular, compare the properties of this model with the one obtained in part (a).

σe
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ata file named days contains accounting data from the Winegard Co. of Bur-
n, Iowa. The data are the number of days until Winegard receives payment

30 consecutive orders from a particular distributor of Winegard products.
 name of the distributor must remain anonymous for confidentiality reasons.)
e data were first investigated in Exercise 6.39, page 147, but several outliers
 observed. When the observed outliers were replaced by more typical values,
A(2) model was suggested.
it an MA(2) model to the original data, and test the fitted model for both AO
nd IO outliers.
ow fit the MA(2) model incorporating the outliers into the model.
ssess the fit of the model obtained in part (b). In particular, are any more out-
ers indicated?
it another MA(2) model incorporating any additional outliers found in part
), and assess the fit of this model.
ata file named bluebirdlite contains weekly sales and price data for Bluebird

potato chips. Carry out an analysis similar to that for Bluebird Standard
o chips that was begun on page 267.
ile named units contains annual unit sales of a certain product from a widely
n international company over the years 1983 through 2005. (The name of

ompany must remain anonymous for proprietary reasons.)
lot the time series of units and describe the general features of the plot.
se ordinary least squares regression to fit a straight line in time to the series.
isplay the sample PACF of the residuals from this model, and specify an
RIMA model for the residuals.
ow fit the model unit sales = AR(2) + time. Interpret the output. In particu-
r, compare the estimated regression coefficient on the time variable obtained
ere with the one you obtained in part (b).
erform a thorough analysis of the residuals from this last model.
epeat parts (d) and (e) using the logarithms of unit sales as the response vari-
ble. Compare these results witjh those obtained in parts (d) and (e).
hapters 5–8, we investigated an IMA(1,1) model for the logarithms of
hly oil prices. Exhibit 8.3 on page 178 suggested that there may be several
rs in this series. Investigate the IMA(1,1) model for this series for outliers
 the techniques developed in this chapter. Be sure to compare your results
those obtained earlier that ignored the outliers. The data are in the file named
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 discussed so far concern the conditional mean structure of time series data.
ore recently, there has been much work on modeling the conditional vari-
re of time series data—mainly motivated by the needs for financial model-

t} be a time series of interest. The conditional variance of Yt given the past Y

1,Yt − 2,…, measures the uncertainty in the deviation of Yt from its condi-
 E(Yt|Yt − 1,Yt − 2,…). If {Yt} follows some ARIMA model, the (one-step-

ditional variance is always equal to the noise variance for any present and
 of the process. Indeed, the constancy of the conditional variance is true for
 of any fixed number of steps ahead for an ARIMA process. In practice, the
head) conditional variance may vary with the current and past values of the
d, as such, the conditional variance is itself a random process, often referred
nditional variance process. For example, daily returns of stocks are often
 have larger conditional variance following a period of violent price move-
a relatively stable period. The development of models for the conditional
ocess with which we can predict the variability of future values based on cur-
st data is the main concern of the present chapter. In contrast, the ARIMA
ied in earlier chapters focus on how to predict the conditional mean of future
d on current and past data.
ce, the conditional variance of the return of a financial asset is often adopted

e of the risk of the asset. This is a key component in the mathematical theory
 financial asset and the VaR (Value at Risk) calculations; see, for example,
). In an efficient market, the expected return (conditional mean) should be
ence the return series should be white noise. Such series have the simplest
tion structure. Thus, for ease of exposition, we shall assume in the first few
 this chapter that the data are returns of some financial asset and are white
is, serially uncorrelated data. By doing so, we can concentrate initially on
w to model the conditional variance structure of a time series. By the end of
, we discuss some simple schemes for simultaneously modeling the condi-
 and conditional variance structure by combining an ARIMA model with a
277

nditional heteroscedasticity.
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me Common Features of Financial Time Series

ple of financial time series, we consider the daily values of a unit of the
 fund over the period from August 26, 2004 to August 15, 2006. The CREF

is a fund of several thousand stocks and is not openly traded in the stock mar-
stocks are not traded over weekends or on holidays, only on so-called trad-
e CREF data do not change over weekends and holidays. For simplicity, we
e the data as if they were equally spaced. Exhibit 12.1 shows the time series
CREF data. It shows a generally increasing trend with a hint of higher vari-
 higher level of the stock value. Let {pt} be the time series of, say, the daily

e financial asset. The (continuously compounded) return on the tth day is

(12.1.1)

 the returns are then multiplied by 100 so that they can be interpreted as per-
nges in the price. The multiplication may also reduce numerical errors as the
 could be very small numbers and render large rounding errors in some cal-

.1 Daily CREF Stock Values: August 26, 2004 to August 15, 
2006

ph(width=4.875,height=2.5,pointsize=8)
EF); plot(CREF)

t 12.2 plots the CREF return series (sample size = 500). The plot shows that
were more volatile over some time periods and became very volatile toward

rt log pt( ) log pt 1–( )–=

Time

0 100 200 300 400 500

Time

0 100 200 300 400 500
he study period. This observation may be more clearly seen by plotting the
nce plot of the absolute or squared returns; see Exercise 12.1, page 316.

 stands for College Retirement Equities Fund—a group of stock and bond funds cru-
 many college faculty retirement plans.
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lts might be triggered by the instability in the Middle East due to a war in
banon from July 12 to August 14, 2006, the period that is shaded in gray in
.1 and 12.2. This pattern of alternating quiet and volatile periods of substan-
n is referred to as volatility clustering in the literature. Volatility in a time
s to the phenomenon where the conditional variance of the time series varies

he study of the dynamical pattern in the volatility of a time series (that is,
nal variance process of the time series) constitutes the main subject of this

.2 Daily CREF Stock Returns: August 26, 2004 to August 15, 
2006

diff(log(CREF))*100
cref); abline(h=0)

mple ACF and PACF of the daily CREF returns (multiplied by 100), shown
12.3 and 12.4, suggest that the returns have little serial correlation at all. The
CF (not shown) also suggests that a white noise model is appropriate for
The average CREF return equals 0.0493 with a standard error of 0.02885.
ean of the return process is not statistically significantly different from zero.
ected based on the efficient-market hypothesis alluded to in the introduction
ter.

Time
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.3 Sample ACF of Daily CREF Returns: 8/26/04 to 8/15/06

ref)

.4 Sample PACF of Daily CREF Returns: 8/26/04 to 8/15/06

cref)

er, the volatility clustering observed in the CREF return data gives us a hint
ay not be independently and identically distributed—otherwise the variance
nstant over time. This is the first occasion in our study of time series models

eed to distinguish between series values being uncorrelated and series values
endent. If series values are truly independent, then nonlinear instantaneous

5 10 15 20 25

Lag

5 10 15 20 25

Lag
ions such as taking logarithms, absolute values, or squaring preserves inde-
owever, the same is not true of correlation, as correlation is only a measure

pendence. Higher-order serial dependence structure in data can be explored
 the autocorrelation structure of the absolute returns (of lesser sampling vari-
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 less mathematical tractability) or that of the squared returns (of greater sam-
bility but with more manageability in terms of statistical theory). If the
independently and identically distributed, then so are the absolute returns (as
red returns), and hence they will be white noise as well. Hence, if the abso-
red returns admit some significant autocorrelations, then these autocorrela-
h some evidence against the hypothesis that the returns are independently
ally distributed. Indeed, the sample ACF and PACF of the absolute returns
f the squared returns in Exhibits 12.5 through 12.8 display some significant
tions and hence provide some evidence that the daily CREF returns are not
tly and identically distributed.

.5 Sample ACF of the Absolute Daily CREF Returns

(r.cref))

.6 Sample PACF of the Absolute Daily CREF Returns
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Lag
s(r.cref))

5 10 15 20 25

Lag
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.7 Sample ACF of the Squared Daily CREF Returns

ref^2)

.8 Sample PACF of the Squared Daily CREF Returns

cref^2)

visual tools are often supplemented by formally testing whether the squared
tocorrelated using the Box-Ljung test. Because no model fitting is required,
 of freedom of the approximating chi-square distribution for the Box-Ljung
als the number of correlations used in the test. Hence, if we use m autocorre-
e squared data in the test, the test statistic is approximately chi-square dis-

h m degrees of freedom, if there is no ARCH. This approach can be extended

5 10 15 20 25

Lag

5 10 15 20 25

Lag
 when the conditional mean of the process is non-zero and if an ARMA
equate in describing the autocorrelation structure of the data. In which case,
utocorrelations of the squared residuals from this model can be used to test
sence of ARCH. The corresponding Box-Ljung statistic will have a
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distribution with m degrees of freedom under the assumption of no ARCH
McLeod and Li (1983) and Li(2004). Below, we shall refer to the test for
cts using the Box-Ljung statistic with the squared residuals or data as the
i test.
tice, it is useful to apply the McLeod-Li test for ARCH using a number of
t the p-values of the test. Exhibit 12.9 shows that the McLeod-Li tests are all

at the 5% significance level when more than 3 lags are included in the test.
adly consistent with the visual pattern in Exhibit 12.7 and formally shows
ence for ARCH in this data.

.9 McLeod-Li Test Statistics for Daily CREF Returns

ph(width=4.875, height=3,pointsize=8)
Li.test(y=r.cref)

tributional shape of the CREF returns can be explored by constructing a QQ
res plot—see Exhibit 12.10. The QQ plot suggests that the distribution of
 have a tail thicker than that of a normal distribution and may be somewhat
he right. Indeed, the Shapiro-Wilk test statistic for testing normality equals
 p-value equal to 0.024, and hence we reject the normality hypothesis at the
icance levels.
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.10 QQ Normal Plot of Daily CREF Returns

ph(width=2.5,height=2.5,pointsize=8)
r.cref); qqline(r.cref)

ewness of a random variable, say Y, is defined by E(Y−μ)3/σ3, where μ and σ
n and standard deviation of Y, respectively. It can be estimated by the sample

(12.1.2)

 is the sample variance. The sample skewness of the CREF
als 0.116. The thickness of the tail of a distribution relative to that of a nor-
tion is often measured by the (excess) kurtosis, defined as E(Y − μ)4/σ4 − 3.

 distributions, the kurtosis is always equal to zero. A distribution with posi-
s is called a heavy-tailed distribution, whereas it is called light-tailed if its
egative. The kurtosis can be estimated by the sample kurtosis

(12.1.3)

mple kurtosis of the CREF returns equals 0.6274. An alternative definition of
difies the formula and uses E(rt − μ)4/σ4; that is, it does not subtract three

tio. We shall always use the former definition for kurtosis.
r test for normality is the Jarque-Bera test, which is based on the fact that a
ribution has zero skewness and zero kurtosis. Assuming independently and
distributed data Y1,Y2,…,Yn, the Jarque-Bera test statistic is defined as 
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 the sample skewness and g2 is the sample kurtosis. Under the null hypothe-
ality, the Jarque-Bera test statistic is approximately distributed as χ2 with

s of freedom. In fact, under the normality assumption, each summand defin-
que-Bera statistic is approximately χ2 with 1 degree of freedom. The
 test rejects the normality assumption if the test statistic is too large. For the
rns, JB = 500×0.1162/6 + 500×0.62742/24 = 1.12 + 8.20 = 9.32 with a
al to 0.011. Recall that the upper 5 percentage point of a χ2 distribution with
 of freedom equals 3.84. Hence, the data appear not to be skewed but do have
 heavy tail. In particular, the normality assumption is inconsistent with the
rn data—a conclusion that is also consistent with the finding of the Sha-
est.
mary, the CREF return data are found to be serially uncorrelated but admit a
r dependence structure, namely volatility clustering, and a heavy-tailed dis-
 is commonly observed that such characteristics are rather prevalent among

e series data. The GARCH models introduced in the next sections attempt
a framework for modeling and analyzing time series that display some of
cteristics.

 ARCH(1) Model

2) first proposed the autoregressive conditional heteroscedasticity (ARCH)
odeling the changing variance of a time series. As discussed in the previous
 return series of a financial asset, say {rt}, is often a serially uncorrelated
ith zero mean, even as it exhibits volatility clustering. This suggests that the
 variance of rt given past returns is not constant. The conditional variance,
d to as the conditional volatility, of rt will be denoted by , with the
 1 signifying that the conditioning is upon returns through time t − 1. When

le, the squared return  provides an unbiased estimator of . A series
ared returns may foretell a relatively volatile period. Conversely, a series of
ed returns may foretell a relatively quiet period. The ARCH model is for-
ression model with the conditional volatility as the response variable and the
f the squared return as the covariates. For example, the ARCH(1) model
t the return series {rt} is generated as follows:

(12.2.1)

(12.2.2)

d ω are unknown parameters, {εt} is a sequence of independently and identi-
uted random variables each with zero mean and unit variance (also known
ations), and ε  is independent of r , j = 1 , 2,… . The innovation ε  is pre-

σt |t 1–
2

rt
2 σt |t 1–

2

rt σt |t 1– εt=

σt |t 1–
2 ω αrt 1–

2
+=
t t − j t
ave unit variance so that the conditional variance of rt equals . Thisσt |t 1–

2
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(12.2.3)

 equality follows because σt|t − 1 is known given the past returns, the third
lds because εt is independent of past returns, and the last equality results
sumption that the variance of εt equals 1.
t 12.11 shows the time series plot of a simulated series of size 500 from an
odel with ω = 0.01 and α = 0.9. Volatility clustering is evident in the data as
ations cluster together, although the series is able to recover from large fluc-

ickly because of the very short memory in the conditional variance process.†

.11 Simulated ARCH(1) Model with ω = 0.01 and α1 = 0.9

d(1235678); library(tseries)
.sim=garch.sim(alpha=c(.01,.9),n=500)
rch01.sim,type='l',ylab=expression(r[t]), xlab='t')

the ARCH model resembles a regression model, the fact that the conditional
 not directly observable (and hence is called a latent variable) introduces
ty in the use of ARCH models in data analysis. For example, it is not obvi-

 explore the regression relationship graphically. To do so, it is pertinent to
conditional variance by some observable in Equation (12.2.2). Let

E(rt
2
|rt j– j, 1 2 …), ,= E σt |t 1–

2 εt
2
|rt j– j, 1 2 …, ,=( )=

σt |t 1–
2

E εt
2
|rt j– j, 1 2 …, ,=( )=

 σt |t 1–
2

E εt
2( )=

 σt |t 1–
2

=

0 100 200 300 400 500

t

 package named tseries is reqired for this chapter. We assume that the reader has
oaded and installed it.
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(12.2.4)

rified that {ηt} is a serially uncorrelated series with zero mean. Moreover, ηt
ted with past returns. Substituting  into Equation (12.2.2)

s that

(12.2.5)

quared return series satisfies an AR(1) model under the assumption of an
odel for the return series! Based on this useful observation, an ARCH(1)

 be specified if an AR(1) specification for the squared returns is warranted by
learned from earlier chapters.
s its value in terms of data analysis, the deduced AR(1) model for the
urns can be exploited to gain theoretical insights on the parameterization of
 model. For example, because the squared returns must be nonnegative, it
e to always restrict the parameters ω and α to be nonnegative. Also, if the
s is stationary with variance σ2, then taking expectation on both sides of
2.2.5) yields

(12.2.6)

,  and hence 0 ≤ α < 1. Indeed, it can be shown (Ling and
002) that the condition 0 ≤ α < 1 is necessary and sufficient for the (weak)
 of the ARCH(1) model. At first sight, it seems that the concepts of stationar-
ditional heteroscedasticity may be incompatible. However, recall that weak
 of a process requires that the mean of the process be constant and the covari-
 process at any two epochs be finite and identical whenever the lags of the
 are the same. In particular, the variance is constant for a weakly stationary
e condition 0 ≤ α < 1 implies that there exists an initial distribution for r0
 defined by Equations (12.2.1) and (12.2.2) for t ≥ 1 is weakly stationary in
ove. It is interesting to observe that weak stationarity does not preclude the
f a nonconstant conditional variance process, as is the case for the ARCH(1)
n be checked that the ARCH(1) process is white noise. Hence, it is an exam-
ite noise that admits a nonconstant conditional variance process as defined
 (12.2.2) that varies with the lag one of the squared process.
fying feature of the ARCH(1) model is that, even if the innovation ηt has a
ribution, the stationary distribution of an ARCH(1) model with 1 > α > 0 has
t is, its kurtosis, , is greater than zero. (Recall that the kurtosis
 distribution is always equal to 0, and a distribution with positive kurtosis is
at-tailed, while one with a negative kurtosis is called a light-tailed distribu-
e the validity of this claim, consider the case where the {εt} are indepen-
identically distributed as standard normal variables. Raising both sides of

ηt rt
2 σt |t 1–

2
–=

σt |t 1–
2 rt

2 ηt–=

rt
2 ω αrt 1–

2 ηt+ +=

σ2 ω ασ2
+=

σ2 ω 1 α–( )⁄=

E rt
4( ) σ4 3–⁄
2.2.1) on page 285 to the fourth power and taking expectations gives
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(12.2.7)

uality follows from the iterated-expectation formula, which, in the simple
 random variables X, Y, states that E[E(X|Y)] = E(X). [See Equation (9.E.5) on
r a review.] The second equality results from the fact that σt|t − 1 is known
eturns. The third equality is a result of the independence between εt and past
 the final equality follows from the normality assumption. It remains to cal-

. Now, it is unclear whether the preceding expectation exists as a finite
r the moment, assume it does and, assuming stationarity, let it be denoted by
e shall derive a condition for this assumption to be valid. Raising both sides
 (12.2.2) to the second power and taking expectation yields

(12.2.8)

ies

(12.2.9)

ity shows that a necessary (and, in fact, also sufficient) condition for the
f τ is that , in which case the ARCH(1) process has finite
ent. Incidentally, this shows that a stationary ARCH(1) model need not have

h moments. The existence of finite higher moments will further restrict the
ange—a feature also shared by higher-order analogues of the ARCH model
ants. Returning to the calculation of the kurtosis of an ARCH(1) process, it

n by tedious algebra that Equation (12.2.1) implies that τ > σ4 and hence
. Thus the kurtosis of a stationary ARCH(1) process is greater than zero.

s our earlier statement that an ARCH(1) process has fat tails even with nor-
tions. In other words, the fat tail is a result of the volatility clustering as spec-
uation (12.2.2).
 use of the ARCH model is to predict the future conditional variances. For
e might be interested in forecasting the h-step-ahead conditional variance

(12.2.10)

he ARCH(1) model implies that

E(rt
4
) E E σt |t 1–

4 εt
4
|rt j– j, 1 2 3 …, , ,=( )[ ]=

 E σt |t 1–
4

E εt
4
|rt j– j, 1 2 3 …, , ,=( )[ ]=

 E σt |t 1–
4

E εt
4( )[ ]=

 3E σt |t 1–
4( )=

t |t 1–
4 )

τ ω2
2ωασ2 α2

3τ+ +=

τ ω2
2ωασ2

+

1 3α2
–

-------------------------------=

0 α≤ 1 3⁄<

4

σt h |t+
2

E rt h+
2

|rt rt 1– …, ,( )=
(12.2.11)

weighted average of the long-run variance and the current squared return.
sing the iterated expectation formula, we have

σt 1|t+
2 ω αrt

2
+ 1 α–( )σ2 αrt

2
+= =
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(12.2.12)

dopt the convention that  for h < 0. The formula above pro-
rsive recipe for computing the h-step-ahead conditional variance.

RCH Models

sting formulas derived in the previous section show both the strengths and
 of an ARCH(1) model, as the forecasting of the future conditional variances
es the most recent squared return. In practice, one may expect that the accu-
casting may improve by including all past squared returns with lesser weight
stant volatilities. One approach is to include further lagged squared returns in
 The ARCH(q) model, proposed by Engle (1982), generalizes Equation
 page 285, by specifying that

(12.3.1)

eferred to as the ARCH order. Another approach, proposed by Bollerslev
 Taylor (1986), introduces p lags of the conditional variance in the model,
referred to as the GARCH order. The combined model is called the general-
ressive conditional heteroscedasticity, GARCH(p,q), model.

(12.3.2)

the backshift B notation, the model can be expressed as

(12.3.3)

te that in some of the literature, the notation GARCH(p,q) is written as
p); that is, the orders are switched. It can be rather confusing but true that the

E rt h+
2

|rt rt 1– …, ,( )=

E E σt h |t h 1–+ +
2 εt h+

2
|rt h 1–+ rt h 2–+ …, ,( ) |rt rt 1– …, ,[ ]=

E σt h |t h 1–+ +
2

E εt h+
2( )|rt rt 1– …, ,[ ]=

E σt h |t h 1–+ +
2

|rt rt 1– …, ,( )=

ω αE rt h 1–+
2

|rt rt 1– …, ,( )+=

ω ασt h 1|t–+
2

+=

σt h |t+
2

rt h+
2

=

σt |t 1–
2 ω α1rt 1–

2 α2rt 2–
2 … αqrt q–

2
+ + + +=

t |t 1–
2 ω β1σt 1|t 2––

2 … βpσt p |t p 1–––
2 α1rt 1–

2
+ + + +=

α2rt 2–
2 … αqrt q–

2
+ ++ 

1 β1B … βpB
p

––– )σt |t 1–
2 ω α1B … αqB

q
+ +( )rt

2
+=
nt sets of conventions are used in different software! A reader must find out
vention is used by the software on hand before fitting or interpreting a
odel.
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e conditional variances must be nonnegative, the coefficients in a GARCH
often constrained to be nonnegative. However, the nonnegative parameter
are not necessary for a GARCH model to have nonnegative conditional vari-
probability 1; see Nelson and Cao (1992) and Tsai and Chan (2006). Allow-
meter values to be negative may increase the dynamical patterns that can be
 the GARCH model. We shall return to this issue later. Henceforth, within

, we shall assume the nonnegative constraint for the GARCH parameters.
t 12.12 shows the time series plot of a time series, of size 500, simulated
RCH(1,1) model with standard normal innovations and parameter values
 = 0.05, and β = 0.9. Volatility clustering is evident in the plot, as large
tuations are usually succeeded by large (small) fluctuations. Moreover, the

f the lag 1 of the conditional variance in the model successfully enhances the
the volatility.

.12 Simulated GARCH(1,1) Process

d(1234567)
.sim=garch.sim(alpha=c(0.02,0.05),beta=.9,n=500)
rch11.sim,type='l',ylab=expression(r[t]), xlab='t')

 for lags 3 and 20, which are mildly significant, the sample ACF and PACF
lated data, shown in Exhibits 12.13 and 12.14, do not show significant corre-
ce, the simulated process seems to be basically serially uncorrelated as it is.

0 100 200 300 400 500

t
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.13 Sample ACF of Simulated GARCH(1,1) Process

ch11.sim)

.14 Sample PACF of Simulated GARCH(1,1) Process

rch11.sim)

ts 12.15 through 12.18 show the sample ACF and PACF of the absolute val-
 squares of the simulated data.
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.15 Sample ACF of the Absolute Values of the Simulated 
GARCH(1,1) Process

(garch11.sim))

.16 Sample PACF of the Absolute Values of the Simulated 
GARCH(1,1) Process

s(garch11.sim))

plots indicate the existence of significant autocorrelation patterns in the
d squared data and indicate that the simulated process is in fact serially
Interestingly, the lag 1 autocorrelations are not significant in any of these last
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.17 Sample ACF of the Squared Values of the Simulated 
GARCH(1,1) Process

ch11.sim^2)

.18 Sample PACF of the Squared Values of the Simulated 
GARCH(1,1) Process

rch11.sim^2)

del identification of the GARCH orders, it is again advantageous to express
or the conditional variances in terms of the squared returns. Recall the defi-

. Similar to the ARCH(1) model, we can show that {ηt} is a

5 10 15 20 25

Lag

5 10 15 20 25

Lag

rt
2 σt |t 1–

2–

orrelated sequence. Moreover, ηt is uncorrelated with past squared returns.
 the expression  into Equation (12.3.2) yieldsσt |t 1–

2 rt
2 ηt–=
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(12.3.4)

0 for all integers k > p and αk = 0 for k > q. This shows that the GARCH(p,q)
the return series implies that the model for the squared returns is an
x(p, q),p) model. Thus, we can apply the model identification techniques for
dels to the squared return series to identify p and max(p,q). Notice that if q is
n p, it will be masked in the model identification. In such cases, we can first
H(p,p) model and then estimate q by examining the significance of the

RCH coefficient estimates.
illustration, Exhibit 12.19 shows the sample EACF of the squared values

ulated GARCH(1,1) series.

.19 Sample EACF for the Squared Simulated GARCH(1,1) Series

arch11.sim)^2)

ttern in the EACF table is not very clear, although an ARMA(2,2) model
 suggested. The fuzziness of the signal in the EACF table is likely caused by
ampling variability when we deal with higher moments. Shin and Kang
ed that, to a first-order approximation, a power transformation preserves the
autocorrelation function and hence the order of a stationary ARMA process.
t suggests that the GARCH order may also be identified by studying the
turns. Indeed, the sample EACF table for the absolute returns, shown in
.20, more convincingly suggests an ARMA(1,1) model, and therefore a
1) model for the original data, although there is also a hint of a GARCH(2,2)

β1 α1+( )rt 1–
2 … βmax p q,( ) αmax p q,( )+( )rt max p q,( )–

2
+ + +

η+ t β1ηt 1–
… βpηt p––––

0 1 2 3 4 5 6 7 8 9 10 11 12 13

o o x x o o x o o o o o o o

x o o o x o x x o o o o o o

x o o o o o x o o o o o o o

x x x o o x o o o o o o o o

x x o x x o o o o o o o o o

x o x x o o o o o o o o o o

x o x x o x o o o o o o o o

x x x x x x o o o o o o o o
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.20 Sample EACF for Absolute Simulated GARCH(1,1) Series

s(garch11.sim))

 absolute CREF daily return data, the sample EACF table is reported in
21, which suggests a GARCH(1,1) model. The corresponding EACF table
ared CREF returns (not shown) is, however, less clear and may suggest a
2) model.

.21 Sample EACF for the Absolute Daily CREF Returns

s(r.cref))

rmore, the parameter estimates of the fitted ARMA model for the absolute
ield initial estimates for maximum likelihood estimation of the GARCH

0 1 2 3 4 5 6 7 8 9 10 11 12 13

o o x x o o x o o o o o o o

x o o o x o o o o o o o o o

x x o o o o o o o o o o o o

x x o o o x o o o o o o o o

x x o x o x o o o o o o o o

x o x x x o o o o o o o o o

x o x x x x o o o o o o o o

x x x x x o x o o o o o o o

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

o o o o o o o o o x x o o o

x o o o o o o o o o o o o o

x o o o o o o o o o o o o o

x o x o o o o o o o o o o o

x o x o o o o o o o o o o o

x x x x o o o o o o o o o o

x x x x o o o o o o o o o o

x x x x o o o o o o o o o o
 example, Exhibit 12.22 reports the estimated parameters of the fitted
) model for the absolute simulated GARCH(1,1) process.
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.22 Parameter Estimates with ARMA(1,1) Model for the Absolute 
Simulated GARCH(1,1) Series

bs(garch11.sim),order=c(1,0,1))

Equation (12.3.4), it can be seen that β is estimated by 0.9445, α is estimated
 0.9445 = 0.03763, and ω can be estimated as the variance of the original

the estimate of 1 − α − β, which equals 0.0073. Amazingly, these estimates
be quite close to the maximum likelihood estimates reported in the next sec-

 derive the condition for a GARCH model to be weakly stationary. Assume
ent that the return process is weakly stationary. Taking expectations on both

uation (12.3.4) gives an equation for the unconditional variance σ2

(12.3.5)

(12.3.6)

ite if

(12.3.7)

ion can be shown to be necessary and sufficient for the weak stationarity of a
,q) model. (Recall that we have implicitly assumed that α1 ≥ 0,…, αp ≥ 0,

, βq ≥ 0.) Henceforth, we assume p = q for ease of notation.
he case of an ARCH(1) model, finiteness of higher moments of the GARCH
ires further stringent conditions on the coefficients; see Ling and McAleer
o, the stationary distribution of a GARCH model is generally fat-tailed even
ations are normal.
s of forecasting the h-step-ahead conditional variance , we can repeat

nts used in the preceding section to derive the recursive formula that for h > p

nt ar1 ma1 Intercept

0.9821 −0.9445 0.5077

0.0134 0.0220 0.0499

σ2 ω σ2
+= βi αi+( )

i 1=

max p q,( )

∑

σ2 ω

1 βi αi+( )
i 1=

max p q,( )

∑–

---------------------------------------------------=

βi αi+( ) 1<
i 1=

max p q,( )

∑

σt h |t+
2

2 2p

(12.3.8)

ally, for arbitrary h ≥ 1, the formula is more complex, as

σt h |t+ ω  += αi βi+( )σt h i |t–+
i 1=
∑
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(12.3.9)

(12.3.10)

(12.3.11)

mputation of the conditional variances may be best illustrated using the
1) model. Suppose that there are n observations r1, r2,…, rn and

(12.3.12)

 the conditional variances for 2 ≤ t ≤ n, we need to set the initial value .
e set to the stationary unconditional variance σ2 = ω/(1 − α1 − β1) under the
 assumption or simply as . Thereafter, we can compute by the for-
ng the GARCH model. It is interesting to observe that

(12.3.13)

stimate of the one-step-ahead conditional volatility is a weighted average of
n variance, the current squared return, and the current estimate of the condi-
ility. Further, the MA(∞) representation of the conditional variance implies

(12.3.14)

oving average of past squared returns. The formula shows that the squared
e distant past receive exponentially diminishing weights. In contrast, simple
rages of the squared returns are sometimes used to estimate the conditional
hese, however, suffer much larger bias.
 β1 = 1, then the GARCH(1,1) model is nonstationary and instead is called an
,1) model with the letter I standing for integrated. In such a case, we shall

bscript from the notation and let α = 1 − β. Suppose that ω = 0. Then

, (12.3.15)

tially weighted average of the past squared returns. The famed Riskmetrics

t h |t+
2 ω  += αiσt h i |t–+

2
 +

i 1=

p

∑ βiσ̂t h i |t– h i 1––+ +
2

i 1=

p

∑

σt h |t+
2

rt h+
2

 for h 0<=

h i |t– h i 1––+

σt h i |t–+
2

σt h i |t– h i 1––+ +
2

⎩
⎪
⎨
⎪
⎧

=
for h i– 1– 0>

otherwise

σt |t 1–
2 ω α1rt 1–

2 β1σt 1|t 2––
2

+ +=

σ1|0
2

r1
2 σt |t 1–

2

σt |t 1–
2

1 α1 β1––( )σ2 α1rt 1–
2 β1σt 1|t 2––

2
+ +=

t 1– σ2 α1 rt 1–
2 β1rt 2–

2 β1
2
rt 3–

2 β1
3
r2

t 4–
…+ + + +( )+=

t |t 1–
2

1 β–( ) rt 1–
2 βrt 2–

2 β2
rt 3–

2 β3
rt 4–

2 …+ + + +( )=
 finance employs the IGARCH(1,1) model with β = 0.94 for estimating con-
iances; see Andersen et al. (2006).
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ximum Likelihood Estimation

od function of a GARCH model can be readily derived for the case of nor-
tions. We illustrate the computation for the case of a stationary GARCH(1,1)
nsion to the general case is straightforward. Given the parameters ω, α, and

itional variances can be computed recursively by the formula

(12.4.1)

ith the initial value, , set under the stationarity assumption as the sta-
onditional variance σ2 = ω/(1 − α − β). We use the conditional pdf

(12.4.2)

t pdf

(12.4.3)

is last formula and taking logs gives the following formula for the log-likeli-
on:

(12.4.4)

 closed-form solution for the maximum likelihood estimators of ω, α, and β,
n be computed by maximizing the log-likelihood function numerically. The
ikelihood estimators can be shown to be approximately normally distributed
e parameter values as their means. Their covariances may be collected into a
ted by Λ, which can be obtained as follows. Let

(12.4.5)

or of parameters. Write the ith component of θ as θi so that θ1 = ω, θ2 = α,
The diagonal elements of Λ are the approximate variances of the estimators,
 off-diagonal elements are their approximate covariances. So, the first diag-
nt of Λ is the approximate variance of , the (1,2)th element of Λ is the
e covariance between  and , and so forth. We now outline the computa-
eaders not interested in the mathematical details may skip the rest of this

The 3×3 matrix Λ is approximately equal to the inverse matrix of the 3×3

σt |t 1–
2 ω αrt 1–

2 βσt 1|t 2––
2

+ +=

σ1|0
2

f rt |rt 1– … r1, ,( ) 1

2πσt |t 1–
2

-------------------------- rt
2

– 2σt |t 1–
2( )⁄[ ]exp=

f(rn … r1), , f rn 1– … r1, ,( )f rn |rn 1– … r1, ,( )=

ω α β), , n
2
---– log 2π( )  –=

1
2
--- log σt 1|t 2––

2
( ) rt

2 σt |t 1–
2⁄+

⎩ ⎭
⎨ ⎬
⎧ ⎫

i 1=

n

∑

θ
ω
α
β

=

ω̂
ω̂ α̂
se (i, j)th element equals
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(12.4.6)

 derivatives in this expression can be obtained recursively by differentiating
2.4.1). For example, differentiating both sides of Equation (12.4.1) with
 yields the recursive formula

(12.4.7)

l derivatives can be computed similarly.
that, in the previous section, the simulated GARCH(1,1) series was identi-
ither a GARCH(1,1) model or a GARCH(2,2) model. The model fit of the
2) model is reported in Exhibit 12.23, where the estimate of ω is denoted by

1 by a1, that of β1 by b1, and so forth. Note that none of the coefficients is
 although a2 is close to being significant. The model fit for the GARCH(1,1)
ven in Exhibit 12.24.

.23 Estimates for GARCH(2,2) Model of a Simulated 
GARCH(1,1) Series

h(garch11.sim,order=c(2,2))
(g1)

.24 Estimates for GARCH(1,1) Model of a Simulated 
GARCH(1,1) Series

nt Estimate Std. Error t-value Pr(>|t|)

1.835e-02 1.515e-02 1.211 0.2257

4.09e-15 4.723e-02 8.7e-14 1.0000

1.136e-01 5.855e-02 1.940 0.0524

3.369e-01 3.696e-01 0.911 0.3621

5.100e-01 3.575e-01 1.426 0.1538

nt Estimate Std. Error t-value Pr(>|t|)

0.007575 0.007590 0.998 0.3183

0.047184 0.022308 2.115 0.0344

0.935377 0.035839 26.100 < 0.0001

1
2
--- 1

σt |t 1–
4

---------------
σt |t 1–

2∂
θi∂

------------------
σt |t 1–

2∂
θj∂

------------------
t 1=

n

∑

σt |t 1–
2∂
ω∂

------------------ 1 β
σt 1|t 2––

2∂
ω∂

-------------------------+=
h(garch11.sim,order=c(1,1))
(g2)
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ll coefficient estimates (except a0) are significant. The AIC of the fitted
2) model is 961.0, while that of the fitted GARCH(1,1) model is 958.0,and
RCH(1,1) model provides a better fit to the data. (Here, AIC is defined as

times the log-likelihood of the fitted model plus twice the number of param-
 the case of ARIMA models, a smaller AIC is preferable.) A 95% confidence
 a parameter is given (approximately) by the estimate ±1.96 times its stan-
So, an approximate 95% confidence interval for ω equals (−0.0073, 0.022),
quals (0.00345, 0.0909), and that of β1 equals (0.865,1.01). These all contain
lues of 0.02, 0.05, and 0.9, respectively. Note that the standard error of b1 is
ce the standard error is approximately proportional to , the standard

 is expected to be about 0.0566 (0.0462) if the sample size n is 200 (300).
ing the GARCH(1,1) model to the first 200 simulated data, b1 was found to
3 with standard error equal to 50.39! When the sample size was increased to
ame 0.935 with standard error equal to 0.0449. This example illustrates that
RCH model generally requires a large sample size for the theoretical sam-

bution to be valid and useful; see Shephard (1996, p. 10) for a relevant dis-

e CREF return data, we earlier identified either a GARCH(1,1) or
2) model. The AIC of the fitted GARCH(1,1) model is 969.6, whereas that
CH(2,2) model is 970.3. Hence the GARCH(1,1) model provides a margin-
fit to the data. Maximum likelihood estimates of the fitted GARCH(1,1)
eported in Exhibit 12.25.

.25 Maximum Likelihood Estimates of the GARCH(1,1) Model for 
the CREF Stock Returns

h(x=r.cref,order=c(1,1))
(m1)

at the long-term variance of the GARCH(1,1) model is estimated to be

r Estimate†

arked earlier, the analysis depends on the scale of measurement. In par-
r, a GARCH(1,1) model based on the raw CREF stock returns yields
tes a0 = 0.00000511, a1 = 0.0941, and b1 = 0.789.

Std. Error t-value Pr(>|t|)

0.01633 0.01237 1.320 0.1869

0.04414 0.02097 2.105 0.0353

0.91704 0.04570 20.066 < 0.0001

1 n⁄
(12.4.8)

ry close to the sample variance of 0.4161.
tice, the innovations need not be normally distributed. In fact, many financial
appear to have nonnormal innovations. Nonetheless, we can proceed to esti-

1 α̂ β̂–– ) 0.01633 1 0.04414 0.91704––( )⁄ 0.4206= =
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ARCH model by pretending that the innovations are normal. The resulting
function is called the Gaussian likelihood, and estimators maximizing the
kelihood are called the quasi-maximum likelihood estimators (QMLEs). It

n that, under some mild regularity conditions, including stationarity, the
mum likelihood estimators are approximately normal, centered at the true
values, and their covariance matrix equals , where κ is the
rtosis of the innovations and Λ is the covariance matrix assuming the innova-
rmally distributed—see the discussion above for the normal case. Note that
ailedness of the innovations will inflate the covariance matrix and hence
s reliable parameter estimates. In the case where the innovations are deemed
, this result suggests a simple way to adjust the standard errors of the
mum likelihood estimates by multiplying the standard errors of the Gaussian
estimates from a routine that assumes normal innovations by ,
n be substituted with the sample kurtosis of the standardized residuals that
 below. It should be noted that one disadvantage of QMLE is that the AIC is
applicable.
 estimated conditional standard deviation be denoted by . The stan-
siduals are then defined as

(12.4.9)

dized residuals from the fitted model are proxies for the innovations and can
d to cast light on the distributional form of the innovations. Once a (parame-
tribution for the innovations is specified, for example a t-distribution, the
ing likelihood function can be derived and optimized to obtain maximum
stimators; see Tsay (2005) for details. The price of not correctly specifying
tional form of the innovation is a loss in efficiency of estimation, although,
atasets, the computational convenience of the Gaussian likelihood approach

igh the loss of estimation efficiency.

del Diagnostics

 accept a fitted model and interpret its findings, it is essential to check
e model is correctly specified, that is, whether the model assumptions are
y the data. If some key model assumptions seem to be violated, then a new
ld be specified; fitted, and checked again until a model is found that provides
 fit to the data. Recall that the standardized residuals are defined as

(12.5.1)

pproximately independently and identically distributed if the model is cor-
fied. As in the case of model diagnostics for ARIMA models, the standard-

κ 2+( ) 2⁄[ ]Λ

κ 2+( ) 2⁄

σ̂t |t 1–

ε̂ t rt σ̂t |t 1–⁄=

ε̂ t rt σ̂t |t 1–⁄=
als are very useful for checking the model specification. The normality
 of the innovations can be explored by plotting the QQ normal scores plot.
from a straight line pattern in the QQ plot furnish evidence against normality
ovide clues on the distributional form of the innovations. The Shapiro-Wilk
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Time Series Models of Heteroscedasticity

 Jarque-Bera test are helpful for formally testing the normality of the innova-

 GARCH(1,1) model fitted to the simulated GARCH(1,1) process, the sam-
ss and kurtosis of the standardized residuals equal −0.0882 and −0.104,
. Moreover, both the Shapiro-Wilk test and the Jarque-Bera test suggest that
ized residuals are normal.
 GARCH(1,1) model fitted to the CREF return data, the standardized residu-
ted in Exhibit 12.26. There is some tendency for the residuals to be larger in
towards the end of the study period, perhaps suggesting that there is some
ttern in the volatility. The QQ plot of the standardized residuals is shown in
27. The QQ plot shows a largely straight-line pattern. The skewness and the
the standardized residuals are 0.0341 and 0.205, respectively. The p-value of
Bera test equals 0.58 and that of the Shapiro-Wilk test is 0.34. Hence, the
ssumption cannot be rejected.

.26 Standardized Residuals from the Fitted GARCH(1,1) Model 
of Daily CREF Returns

siduals(m1),type='h',ylab='Standardized Residuals')

and Kuan (2006) have shown that the Jarque-Bera test with the residuals from a
H model is no longer approximately chi-square distributed under the null hypothesis

mal innovations. Their simulation results suggest that, in such cases, the Jarque-Bera

Time

0 100 200 300 400 500
nds to be liberal; that is, it rejects the normality hypothesis more often than its nomi-
gnificance level. The authors have proposed a modification of the Jarque-Bera test
tains the chi-square null distribution approximately. Similarly, it can be expected that

hapiro-Wilk test may require modification when it is applied to residuals from a
H model, although the problem seems open.
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.27 QQ Normal Scores Plot of Standardized Residuals from the 
Fitted GARCH(1,1) Model of Daily CREF Returns

ph(width=2.5,height=2.5,pointsize=8)
residuals(m1)); qqline(residuals(m1))

ARCH model is correctly specified, then the standardized residuals 
lose to independently and identically distributed. The independently and

distributed assumption of the innovations can be checked by examining their
 Recall that the portmanteau statistic equals 

s the lag k autocorrelation of the standardized residuals and n is the sample
ll that the same statistic is also known as the Box-Pierce statistic and, in a
ersion, the Ljung-Box statistic.) Furthermore, it can be shown that the test
approximately χ2 distributed with m degrees of freedom under the null
that the model is correctly specified. This result relies on the fact that the
correlations of nonzero lags from an independently and identically distrib-
ce are approximately independent and normally distributed with zero mean
e 1/n, and this result holds approximately also for the sample autocorrela-
 standardized residuals if the data are truly generated by a GARCH model of
rders as those of the fitted model. However, the portmanteau test does not
 power against uncorrelated and yet serially dependent innovations. In fact,
t with the assumption that the return data are uncorrelated, so the preceding
tle interest.
seful tests may be devised by studying the autocorrelation structure of the
ndardized residuals or the squared standardized residuals. Let the lag k auto-

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●●

●
●●
●●

●
●

●

●●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●●

●●
●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●●

●
●●

●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
1

0
1

2
3

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

ε̂ t{ }

n ρ̂k
2

k 1=

m
∑

 of the absolute standardized residuals be denoted by and that of the
ndardized residuals by . Unfortunately, the approximate χ2 distribution
rees of freedom for the corresponding portmanteau statistics based on 
o longer valid, the reason being that the estimation of the unknown parame-

ρ̂k 1,
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s a nonnegligible effect on the tests. Li and Mak (1994) showed that the χ2

e distribution may be preserved by replacing the sum of squared autocorrela-
uadratic form in the autocorrelations; see also Li (2003). For the absolute

d residuals, the test statistic takes the form

(12.5.2)

ll this modified test statistic the generalized portmanteau test statistic. How-
s depend on m, the number of lags, and they are specific to the underlying
 and so must be estimated from the data. For the squared residuals, the q’s
nt values. See Appendix I on page 318 for the formulas for the q’s.
strate the generalized portmanteau test with the CREF data. Exhibit 12.28,

mple ACF of the squared standardized residuals from the fitted GARCH(1,1)
 (individual) critical limits in the figure are based on the 1/n nominal vari-
 the assumption of independently and identically distributed data. As dis-
e, this nominal value could be very different from the actual variance of the
tions of the squared residuals even when the model is correctly specified.
s, the general impression from the figure is that the squared residuals are
orrelated.

.28 Sample ACF of Squared Standardized Residuals from the 
GARCH(1,1) Model of the Daily CREF Returns

iduals(m1)^2,na.action=na.omit)

t 12.29 displays the p-values of the generalized portmanteau tests with the
ndardized residuals from the fitted GARCH(1,1) model of the CREF data for

n qi j, ρ̂i 1, ρ̂j 1,
j 1=

m

∑
i 1=

m

∑

5 10 15 20 25

Lag
. All p-values are higher than 5%, suggesting that the squared residuals are
d over time, and hence the standardized residuals may be independent.
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.29 Generalized Portmanteau Test p-Values for the Squared 
Standardized Residuals for the GARCH(1,1) Model of the 
Daily CREF Returns

,method='squared')

eated checking the model using the absolute standardized residuals—see
.30 and 12.31. The lag 2 autocorrelation of the absolute residuals is signifi-
ing to the nominal critical limits shown. Furthermore, the generalized port-
ts are significant when m = 2 and 3 and marginally not significant at m = 4.
 EACF table (not shown) of the absolute standardized residuals suggests an
el for the absolute residuals and hence points to the possibility that the CREF
 be identified as a GARCH(1,2) process. However, the fitted GARCH(1,2)
e CREF data did not improve the fit, as its AIC was 978.2—much higher
, that of the GARCH(1,1) model. Therefore, we conclude that the fitted
1) model provides a good fit to the CREF data.
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.30 Sample ACF of the Absolute Standardized Residuals from 
the GARCH(1,1) Model for the Daily CREF Returns

(residuals(m1)),na.action=na.omit)

.31 Generalized Portmanteau Test p-Values for the Absolute 
Standardized Residuals for the GARCH(1,1) Model of the 
Daily CREF Returns

,method='absolute')

that the GARCH(1,1) model provides a good fit to the CREF data, we may
ecast the future conditional variances. Exhibit 12.32 shows the within-sam-
s of the conditional variances, which capture several periods of high volatil-

lly the one at the end of the study period. At the final time point, the squared
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Lag
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ls 2.159, and the conditional variance is estimated to be 0.4411. These values
ith Equations (12.3.8) and (12.3.9) can be used to compute the forecasts of
itional variances. For example, the one-step-ahead forecast of the condi-

ance equals 0.01633 + 0.04414*2.159 + 0.91704*0.4411 = 0.5161. The
recast of the conditional variance equals 0.01633 + 0.04414*0.5161 +
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.5161 = 0.5124, and so forth, with the longer lead forecasts eventually
g 0.42066, the long-run variance of the model. The conditional variances
ful for pricing financial assets through the Black-Scholes formula and calcu-
 value at risk (VaR); see Tsay (2005) and Andersen et al. (2006).

teresting to note that the need for incorporating ARCH in the data is also
y the McLeod-Li test applied to the residuals of the AR(1) + outlier model;
 (12.9), page 283.

.32 Estimated Conditional Variances of the Daily CREF Returns

itted(m1)[,1])^2,type='l',ylab='Conditional Variance', 
't')

nditions for the Nonnegativity of the
nditional Variances

e conditional variance must be nonnegative, the GARCH parameters
onstrained to be nonnegative. However, the nonnegativity parameter con-
d not be necessary for the nonnegativity of the conditional variances. This
rst explored by Nelson and Cao (1992) and more recently by Tsai and Chan
better understand the problem, first consider the case of an ARCH(q) model.
nditional variance is given by the formula

(12.6.1)

t q consecutive returns can take on any arbitrary set of real numbers. If one
s negative, say α1 < 0, then will be negative if is sufficiently

t

0 100 200 300 400 500

σt |t 1–
2

σt |t 1–
2 ω α1rt 1–

2 α2rt 2–
2 … αqrt q–

2
+ + + +=

σt |t 1–
2 rt 1–

2

e other r’s are sufficiently close to zero. Hence, it is clear that all α’s must be
e for the conditional variances to be nonnegative. Similarly, by letting the
lose to zero, it can be seen that ω must be nonnegative—otherwise the con-
iance may become negative. Thus, it is clear that for an ARCH model, the
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ity of all ARCH coefficients is necessary and sufficient for the conditional
 to be always nonnegative.

rresponding problem for a GARCH(p,q) model can be studied by expressing
 model as an infinite-order ARCH model. The conditional variance process

 an ARMA(p,q) model with the squared returns playing the role of the noise
call that an ARMA(p,q) model can be expressed as an MA(∞) model if all
 the AR characteristic polynomial lie outside the unit circle. Hence, assum-
the roots of 1 − β1x − β2x2 −…− βpx p = 0 have magnitude greater than 1, the
 variances satisfy the equation

(12.6.2)

(12.6.3)

e similarly shown that the conditional variances are all nonnegative if and
nd ψj ≥ 0 for all integers j ≥ 1. The coefficients in the ARCH(∞) representa-
o the parameters of the GARCH model through the equality

(12.6.4)

, then it can be easily checked that ψk = β1ψk − 1 for k > q. Thus, ψj ≥ 0 for
nd only if β1 ≥ 0 and ψ1 ≥ 0,…, ψq ≥ 0. For higher GARCH order, the situa-
 complex. Let λj, 1 ≤ j ≤ p, be the roots of the characteristic equation

(12.6.5)

s of generality, we can and shall henceforth assume the convention that

(12.6.6)

 and  denote the complex conjugate of λ, B(x) = 1 − β1x −…− βpxp,
 the first derivative of B. We then have the following result.

onsider a GARCH(p,q) model where p ≥ 2. Assume A1, that all the roots of
n

(12.6.7)

tude greater than 1, and A2, that none of these roots satisfy the equation

t |t 1–
2

σt |t 1–
2 ω* ψ1rt 1–

2 ψ2rt 2–
2 …+ + +=

ω* ω 1 βi
i 1=

p

∑–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

⁄=

α1B … αqB
q

+ +

1 β1B … βpB
p

–––
------------------------------------------------- ψ1B ψ2B

2 …+ +=

1 β1x … βpx
p

––– 0=

|λ1| |λ2| … |λp|≤ ≤ ≤

1– λ
_

1 β1x β2x
2 … βpx

p
–––– 0=
(12.6.8)

llowing hold:

 ω* ≥ 0 if and only if ω ≥ 0.

α1x … αqx
q

+ + 0=
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) Assuming the roots λ1,…, λp are distinct, and |λ1| < |λ2|, then the conditions
en in Equation (12.6.9) are necessary and sufficient for ψk ≥ 0 for all positive
egers k:

(12.6.9)

 the smallest integer greater than or equal to

,

(12.6.10)

he k* defined in Result 1 can be shown to be q + 1; see Theorem 2 of Nelson
992). If the k* defined in Equations (12.6.10) is a negative number, then it
 from the proof given in Tsai and Chan (2006) that ψk ≥ 0 for all positive k.
d Chan (2006) have also derived some more readily verifiable conditions for
nal variances to be always nonnegative.

et the assumptions of Result 1 be satisfied. Then the following hold: 

 For a GARCH(p,1) model, if λj is real and λj > 1, for j = 1,..., p, and α1 ≥ 0,
n ψk ≥ 0 for all positive integers k.

) For a GARCH(p,1) model, if ψk ≥ 0 for all positive integers k, then α1 ≥ 0,

, λ1 is real, and λ1 > 1.

 For a GARCH(3,1) model, ψk ≥ 0 for all positive integers k if and only if α1
 and either of the following cases hold:

se 1. All the λj’s are real numbers, λ1 > 1, and . 

se 2. λ1 > 1, and , where a and b are real num-
rs, b > 0, and 0 < θ < π:

se 2.1. θ = 2π/r for some integer r ≥ 3, and 1 < λ1 ≤ |λ2|.

se 2.2. θ ∉{2π/r | r = 3, 4,...}, and |λ2|/λ1 ≥ x0 > 1, where x0 is the largest real
ot of fn,θ(x) = 0, and

λ1 is real and λ1 1>

α λ1( ) 0>

ψk 0≥  for k 1 ... k*, ,=
⎭
⎪
⎪
⎬
⎪
⎪
⎫

r1( )log p 1–( )r*[ ]log–

λ1( )log λ2( )log–
-----------------------------------------------------------

rj

α λj( )

B
1( ) λj( )

--------------------–  ,=    for 1 j p≤ ≤    and   , r* max
2 j p≤ ≤

rj( )=

λj
1–

0≥
1=

p

λ1
1– λ2

1– λ3
1–

+ + 0≥

λ2 λ
_

3 |λ2|e
iθ

a bi+= = =
(12.6.11)

ere n is the smallest positive integer such that sin((n+1)θ) < 0 and sin((n+2)θ)
.

fn θ, x( ) x
n 2+

x–= n 2+( )θ[ ]sin
θsin

--------------------------------- n 1+( )θ[ ]sin
θsin

---------------------------------+  
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) For a GARCH(3,1) model, if , where a and b
 real numbers, b > 0, and a ≥ λ1 > 1, then ψk ≥ 0 for all positive integers k.

 For a GARCH(4,1) model, if the λj’s are real for 1 ≤ j ≤ 4, then a necessary
d sufficient condition for  to be nonnegative is that α1 ≥ 0,

, and λ1 > 1.

0 is the only real root of Equation (12.6.11) that is greater than or equal to 1.
i and Chan (2006) proved that if the ARCH coefficients (α’s) of a
,q) model are all nonnegative, the model has nonnegative conditional vari-
 nonnegativity property holds for the associated GARCH(p,1) models with a
 α1 coefficient.

me Extensions of the GARCH Model 

H model may be generalized in several directions. First, the GARCH model
at the conditional mean of the time series is zero. Even for financial time
strong assumption need not always hold. In the more general case, the condi-
 structure may be modeled by some ARMA(u,v) model, with the white noise

 ARMA model modeled by some GARCH(p, q) model. Specifically, let {Yt}
eries given by (now we switch to using the notation Yt to denote a general

(12.7.1)

we have used the plus convention in the MA parts of the model. The ARMA
be identified based on the time series {Yt}, whereas the GARCH orders may
d based on the squared residuals from the fitted ARMA model. Once the

identified, full maximum likelihood estimation for the ARMA + GARCH
be carried out by maximizing the likelihood function as defined in Equation
 page 298 but with rt there replaced by et that are recursively computed

to Equation (12.7.1). The maximum likelihood estimators of the ARMA
are approximately independent of their GARCH counterparts if the innova-
e a symmetric distribution (for example, a normal or t-distribution) and their
rors are approximately given by those in the pure ARMA case. Likewise, the
rameter estimators enjoy distributional results similar to those for the pure
se. However, the ARMA estimators and the GARCH estimators are corre-
innovations have a skewed distribution. In the next section, we illustrate the

λ2 λ
_

3 |λ2|e
iθ

a bi+= = =

{ψi}i 0=
∞

1 λ2
1– λ3

1– λ4
1–+ + + 0≥

φ1Yt 1–
… φuYt u– θ0 et θ1et 1–

… θvet v–+ + + + + +

σt |t 1– εt

ω α1et 1–
2 … αqet q–

2 β1σt 1|t 2––
2 … βpσt p |t p 1–––

2
+ + + + + +

⎭
⎪
⎪
⎬
⎪
⎪
⎫

ARCH model with the daily exchange rates of the U.S. dollar to the Hong
r.
r direction of generalization concerns nonlinearity in the volatility process.
l data, this is motivated by a possible asymmetric market response that may,
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, react more strongly to a negative return than a positive return of the same
. The idea can be simply illustrated in the setting of an ARCH(1) model,
symmetry can be modeled by specifying that

(12.7.2)

el is known as a GJR model—a variant of which allows the threshold to be
nd other than 0. See Tsay (2005) for other useful extensions of the GARCH

other Example: The Daily USD/HKD Exchange Rates

ration for the ARIMA + GARCH model, we consider the daily USD/HKD
r to Hong Kong dollar) exchange rate from January 1, 2005 to March 7,
ether 431 days of data. The returns of the daily exchange rates are shown in
33 and appear to be stationary, although volatility clustering is evident in the

.33 Daily Returns of USD/HKD Exchange Rate: 1/1/05–3/7/06

d.hkd)
(usd.hkd$hkrate,freq=1),type='l',xlab='Day',
'Return')

teresting to note that the need for incorporating ARCH in the data is also
y the McLeod-Li test applied to the residuals of the AR(1) + outlier model;
or further discussion of the additive outlier. Exhibit 12.34 shows that the tests
ficant when the number of lags of the autocorrelations of the squared residu-

σt |t 1–
2 ω αet 1–

2 γmin et 1– 0,( )2+ +=

Day

0 100 200 300 400
rom 1 to 26, displaying strong evidence of conditional heteroscedascity.
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.34 McLeod-Li Test Statistics for the USD/HKD Exchange Rate

usd.hkd)
Li.test(arima(hkrate,order=c(1,0,0), 
data.frame(outlier1)))

(1) + GARCH(3,1) model was fitted to the (raw) return data with an additive
day after July 22, 2005, the date when China revalued the yuan by 2.1% and
loating-rate system for it. The outlier is shaded in gray in Exhibit 12.33. The
rm in the conditional mean function was found to be insignificantly different
nd hence is omitted from the model. Thus we take the returns to have zero

nditionally. The fitted model has an AIC = −2070.9, being smallest among
peting (weakly) stationary models—see Exhibit 12.35. Interestingly, for

CH orders (p ≤ 2), the fitted models are nonstationary, but the fitted models
stationary when the GARCH order is higher than 2. As the data appear to be

e choose the AR(1) + GARCH(3,1) model as the final model.
 + GARCH models partially reported in Exhibit 12.35 were fitted using the

eg routine in the SAS software.† We used the default option of imposing that
Cao inequality constraints for the GARCH conditional variance process be
. However, the inequality constraints so imposed are only necessary and suf-

he nonnegativity of the conditional variances of a GARCH(p,q) model for p
her-order GARCH models, Proc Autoreg imposes the constraints that (1) ψk
 max(q − 1, p) + 1 and (2) the nonnegativity of the in-sample conditional

see the SAS 9.1.3 Help and Documentation manual. Hence, higher-order

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20 25

Lag
odels estimated by Proc Autoreg with the Nelson-Cao option need not have
 conditional variances with probability one. 

utoreg of SAS has the option of imposing the Nelson-Cao inequality constraint in
RCH model, hence it is used here.
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.35 AIC Values for Various Fitted Models for the Daily Returns of 
the USD/HKD Exchange Rate

 order
GARCH 
order (p)

ARCH 
order (q)

AIC Stationarity

0 3 1 −1915.3 nonstationary

1 1 1 −2054.3 nonstationary

1 1 2 −2072.5 nonstationary

1 1 3 −2051.0 nonstationary

1 2 1 −2062.2 nonstationary

1 2 2 −2070.5 nonstationary

1 2 3 −2059.2 nonstationary

1 3 1 −2070.9 stationary

1 3 2 −2064.8 stationary

1 3 3 −2062.8 stationary

1 4 1 −2061.7 nonstationary

1 4 2 −2054.8 stationary

1 4 3 −2062.4 stationary

2 3 1 −2066.6 stationary
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 Hong Kong exchange rate data, the fitted model from Proc Autoreg is listed
2.37 with the estimated conditional variances shown in Exhibit 12.36. Note
RCH2 (β2) coefficient estimate is negative.

.36 Estimated Conditional Variances of the Daily Returns of 
USD/HKD Exchange Rate from the Fitted
AR(1) + GARCH(3,1) Model

(usd.hkd$v,freq=1),type='l',xlab='Day',
'Conditional Variance')

oth the intercept and the ARCH coefficient are positive, we can apply part
lt 2 to check whether or not the conditional variance process defined by the
l is always nonnegative. The characteristic equation 1 − β1x − β2x2 − β3x3 = 0
e roots equal to 1.153728 and −0.483294±1.221474i. Thus λ1 = 1.153728
= 1.138579. Based on numerical computations, n in Equation (12.6.11) turns
and Equation (12.6.11) has one real root equal to 1.1385751 which is strictly
.138579 = |λ2|/λ1. Hence, we can conclude that the fitted model always
nnegative conditional variances.

Day

0 100 200 300 400
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.37 Fitted AR(1) + ARCH(3,1) Model for Daily Returns of 
USD/HKD Exchange Rate

e: data hkex; infile 'hkrate.dat'; input hkrate;
er1=0;
; if day=203 then outlier1=1;
autoreg data=hkex;
model hkrate=outlier1 /noint nlag=1 garch=(p=3,q=1) 
maxiter=200 archtest;

/*hetero outlier /link=linear;*/
output out=a cev=v residual=r;

mmary

r began with a brief description of some terms and issues associated with
me series. Autoregressive conditional heteroscedasticity (ARCH) models
ntroduced in an attempt to model the changing variance of a time series. The
el of order 1 was thoroughly explored from identification through parameter

 and prediction. These models were then generalized to the generalized
ive conditional heteroscedasticity, GARCH(p,q), model. The GARCH mod-
so thoroughly explored with respect to identification, maximum likelihood
 prediction, and model diagnostics. Examples with both simulated and real
data were used to illustrate the ideas.

t Estimate Std. error t-ratio p-value

0.1635 0.005892 21.29 0.0022

) 2.374×10−5 6.93×10−6 3.42 0.0006

1) 0.2521 0.0277 9.09 < 0.0001

β1) 0.3066 0.0637 4.81 < 0.0001

β2) −0.09400 0.0391 −2.41 0.0161

β3) 0.5023 0.0305 16.50 < 0.0001

−0.1255 0.00589 −21.29 < 0.0001
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ES

lay the time sequence plot of the absolute returns for the CREF data. Repeat
lot with the squared returns. Comment on the volatility patterns observed in
 plots. (The data are in file named CREF.)
the time sequence plot of the absolute returns for the USD/HKD exchange
ata. Repeat the plot with the squared returns. Comment on the volatility pat-

 observed in these plots. (The data are in the file named usd.hkd.)
the definition  [Equation (12.2.4) on page 287] and show
ηt} is a serially uncorrelated sequence. Show also that ηt is uncorrelated

past squared returns, that is, show that  for k > 0.
tituting  into Equation (12.2.2) on page 285 show the alge-
at leads to Equation (12.2.5) on page 287.

y Equation (12.2.8) on page 288.
out doing any theoretical calculations, order the kurtosis values of the fol-
g four distributions in ascending order: the t-distribution with 10 DF, the

ribution with 30 DF, the uniform distribution on [−1,1], and the normal dis-
ion with mean 0 and variance 4. Explain your answer.
late a GARCH(1,1) process with α = 0.1 and β = 0.8 and of length 500. Plot
me series and inspect its sample ACF, PACF, and EACF. Are the data consis-
ith the assumption of white noise? 

quare the data and identify a GARCH model for the raw data based on the
mple ACF, PACF, and EACF of the squared data. 
entify a GARCH model for the raw data based on the sample ACF, PACF

nd EACF of the absolute data. Discuss and reconcile any discrepancy
etween the tentative model identified with the squared data and that with the
bsolute data.
erform the McLeod-Li test on your simulated series. What do you conclude?
epeat the exercise but now using only the first 200 simulated data. Discuss
our findings. 
ile cref.bond contains the daily price of the CREF bond fund from August
004 to August, 15, 2006. These data are available only on trading days, but
ed to analyze the data as if they were sampled regularly. 
isplay the time sequence plot of the daily bond price data and comment on
e main features in the data. 
ompute the daily bond returns by log-transforming the data and then com-
uting the first differences of the transformed data. Plot the daily bond returns,
nd comment on the result.
erform the McLeod-Li test on the returns series. What do you conclude?
how that the returns of the CREF bond price series appear to be indepen-

ηt rt
2 σt |t 1–

2–=

Corr ηt r2
t k–,( ) 0=

σt |t 1–
2 rt

2 ηt–=
ently and identically distributed and not just serially uncorrelated; that is,
ere is no discernible volatility clustering.
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aily returns of Google stock from August 20, 2004 to September 13, 2006
ored in the file named google. 
isplay the time sequence plot for the return data and show that the data are

ssentially uncorrelated over time. 
ompute the mean of the Google daily returns. Does it appear to be signifi-
antly different from 0?
erform the McLeod-Li test on the Google daily returns series. What do you
onclude?
entify a GARCH model for the Google daily return data. Estimate the iden-

fied model and perform model diagnostics with the fitted model. 
raw and comment on the time sequence plot of the estimated conditional
ariances. 
lot the QQ normal plot for the standardized residuals from the fitted model.
o the residuals appear to be normal? Discuss the effects of the normality on
e model fit, for example, regarding the computation of the confidence inter-

al. 
onstruct a 95% confidence interval for b1. 
hat are the stationary mean and variance according to the fitted GARCH
odel? Compare them with those of the data. 
ased on the GARCH model, construct the 95% prediction intervals for
-step-ahead forecast, for h = 1, 2,…, 5.
ercise 11.21 on page 276, we investigated the existence of outliers with the
ithms of monthly oil prices within the framework of an IMA(1,1) model.
, we explore the effects of “outliers” on the GARCH specification. The data
 the file named oil.price.
ased on the sample ACF, PACF, and EACF of the absolute and squared
siduals from the fitted IMA(1,1) model (without outlier adjustment), show
at a GARCH(1,1) model may be appropriate for the residuals. 
it an IMA(1,1) + GARCH(1,1) model to the logarithms of monthly oil
rices. 
raw the time sequence plot for the standardized residuals from the fitted

A(1,1) + GARCH(1,1) model. Are there any outliers? 
or the log oil prices, fit an IMA(1,1) model with two IOs at t = 2 and t = 56
nd an AO at t = 8. Show that the residuals from the IMA plus outlier model
ppear to be independently and identically distributed and not just serially
ncorrelated; that is, there is no discernible volatility clustering. 
etween the outlier and the GARCH model, which one do you think is more
ppropriate for the oil price data? Explain your answer.
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ix I: Formulas for the Generalized Portmanteau Tests

esent the formula for Q = (qi, j ) for the case where the portmanteau test is
e squared standardized residuals. Readers may consult Li and Mak (1994)
f the formulas. Let θ denote the vector of GARCH parameters. For example,
H(1,1) model,

(12.I.1)

h component of θ as θi so that θ1 = ω, θ2 = α, and θ3 = β for the GARCH(1,1)
e general case, let k = p + q + 1 be the number of GARCH parameters. Let J

matrix whose (i, j)th element equals

(12.I.2)

e k×k covariance matrix of the approximate normal distribution of the maxi-
ihood estimator of θ for the model assuming normal innovations; see
4. Let Q = (qi, j ) be the matrix of the q’s appearing in the quadratic form of
ized portmanteau test. It can be shown that the matrix Q equals

12.I.3)

he m×m identity matrix, κ is the (excess) kurtosis of the innovations, JΤ is
se of J, and the superscript −1 denotes the matrix inverse.

e present the formulas for the case where the tests are computed based on
e standardized residuals. In this case, the (i, j )th element of the J matrix

(12.I.4)

(|εt|), and Q equals 

(12.I.5)

.

θ
ω
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β
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n
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DUCTION TO SPECTRAL ANALYSIS

, spectral analysis began with the search for “hidden periodicities” in time
 Chapter 3 discussed fitting cosine trends at various known frequencies to
 strong cyclical trends. In addition, the random cosine wave example in
n page 18, showed that it is possible for a stationary process to look very
 deterministic cosine wave. We hinted in Chapter 3 that by using enough dif-
encies with enough different amplitudes (and phases) we might be able to
ly any stationary series.† This chapter pursues those ideas further with an
 to spectral analysis. Previous to this chapter, we concentrated on analyzing

ion properties of time series. Such analysis is often called time domain anal-
 we analyze frequency properties of time series, we say that we are working
ency domain. Frequency domain analysis or spectral analysis has been
 especially useful in acoustics, communications engineering, geophysical
 biomedical science, for example. 

oduction

 Chapter 3 the cosine curve with equation‡

(13.1.1)

 that R (> 0) is the amplitude, f the frequency, and Φ the phase of the curve.
urve repeats itself exactly every 1/f time units, 1/f is called the period of the
e.
t 13.1 displays two discrete-time cosine curves with time running from 1 to
ld only see the discrete points, but the connecting line segments are added to
es follow the pattern. The frequencies are 4/96 and 14/96, respectively. The
ency curve has a phase of zero, but the higher-frequency curve is shifted by a
π.

t 13.2 shows the graph of a linear combination of the two cosine curves with
r of 2 on the low-frequency curve and a multiplier of 3 on the higher-fre-
ve and a phase of 0.6π; that is,

R 2πft Φ+( )cos
319

xercise 2.25 on page 23, in particular.
 chapter, we use notation slightly different from that in Chapter 3.
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Exhibit 13

> win.gra
> t=1:96;
> plot(t,
> lines(t
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Introduction to Spectral Analysis

.1 Cosine Curves with n = 96 and Two Frequencies and Phases

ph(width=4.875,height=2.5,pointsize=8)
 cos1=cos(2*pi*t*4/96); cos2=cos(2*pi*(t*14/96+.3))
cos1, type='o', ylab='Cosines')
,cos2,lty='dotted',type='o',pch=4)

(13.1.2)

e periodicity is somewhat hidden. Spectral analysis provides tools for dis-
e “hidden” periodicities quite easily. Of course, there is nothing random in
ries.

.2 Linear Combination of Two Cosine Curves
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1+3*cos2; plot(t,y,type='o',ylab=expression(y[t]))
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Âj
duction 321

saw earlier, Equation (13.1.1) is not convenient for estimation because the
R and Φ do not enter the expression linearly. Instead, we use a trigonometric
eparameterize Equation (13.1.1) as

(13.1.3)

(13.1.4)

sely,
(13.1.5)

 fixed frequency f, we can use cos(2πft) and sin(2πft) as predictor variables
’s and B’s from the data using ordinary least squares regression.
ral linear combination of m cosine curves with arbitrary amplitudes, fre-

nd phases could be written as†

(13.1.6)

ry least squares regression can be used to fit the A’s and B’s, but when the
 of interest are of a special form, the regressions are especially easy. Suppose
d and write n = 2k + 1. Then the frequencies of the form 1/n, 2/n,…, k/n

(2n)) are called the Fourier frequencies. The cosine and sine predictor vari-
se frequencies (and at f = 0) are known to be orthogonal,‡ and the least
mates are simply

(13.1.7)

 and (13.1.8)

ample size is even, say n = 2k, Equations (13.1.7) and (13.1.8) still apply for
k − 1, but

 and (13.1.9)

ere fk = k/n = ½.
ere to apply these formulas to the series shown in Exhibit 13.2, we would
ct results. That is, at frequency f4 = 4/96, we obtain 4 = 2 and 4 = 0, and
y f14 = 14/96, we obtain 14 = −0.927051 and 14 = −2.85317. We would
ates of zero for the regression coefficients at all other frequencies. These

R 2πft Φ+( )cos A 2πft( )cos B 2πft( )sin+=

R A2 B2+  ,= Φ B– A⁄( )atan=

A R Φ( ),cos= B R– Φ( )sin=

Yt A0 Aj 2πfjt( )cos Bj 2πfjt( )sin+[ ]
j 1=

m

∑+=

Â0 Y
 _

=

2
n
--- Yt 2πtj n⁄( )cos

t 1=

n

∑= B̂j
2
n
--- Yt 2πtj n⁄( )sin

t 1=

n

∑=

Âk
1
n
--- 1–( )tYt

t 1=

n

∑= B̂k 0=

Â B̂
Â B̂
0 term can be thought of as the coefficient of the cosine curve at zero frequency,
 is identically one, and the B0 can be thought of as the coefficient on the sine curve at
ncy zero, which is identically zero and hence does not appear.
ppendix J on page 349 for more information on the orthogonality properties of the
s and sines.
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Introduction to Spectral Analysis

in because there is no randomness in this series and the cosine-sine fits are

lso that any series of any length n, whether deterministic or stochastic and
hout any true periodicities, can be fit perfectly by the model in Equation
 choosing m = n/2 if n is even and m = (n − 1)/2 if n is odd. There are then n
to adjust (estimate) to fit the series of length n.

 Periodogram

ple sizes with n = 2k + 1, the periodogram I at frequency f = j/n for j =1,
efined to be

(13.2.1)

le size is even and n = 2k, Equations (13.1.7) and (13.1.8) still give the ’s
 Equation (13.2.1) gives the periodogram for j = 1, 2,…, k − 1. However, at
 frequency f = k/n = ½, Equations (13.1.9) apply and

(13.2.2)

eriodogram is proportional to the sum of squares of the regression coeffi-
iated with frequency f = j/n, the height of the periodogram shows the relative
cosine-sine pairs at various frequencies in the overall behavior of the series.
erpretation is in terms of an analysis of variance. The periodogram I(j/n) is
 squares with two degrees of freedom associated with the coefficient pair
equency j/n, so we have

(13.2.3)

k + 1 is odd. A similar result holds when n is even but there is a further term
 I(½), with one degree of freedom.
g series, the computation of a large number of regression coefficients might

e. Fortunately, quick, efficient numerical methods based on the fast Fourier
FFT) have been developed that make the computations feasible for very long
†

t 13.3 displays a graph of the periodogram for the time series in Exhibit 13.2.
 show the presence and relative strengths of the two cosine-sine components
y. Note also that the frequencies 4/96 ≈ 0.04167 and 14/96 ≈ 0.14583 have
d on the frequency axis.

I
j
n
---⎝ ⎠

⎛ ⎞ n
2
--- Âj

2 B̂j
2+( )=

Â

I 1
2
---( ) n Âk( )2=

Yj Y
 _

–( )2

j 1=

n

∑ I
j
n
---⎝ ⎠

⎛ ⎞
j 1=

k

∑=
based on the Cooley-Tukey FFT algorithm; see Gentleman and Sande (1966).
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.3 Periodogram of the Series in Exhibit 13.2

gram(y); abline(h=0); axis(1,at=c(0.04167,.14583))

he periodogram work just as well when we do not know where or even if
sines in the series? What if the series contains additional “noise”? To illus-
nerate a time series using randomness to select the frequencies, amplitudes,
and with additional additive white noise. The two frequencies are randomly
hout replacement from among 1/96, 2/96,…, 47/96. The A’s and B’s are
ependently from normal distributions with means of zero and standard devi-
for the first component and 3 for the second. Finally, a normal white noise
}, with zero mean and standard deviation 1, is chosen independently of the
and added on. The model is†

(13.2.4)

t 13.4 displays a time series of length 96 simulated from this model. Once
eriodicities are not obvious until we view the periodogram shown in Exhibit

.0 0.1 0.2 0.3 0.4 0.5

Frequency

0.04167 0.14583

2πf1t( )cos B1 2πf1t( )sin A2 2πf2t( )cos B2 2πf2t( )sin Wt+ + + +
odel is often described as a signal plus noise model. The signal could be determinis-
ith unknown parameters) or stochastic.
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Introduction to Spectral Analysis

.4 Time Series with “Hidden” Periodicities

ph(width=4.875,height=2.5,pointsize=8)
d(134); t=1:96; integer=sample(48,2)
nteger[1]/96; freq2=integer[2]/96
m(1,0,2); B1=rnorm(1,0,2)
m(1,0,3); B2=rnorm(1,0,3); w=2*pi*t
s(w*freq1)+B1*sin(w*freq1)+A2*cos(w*freq2)+
n(w*freq2)+rnorm(96,0,1)
y,type='o',ylab=expression(y[t]))

riodogram clearly shows that the series contains two cosine-sine pairs at fre-
 about 0.11 and 0.32 and that the higher-frequency component is much stron-
are some other very small spikes in the periodogram, apparently caused by
e white noise component. (When we checked the simulation in detail, we
one frequency was chosen as 10/96 ≈ 0.1042 and the other was selected as
125.)

.5 Periodogram of the Time Series Shown in Exhibit 13.4
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 an example of the periodogram for a classic time series from Whittaker and
1924).† Exhibit 13.6 displays the time series plot of the brightness (magni-
articular star at midnight on 600 consecutive nights.

.6 Variable Star Brightness on 600 Consecutive Nights

ar)
ar,xlab='Day',ylab='Brightness')

t 13.7 shows the periodogram for this time series. There are two very promi-
in the periodogram. When we inspect the actual numerical values, we find
er peak occurs at frequency f = 21/600 = 0.035. This frequency corresponds
 of 600/21 ≈ 28.57, or nearly 29 days. The secondary peak occurs at f =
.04167, which corresponds to a period of 24 days. The much more modest
riodogram values near the major peak are likely caused by leakage.
o sharp peaks suggest a model for this series with just two cosine-sine pairs
propriate frequencies or periods, namely

(13.2.5)

1/29 and f2 = 1/24. If we estimate this regression model as in Chapter 3, we
ly statistically significant regression coefficients for all five parameters and a
square value of 99.9%.
ll return to this time series in Section 14.5 on page 358, where we discuss
 leakage and tapering.

Day

0 100 200 300 400 500 600

β1 2πf1t( )cos β2 2πf1t( ) β3 2πf2t( )cos β4 2πf2t( ) et+sin+ +sin+
tensive analysis of this series appears throughout Bloomfield (2000).
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.7 Periodogram of the Variable Star Brightness Time Series

gram(star,ylab='Variable Star Periodogram');abline(h=0)

gh the Fourier frequencies are special, we extend the definition of the peri-
 all frequencies in the interval 0 to ½ through the Equations (13.1.8) and
us we have for 0 ≤ f ≤ ½

(13.2.6)

 and (13.2.7)

ed in this way, the periodogram is often calculated at a grid of frequencies
e Fourier frequencies, and the plotted points are connected by line segments

 somewhat smooth curve.
o we only consider positive frequencies? Because by the even and odd nature
nd sines, any cosine-sine curve with negative frequency, say −f, could just as
ressed as a cosine-sine curve with frequency +f. No generality is lost by
ve frequencies.†

ly, why do we restrict frequencies to the interval from 0 to ½? Consider the
n in Exhibit 13.8. Here we have plotted two cosine curves, one with fre-
 ¼ and the one shown with dashed lines at frequency f = ¾. If we only
 series at the discrete-time points 0, 1, 2, 3,…, the two series are identical.
te-time observations, we could never distinguish between these two curves.
 the two frequencies ¼ and ¾ are aliased with one another. In general, each
 within the interval 0 to ½ will be aliased with each frequency of the form

0.0 0.1 0.2 0.3 0.4 0.5

Frequency

I f( ) n
2
--- Âf

2 B̂f
2+( )=

Âf
2
n
--- Yt 2πtf( )cos

t 1=

n

∑= B̂f
2
n
--- Yt 2πtf( )sin

t 1=

n

∑=
finition of Equation (13.2.6) is often used for −½ < f < +½, but the resulting function
metric about zero and no new information is gained from the negative frequencies.

in this chapter, we will use both positive and negative frequencies so that certain nice
matical relationships hold.
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 any positive integer k, and it suffices to limit attention to frequencies within
 from 0 to ½.

.8 Illustration of Aliasing

ph(width=4.875, height=2.5,pointsize=8)
,8,by=.05)
cos(2*pi*t/4),axes=F,type='l',ylab=expression(Y[t]), 
'Discrete Time t')
at=c(1,2,3,4,5,6,7));axis(1); axis(2); box()
,cos(2*pi*t*3/4),lty='dashed',type='l'); abline(h=0)
x=c(0:8),y=cos(2*pi*c(0:8)/4),pch=19)
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time series represented as

(13.3.1)

requencies 0 < f1 < f2 <…< fm < ½ are fixed and Aj and Bj are independent
om variables with zero means and Var(Aj) = Var(Bj) = . Then a straight-

culation shows that {Yt} is stationary† with mean zero and

(13.3.2)

r, the process variance, γ , is a sum of the variances due to each component

0 2 4 6 8

Discrete Time t

1 2 3 4 5 6 70 2 4 6 8

●

●

●

●

●

●

●

●

●

Yt Aj 2πfjt( )cos Bj 2πfjt( )sin+[ ]
j 1=

m

∑=

σj
2

γk σj
2 2πkfj( )cos

j 1=

m

∑=
0
us fixed frequencies:

are this with Exercise 2.29 on page 24.
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(13.3.3)

 < f < ½ we define two random step functions by

 and (13.3.4)

 write Equation (13.3.1) as

(13.3.5)

 that any zero-mean stationary process may be represented as in Equation
t shows how stationary processes may be represented as linear combinations
 many cosine-sine pairs over a continuous frequency band. In general, a(f)
 zero-mean stochastic processes indexed by frequency on 0 ≤ f ≤ ½, each

related‡ increments, and the increments of a(f) are uncorrelated with the
of b(f). Furthermore, we have

, say. (13.3.6)

3.3.5) is called the spectral representation of the process. The nondecreas-
n F(f) defined on 0 ≤ f ≤ ½ is called the spectral distribution function of the

 that the special process defined by Equation (13.3.1) has a purely discrete
ctrum and, for 0 ≤ f ≤ ½,

(13.3.7)

ights of the jumps in the spectral distribution give the variances associated
rious periodic components, and the positions of the jumps indicate the fre-
 the periodic components.
ral, a spectral distribution function has the properties

γ0 σj
2

j 1=

m

∑=

a f( ) Aj
j fj f≤{ }
∑= b f( ) Bj

j fj f≤{ }
∑=

Yt 2πft( )cos a f( )d
0

½

∫ 2πft( )sin b f( )d
0

½

∫+=

Var a f( )d
f1

f2
∫⎝ ⎠

⎛ ⎞ Var b f( )d
f1

f2
∫⎝ ⎠

⎛ ⎞ F f2( ) F f1( )–= =

F f( ) σj
2

j fj f≤{ }
∑=
roof is beyond the scope of this book. See Cramér and Leadbetter (1967, pp. 128
, for example. You do not need to understand stochastic Riemann-Stieltjes integrals to
iate the rest of the discussion of spectral analysis.
related increments are usually called orthogonal increments.
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(13.3.8)

der the scaled spectral distribution function F(f)/γ0, we have a function with
athematical properties as a cumulative distribution function (CDF) for a ran-
le on the interval 0 to ½ since now F(½)/γ0 = 1.
erpret the spectral distribution by saying that, for 0 ≤ f1 < f2 ≤ ½, the integral

(13.3.9)

rtion of the (total) process variance F(½) = γ0 that is attributable to frequen-
ange f1 to f2.

pectral Density

analysis, it is customary to first remove the sample mean from the series. For
er of this chapter, we assume that in the definition of the periodogram, Yt

deviations from its sample mean. Furthermore, for mathematical conve-
now let various functions of frequency, such as the periodogram, be defined
val (−½,½]. In particular, we define the sample spectral density or sample
 = ½I(f) for all frequencies in (−½,½) and = I(½). Using straight-
 somewhat tedious algebra, we can show that the sample spectral density can
ressed as

(13.3.10)

 the sample or estimated covariance function at lag k (k = 0, 1, 2,…, n − 1)

(13.3.11)

analysis terms, the sample spectral density is the (discrete-time) Fourier
f the sample covariance function. From Fourier analysis theory, it follows
 an inverse relationship, namely†

(13.3.12)

1. F is nondecreasing

2. F is right continuous

3. F f( ) 0  for all f≥
4. F f( )

f 1 2⁄→
lim Var Yt( ) γ0= =

⎭
⎪
⎪
⎬
⎪
⎪
⎫

F f( )d
f1

f2
∫

Ŝ f( ) Ŝ ½( )

Ŝ f( ) γ̂0 2 γ̂ k 2πfk( )cos
k 1=

n 1–

∑+=

γ̂ k
1
n
--- Yt Y

 _
–( ) Yt k– Y

 _
–( )

t k 1+=

n

∑=

γ̂ k Ŝ f( ) 2πfk( ) fdcos
½–

½

∫=
may be proved using the orthogonality relationships shown in Appendix J on
49.
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r, notice that the total area under the sample spectral density is the sample
 the time series.

(13.3.13)

can be obtained from the other, the sample spectral density and the sample
function contain the same information about the observed time series but it is
n different ways. For some purposes, one is more convenient or useful, and
rposes the other is more convenient or useful.

 Spectral Density

rocesses, such as all stationary ARMA processes, the covariance functions
ly with increasing lag.† When that is the case, it seems reasonable to con-
pression formed by replacing sample quantities in the sample spectral den-
tion (13.3.10) with the corresponding theoretical quantities. To be precise, if
ce function γk is absolutely summable, we define the theoretical (or popula-

al density for −½ < f ≤ ½ as

(13.4.1)

, there is an inverse relationship, given by

(13.4.2)

ally, S(f) is the (discrete-time) Fourier transform of the sequence …,γ−2, γ−1,
, and {γk} is the inverse Fourier transform‡ of the spectral density S(f)

−½ < f ≤ ½.
tral density has all of the mathematical properties of a probability density
 the interval (−½,½], with the exception that the total area is γ0 rather than 1.
t can be shown that

urse, this is not the case for the processes defined in Equations (13.2.4) on page 323
3.3.1) on page 327. Those processes have discrete components in their spectra.
 that since γk = γ−k and the cosine function is also even, we could write

γ̂ 0 Ŝ f( ) fd
½–

½

∫
1
n
--- Yt Y

 _
–( )2

t 1=

n

∑= =

S f( ) γ0 2 γk 2πfk( )cos
k 1=

∞

∑+=

γk S f( ) 2πfk( ) fdcos
½–

½

∫=

S f( ) γke 2πikf–

k ∞–=

∞
∑=
is the imaginary unit for complex numbers. This looks more like a standard
-time Fourier transform. In a similar way, Equation (13.4.2) may be rewritten as

.

1–=

S f( )e2πikf fd
½–

½
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 for 0 ≤ f ≤ ½ (13.4.3)

 the area under the spectral density between frequencies f1 and f2 with 0 ≤ f1
interpreted as the portion of the variance of the process that is attributable to
 pairs in that frequency interval that compose the process.

riant Linear Filters

riant linear filter is defined by a sequence of absolutely summable constants
c1, c2, c3,… . If {Xt} is a time series, we use these constants to filter {Xt} and
ew time series {Yt} using the expression

(13.4.4)

r k < 0, we say that the filter is causal. In this case, the filtering at time t
ly present and past data values and can be carried out in “real time.”
e already seen many examples of time-invariant linear filters in previous

ifferencing (nonseasonal or seasonal) is an example. A combination of one
fference with one nonseasonal difference is another example. Any moving
cess can be considered as a linear filtering of a white noise sequence and in
eneral linear process defined by Equation (4.1.1) on page 55 is a linear filter-
 noise.

pression on the right-hand side of Equation (13.4.4) is frequently called the
me) convolution of the two sequences {ct} and {Xt}. An extremely useful
 Fourier transforms is that the somewhat complicated operation of convolu-
time domain is transformed into the very simple operation of multiplication
ency domain.†

icular, let SX(f) be the spectral density for the {Xt} process and let SY(f) be the
sity for the {Yt} process. In addition, let 

(13.4.5)

F f( ) S x( ) xd
0

f

∫=

Yt cjXt j–
j ∞–=

∞

∑=

C e 2– πif( ) cje
2πifj–

j ∞–=

∞
∑=

Cov Yt Yt k–,( ) Cov cjXt j–
j ∞–=

∞
∑ csXt k– s–

s ∞–=

∞
∑,

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

cj
s ∞–=

∞

∑ csCov Xt j– Xt k– s–,( )
j ∞–=

∞

∑=
ay have already seen this with moment-generating functions. The density of the sum
 independent random variables, discrete or continuous, is the convolution of their
tive densities, but the moment-generating function for the sum is the product of their
tive moment-generating functions.
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(13.4.6)

(13.4.7)

 have

(13.4.8)

sion is invaluable for investigating the effect of time-invariant linear filters
 In particular, it helps us find the form of the spectral densities for ARMA
he function is often called the (power) transfer function of the

ectral Densities for ARMA Processes

se

tion (13.4.1), it is easy to see that the theoretical spectral density for a white
ss is constant for all frequencies in −½ < f ≤ ½ and, in particular,

(13.5.1)

cies receive equal weight in the spectral representation of white noise. This
nalogous to the spectrum of white light in physics—all colors (that is, all
) enter equally in white light. Finally, we understand the origin of the name
!

ctral Density

process is a simple filtering of white noise with c0 = 1 and c1 = −θ and so

cj
s ∞–=

∞

∑ cs e2πi s k j–+( )fSX f( ) fd
½–

½

∫
j ∞–=

∞

∑=

cse 2– π isf

s ∞–=

∞

∑
2

e2πifkSX f( ) fd
½–

½

∫=

Cov Yt Yt k–,( ) C e 2πif–( ) 2SX f( )e2πifk fd
½–

½

∫=

Cov Yt Yt k–,( ) SY f( )e2π ifk fd
½–

½

∫=

SY f( ) C e 2– π if( ) 2SX f( )=

C e 2– πif( ) 2

S f( ) σe
2=

C e 2– πif( ) 2 1 θe2π if–( ) 1 θe 2– πif–( )=
2 2π if 2– π if
 (13.5.2)1 θ θ e e+( )–+=

1 θ2 2θ 2πf( )cos–+=
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(13.5.3)

, you can show that this spectral density is an increasing function of nonneg-
ncy, while for θ < 0 the function decreases.
t 13.9 displays the spectral density for an MA(1) process with θ = 0.9.† Since
sities are symmetric about zero frequency, we will only plot them for posi-
cies. Recall that this MA(1) process has a relatively large negative correla-
 but all other correlations are zero. This is reflected in the spectrum. We see
sity is much stronger for higher frequencies than for low frequencies. The

 a tendency to oscillate back and forth across its mean level. This rapid oscil-
h-frequency behavior. We might say that the moving average suppresses the
ency components of the white noise process. Researchers sometimes refer to
 spectrum as a blue spectrum since it emphasizes the higher frequencies (that
th lower period or wavelength), which correspond to blue light in the spec-
ble light.

.9 Spectral Density of MA(1) Process with θ = 0.9

ph(width=4.875,height=2.5,pointsize=8)
9 # Reset theta for other MA(1) plots
c(model=list(ma=-theta))

t 13.10 displays the spectral density for an MA(1) process with θ = −0.9.
s has positive correlation at lag 1 with all other correlations zero. Such a pro-
nd to change slowly from one time instance to the next. This is low-fre-
avior and is reflected in the shape of the spectrum. The density is much

r lower frequencies than for high frequencies. Researchers sometimes call

S f( ) 1 θ2 2θ 2πf( )cos–+[ ]σe
2=

0.0 0.1 0.2 0.3 0.4 0.5

Frequency
ectrum.

of the plots of ARMA spectral densities that follow in this section, we take = 1.
nly affects the vertical scale of the graphs, not their shape.

σe
2
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.10 Spectral Density of MA(1) Process with θ = −0.9

ctral Density

l density for an MA(2) model may be obtained similarly. The algebra is a lit-
ut the final expression is

(13.5.4)

11 shows a graph of such a density when θ1 = 1 and θ2 = −0.6. The frequen-
n about 0.1 and 0.18 have especially small density and there is very little
w the frequency of 0.1. Higher frequencies enter into the picture gradually,

ongest periodic components at the highest frequencies.

.11 Spectral Density of MA(2) Process with θ1 = 1 and θ2 = −0.6

0.0 0.1 0.2 0.3 0.4 0.5

Frequency

1 θ1
2 θ2

2 2θ1 1 θ2–( ) 2πf( ) 2θ2 4πf( )cos–cos–+ +[ ]σe
2=

0.0 0.1 0.2 0.3 0.4 0.5

Frequency
1; theta2=-0.6
c(model=list(ma=-c(theta1,theta2)))



13.5  Spec

AR(1) Spe

To find the 
is, we view
ing the spec

which we s

As the next
quency whe

Exhibit 13

> phi=0.9
> ARMAspe

0
20

40
60

80
10

0

S
pe

ct
ra

l D
en

si
ty
tral Densities for ARMA Processes 335

ctral Density

spectral density for AR models, we use Equation (13.4.8) “backwards.” That
 the white noise process as being a linear filtering of the AR process. Recall-
tral density of the MA(1) series, this gives

(13.5.5)

olve to obtain

(13.5.6)

 two exhibits illustrate, this spectral density is a decreasing function of fre-
n φ > 0, while the spectral density increases for φ < 0.

.12 Spectral Density of an AR(1) Process with φ = 0.9

 # Reset value of phi for other AR(1) models
c(model=list(ar=phi))

1 φ2 2φ 2πf( )cos–+[ ]S f( ) σe
2=

S f( )
σe

2

1 φ2 2φ 2πf( )cos–+
--------------------------------------------------=

0.0 0.1 0.2 0.3 0.4 0.5

Frequency
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.13 Spectral Density of an AR(1) Process with φ = −0.6

ctral Density

(2) spectral density, we again use Equation (13.4.8) backwards together with
result to obtain

(13.5.7)

h the correlation properties, the spectral density for an AR(2) model can
riety of behaviors depending on the actual values of the two φ parameters.
ts 13.14 and 13.15 display two AR(2) spectral densities that show very dif-
vior of peak in one case and trough in another.

.14 Spectral Density of AR(2) Process: φ1 = 1.5 and φ2 = −0.75

0.0 0.1 0.2 0.3 0.4 0.5

Frequency

f( )
σe

2

1 φ1
2 φ2

2 2φ1 1 φ2–( ) 2πf( ) 2φ2 4πf( )cos–cos–+ +
---------------------------------------------------------------------------------------------------------------------------=

0.0 0.1 0.2 0.3 0.4 0.5
5; phi2=-.75
 values of phi1 & phi2 for other AR(2) models
c(model=list(ar=c(phi1,phi2)))

Frequency
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s and Watts (1968, p. 229), have noted that the different spectral shapes for
ectrum are determined by the inequality

(13.5.8)

ults are best summarized in the display in Exhibit 13.16. In this display, the
ve is the border between the regions of real roots and complex roots of the
racteristic equation. The solid curves are determined from the inequality
uation (13.5.8).

.15 Spectral Density of AR(2) Process with φ1 = 0.1 and φ2 = 0.4

.16 AR(2) Parameter Values for Various Spectral Density Shapes

φ1 1 φ2–( ) 4φ2<

0.0 0.1 0.2 0.3 0.4 0.5

Frequency

−2 −1 0 1 2

−
1.

0
−

0.
5
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0.
5

1.
0

φφ 2

trough

low frequency (red) spectrum

peak spectrum
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φ1
2 4φ2+ 0=

spectrum

φ1 1 φ2–( ) 4φ2=
φφ1

φ1 1 φ2–( ) 4– φ2=
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enkins and Watts also showed that the frequency f0 at which the peak or
rs will satisfy

(13.5.9)

only thought that complex roots are associated with a peak spectrum. But
there is a small region of parameter values where the roots are complex but

 is of either high or low frequency with no intermediate peak. 

) Spectral Density

 what we know for MA(1) and AR(1) models, we can easily obtain the spec-
 for the ARMA(1,1) mixed model

(13.5.10)

17 provides an example of the spectrum for an ARMA(1,1) model with φ =
 0.8.

.17 Spectral Density of ARMA(1,1) with φ = 0.5 and θ = 0.8

; theta=0.8
c(model=list(ar=phi,ma=-theta))

)

eral ARMA(p,q) case, the spectral density may be expressed in terms of the

2πf0( )cos
φ1 1 φ2–( )

4φ2
-------------------------–=

S f( ) 1 θ2 2θ 2πf( )cos–+
1 φ2 2φ 2πf( )cos–+
--------------------------------------------------σe

2=

0.0 0.1 0.2 0.3 0.4 0.5

Frequency
 characteristic polynomials as

(13.5.11)S f( ) θ e 2– π if( )
φ e 2– π if( )
----------------------

2
σe

2=
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e further expressed in terms of the reciprocal roots of these polynomials, but
 pursue those expressions here. This type of spectral density is often referred
nal spectral density.

ARMA Processes

nal ARMA processes are just special ARMA processes, all of our previous
arry over here. Multiplicative seasonal models can be thought of as applying
ilters consecutively. We will just give two examples.

er the process defined by the seasonal AR model

(13.5.12)

g the two factors separately yields

(13.5.13)

e of this spectrum is shown in Exhibit 13.18, where φ = 0.5, Φ = 0.9, and s =
sonality is reflected in the many spikes of decreasing magnitude at frequen-
12, 2/12, 3/12, 4/12, 5/12, and 6/12.
cond example, consider a seasonal MA process

(13.5.14)

onding spectral density is given by

(13.5.15)

19 shows this spectral density for parameter values θ = 0.4 and Θ = 0.9.

.18 Spectral Density of Seasonal AR with φ = 0.5, Φ = 0.9, s =12

1 φB–( ) 1 ΦB12–( )Yt et=

f( )
σe

2

1 φ2 2φ 2πf( )cos–+[ ] 1 Φ2 2Φ 2π12f( )cos–+[ ]
------------------------------------------------------------------------------------------------------------------------=

Yt 1 θB–( ) 1 ΘB12–( )et=

f) 1 θ2 2θ 2πf( )cos–+[ ] 1 Θ2 2Θ 2π12f( )cos–+[ ]σe
2=

0.0 0.1 0.2 0.3 0.4 0.5
 PHI=.9
c(model=list(ar=phi,seasonal=list(sar=PHI,period=12)))

Frequency
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.19 Spectral Density of Seasonal MA with θ = 0.4, Θ = 0.9, s =12

4; Theta=.9
c(model=list(ma=-theta,seasonal=list(sma=-Theta, 
d=12)))

pling Properties of the Sample Spectral Density

e this section, we consider a time series with known properties. Suppose that
e an AR(1) model with φ = −0.6 of length n = 200. Exhibit 13.13 on page
 the theoretical spectral density for such a series. The sample spectral density
ulated series is displayed in Exhibit 13.20, with the smooth theoretical spec-
 shown as a dotted line. Even with a sample of size 200, the sample spectral
xtremely variable from one frequency point to the next. This is surely not an
estimate of the theoretical spectrum for this process. We must investigate the
roperties of the sample spectral density to understand the behavior that we

stigate the sampling properties of the sample spectral density, we begin with
t case, where the time series {Yt} is zero-mean normal white noise with vari-
call that

and (13.6.1)

w, consider only nonzero Fourier frequencies f = j/n < ½. Since  and 
nctions of the time series {Yt}, they each have a normal distribution. We can
 means and variances using the orthogonality properties of the cosines and

0.0 0.1 0.2 0.3 0.4 0.5

Frequency

Âf
2
n
--- Yt 2πtf( )cos

t 1=

n

∑= B̂f
2
n
--- Yt 2πtf( )sin

t 1=

n

∑=

Âf B̂f
find that  and  each have mean zero and variance 2γ0/n. We can also use
nality properties to show that  and  are uncorrelated and thus indepen-

ppendix J on page 349.

Âf B̂f
Âf B̂f
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hey are jointly bivariate normal. Similarly, it can be shown that for any two
rier frequencies f1 and f2, , , , and  are jointly independent.

.20 Sample Spectral Density for a Simulated AR(1) Process

ph(width=4.875,height=2.5,pointsize=8)
d(271435); n=200; phi=-0.6
.sim(model=list(ar=phi),n=n)
(y,log='no',xlab='Frequency',
'Sample Spectral Density',sub='')
p$freq,ARMAspec(model=list(ar=phi),freq=sp$freq, 
F)$spec,lty='dotted'); abline(h=0)

rmore, we know that the square of a standard normal has a chi-square distri-
 one degree of freedom and that the sum of independent chi-square variables
re distributed with degrees of freedom added together. Since S(f) = γ0 , we

(13.6.2)

uare distribution with two degrees of freedom.
that a chi-square variable has a mean equal to its degrees of freedom and a
ual to twice its degrees of freedom. With these facts, we quickly discover

and are independent for f1 ≠ f2 (13.6.3)

Âf1
Âf2

B̂f1
B̂f2

0.0 0.1 0.2 0.3 0.4 0.5

Frequency

n
2γ0
-------- Âf( )2 B̂f( )2+[ ] 2Ŝ f( )

S f( )
-------------=

Ŝ f1( ) Ŝ f2( )
(13.6.4)

(13.6.5)

E Ŝ f( )[ ] S f( )=

Var Ŝ f( )[ ] S2 f( )=
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3.6.4) expresses the desirable fact that the sample spectral density is an unbi-
tor of the theoretical spectral density.
unately, Equation (13.6.5) shows that the variance in no way depends on the
 n. Even in this simple case, the sample spectral density is not a consistent
f the theoretical spectral density. It does not get better (that is, have smaller
s the sample size increases. The reason the sample spectral density is incon-
sically this: Even if we only consider Fourier frequencies, 1/n, 2/n,…, we are
timate more and more “parameters”; that is, S(1/n), S(2/n),… . As the sample
es, there are not enough data points per parameter to produce consistent esti-

ults expressed in Equations (13.6.3)–(13.6.5) in fact hold more generally. In
s, we ask you to argue that for any white noise—not necessarily normal—

esult holds exactly and the  and  that make up and are at
elated for f1 ≠ f2.
e more general results, suppose {Yt} is any linear process

(13.6.6)

’s are independent and identically distributed with zero mean and common
uppose that the ψ-coefficients are absolutely summable, and let f1 ≠ f2 be any
 in 0 to ½. Then it may be shown† that as the sample size increases without

 and (13.6.7)

 distribution to independent chi-square random variables, each with two
reedom.
estigate the usefulness of approximations based on Equations (13.6.7),
d (13.6.5), we will display results from two simulations. We first simulated
ations of an MA(1) time series with θ = 0.9, each of length n = 48. The white
 used to create each MA(1) series was selected independently from a t-distri-
 five degrees of freedom scaled to unit variance. From the 1000 series, we
000 sample spectral densities.

t 13.21 shows the average of the 1000 sample spectral densities evaluated at
ier frequencies associated with n = 48. The solid line is the theoretical spec-
 It appears that the sample spectral densities are unbiased to a useful approx-
his case.

Âf B̂f Ŝ f1( ) Ŝ f2( )

Yt et ψ1et 1– ψ2et 2–
…+ + +=

2Ŝ f1( )
S f1( )

---------------
2Ŝ f2( )
S f2( )

---------------
r example, Fuller (1996, pp. 360–361).
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.21 Average Sample Spectral Density: 
Simulated MA(1), θ = 0.9, n = 48

xtensive R code to produce Exhibits 13.21 through 13.26, 
e the Chapter 13 script file associated with this book.

t 13.22 plots the standard deviations of the sample spectral densities over the
ations. According to Equation (13.6.5), we hope that they match the theoret-
l density at the Fourier frequencies. Again the approximation seems to be
table.

.22 Standard Deviation of Sample Spectral Density: 
Simulated MA(1), θ = 0.9, n = 48
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s of freedom. Of course, we could do those for any of the Fourier frequen-
it 13.23 shows the results at the frequency 15/48. The agreement with the
distribution appears to be acceptable.

.23 QQ Plot of Spectral Distribution at f = 15/48

eated similar displays and calculations when the true model was an AR(2)
.5, φ2 = −0.75, and n = 96. Here we used normal white noise. The results are
 Exhibits 13.24, 13.25, and 13.26. Once more the simulation results with n =

0 replications seem to follow those suggested by limit theory quite remark-

.24 Average Sample Spectral Density: 
Simulated AR(2), φ1 = 1.5, φ2 = −0.75, n = 96
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.25 Standard Deviation of Sample Spectral Density: 
Simulated AR(2), φ1 = 1.5, φ2 = −0.75, n = 96

.26 QQ Plot of Spectral Distribution at f = 40/96

rse, none of these results tell us that the sample spectral density is an accept-
tor of the underlying theoretical spectral density. The sample spectral density
erally approximately unbiased but also inconsistent, with way too much vari-
 a useful estimator as it stands. The approximate independence at the Fourier

s also helps explain the extreme variability in the behavior of the sample
sity.
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mmary

r introduces the ideas of modeling time series as linear combinations of sines
—so-called spectral analysis. The periodogram was introduced as a tool for

 contribution of the various frequencies in the spectral representation of the
 ideas were then extended to modeling with a continuous range of frequen-
al densities of the ARMA models were explored. Finally, the sampling prop-
 sample spectral density were presented. Since the sample spectral density is
tent estimator of the theoretical spectral density, we must search further for
le estimator. That is the subject of the next chapter.

ES

A and B so that .
R and Φ so that .
ider the series displayed in Exhibit 13.2 on page 320.
erify that regressing the series on cos(2πft) and sin(2πft) for f = 4/96 pro-
ides perfect estimates of A and B.

se Equations (13.1.5) on page 321 to obtain the relationship between R, Φ, A
nd B for the cosine component at frequency f = 14/96. (For this component,
e amplitude is 1 and the phase is 0.6π.)

erify that regressing the series on cos(2πft) and sin(2πft) for f = 14/96 pro-
ides perfect estimates of A and B.

erify that regressing the series on cos(2πft) and sin(2πft) for both f = 4/96
nd f = 14/96 together provides perfect estimates of A4, B4, A14, and B14.

erify that regressing the series on cos(2πft) and sin(2πft) for f = 3/96 and f =
3/96 together provides perfect estimates of A3, B3, A13, and B13.

epeat part (d) but add a third pair of cosine-sine predictor variables at any
ther Fourier frequency. Verify that all of the regression coefficients are still
stimated perfectly.
rate or choose any series of length n = 10. Show that the series may be fit
ly by a linear combination of enough cosine-sine curves at the Fourier fre-
cies.
late a signal + noise time series from the model in Equation (13.2.4) on page
Use the same parameter values used in Exhibit 13.4 on page 324.
lot the time series and look for the periodicities. Can you see them?

lot the periodogram for the simulated series. Are the periodicities clear now?

3 2πft 0.4+( )cos A 2πft( )cos B 2πft( )sin+=
R 2πft Φ+( )cos 2πft( )cos 3 2πft( )sin+=
 that the covariance function for the series defined by Equation (13.3.1) on
 327 is given by the expression in Equation (13.3.2).
lay the algebra that establishes Equation (13.3.10) on page 329.
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 that if {Xt} and {Yt} are independent stationary series, then the spectral
ty of {Xt + Yt} is the sum of the spectral densities of {Xt} and {Yt}.
 that when θ > 0 the spectral density for an MA(1) process is an increasing
ion of frequency, while for θ < 0 this function decreases.
h the theoretical spectral density for an MA(1) process with θ = 0.6. Interpret

plications of the shape of the spectrum on the possible plots of the time
s values.
h the theoretical spectral density for an MA(1) process with θ = −0.8. Inter-
he implications of the shape of the spectrum on the possible plots of the time
s values.
 that when φ > 0 the spectral density for an AR(1) process is a decreasing
ion of frequency, while for φ < 0 the spectral density increases.
h the theoretical spectral density for an AR(1) time series with φ = 0.7. Inter-
he implications of the shape of the spectrum on the possible plots of the time
s values.
h the theoretical spectral density for an AR(1) time series with φ = −0.4.
pret the implications of the shape of the spectrum on the possible plots of the
series values.
h the theoretical spectral density for an MA(2) time series with θ1 = −0.5 and
0.9. Interpret the implications of the shape of the spectrum on the possible
series plots of the series values.
h the theoretical spectral density for an MA(2) time series with θ1 = 0.5 and
−0.9. Interpret the implications of the shape of the spectrum on the possible
series plots of the series values.
h the theoretical spectral density for an AR(2) time series with φ1 = −0.1 and
−0.9. Interpret the implications of the shape of the spectrum on the possible
series plots of the series values.
h the theoretical spectral density for an AR(2) process with φ1 = 1.8 and φ2 =
 Interpret the implications of the shape of the spectrum on the possible plots
 time series values.

h the theoretical spectral density for an AR(2) process with φ1 = −1 and φ2 =
 Interpret the implications of the shape of the spectrum on the possible plots
 time series values.

h the theoretical spectral density for an AR(2) process with φ1 = 0.5 and φ2 =
nterpret the implications of the shape of the spectrum on the possible plots of
me series values.
h the theoretical spectral density for an AR(2) process with φ1 = 0 and φ2 =
nterpret the implications of the shape of the spectrum on the possible plots of
me series values.
h the theoretical spectral density for an AR(2) process with φ1 = 0.8 and φ2 =

 Interpret the implications of the shape of the spectrum on the possible plots
 time series values.

h the theoretical spectral density for an ARMA(1,1) time series with φ = 0.5
 = 0.8. Interpret the implications of the shape of the spectrum on the possible
 of the time series values.
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h the theoretical spectral density for an ARMA(1,1) process with φ = 0.95
 = 0.8. Interpret the implications of the shape of the spectrum on the possible
 of the time series values.
Xt} be a stationary time series and {Yt} be defined by Yt = .
ind the power transfer function for this linear filter.

 this a causal filter?

raph the power transfer function and describe the effect of using this filter.
hat is, what frequencies will be retained (emphasized) and what frequencies
ill be deemphasized (attenuated) by this filtering?
Xt} be a stationary time series and let {Yt} be defined by Yt = .
ind the power transfer function for this linear filter.

 this a causal filter?

raph the power transfer function and describe the effect of using this filter.
hat is, what frequencies will be retained (emphasized) and what frequencies
ill be deemphasized (attenuated) by this filtering?
Xt} be a stationary time series and let Yt =  define

ind the power transfer function for this linear filter.

 this a causal filter?

raph the power transfer function and describe the effect of using this filter.
hat is, what frequencies will be retained (emphasized) and what frequencies
ill be deemphasized (attenuated) by this filtering?
Xt} be a stationary time series and let Yt =  define

how that the power transfer function of this filter is the same as the power
ansfer function of the filter defined in Exercise 13.27.

 this a causal filter?
Xt} be a stationary time series and let Yt =  define {Yt}.
ind the power transfer function for this linear filter.

raph the power transfer function and describe the effect of using this filter.
hat is, what frequencies will be retained (emphasized) and what frequencies
ill be deemphasized (attenuated) by this filtering?
{Xt} be a stationary time series and let {Yt} be defined by Yt =

.
ind the power transfer function for this linear filter.

raph the power transfer function and describe the effect of using this filter.
hat is, what frequencies will be retained (emphasized) and what frequencies
ill be deemphasized (attenuated) by this filtering?
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J: Orthogonality of Cosine and Sine Sequences 349

ose that {Yt} is a white noise process not necessarily normal. Use the orthog-
ty properties given in Appendix J to establish the following at the Fourier
encies.
he sample spectral density is an unbiased estimator of the theoretical spectral
ensity.

he variables  and  are uncorrelated for any Fourier frequencies f1, f2.

 the Fourier frequencies f1 ≠ f2, the variables  and  are uncorrelated.
 out a simulation analysis similar to those reported in Exhibits 13.21, 13.22,
, and 13.24. Use an AR(2) model with φ1 = 0.5, φ2 = −0.8, and n = 48. Rep-
 the series 1000 times.
isplay the average sample spectral density by frequency and compare it with
rge sample theory.

isplay the standard deviation of the sample spectral density by frequency
nd compare it with large sample theory.

isplay the QQ plot of the appropriately scaled sample spectral density com-
ared with large sample theory at several frequencies. Discuss your results.
 out a simulation analysis similar to those reported in Exhibits 13.21, 13.22,
, and 13.24. Use an AR(2) model with φ1 = −1, φ2 = −0.75, and n = 96. Rep-
 the time series 1000 times.
isplay the average sample spectral density by frequency and compare it with
e results predicted by large sample theory.

isplay the standard deviation of the sample spectral density by frequency
nd compare it with the results predicted by large sample theory.

isplay the QQ plot of the appropriately scaled sample spectral density and
ompare with the results predicted by large sample theory at several frequen-
ies. Discuss your results.
late a zero-mean, unit-variance, normal white noise time series of length n =
. Display the periodogram of the series, and comment on the results.

ix J: Orthogonality of Cosine and Sine Sequences

, 1, 2,…, n/2, we have

(13.J.1)

(13.J.2)

Âf1
B̂f2

Âf1
Âf2

2π j
n
---t⎝ ⎠

⎛ ⎞cos
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n

∑ 0= if j 0≠

2π j
n
---t⎝ ⎠

⎛ ⎞sin
t 1=

n

∑ 0=
(13.J.3)2π j
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⎛ ⎞ 2πk
n
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n

∑ 0=



350

These are m

or, equivale

together wi

for real or c

t =

n

∑

t =

n

∑

c

Introduction to Spectral Analysis

(13.J.4)

(13.J.5)

ost easily proved using DeMoivre’s theorem

(13.J.6)

ntly, Euler’s formulas,

 and (13.J.7)

th the result for the sum of a finite geometric series, namely

(13.J.8)

omplex r ≠ 1.
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ATING THE SPECTRUM

rnative methods for constructing reasonable estimators of the spectral den-
en proposed and investigated over the years. We will highlight just a few of
ave gained the most acceptance in light of present-day computing power.
onparametric estimation of the spectral density (that is, smoothing of the

ctral density) assumes very little about the shape of the “true” spectral den-
etric estimation assumes that an autoregressive model—perhaps of high
vides an adequate fit to the time series. The estimated spectral density is then
e theoretical spectral density of the fitted AR model. Some other methods are
 briefly.

oothing the Spectral Density

dea here is that most spectral densities will change very little over small
 frequencies. As such, we should be able to average the values of the sample
sity over small intervals of frequencies to gain reduced variability. In doing
t keep in mind that we may introduce bias into the estimates if, in fact, the
 spectral density does change substantially over that interval. There will
a trade-off between reducing variability and introducing bias. We will be
use judgment to decide how much averaging to perform in a particular case.
e a Fourier frequency. Consider taking a simple average of the neighboring
ctral density values centered on frequency f and extending m Fourier fre-
 either side of f. We are averaging 2m + 1 values of the sample spectrum, and
d sample spectral density is given by

(14.1.1)

raging for frequencies near the end points of 0 and ½, we treat the peri-
 symmetric about 0 and ½.)
enerally, we may smooth the sample spectrum with a weight function or
dow W (f) with the properties

S
_

f( ) 1
2m 1+
----------------- Ŝ f j

n
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(14.1.2)

a smoothed estimator of the spectral density as

(14.1.3)

 averaging shown in Equation (14.1.1) corresponds to the rectangular spec-

 for −m ≤ k ≤ m (14.1.4)

al reasons, this spectral window is usually called the Daniell spectral win-
. J. Daniell, who first used it in the 1940s.
xample, consider the simulated AR(1) series whose sample spectral density

 in Exhibit 13.20 on page 341. Exhibit 14.1 displays the smoothed sample
sing the Daniell window with m = 5. The true spectrum is again shown as a
 The smoothing did reduce some of the variability that we saw in the sample

.1 Smoothed Spectrum Using the Daniell Window With m = 5

Wm k( ) 0≥

Wm k( ) Wm k–( )=

Wm k( )
k m–=

m

∑ 1=

⎭
⎪
⎪
⎪
⎬
⎪
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⎪
⎫

S
_

f( ) Wm k( )Ŝ f k
n
---+⎝ ⎠

⎛ ⎞
k m–=

m

∑=

Wm k( ) 1
2m 1+
-----------------=

0.0 0.1 0.2 0.3 0.4 0.5

Frequency
ph(width=4.875,height=2.5,pointsize=8)
d(271435); n=200; phi=-0.6
.sim(model=list(ar=phi),n=n)
l('daniell',m=5)
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(y,kernel=k,log='no',sub='',xlab='Frequency', 
'Smoothed Sample Spectral Density')
p$freq,ARMAspec(model=list(ar=phi),freq=sp$freq, 
F)$spec,lty='dotted')

ake the smoothing window wider (that is, increase m) we will reduce the
ven further. Exhibit 14.2 shows the smoothed spectrum with a choice of m =
ger with more and more smoothing is that we may lose important details in
 and introduce bias. The amount of smoothing needed will always be a mat-
ental trial and error, recognizing the trade-off between reducing variability
se of introducing bias.

.2 Smoothed Spectrum Using the Daniell Window With m = 15

l('daniell',m=15)
(y,kernel=k,log='no',sub='',xlab='Frequency', 
'Smoothed Sample Spectral Density')
p$freq,ARMAspec(model=list(ar=phi),freq=sp$freq, 
F)$spec,lty='dotted')

ctral Windows

r spectral windows have been suggested over the years. In particular, the
ge at the end points of the Daniell window could be softened by making the
rease at the extremes. The so-called modified Daniell spectral window sim-

 the two extreme weights as half of the other weights still retaining the prop-
e weights sum to 1. The leftmost graph in Exhibit 14.3 shows the modified

.0 0.1 0.2 0.3 0.4 0.5

Frequency
ctral window for m = 3.
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.3 The Modified Daniell Spectral Window and Its Convolutions

r common way to modify spectral windows is to use them to smooth the
 more than once. Mathematically, this amounts to using the convolution of

 windows. If the modified Daniell spectral window with m = 3 is used twice
 with itself), we in fact are using the (almost) triangular-shaped window
e middle display of Exhibit 14.3. A third smoothing (with m = 3) is equiva-
g the spectral window shown in the rightmost panel. This spectral window
ch like a normal curve. We could also use different values of m in the various
s of the convolutions.
esearchers agree that the shape of the spectral window is not nearly as impor-
hoice of m (or the bandwidth—see below). We will use the modified Daniell
dow—possibly with one or two convolutions—in our examples.†

s and Variance

etical spectral density does not change much over the range of frequencies
oothing window covers, we expect the smoothed estimator to be approxi-
iased. A calculation using this approximation, the spectral window properties
s (14.1.2), and a short Taylor expansion produces

(14.2.1)
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he modified Daniell kernel is the default kernel for smoothing sample spectra, and m
e specified by simply specifying span = 2m + 1 in the spec function where span is an

viation of the spans argument.
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ximate value for the bias in the smoothed spectral density is given by

(14.2.2)

iell rectangular spectral window, we have

(14.2.3)

 bias tends to zero as n → ∞ as long as m/n → 0.
the fact that the sample spectral density values at the Fourier frequencies are
ely uncorrelated and Equation (13.6.5) on page 341, we may also obtain a
oximation for the variance of the smoothed spectral density as

(14.2.4)

or the Daniell or rectangular spectral window , so
 as m → ∞ (as n → ∞) we have consistency.
ral, we require that as n → ∞ we have m/n → 0 to reduce bias and m → ∞ to
ance. As a practical matter, the sample size n is usually fixed and we must
 balance bias and variance considerations.

s and Watts (1968) suggest trying three different values of m. A small value
n idea where the large peaks in S(f) are but may show a large number of
y of which are spurious. A large value of m may produce a curve that is
 too smooth. A compromise may then be achieved with the third value of m.
2004, p. 135) suggests using . Often trying values for m of 2 ,

 will give you some insight into the shape of the true spectrum. Since the
 window decreases as m decreases, this is sometimes called window closing.

 (1973, p. 311) says, “Experience is the real teacher and cannot be got from a

ndwidth

ximate bias given by Equation (14.2.2), notice that the factor  depends
ature of the true spectral density and will be large in magnitude if there is a
in S(f) near f but will be small when S(f) is relatively flat near f. This makes

bias
1
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nse, as the motivation for the smoothing of the sample spectral density
at the true density changed very little over the range of frequencies used in
l window. The square root of the other factor in the approximate bias from
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14.2.2) is sometimes called the bandwidth, BW, of the spectral window,

(14.3.1)

d in Equation (14.2.3), for the Daniell window this BW will tend to zero as n
g as m/n → 0. From Equations (14.1.2) on page 352 a spectral window has
atical properties of a discrete zero-mean probability density function, so the
 here may be viewed as proportional to the standard deviation of the spectral
 such, it is one way to measure the width of the spectral window. It is inter-
measure of width of the band of frequencies used in smoothing the sample
nsity. If the true spectrum contains two peaks that are close relative to the
of the spectral window, those peaks will be smoothed together when we cal-
 and they will not be seen as separate peaks. It should be noted that there are
ative definitions of bandwidth given in the time series literature. Priestley
13–528) spends considerable time discussing the advantages and disadvan-

 various definitions.

nfidence Intervals for the Spectrum

imate distributional properties of the smoothed spectral density may be eas-
obtain confidence intervals for the spectrum. The smoothed sample spectral
 linear combination of quantities that have approximate chi-square distribu-
mmon approximation in such a case is to use some multiple of another
distribution with degrees of freedom obtained by matching means and vari-
ming to be roughly unbiased with variance given by Equation (14.2.4),
eans and variances leads to approximating the distribution of

(14.4.1)

are distribution with degrees of freedom given by

(14.4.2)

  be the 100(α/2)th percentile of a chi-square distribution with ν
reedom, the inequality

BW
1
n
--- k2Wm k( )

k m–=

m

∑=

S
_

f( )

νS
_

f( )
S f( )

--------------

ν 2

Wm
2 k( )

k m–=

m

∑
-------------------------------=

χν α 2⁄,
2

νS
_

f( )
erted into a 100(1 − α)% confidence statement for S(f) as

χν α 2⁄,
2

S f( )
-------------- χν 1 α 2⁄–,

2< <



14.4  Conf

In this form
review of E
portional to
page 98, th
sity to stab
frequency a

For these re
redo Exhib
Exhibit 14.
true spectra
dence limit

Exhibit 14

> set.see
> y=arima
> k=kerne
> sp=spec

ylab=
> lines(s

lty='

Exhibi
dence inter
“crosshairs

S
_

[log

0.
2

0.
5

2.
0

5.
0

Lo
g(

S
m

oo
th

ed
 S

pe
ct

ra
l D

en
si

ty
)

idence Intervals for the Spectrum 357

(14.4.3)

ulation, the width of the confidence interval will vary with frequency. A
quation (14.2.4) on page 355 shows that the variance of is roughly pro-
 the square of its mean. As we saw earlier in Equations (5.4.1) and (5.4.2) on
is suggests that we take the logarithm of the smoothed sample spectral den-
ilize the variance and obtain confidence intervals with width independent of
s follows:

(14.4.4)

asons it is common practice to plot the logarithms of estimated spectra. If we
it 14.2 on page 353 in logarithm terms, we obtain the display shown in
4, where we have also drawn in the 95% confidence limits (dotted) and the
l density (dashed) from the AR(1) model. With a few exceptions, the confi-
s capture the true spectral density.

.4 Confidence Limits from the Smoothed Spectral Density

d(271435); n=200; phi=-0.6
.sim(model=list(ar=phi),n=n)
l('daniell',m=15)
(y,kernel=k,sub='',xlab='Frequency',
'Log(Smoothed Spectral Density)', ci.plot=T,ci.col=NULL)
p$freq,ARMAspec(model=list(ar=phi),sp$freq,plot=F)$spec,
dashed')
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Frequency
t 14.5 shows a less cluttered display of confidence limits. Here a 95% confi-
val and bandwidth guide is displayed in the upper right-hand corner—the
.” The vertical length gives the length (width) of a confidence interval, while
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tal line segment indicates the central point† of the confidence interval, and its
th) matches the bandwidth of the spectral window. If you visualize the guide
d with the crosshairs centered on the smoothed spectrum above any fre-
 have a visual display of a vertical confidence interval for the “true” spectral
at frequency and a rough guide of the extent of the smoothing. In this simu-
le, we also show the true spectrum as a dotted line.

.5 Logarithm of Smoothed Spectrum from Exhibit 14.2

(y,span=31,sub='',xlab='Frequency', 
'Log(Smoothed Sample Spectrum)')
p$freq,ARMAspec(model=list(ar=phi),sp$freq, 
F)$spec,lty='dotted')

kage and Tapering

e previous discussion has assumed that the frequencies of interest are the
uencies. What happens if that is not the case? Exhibit 14.6 displays the peri-
 a series of length n = 96 with two pure cosine-sine components at frequen-
8 and f = 14/96. The model is simply

(14.5.1)

ith n = 96, f = 0.088 is not a Fourier frequency. The peak with lower power at
frequency f = 14/96 is clearly indicated. However, the peak at f = 0.088 is not

0.0 0.1 0.2 0.3 0.4 0.5

Frequency

confidence interval
and bandwidth guide

Yt 3 2π 0.088( )t[ ]cos 2π 14
96
------⎝ ⎠

⎛ ⎞ tsin+=
entral point is not, in general, halfway between the endpoints, as Equation (14.4.4)
ines asymmetric confidence intervals. In this example, using the modified Daniell

w with m = 15, we have ν = 61 degrees of freedom, so the chi-square distribution
s effectively a normal distribution, and the confidence intervals are nearly symmetric.
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er, the power at this frequency is blurred across several nearby frequencies,
ppearance of a much wider peak.

.6 Periodogram of Series with Peaks at f = 0.088 and f = 14/96

ph(width=4.875,height=2.5,pointsize=8)
 f1=0.088; f2=14/96
(f1*2*pi*t)+sin(f2*2*pi*t) 
gram(y); abline(h=0)

ebraic analysis† shows that we may view the periodogram as a “smoothed”
sity formed with the Dirichlet kernel spectral window given by

(14.5.2)

r all Fourier frequencies f = j/n, D(f) = 0, so this window has no effect what-
ose frequencies. However, the plot of D(f) given on the left-hand side of

7 shows significant “side lobes” on either side of the main peak. This will
r at non-Fourier frequencies to leak into the supposed power at the nearby
uencies, as we see in Exhibit 14.6.
ng is one method used to improve the issue with the side lobes. Tapering
creasing the data magnitudes at both ends of the series so that the values
ally toward the data mean of zero. The basic idea is to reduce the end effects
ng a Fourier transform on a series of finite length. If we calculate the peri-
fter tapering the series, the effect is to use the modified Dirichlet kernel
he right-hand side of Exhibit 14.7 for n = 100. Now the side lobes have
disappeared.

.0 0.1 0.2 0.3 0.4 0.5

Frequency

14/96
0.088

.0 0.1 0.2 0.3 0.4 0.5

Frequency
0.088 14/96

D f( ) 1
n
--- nπf( )sin

πf( )sin
---------------------=
dix K on page 381 gives some of the details.
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.7 Dirichlet Kernel and Dirichlet Kernel after Tapering

st common form of tapering is based on a cosine bell. We replace the origi-

t by , with

(14.5.3)

xample, ht is the cosine bell given by

(14.5.4)

the cosine bell with n = 100 is given on the left-hand side of Exhibit 14.8. A
 common taper is given by a split cosine bell that applies the cosine taper
extremes of the time series. The split cosine bell taper is given by

(14.5.5)

lled a 100p% cosine bell taper with p = 2m/n. A 10% split cosine bell taper is
he right-hand side of Exhibit 14.8 again with n = 100. Notice that there is a
on each end, resulting in a total taper of 20%. In practice, split cosine bell
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% or 20% are in common use.
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.8 Cosine Bell and 10% Taper Split Cosine Bell for n = 100

urn to the variable star brightness data first explored on page 325. Exhibit
s four periodograms of this series, each with a different amount of tapering.
 the length of the 95% confidence intervals displayed in the respective

”, we see that the two peaks found earlier in the raw untapered periodogram
ies f1 = 21/600 and f 2= 25/600 are clearly real. A more detailed analysis of
eaks shown best in the bottom periodogram are all in fact harmonics of the
 f1 and f 2. There is much more on the topic of leakage reduction and taper-
mfield (2000).
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.9 Variable Star Spectra with Tapers of 0%, 10%, 20%, and 50%
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toregressive Spectrum Estimation

ding sections on spectral density estimation, we did not make any assump-
 the parametric form of the true spectral density. However, an alternative
 estimating the spectral density would be to consider fitting an AR, MA, or
del to a time series and then use the spectral density of that model with esti-
meters as our estimated spectral density. (Section 13.5, page 332, discussed
 densities of ARMA models.) Often AR models are used with possibly large
n to minimize the AIC criterion.
xample, consider the simulated AR series with φ = −0.6 and n = 200 that we
ibits 13.20, 14.1, 14.2, and 14.5. If we fit an AR model, choosing the order

e the AIC, and then plot the estimated spectral density for that model, we
esults shown in Exhibit 14.10. 

.10 Autoregressive Estimation of the Spectral Density

(y,method='ar',sub='',xlab='Frequency',
'Log(AR Spectral Density Estimate')
p$freq,ARMAspec(model=list(ar=phi),freq=sp$freq, 
F)$spec,lty='dotted')

hese are simulated data, we also show the true spectral density as a dotted
 case, the order was chosen as p = 1 and the estimated spectral density fol-
e density very well. We will show some examples with real time series in

8.

0.0 0.1 0.2 0.3 0.4 0.5

Frequency



364

14.7 Exa

A useful w
what the an
spectral wi
strong peak

AR(2) with

The spectra
Exhibit 13.
mal white n
three estim
fied Daniel
15. A span
span of 9 is
this curve i
windows ar
width guid
wider band
probably th

Exhibit 14

> win.gra
> set.see
> y=arima
> sp1=spe

ylab=
> sp2=spe
> lines(s
> lines(s

0.
1

0.
5

5.
0

50
.0

Lo
g(

E
st

im
at

ed
 S

pe
ct

ra
l D

en
si

ty
)

Estimating the Spectrum

mples with Simulated Data

ay to get a feel for spectral analysis is with simulated data. Here we know
swers are and can see what the consequences are when we make choices of
ndow and bandwidth. We begin with an AR(2) model that contains a fairly
 in its spectrum.

 φ1 = 1.5, φ2 = −0.75: A Peak Spectrum

l density for this model contained a peak at about f = 0.08, as displayed in
14 on page 336. We simulated a time series from this AR(2) model with nor-
oise terms with unit variance and sample size n = 100. Exhibit 14.11 shows

ated spectral densities and the true density as a solid line. We used the modi-
l spectral window with three different values for span = 2m + 1 of 3, 9, and
 of 3 gives the least amount of smoothing and is shown as a dotted line. A
 shown as a dashed line. With span = 15, we obtain the most smoothing, and
s displayed with a dot-dash pattern. The bandwidths of these three spectral
e 0.018, 0.052, and 0.087, respectively. The confidence interval and band-
e displayed apply only to the dotted curve estimate. The two others have
widths and shorter confidence intervals. The estimate based on span = 9 is
e best one, but it does not represent the peak very well.

.11 Estimated Spectral Densities

ph(width=4.875,height=2.5,pointsize=8)
d(271435); n=100; phi1=1.5; phi2=-.75
.sim(model=list(ar=c(phi1,phi2)),n=n)
c(y,spans=3,sub='',lty='dotted',xlab='Frequency', 

0.0 0.1 0.2 0.3 0.4 0.5

Frequency
'Log(Estimated Spectral Density)')
c(y,spans=9,plot=F); sp3=spec(y,spans=15,plot=F)
p2$freq,sp2$spec,lty='dashed')
p3$freq,sp3$spec,lty='dotdash')
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.001,.5,by=.001)
,ARMAspec(model=list(ar=c(phi1,phi2)),freq=f, 
F)$spec,lty='solid')

o used the parametric spectral estimation idea and let the software choose the
odel based on the smallest AIC. The result was an estimated AR(2) model
ectrum shown in Exhibit 14.12. This is a very good representation of the
spectrum, but of course the model was indeed AR(2).

.12 AR Spectral Estimation: Estimated (dotted), True (solid)

c(y,method='ar',lty='dotted', 
'Frequency',ylab='Log(Estimated AR Spectral Density)')
.001,0.5, by 0.001)
,ARMAspec(model=list(ar=c(phi1,phi2)),freq=f, 
F)$spec,lty='solid')
hod # This will tell you order of the AR model selected

 φ1 = 0.1, φ2 = 0.4: A Trough Spectrum

ok at an AR(2) model with a trough spectrum and a larger sample size. The
m is displayed in Exhibit 13.15 on page 337. We simulated this model with

d unit-variance normal white noise. The three smoothed spectral estimates
based on spans of 7, 15, and 31. As before, the confidence limits and band-

0.0 0.1 0.2 0.3 0.4 0.5

Frequency
e correspond to the smallest span of 7 and hence give the narrowest band-
ongest confidence intervals. In our opinion, the middle value of span = 15,
out , gives a reasonable estimate of the spectrum.n
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.13 Estimated Spectrum for AR(2) Trough Spectrum Model

 R code for Exhibit 14.11 with new values for the
ers.

t 14.14 shows the AR spectral density estimate. The minimum AIC was
 the true order of the underlying model, AR(2), and the estimated spectral
uite good.

.14 AR Spectral Estimation: Estimated (dotted), True (solid)

 R code for Exhibits 14.11 and 14.12 with new values
 parameters.
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Frequency
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) with φ = 0.5, θ = 0.8

ectral density of the mixed model ARMA(1,1) with φ = 0.5 and θ = 0.8 was
xhibit 13.17 on page 338. This model has substantial medium- and high-fre-
tent but very little power at low frequencies. We simulated this model with a
 of n = 500 and unit-variance normal white noise. Using  ≈ 22 as a guide
g m, we show three estimates with m of 11, 23, and 45 in Exhibit 14.15. The
 interval guide indicates that the many peaks produced when m = 11 are
ous (which, in fact, they are). With such a smooth underlying spectrum, the
moothing shown with m = 45 produces a rather good estimate.

.15 Spectral Estimates for an ARMA(1,1) Process

ph(width=4.875,height=2.5,pointsize=8)
d(324135); n=500; phi=.5; theta=.8
.sim(model=list(ar=phi,ma=-theta),n=n)
c(y,spans=11,sub='',lty='dotted', 
'Frequency',ylab='Log(Estimated Spectral Density)')
c(y,spans=23,plot=F); sp3=spec(y,spans=45,plot=F)
p2$freq,sp2$spec,lty='dashed')
p3$freq,sp3$spec,lty='dotdash')
.001,.5,by=.001)
,ARMAspec(model=list(ar=phi,ma=-theta),f, 
F)$spec,lty='solid')

n
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case, a parametric spectral estimate based on AR models does not work well,
n Exhibit 14.16. The software selected an AR(3) model, but the resulting
sity (dotted) does not reproduce the true density (solid) well at all.

.16 AR Spectral Estimate for an ARMA(1,1) Process

c(y,method='ar',lty='dotted',ylim=c(.15,1.9), 
'Frequency',ylab='Log(Estimated AR Spectral Density)')
.001,.5,by=.001)
,ARMAspec(model=list(ar=phi,ma=-theta),f, 
F)$spec,lty='solid')

MA with θ = 0.4, Θ = 0.9, and s = 12

l example with simulated data, we choose a seasonal process. The theoreti-
 density is displayed in Exhibit 13.19 on page 340. We simulated n = 144

 with unit-variance normal white noise. We may think of this as 12 years of
ta. We used modified Daniell spectral windows with span = 6, 12, and 24

 ≈ 12.
ectrum contains a lot of detail and is difficult to estimate with only 144
s. The narrowest spectral window hints at the seasonality, but the two other
ssentially smooth out the seasonality. The confidence interval widths (corre-
 m = 6) do seem to confirm the presence of real seasonal peaks.
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n
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.17 Spectral Estimates for a Seasonal Process

ph(width=4.875,height=2.5,pointsize=8)
d(247135); n=144; theta=.4;THETA=.9
.sim(model=list(ma=c(-theta,rep(0,10),-THETA,theta*THETA
n)
c(y,spans=7,sub='',lty='dotted',ylim=c(.15,9), 
'Frequency',ylab='Log(Estimated Spectral Density)')
c(y,spans=13,plot=F); sp3=spec(y,spans=25,plot=F)
p2$freq,sp2$spec,lty='dashed')
p3$freq,sp3$spec,lty='dotdash')
.001,.5,by=.001)
,ARMAspec(model=list(ma=-theta,seasonal=list(sma=-THETA,
d=12)),freq=f,plot=F)$spec,lty='solid')

.18 AR Spectral Estimates for a Seasonal Process
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Frequency
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c(y,method='ar',ylim=c(.15,15),lty='dotted', 
'Frequency',ylab='Log(Estimated AR Spectral Density)')
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.001,.5,by=.001)
,ARMAspec(model=list(ma=-theta,seasonal=list(sma=-THETA,
d=12)),freq=f,plot=F)$spec,lty='solid')

t 14.18 shows the estimated spectrum based on the best AR model. An order
hosen based on the minimum AIC, and the seasonality does show up quite
ver, the peaks are misplaced at the higher frequencies. Perhaps looking at

it 14.17 and Exhibit 14.18 we could conclude that the seasonality is real and
w spectral window provides the best estimate of the underlying spectral den-
he sample size available.
nal estimate of the spectrum, we use a convolution of two modified Daniell
dows each with span = 3, as displayed in the middle of Exhibit 14.3 on page
timated spectrum is shown in Exhibit 14.19. This is perhaps the best of the
at we have shown.

.19 Estimated Seasonal Spectrum with Convolution Window

c(y,spans=c(3,3),sub='',lty='dotted', 
'Frequency',ylab='Log(Estimated Spectral Density)')
.001,.5,by=.001)
,ARMAspec(model=list(ma=-theta,seasonal=list(sma=-THETA,
d=12)),freq=f,plot=F)$spec,lty='solid')

mples with Actual Data

rial Robot

0.0 0.1 0.2 0.3 0.4 0.5

Frequency
al robot was put through a sequence of maneuvers, and the distance from a
et end position was recorded in inches. This was repeated 324 times to form
ies shown in Exhibit 14.20.
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.20 Industrial Robot End Position Time Series

bot)
bot,ylab='End Position Offset',xlab='Time')

tes of the spectrum are displayed in Exhibit 14.21 using the convolution of
d Daniell spectral windows with m = 7 (solid) and with a 10% taper on each
eries. A plot of this spectral window is shown in the middle of Exhibit 14.3

4. The spectrum was also estimated using a fitted AR(7) model (dotted), the
ich was chosen to minimize the AIC. Given the length of the 95% confi-

val shown, we can conclude that the peak at around a frequency of 0.15 in
tes is probably real, but those shown at higher frequencies may well be spu-
e is a lot of power shown at very low frequencies, and this agrees with the
ting nature of the series that may be seen in the time series plot in Exhibit

.21 Estimated Spectrum for the Industrial Robot

Time

0 50 100 150 200 250 300
0.0 0.1 0.2 0.3 0.4 0.5
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bot,spans=c(7,7),taper=.1,sub='',xlab='Frequency', 
'Log(Spectrum)')
robot,method='ar',plot=F)
$freq,s$spec,lty='dotted')

22 shows monthly river flow for the Iowa River measured at Wapello, Iowa,
od September 1958 through August 2006. The data are quite skewed toward
lues, but this was greatly improved by taking logarithms for the analysis.

.22 River Flow Time Series

ow); plot(flow,ylab='River Flow')

mple size for these data is 576 with a square root of 24. The bandwidth of a
aniell spectral window is about 0.01. After some experimentation with sev-
l window bandwidths, we decided that such a window smoothed too much
ead used a convolution of two such windows, each with span = 7. The band-
is convolved window is about 0.0044. The smoothed spectral density esti-
wn as a solid curve in Exhibit 14.23 together with an estimate based on an
el (dotted) chosen to minimize the AIC. The prominent peak at frequency
ents the strong annual seasonality. There are smaller secondary peaks at
17 and f ≈ 0.25 that correspond to multiples of the fundamental frequency of
are higher harmonics of the annual frequency.

Time
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.23 Log(Spectrum) of Log(Flow)

g(flow),spans=c(7,7),ylim=c(.02,13),sub='', 
'Log(Spectrum)',xlab='Frequency')
log(flow),method='ar',plot=F)
$freq,s$spec,lty='dotted')
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ilk Production

rtion of Exhibit 11.14 on page 264, showed U.S. monthly milk production
ry 1994 through December of 2005. There is a substantial upward trend
th seasonality. We first remove the upward trend with a simple linear time
l and consider the residuals from that regression—the seasonals. After trying
ctral bandwidths, we decided to use a convolution of two modified Daniell
ach with span = 3. We believe that otherwise there was too much smoothing.
nfirmed by estimating an AR spectrum that ended up fitting an AR of order
ks at the same frequencies. Notice that the peaks shown in Exhibit 14.24 are
frequencies 1/12, 2/12,…, 6/12, with the peak at 1/12 showing the most

.24 Estimated Spectrum for Milk Production Seasonals

lk)
lk,spans=c(3,3),detrend=T,sub='', 
'Estimated Log(Spectrum)',xlab='Frequency')
v=seq(1:6)/12,lty='dotted')

inal example in this section, consider the time series shown in Exhibit 14.25.
 display the first 400 points of two time series of lengths 4423 and 4417,
. The complete series were created by recording a trombonist and a eupho-
h sustaining a B flat (just below middle C) for about 0.4 seconds. The origi-
g produced data sampled at 44.1 MHz, but this was reduced by subsampling

h data point for the analysis shown. Trombones and euphonia are both brass
ments that play in the same range, but they have different sized and shaped

0.0 0.1 0.2 0.3 0.4 0.5

Frequency
 euphonium has larger tubing (a larger bore) that is mostly conical in shape,
enor trombone is mostly cylindrical in shape and has a smaller bore. The
 sound is considered more mellow than the bright, brassy sound of the trom-
 one listens to these notes being played, they sound rather similar. Our ques-
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s the tubing shape and size affect the harmonics (overtones) enough that the
 may be seen in the spectra of these sounds?

.25 Trombone and Euphonium Playing Bb

ph(width=4.875,height=4,pointsize=8)
one); data(euph); oldpar=par; par(mfrow=(c(2,1)))
e=(tbone-mean(tbone))/sd(tbone)
um=(euph-mean(euph))/sd(euph)
ndow(trombone,end=400),main='Trombone Bb', 
'Waveform',yaxp=c(-1,+1,2))
ndow(euphonium,end=400),main='Euphonium Bb', 
'Waveform',yaxp=c(-1,+1,2)); par=oldpar

t 14.26 displays the estimated spectra for the two waveforms. The solid curve
phonium, and the dotted curve is for the trombone. We used the convolution
ified Daniell spectral windows, each with span = 11, on both series. Since

 are essentially the same length, the bandwidths will both be about 0.0009
perceptible on the bandwidth/confidence interval crosshair shown on the

Trombone Bb

Time

0 100 200 300 400

Euphonium Bb

Time

0 100 200 300 400
st four major peaks occur at the same frequencies, but clearly the trombone
ore spectral power at distinct higher harmonic frequencies. It is suggested
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y account for the more brassy nature of the trombone sound as opposed to
ellow sound of the euphonium.

.26 Spectra for Trombone (dotted) and Euphonium (solid)

ph(width=4.875,height=2.5,pointsize=8)
ph,spans=c(11,11),ylab='Log Spectra', 
'Frequency',sub='')
tbone,spans=c(11,11),plot=F)
$freq,s$spec,lty='dotted')

er Methods of Spectral Estimation

despread use of the fast Fourier transform, computing and smoothing the
ctrum was extremely intensive computationally —especially for long time
 window estimators were used to partially mitigate the computational diffi-

ow Estimators

e sample spectrum and smoothed sample spectrum. We have

(14.9.1)
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(14.9.2)

(14.9.3)

on (14.9.2) suggests defining and investigating a class of spectral estimators

(14.9.4)

unction w(x) has the properties

(14.9.5)

n w(x) is called a lag window and determines how much weight is given to
autocovariance at each lag.
tangular lag window is defined by

(14.9.6)

responding lag window spectral estimator is simply the sample spectrum.
tor clearly gives too much weight to large lags where the sample autocovari-
ased on too few data points and are unreliable.
xt simplest lag window is the truncated rectangular lag window, which sim-
rge lags from the computation. It is defined as

(14.9.7)

omputational advantage is achieved by choosing m much smaller than n.
angular, or Bartlett, lag window downweights higher lags linearly and is

(14.9.8)

ommon lag windows are associated with the names of Parzen, Tukey-Ham-
ukey-Hanning. We will not pursue these further here, but much more infor-
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 (2000), Brillinger (2001), Brockwell and Davis (1991), and Priestley
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oothing Methods

ods for smoothing the sample spectrum have been proposed. Kooperberg et
proposed using splines to estimate the spectral distribution. Fan and
er (1998) investigated local smoothing polynomials and Whittle's likelihood
 estimation. This approach uses automatic bandwidth selection to smooth the
ctrum. See also Yoshihide (2006), Jiang and Hui (2004), and Fay et al.

mmary

ndesirable characteristics of the sample spectral density, we introduced the
ample spectral density and showed that it could be constructed to improve
es. The important topics of bias, variance, leakage, bandwidth, and tapering
igated. A procedure for forming confidence intervals was discussed, and all
 were illustrated with both real and simulated time series data.

ES

ider the variance of  with the Daniell spectral window. Instead of using
tion (14.2.4) on page 355, use the fact that  has approximately a
quare distribution with two degrees of freedom to show that the smoothed
le spectral density has an approximate variance of .
ider various convolutions of the simple Daniell rectangular spectral window.
onstruct a panel of three plots similar to those shown in Exhibit 14.3 on page
54 but with the Daniell spectral window and with m = 5. The middle graph
ould be the convolution of two Daniell windows and the leftmost graph the

onvolution of three Daniell windows.
valuate the bandwidths and degrees of freedom for each of the spectral win-
ows constructed in part (a). Use n =100.
onstruct another panel of three plots similar to those shown in Exhibit 14.3
ut with the modified Daniell spectral window. This time use m = 5 for the
rst graph and convolve two with m = 5 and m = 7 for the second. Convolve
ree windows with m’s of 5, 7, and 11 for the third graph.
valuate the bandwidths and degrees of freedom for each of the spectral win-
ows constructed in part (c). Use n =100.
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he Daniell rectangular spectral window show that

how that if m is chosen as m = c  for any constant c, then the right-hand
de of the expression in part (a) tends to zero as n goes to infinity.
how that if m = c  for any constant c, then the approximate variance of the

oothed spectral density given by the right-hand side of Equation (14.2.4) on
age 355 tends to zero as n tends to infinity.
ose that the distribution of  is to be approximated by a multiple of a
quare variable with degrees of freedom ν, so that  ≈ . Using the
ximate variance of  given in Equation (14.2.4) on page 355 and the fact

 is approximately unbiased, equate means and variances and find the
s for c and ν (thus establishing Equation (14.4.2) on page 356).
truct a time series of length n = 48 according to the expression 

 = 

lay the periodogram of the series and explain its appearance.
ate the spectrum of the Los Angeles annual rainfall time series. The data are
 file named larain. Because of the skewness in the series, use the logarithms
 raw rainfall values. The square root of the series length suggests a value for
an of about 11. Use the modified Daniell spectral window, and be sure to set

ertical limits of the plot so that you can see the whole confidence interval
. Comment on the estimated spectrum.
ile named spots1 contains annual sunspot numbers for 306 years from 1700
gh 2005.
isplay the time series plot of these data. Does stationarity seem reasonable
r this series?
stimate the spectrum using a modified Daniell spectral window convoluted
ith itself and a span of 3 for both. Interpret the plot.
stimate the spectrum using an AR model with the order chosen to minimize
e AIC. Interpret the plot. What order was selected?
verlay the estimates obtained in parts (b) and (c) above onto one plot. Do
ey agree to a reasonable degree?
ider the time series of average monthly temperatures in Dubuque, Iowa. The
are in the file named tempdub and cover from January 1964 to December
 for an n of 144.
stimate the spectrum using a variety of span values for the modified Daniell
ectral window.
 your opinion, which of the estimates in part (a) best represents the spectrum

f the process? Be sure to use bandwidth considerations and confidence limits
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Estimating the Spectrum

EG (electroencephalogram) time series is given in the data file named eeg.
lectroencephalogram is a noninvasive test used to detect and record the elec-
 activity generated in the brain. These data were measured at a sampling rate
6 per second and came from a patient suffering a seizure. The total record
h is n = 13,000—or slightly less than one minute.
isplay the time series plot and decide if stationarity seems reasonable.
stimate the spectrum using a modified Daniell spectral window convolved
ith itself and a span of 51 for both components of the convolution. Interpret
e plot.
stimate the spectrum using an AR model with the order chosen to minimize
e AIC. Interpret the plot. What order was selected?
verlay the estimates obtained in parts (b) and (c) above onto one plot. Do
ey agree to a reasonable degree?

file named electricity contains monthly U. S. electricity production values
 January 1994 to December 2005. A time series plot of the logarithms of
 values is shown in Exhibit 11.14 on page 264. Since there is an upward
 and increasing variability at higher levels in these data, use the first differ-
of the logarithms for the remaining analysis.
onstruct a time series plot of the first difference of the logarithms of the elec-
icity values. Does a stationary model seem warranted at this point?
isplay the smoothed spectrum of the first difference of the logarithms using

 modified Daniell spectral window and span values of 25, 13, and 7. Interpret
e results.
ow use a spectral window that is a convolution of two modified Daniell win-
ows each with span = 3. Also use a 10% taper. Interpret the results.
stimate the spectrum using an AR model with the order chosen to minimize
e AIC. Interpret the plot. What order was selected?
verlay the estimates obtained in parts (c) and (d) above onto one plot. Do
ey agree to a reasonable degree?
ider the monthly milk production time series used in Exhibit 14.24 on page
The data are in the file named milk. 
stimate the spectrum using a spectral window that is a convolution of two
odified Daniell windows each with span = 7. Compare these results with
ose shown in Exhibit 14.24.
stimate the spectrum using a single modified Daniell spectral window with
an = 7. Compare these results with those shown in Exhibit 14.24 and those
 part (a).
inally, estimate the spectrum using a single modified Daniell spectral win-
ow with span = 11. Compare these results with those shown in Exhibit 14.24
nd those in parts (a) and (b).

mong the four different estimates considered here, which do you prefer and
hy?
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K: Tappering and the Dirchlet Kernel 381

ider the river flow series displayed in Exhibit 14.22 on page 372. An esti-
 of the spectrum is shown in Exhibit 14.23 on page 373. The data are in the
amed flow.
ere n = 576 and  = 24. Estimate the spectrum using span = 25 with the
odified Daniell spectral window. Compare your results with those shown in
xhibit 14.23.
stimate the spectrum using span = 13 with the modified Daniell spectral
indow and compare your results to those obtained in part (a) and in Exhibit
4.23.
time series in the file named tuba contains about 0.4 seconds of digitized
d from a tuba playing a B flat one octave and one note below middle C.
isplay a time series plot of the first 400 of these data and compare your
sults with those shown in Exhibit 14.25 on page 375, for the trombone and

uphonium.
stimate the spectrum of the tuba time series using a convolution of two mod-
ied Daniell spectral windows, each with span = 11.
ompare the estimated spectrum obtained in part (b) with those of the trom-
one and euphonium shown in Exhibit 14.26 on page 376. (You may want to
verlay several of these spectra.) Remember that the tuba is playing one
ctave lower than the two other instruments.
o the higher-frequency components of the spectrum for the tuba look more
ke those of the trombone or those of the euphonium? (Hint: The euphonium
 sometimes called a tenor tuba!)

ix K: Tapering and the Dirichlet Kernel

 for t = 1, 2,…, n, where f0 is not necessarily a Fourier
Since it will not affect the periodogram, we will actually suppose that 

(14.K.1)

simplify the mathematics. Then the discrete-time Fourier transform of this
 given by

(14.K.2)

ns (13.J.7) and (13.J.8) on page 350, for any z,

n
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t 1=

n

∑
=

D(
Estimating the Spectrum

(14.K.3)

n

(14.K.4)

hlet kernel shown on the left-hand side of Exhibit 14.7 on page 360 for n =
results lead to the following relationship for the periodogram of Yt:

(14.K.5)

that for all Fourier frequencies D(f) = 0, so that this window has no effect at
encies. Leakage occurs when there is substantial power at non-Fourier fre-
ow consider tapering Yt with a cosine bell. We have

(14.K.6)

me more algebra we obtain

(14.K.7)

n

(14.K.8)

ed or modified Dirichlet kernel that is plotted on the right-hand side of
7 on page 360 for n = 100. The periodogram of the tapered series is propor-

, and the side lobe problem is substantially mitigated.
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SHOLD MODELS

own (Wold, 1948) that any weakly stationary process {Yt} admits the Wold
ion

uals the deviation of Yt from the best linear predictor based on all past Y val-

t} is a purely deterministic stationary process, with et being uncorrelated
r any t and s.   A purely deterministic process is a process that can be pre-
bitrary accuracy; (that is, with arbitrarily small mean squared error) by some
ctors of finitely many past lags of the process. A simple example of a purely
ic process is Ut ≡ μ, a constant. A more subtle example is the random cosine
l introduced on page 18. In essence, {Ut} represents the stochastic, station-
 in the data. The prediction errors {et} are a white noise sequence, and et rep-
“new” component making up Yt and hence is often called the innovation of
. The Wold decomposition then states that any weakly stationary process is
a (possibly infinite-order) MA process and a deterministic trend. Thus, we
te the best linear predictor within the framework of MA(∞) processes that
be approximated by finite-order ARMA processes. The Wold decomposition
tees the versatility of the ARMA models in prediction with stationary pro-

er, except for convenience, there is no reason for restricting to linear predic-
llow nonlinear predictors and seek the best predictor of Yt based on past val-
t minimizes the mean squared prediction error, then the best predictor need
e the best linear predictor. The solution is simply the conditional mean of Yt
st Y values. The Wold decomposition makes it clear that the best one-step-
r predictor is the best one-step-ahead predictor if and only if {et} in the Wold
tion satisfies the condition that the conditional mean of et given past e’s is
equal to 0. The {et} satisfying the latter condition is called a sequence of
differences, so the condition will be referred to as the martingale difference
he martingale difference condition holds if, for example, {et} is a sequence

dent, identically distributed random variables with zero mean. But it also

t} is some GARCH process. Nonetheless, when the martingale difference

Yt Ut et ψ1et 1– ψ2et 2–
…+ + + +=
383

ails, nonlinear prediction will lead to a more accurate prediction. Hannan
nes a linear process to be one where the best one-step-ahead linear predictor
ne-step-ahead predictor. 



384

The tim
that, after s
a linear fun
are normall
normally di
in practice
example, a 
covariance 
original pro
cesses appe
stock gene
time-irreve
be nonlinea
dance proce
moderately
in the next p
ing periods
Indeed, Ma
tion may ad
to the initi
sequence b
more accur
space, and 
series analy
modeling th
with well-d
time series,
problem of
nonlinear c
threshold m
models. Fo
(1990) and 

15.1 Gra

In ARIMA
and identic
tionary tim
tions are j
distribution
tribution an
neous trans
the data in 
the underl
Threshold Models

e series models discussed so far are essentially linear models in the sense
uitable instantaneous transformation, the one-step-ahead conditional mean is
ction of the current and past values of the time series variable. If the errors
y distributed, as is commonly assumed, a linear ARIMA model results in a
stributed process. Linear time series methods have proved to be very useful
. However, linear, normal processes do suffer from some limitations. For
stationary normal process is completely characterized by its mean and auto-
function; hence the process reversed in time has the same distribution as the
cess. The latter property is known as time reversibility. Yet, many real pro-
ar to be time-irreversible. For example, the historical daily closing price of a
rally rose gradually but, if it crashed, it did so precipitously, signifying a
rsible data mechanism. Moreover, the one-step-ahead conditional mean may
r rather than linear in the current and past values. For example, animal abun-
sses may be nonlinear due to finite-resource constraints. Specifically, while

 high abundance in one period is likely to be followed by higher abundance
eriod, extremely high abundance may lead to a population crash in the ensu-

. Nonlinear time series models generally display rich dynamical structure.
y (1976) showed that a very simple nonlinear deterministic difference equa-
mit chaotic solutions in the sense that its time series solutions are sensitive

al values, which may appear to be indistinguishable from a white noise
ased on correlation analysis. Nonlinear time series analysis thus may provide
ate predictions, which can be very substantial in certain parts of the state
shed novel insights on the underlying dynamics of the data. Nonlinear time
sis was earnestly initiated around the late 1970s, prompted by the need for
e nonlinear dynamics shown by real data; see Tong (2007). Except for cases
eveloped theory accounting for the underlying mechanism of an observed
 the nonlinear data mechanism is generally unknown. Thus, a fundamental
 empirical nonlinear time series analysis concerns the choice of a general
lass of models. Here, our goal is rather modest in that we introduce the
odel, which is one of the most important classes of nonlinear time series

r a systematic account of nonlinear time series analysis and chaos, see Tong
Chan and Tong (2001). 

phically Exploring Nonlinearity 

 modeling, the innovation (error) process is often specified as independent
ally normally distributed. The normal error assumption implies that the sta-
e series is also a normal process; that is, any finite set of time series observa-
ointly normal. For example, the pair (Y1, Y2) has a bivariate normal
 and so does any pair of Y’s; the triple (Y1,Y2,Y3) has a trivariate normal dis-

d so does any triple of Y’s, and so forth. When data are nonnormal, instanta-
formation of the form h(Yt), for example, , may be applied to
the hope that a normal ARIMA model can serve as a good approximation to
ying data-generating mechanism. The normality assumption is mainly

h Yt( ) Yt=
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r convenience in statistical inference. In practice, an ARIMA model with
innovations may be entertained. Indeed, such processes have very rich and
exotic dynamics; see Tong (1990). If the normal error assumption is main-
 a nonlinear time series is generally not normally distributed. Nonlinearity

e explored by checking whether or not a finite set of time series observations
ormal; for example, whether or not the two-dimensional distribution of pairs

rmal. This can be checked by plotting the scatter diagram of Yt against Yt − 1
d so forth. For a bivariate normal distribution, the scatter diagram should
 elliptical data cloud with decreasing density from its center. Departure from
rn (for example, existence of a large hole in the data cloud) may signify that
 nonnormal and the underlying process may be nonlinear. 
t 15.1 shows the scatter diagrams of Yt versus its lag 1 to lag 6, where we
ata from the ARIMA(2,1) model

(15.1.1)

ovations being standard normal. Note that the data clouds in the scatter dia-
oughly elliptically shaped.
 us visualize the relationship between the response and its lags, we draw fit-
metric regression lines on each scatter diagram. For example, on the scatter

 Yt against Yt − 1, a nonparametric estimate of the conditional mean function
Yt − 1, also referred to as the lag 1 regression function, is superimposed. (Spe-
e lag 1 regression function equals m1(y) = E(Yt|Yt − 1=y) as a function of y.) If
ing process is linear and normal, the true lag 1 regression function must be
o we expect the nonparametric estimate of it to be close to a straight line. On
nd, a curved lag 1 regression estimate may suggest that the underlying pro-

linear. Similarly, one can explore the lag 2 regression function (that is, the
 mean of Yt given Yt − 2 = y) as a function of y and higher-lag analogues. In
strong departure from linearity, the shape of these regression functions may
e clue as to what nonlinear model may be appropriate for the data. Note that

egression curves in Exhibit 15.1 are fairly straight, suggesting that the under-
ss is linear, which indeed we know is the case.

Yt 1.6Yt 1– 0.94Yt 2–– et 0.64et 1––+=
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Threshold Models

.1 Lagged Regression Plots for a Simulated ARMA(2,1) 
Process. Solid lines are fitted regression curves.

ph(width=4.875, height=6.5,pointsize=8)
d(2534567); par(mfrow=c(3,2))
.sim(n=61,model=list(ar=c(1.6,-0.94),ma=-0.64))
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w illustrate the technique of a lagged regression plot with a real example.
2 plots an experimental time series response as the number of individuals
atsutum, a protozoan) per ml measured every twelve hours over a period of
e Veilleux (1976) and Jost and Ellner (2000). The experiment studied the
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fluctuation of a prey-predator system; the prey is Paramecium aurelia, a uni-
ate protozon, whereas the predator species is Didinium natsutum. The initial
ata appears to be nonstationary owing to transient effects. It can be seen that
ng phase of the series is generally longer than that of the decreasing phase,
that the time series is time-irreversible. Below, we shall omit the first 14 data
 the analysis; that is, only the (log-transformed) data corresponding to the
in Exhibit 15.2 are used in subsequent analysis. 

.2 Logarithmically Transformed Number of Predators. The 
stationary part of the time series is displayed as a solid line. 
Solid circles indicate data in the lower regime of a fitted 
threshold autoregressive model.

illeux); predator=veilleux[,1]
ph(width=4.875,height=2.5,pointsize=8)
g(predator),lty=2,type='o',xlab='Day', 
'Log(predator)')
r.eq=window(predator,start=c(7,1))
og(predator.eq))
zlag(log(predator.eq),3)<=4.661
y=log(predator.eq)[index1],(time(predator.eq))[index1], 
9)

t 15.3 shows the lagged regression plots of the predator series. Notice that
ter diagrams have a large hole in the center, hinting that the data need to be
 Also, the regression function estimates appear to be strongly nonlinear for
 suggesting a nonlinear data mechanism; in fact, the histogram (not shown)
at the series is bimodal.
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.3 Lagged Regression Plots for the Predator Series

ph(width=4.875,height=6.5,pointsize=8)
edator.eq)
(log(predator.eq)) # libraries mgcv and locfit required
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w elaborate on how the regression curves are estimated nonparametrically.
t interested in the technical details may skip to the next section. For concrete-
se we want to estimate the lag 1 regression function. (The extension to other
ghtforward.) Nonparametric estimation of the lag 1 regression function gen-
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s use of the idea of estimating the conditional mean m1(y) = E(Yt|Yt − 1 = y)
g those Y’s whose lag 1 values are close to y. Clearly, the averaging may be
ore accurate by giving more weight to those Y’s whose lag 1 value is closer
eights are usually assigned systematically via some probability density func-
d a bandwidth parameter h > 0. The data pair (Yt,Yt − 1) is assigned the

(15.1.2)

e assume that k( .) is the standard normal probability density function. Note
e right-hand side of Equation (15.1.2) is the normal probability density func-
ean y and variance h2. Finally, we define the Nadaraya-Watson estimator†

(15.1.3)

ng of the superscript 0 will become clear later on.) Since the normal proba-
ty function is negligible for values that differ from the mean by more than
ard deviations, the Nadaraya-Watson estimator essentially averages the Yt

1 is within 3h units from y, and the averaging is weighted with more weight
servations whose lag 1 values are closer to y. The use of the Nadaraya-Wat-
tor of the lag 1 regression function requires us to specify the bandwidth.
everal methods, including cross-validation for determining h. However, for
ory analysis, we can always use some default bandwidth value and vary it a
me feel of the shape of the lag 1 regression function. 
e efficient nonparametric estimator may be obtained by assuming that the
 regression function can be well-approximated locally by a linear function;
 Gijbels (1996). The local linear estimator of the lag 1 regression function at

, which is obtained by minimizing the local weighted residual
res: 

(15.1.4)

ader may now guess that the superscript k in the notation  refers to
f the local polynomial. Often, data are unevenly spaced, in which case a sin-

dth may not work well. Instead, a variable bandwidth tied to the density of
y be more efficient. A simple scheme is the nearest-neighbor scheme that
indow width so that it covers a fixed fraction of data nearest to the center of

wt
1
h
---k

Yt 1– y–

h
--------------------⎝ ⎠

⎛ ⎞=

m̂1
0( )

y( )  =

wtYt
t 2=

n

∑

wt
t 2=

n

∑
---------------------

1) y( ) b0=

wt(Yt b0 b1Yt 1– )
2

––
t 2=

n

∑

m̂1
k( )

y( )
. We set the fraction to be 70% for all our reported lagged regression plots.

adaraya (1964) and Watson (1964).
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portant to remember that the local polynomial approach assumes that the
egression function is a smooth function. If the true lag 1 regression function
uous, then the local polynomial approach may yield misleading estimates.
 sharp turn in the estimated regression function may serve as a warning that
ness condition may not hold for the true lag 1 regression function. 

ts for Nonlinearity 

s have been proposed for assessing the need for nonlinear modeling in time
ysis. Some of these tests, such as those studied by Keenan (1985), Tsay
 Luukkonen et al. (1988), can be interpreted as Lagrange multiplier tests for
linear alternatives. 
 (1985) derived a test for nonlinearity analogous to Tukey’s one degree of

r nonadditivity test (see Tukey, 1949). Keenan’s test is motivated by approxi-
nlinear stationary time series by a second-order Volterra expansion (Wiener,

(15.2.1)

 −∞ < t < ∞} is a sequence of independent and identically distributed
random variables. The process {Yt} is linear if the double sum on the right-
f (15.2.1) vanishes. Thus, we can test the linearity of the time series by test-
 or not the double sum vanishes. In practice, the infinite series expansion has
ted to a finite sum. Let Y1,…,Yn denote the observations. Keenan’s test can
nted as follows: 
ress Yt on Yt − 1,…,Yt − m, including an intercept term, where m is some pre-

ied positive integer; calculate the fitted values and the residuals ,

 m + 1,…,n; and set , the residual sum of squares. 

gress  on Yt − 1,…,Yt − m, including an intercept term, and calculate the

als  for t = m + 1,…, n.

egress  on the residuals  without an intercept for t = m + 1,…, n, and

n’s test statistic, denoted by , is obtained by multiplying (n − 2m − 2)/
− 1) to the F-statistic for testing that the last regression function is identi-

ero. Specifically, let

(15.2.2)

Yt μ  += θμεt μ–  +
μ ∞–=

∞
∑ θμνεt μ– εt ν–

μ ∞–=

∞
∑

ν ∞–=

∞
∑

Ŷ t{ } ê t{ }
RSS  = Σê t

2

Ŷ t
2

ξ̂t{ }
ê t ξ̂t

F̂

η η0 ξ̂t
2

t m 1+=

n

∑=
 the regression coefficient. Form the test statistic 

(15.2.3)F̂ η2
n 2m 2––( )

RSS η2
–

-------------------------------------=
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the null hypothesis of linearity, the test statistic  is approximately distrib-
-distribution with degrees of freedom 1 and n − 2m − 2. 
’s test can be derived heuristically as follows. Consider the following model.

(15.2.4)

are independent and normally distributed with zero mean and finite vari-
 0, the exponential term becomes 1 and can be absorbed into the intercept

t the preceding model becomes an AR(m) model. On the other hand, for non-
 preceding model is nonlinear. Using the expansion exp(x) ≈ 1 + x, which
of small magnitude, it can be seen that, for small η, Yt follows approximately
 AR model: 

(15.2.5)

stricted linear model in that the last covariate is the square of the linear term
+ φmYt − m, which is replaced by the fitted values  under the null hypothe-
’s test is equivalent to testing η = 0 in the multiple regression model (with
t 1 being absorbed into θ0): 

(15.2.6)

e carried out in the manner described in the beginning of this section. Note
d values are only available for n ≥ t ≥ m + 1. Keenan’s test is the same as the

esting whether or not η = 0. A more formal approach is facilitated by the
ultiplier test; see Tong (1990). 
’s test is both conceptually and computationally simple and only has one
reedom, which makes the test very useful for small samples. However,
st is powerful only for detecting nonlinearity in the form of the square of the
ting linear conditional mean function. Tsay (1986) extended Keenan’s
 considering more general nonlinear alternatives. A more general alternative

rity may be formulated by replacing the term

(15.2.7)

F̂

θ0 φ1Yt 1– … φmYt m– exp η φjYt j–
j 1=

m

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞ 2

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

εt+ + + + +=

θ0 1 φ1Yt 1– … φmYt m– η φjYt j–
j 1=

m

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞ 2

εt+ + + + + +=

Ŷ t

Yt θ0 φ1Yt 1– … φmYt m– ηŶ t
2 εt+ + + + +=

η φjYt j–
j 1=

m

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞ 2

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

exp

Y
2 δ Y Y … δ Y Y+ + + ⎫
(15.2.8)

1 1, t 1– 1 2, t 1– t 2– 1 m, t 1– t m–

2, Yt 2–
2 δ2 3, Yt 2– Yt 3–

… δ2 m, Yt 2– Yt m–
…+ + + +

1– m 1–, Yt m– 1+
2 δm 1– m, Yt m– 1+ Yt m– δm m, Yt m–

2
) εt+ + + ⎭

⎪
⎪
⎬
⎪
⎪



392

Using the a
mately a q
unconstrain
sion model

and testing 
carried out 
derivation o

We now
the annual
annual (rela
a network 
some weigh
the solar su
sunspot dat
Exhibit 15.
quickly tha

Exhibit 15

> win.gra
> data(sp
> plot(sq

ylab=

Yt θ0=

δ+ 

 +

 +

S
qr

t S
un

sp
ot

 N
um

be
r

2
4

6
8

10
12
Threshold Models

pproximation exp(x) ≈ 1 + x, we see that the nonlinear model is approxi-
uadratic AR model. But the coefficients of the quadratic terms are now
ed. Tsay’s test is equivalent to considering the following quadratic regres-

: 

(15.2.9)

whether or not all the m(m + 1)/2 coefficients δi,j are zero. Again, this can be
by an F-test that all δi, j’s are zero in the preceding equation. For a rigorous
f Tsay’s test as a Lagrange multiplier test, see Tong (1990). 
 illustrate these tests with two real datasets. In the first application, we use

 American (relative) sunspot numbers collected from 1945 to 2007. The
tive) sunspot number is a weighted average of solar activities measured from

of observatories. Historically, the daily sunspot number was computed as
ted sum of the count of visible, distinct spots and that of clusters of spots on
rface. The sunspot number reflects the intensity of solar activity. Below, the
a are square root transformed to make them more normally distributed; see
4. The time series plot shows that the sunspot series tends to rise up more
n when it declines, suggesting that it is time-irreversible.

.4 Annual American Relative Sunspot Numbers

ph(width=4.875,height=2.5,pointsize=8)

φ1Yt 1–
… φmYt m–+ + +

1 1, Yt 1–
2

δ1 2, Yt 1– Yt 2–
… δ1 m, Yt 1– Yt m–+ + +

δ2 2, Yt 2–
2 δ2 3, Yt 2– Yt 3–

… δ2 m, Yt 2– Yt m–
…+ + + +

δm 1– m 1–, Yt m– 1+
2 δm 1– m, Yt m– 1+ Yt m– δm m, Yt m–

2 εt+ + + ⎭
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎫

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●

● ●

●
●

●
●

●

●

● ● ●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

Year

1950 1960 1970 1980 1990 2000
ots)
rt(spots),type='o',xlab='Year',
'Sqrt Sunspot Number')



15.3  Poly

To carr
gressive ord
ified by usi
= 5 based 
p-values be

For the
section. Th
reject linea
with the inf

There 
Seheinkma
ral-network
recent revi
(1993). We

15.3 Pol

In nonlinea
sometimes 
of their qui
limited prac
be expected
higher than
following s

where {et}
ables. Let φ
happen wit
and hence Y
can be show
inequality 
AR(1) proc

As an 
with φ = 0.5

Note th
takes some
take much 
can take arb
cess becom
the explosiv
that this ex
higher than
nomial Models Are Generally Explosive 393

y out the tests for nonlinearity, we have to specify m, the working autore-
er. Under the null hypothesis that the process is linear, the order can be spec-

ng some information criterion, for example, the AIC. For the sunspot data, m
on the AIC. Both the Keenan test and the Tsay test reject linearity, with
ing 0.0002 and 0.0009, respectively.
 second example, we consider the predator series discussed in the preceding
e working AR order is found to be 4. Both the Keenan test and the Tsay test
rity, with p-values being 0.00001 and 0.03, respectively, which is consistent
erence drawn from the lagged regression plots reported earlier. 
are some other tests, such as the BDS test developed by Brock, Deckert and
n (1996), based on concepts that arise in the theory of chaos, and the neu-
 test, proposed by White (1989) for testing “neglected nonlinearity.” For a

ew of tests for nonlinearity, see Tong (1990) and Granger and Teräsvirta
 shall introduce one more test later. 

ynomial Models Are Generally Explosive 

r regression analysis, polynomial regression models of higher degrees are
employed, even though they are deemed not useful for extrapolation because
ck blowup to infinity. For this reason, polynomial regression models are of
tical use. Based on the same reasoning, polynomial time series models may
 to do poorly in prediction. Indeed, polynomial time series models of degree
 1 and with Gaussian errors are invariably explosive. To see this, consider the
imple quadratic AR(1) model. 

(15.3.1)

 are independent and identically distributed standard normal random vari-
 > 0 and let c be a large number that is greater than 3/φ. If Y1 > c (which may
h positive probability due to the normality of the errors), then Y2 > 3Y1 + e2

2 > 2c with some nonzero probability. With careful probability analysis, it
n that, with positive probability, the quadratic AR(1) process satisfies the

Yt > 2tc for t = 1, 2, 3,… and hence blows up to +∞. Indeed, the quadratic
ess, with normal errors, goes to infinity with probability 1. 
example, Exhibit 15.5 displays a realization from a quadratic AR(1) model
 and standard normal errors that takes off to infinity at t = 15.
at the quadratic AR(1) process becomes explosive only when the process

 value of sufficiently large magnitude. If the coefficient φ is small, it may
longer for the quadratic AR(1) process to take off to infinity. Normal errors
itrarily large values, although rather rarely, but when this happens, the pro-

Yt φYt 1–
2

et+=
es explosive. Thus, any noise distribution that is unbounded will guarantee
eness of the quadratic AR(1) model. Chan and Tong (1994) further showed

plosive behavior is true for any polynomial autoregressive process of degree
 1 and of any finite order when the noise distribution is unbounded.
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.5 A Simulated Quadratic AR(1) Process with φ = 0.5

d(1234567)
qar.sim(n=15,phi1=.5,sigma=1),x=1:15,type='o', 
expression(Y[t]),xlab='t')

eresting to note that, for bounded errors, a polynomial autoregressive model
 a stationary distribution that could be useful for modeling nonlinear time
; see Chan and Tong (1994). For example, Exhibit 15.6 displays the time
ion of a deterministic logistic map, namely Yt = 3.97Yt − 1(1 − Yt − 1), t = 2,
e initial value Y1 = 0.377. Its corresponding sample ACF is shown in Exhibit
, except for the mildly significant lag 4, resembles that of white noise. Note
ufficiently large initial value, the solution of the logistic map will explode to

.6 The Trajectory of the Logistic Map with Parameter 3.97 and 
Initial Value Y1 = 0.377
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●
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t

0 20 40 60 80 100
im(n=100,const=0.0,phi0=3.97,phi1=-3.97,sigma=0, 
.377)

t
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1:100,y=y,type='l',ylab=expression(Y[t]),xlab='t')

.7 Sample ACF of the Logistic Time Series

er, the bound on the noise distribution necessary for the existence of a sta-
nomial autoregressive model varies with the model parameters and the ini-
hich greatly complicates the modeling task. Henceforth, we shall not pursue
olynomial models in time series analysis. 

t-Order Threshold Autoregressive Models

ion in the preceding section provides an important insight that for a nonlin-
ies model to be stationary, it must be either linear or approaching linearity in
From this perspective, piecewise linear models, more widely known as
odels, constitute the simplest class of nonlinear model. Indeed, the useful-
shold models in nonlinear time series analysis was well-documented by the
rk of Tong (1978, 1983, 1990) and Tong and Lim (1980), resulting in an

terature of ongoing theoretical innovations and applications in various fields. 
ecification of a threshold model requires specifying the number of linear
and the mechanism dictating which of them is operational. Consequently,
many variants of the threshold model. Here, we focus on the two-regime
g threshold autoregressive (SETAR) model introduced by Tong, for which
ng between the two linear submodels depends solely on the position of the
ariable. For the SETAR model (simply referred to as the TAR model below),
ld variable is a certain lagged value of the process itself; hence the adjective
g. (More generally, the threshold variable may be some vector covariate pro-

5 10 15 20

Lag
n some latent process, but this extension will not be pursued here.) To fix
der the following first-order TAR model: 
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(15.4.1)

’s are autoregressive parameters, σ’s are noise standard deviations, r is the
arameter, and {et} is a sequence of independent and identically distributed
iables with zero mean and unit variance. Thus, if the lag 1 value of Yt is not
n the threshold, the conditional distribution of Yt is the same as that of an
ess with intercept φ1,0, autoregressive coefficient φ1,1, and error variance
h case we may say that the first AR(1) submodel is operational. On the other
 the lag 1 value of Yt exceeds the threshold r, the second AR(1) process with

is operational. Thus, the process switches between two lin-
isms dependent on the position of the lag 1 value of the process. When the
 does not exceed the threshold, we say that the process is in the lower (first)
 otherwise it is in the upper regime. Note that the error variance need not be
r the two regimes, so that the TAR model can account for some conditional
sticity in the data. 
ncrete example, we simulate some data from the following first-order TAR

(15.4.2)

8 shows the time series plot of the simulated data of size n = 100. A notable
e plot is that the time series is somewhat cyclical, with asymmetrical cycles

eries tends to drop rather sharply but rises relatively slowly. This asymmetry
 the probabilistic structure of the process will be different if we reverse the
 time. One way to see this is to make a transparency of the time series plot
 transparency over to see the time series plot with time reversed. In this case,
ed data will rise sharply and drop slowly with time reversed. Recall that this
n is known as time irreversibility. For a stationary Gaussian ARMA process,
ilistic structure is determined by its first and second moments, which are
ith respect to time reversal, hence the process must be time-reversible. Many
ries, for example the predator series and the relative sunspot series, appear to
versible, suggesting that the underlying process is nonlinear. Exhibit 15.9
Q normal score plot for the simulated data. It shows that the distribution of
ata has a thicker tail than a normal distribution, despite the fact that the

ormally distributed. 

Yt

φ1,0 φ1,1Yt 1– σ1et+ +  , if Yt 1– r≤

φ2 0, φ2 1, Yt 1– σ2et+ +  , if Yt 1– r>
⎩
⎪
⎨
⎪
⎧

=

φ2 0, φ2 1, σ2
2, ,( )

Yt
0.5Yt 1– et+  , if Yt 1– 1–≤

1.8Yt 1–– 2et+  , if Yt 1– 1–>
⎩
⎪
⎨
⎪
⎧

=
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.8 A Simulated First-Order TAR Process

d(1234579)
im(n=100,Phi1=c(0,0.5),Phi2=c(0,-1.8),p=1,d=1,sigma1=1, 
1,sigma2=2)$y
y,x=1:100,type='o',xlab='t',ylab=expression(Y[t]))

.9 QQ Normal Plot for the Simulated TAR Process

ph(width=2.5,height=2.5,pointsize=8)
y); qqline(y)

toregressive coefficient of the submodel in the upper regime equals −1.8, yet
ed data appear to be stationary, which may be unexpected from a linear per-
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s an AR(1) model cannot be stationary if the autoregressive coefficient
n magnitude. This puzzle may be better understood by considering the case
 terms in either regime; that is, σ1 = σ2 = 0. The deterministic process thus
eferred to as the skeleton of the TAR model. We show below that, for any ini-
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the skeleton is eventually a bounded process; the stability of the skeleton
e stationarity of the TAR model. Readers not interested in the detailed anal-
ng the ultimate boundedness of the skeleton may skip to the next paragraph.
al value y1 be some large number, say 10, a value falling in the upper regime.
t value is y2 = (−1.8)×10 = −18, which is in the lower regime. Therefore, the
 equals y3 = 0.5×(−18) = −9. As the third value is in the lower regime, the
 equals y4 = 0.5×(−9) = −4.5, which remains in the lower regime, so that the

equals y5 = 0.5×(−4.5) = −2.25. It is clear that once the data remain in the
e, they will be halved in the next iterate and this process continues until

e iterate crosses the threshold −1, which occurs for y7 = −0.5625. Now the
ar submodel is operational, so that y8 = (−1.8)×(−0.5625) = 1.0125 and y9 =
125 = −1.8225, which is again in the lower regime. In conclusion, if some
 the lower regime, the next iterate is obtained by halving the previous iterate
future iterate exceeds −1. On the other hand, if some iterate exceeds 1, the
 must be less than −1 and hence in the lower regime. By routine analysis, it
ked that the process is eventually trapped between −1 and 1.8 and hence is a
ocess. 
ded skeleton is stable in some sense. Chan and Tong (1985), showed that
 mild conditions, a TAR model is asymptotically stationary if its skeleton is
ct, stability of the skeleton together with some regularity conditions imply

r property of ergodicity; namely, the process admits a stationary distribution
 function h(Yt) having a finite stationary first moment (which holds if h is a
nction),

(15.4.3)

o the stationary mean of h(Yt), computed according to the stationary distribu-
line and Pu (2001) for a recent survey on the linkage between stability and
nd counterexamples when this linkage may fail to hold. 
bility analysis of the skeleton can be much simplified by the fact that the
f a TAR model can be inferred from the stability of an associated skeleton

a difference equation obtained by modifying the equation defining the TAR
uppressing the noise terms and the intercepts (that is, zero errors and zero
and setting the threshold to 0. For the simulated example, the associated skel-
 defined by the following difference equation:

(15.4.4)

lution to the skeleton above can be readily obtained: Given a positive value

1
n
--- h Yt( )

t 1=

n

∑

Yt
0.5Yt 1–  , if Yt 1– 0≤

1.8Yt 1––  , if Yt 1– 0>
⎩
⎪
⎨
⎪
⎧

=

(−1.8)×0.5 t−2×y1, for all t ≥ 2. For negative y1, yt = 0.5 t−1×y1. In both cases,
 → ∞. The origin is said to be an equilibrium point as yt ≡ 0, for all t, if y1 =
n is then said to be a globally exponentially stable limit point, as the skeleton
 it exponentially fast for any nonzero initial value. It can be shown (Chan and
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) that the origin is a globally exponentially stable limit point for the skeleton
eters satisfy the constraints 

(15.4.5)

se the first-order TAR model is ergodic and hence stationary. Exhibit 15.10
egion of stationarity shaded in gray. Note that the region of stationarity is
y larger than the region defined by the linear time series inspired constraints

2,1| < 1, corresponding to the region bounded by the inner square in Exhibit
arameters lying strictly outside the region defined by the constraints (Equa-

5)), the skeleton is unstable and the TAR model is nonstationary. For exam-
1, then the skeleton will escape to positive infinity for all sufficiently large
s. On the boundary of the parametric region defined by (15.4.5), the inter-

of the TAR model are pivotal in determining the stability of the skeleton and
rity of the TAR models; see Chan et al. (1985). In practice, we can check if
 is stable numerically by using several different initial values. A stable skel-
s more confidence in assuming that the model is stationary.

.10 Stationarity Region for the First-Order TAR Model (Shaded)

eshold Models 
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der (self-exciting) threshold autoregressive model can be readily extended to
r and with a general integer delay: 
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(15.5.1)

e autoregressive orders p1 and p2 of the two submodels need not be identi-
 delay parameter d may be larger than the maximum autoregressive orders.
y including zero coefficients if necessary, we may and shall henceforth

t p1 = p2 = p and 1 ≤ d ≤ p, which simplifies the notation. The TAR model
Equation (15.5.1) is denoted as the TAR(2;p1, p2) model with delay d. 
 the stability of the associated skeleton, obtained by setting the threshold to
ppressing the noise terms and the intercepts, implies that the TAR model is
 stationary. However, the stability of the associated skeleton is now much
lex in the higher-order case so much so that the necessary and sufficient
conditions for the stationarity of the TAR model are still unknown. Nonethe-
xist some simple sufficient conditions for the stationarity of a TAR model.

le, the TAR model is ergodic and hence asymptotically stationary if |φ1,1|
< 1 and |φ2,1| +…+ |φ2,p| < 1; see Chan and Tong (1985). 
we have considered the case of two regimes defined by the partition −∞ < r <
al line, so that the first (second) submodel is operational if Yt − d lies in the
d) interval. The extension to the case of m regimes is straightforward and
 partitioning the real line into −∞ < r1 < r2 <…< rm − 1 < ∞, and the position
ative to these thresholds determines which linear submodel is operational.
t pursue this topic further but shall restrict our discussion to the case of two

ting for Threshold Nonlinearity

an’s test and Tsay’s test for nonlinearity are designed for detecting quadratic
, they may not be sensitive to threshold nonlinearity. Here, we discuss a like-
 test with the threshold model as the specific alternative. The null hypothesis
) model versus the alternative hypothesis of a two-regime TAR model of
 with constant noise variance, that is; σ1 = σ2 = σ. With these assumptions,
 model can be rewritten as

(15.6.1)

otation I(⋅) is an indicator variable that equals 1 if and only if the enclosed
 is true. Moreover, in this formulation, the coefficient φ2,0 represents the

φ1,0 φ1,1Yt 1–
… φ1,p1

Yt p1– σ1et+ + + +  , if Yt d– r≤

φ2 0, φ2 1, Yt 1–
… φ2 p2, Yt p2– σ2et+ + + +  , if Yt d– r>

⎩
⎪
⎨
⎪
⎧

φ1 0, φ1 1, Yt 1–
… φ1 p, Yt p–+ + +=

φ2 0, φ2 1, Yt 1–
… φ2 p, Yt p–+ + +{ }I Yt d– r>( ) σet++ 
e intercept in the upper regime relative to that of the lower regime, and sim-
reted are φ2,1,…,φ2,p. The null hypothesis states that φ2,0 = φ2,1 =…= φ2,p =
e delay may be theoretically larger than the autoregressive order, this is sel-
se in practice. Hence, it is assumed that d ≤ p throughout this section, and



15.6  Test

under this a
tion of the t

In prac
tic can be s

where n − p
of the noise
threshold s
sion on esti
0, the (nuis
hood ratio 
Instead, it h
Chan (1991
that is high
the thresho
a×100th pe
75th percen
into each of

The re
interval. In
the parame
mathematic
the thresho
the thresho
the large-sa

We illu
root-transfo
that both K
= 5, a = 0.2
threshold n
being 46.9,
b = 0.9 yiel
0.000, sugg
the test stat

† The R
> pv
> fo
> pv
> ro
> ro
ing for Threshold Nonlinearity 401

ssumption and assuming the validity of linearity, the large-sample distribu-
est does not depend on d. 
tice, the test is carried out with fixed p and d. The likelihood ratio test statis-
hown to be equivalent to

(15.6.2)

 is the effective sample size,  is the maximum likelihood estimator
 variance from the linear AR(p) fit and  from the TAR fit with the

earched over some finite interval. See the next section for a detailed discus-
mating a TAR model. Under the null hypothesis that φ2,0 = φ2,1 =…= φ2,p =
ance) parameter r is absent. Hence, the sampling distribution of the likeli-
test under H0 is no longer approximately χ2 with p degrees of freedom.
as a nonstandard sampling distribution; see Chan (1991) and Tong (1990).
) derived an approximation method for computing the p-values of the test
ly accurate for small p-values. The test depends on the interval over which
ld parameter is searched. Typically, the interval is defined to be from the
rcentile to the b×100th percentile of {Yt}, say from the 25th percentile to the
tile. The choice of a and b must ensure that there are adequate data falling
 the two regimes for fitting the linear submodels. 

ader may wonder why the search of the threshold is restricted to some finite
tuitively, such a restriction is desirable, as we want enough data to estimate
ters for the two regimes under the alternative hypothesis. A deeper reason is
al in nature. This restriction is necessary because if the true model is linear,
ld parameter is undefined, in which case an unrestricted search may result in
ld estimator being close to the minimum or maximum data values, making
mple approximation ineffective. 
strate the likelihood ratio test for threshold nonlinearity using the (square-
rmed) relative sunspot data and the (log-transformed) predator data. Recall

eenan’s test and Tsay’s test suggested that these data are nonlinear. Setting p
5, and b = 0.75 for the sunspot data, we tried the likelihood ratio test for

onlinearity with different delays from 1 to 5, resulting in the test statistics
 111.3, 99.1, 85.0, and 45.1, respectively.† Repeating the test with a = 0.1 and
ds identical results for this case. All the tests above have p-values less than
esting that the data-generating mechanism is highly nonlinear. Notice that
istic attains the largest value when d = 2; hence we may tentatively estimate

 code to carry out these calculations is as follows:

Tn n p–( )log
σ̂2 H0( )

σ̂2 H1( )
------------------

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

σ̂2 H0( )
σ̂2 H1( )
aluem=NULL
r (d in 1:5) { res=tlrt(sqrt(spots),p=5,d=d,a=0.25,b=0.75)
aluem= cbind( pvaluem, c(d,res$test.statistic,res$p.value)) }
wnames(pvaluem)=c('d','test statistic','p-value')
und(pvaluem,3)
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 be 2. But delay 3 is very competitive.
onsider the predator series, with p = 4, a = 0.25, b = 0.75, and 1 ≤ d ≤ 4. The
cs and their p-values, enclosed in parentheses, are found to equal 19.3
.0 (0.001), 32.0 (0.000), and 16.2 (0.073), respectively. Thus, there is some
at the predator series is nonlinear, with the delay likely to be 2 or 3. Note that
ot significant for d = 4 at the 5% significance level.†

imation of a TAR Model

e stationary distribution of a TAR model does not have a closed-form solu-
tion is often carried out conditional on the max(p,d) initial values, where p is
f the process and d the delay parameter. Moreover, the noise series is often
 be normally distributed, and we will make this assumption throughout this
e normal error assumption implies that the response is conditionally normal,
ia, Chan and Stenseth (2007) for some recent work on the nonnormal case.

hold parameter r and the delay parameter d are known, then the data cases
t into two parts according to whether or not Yt − d ≤ r. Let there be n1 data
 lower regime. With the data in the lower regime, we can regress Yt on its
to find the estimates of  and the maximum likelihood
nce estimate ; that is, the sum of squared residuals divided by n1. The
and the parameter estimates for the lower regime generally depend on r and
times write the more explicit notation, for example n1(r,d), below for clarity.
sing the data, say n2 of them, falling in the upper regime, we can obtain the
stimates  and . Clearly, n1 + n2 = n − p, where n is
size. Substituting these estimates into the log-likelihood function yields the
ofile log-likelihood function of (r,d):

(15.7.1)

timates of r and d can be obtained by maximizing the profile likelihood func-
 The optimization need only be searched with r over the observed Y’s and
etween 1 and p. This is because, for fixed d, the function above is constant
o consecutive observations. 
er, without some restrictions on the threshold parameter, the (conditional)
ikelihood method discussed above will not work. For example, if the lower
tains only one data case, the noise variance  so that the conditional
od function equals ∞, in which case the conditional maximum likelihood

φ̂1 0, φ̂1 1, … φ̂1 p,, , ,
σ̂1

2

φ̂2 0, φ̂2 1, … φ̂2 p,, , , σ̂2
2

r d,( ) n p–
2

------------ 1 log 2π( )+{ }–
n1 r d,( )

2
------------------- σ̂1 r d,( )( )2( )log–=

n2 r d,( )
2

------------------- σ̂2 r d,( )( )2( )log–

σ̂1
2 0=
 clearly inconsistent. This problem may be circumvented by restricting the

 code for this calculation is similar to that shown on the previous page. The details
e found in the R code scripts for Chapter 15 available on the textbook Website.



15.7  Estim

search of th
between the

Anothe
eters using 
the parame
ditional ma
ance) Gaus
function is 

where I(Yt
similarly d
observed Y
has the adv
Under mild
tion is a dis
that is, the e
is an intege
equal to the
the thresho
parameters 
delay param
autoregress
were know
regimes are
are approxi
from the co
lifted to the
parameter s
preceding l
ditional me

In prac
an efficient
for linear A
fixed r and
respectively

where the n
minimum A
AIC subjec

L r d,( )
ation of a TAR Model 403

e threshold to be between two predetermined percentiles of Y; for example,
 tenth and ninetieth percentiles. 
r approach to handle the aforementioned difficulty is to estimate the param-
the conditional least squares (CLS) approach. The CLS approach estimates
ters by minimizing the predictive sum of squared errors, or equivalently con-
ximum likelihood estimation for the case of homoscedastic (constant-vari-
sian errors; that is, σ1 = σ2 = σ so that maximizing the log-likelihood

equivalent to minimizing the conditional residual sum of squares: 

(15.7.2)

− d ≤ r) equals 1 if Yt − d ≤ r and 0 otherwise; the expression I(Yt − d > r) is
efined. Again, the optimization need only be done with r searched over the
’s and d an integer between 1 and p. The conditional least squares approach
antage that the threshold parameter can be searched without any constraints.
 conditions, including stationarity and that the true conditional mean func-
continuous function, Chan (1993) showed that the CLS method is consistent;
stimator approaches the true value with increasing sample size. As the delay
r, the consistency property implies that the delay estimator is eventually
 true value with very large sample size. Furthermore, the sampling error of
ld estimator is of the order 1/n, whereas the sampling error of the other
is of order . The faster convergence of the threshold parameter and the

eter to their true values implies that in assessing the uncertainty of the
ive parameter estimates, the threshold and the delay may be treated as if they
n. Consequently, the autoregressive parameter estimators from the two
 approximately independent of each other, and their sampling distributions
mately the same as those from the ordinary least squares regression with data
rresponding true regimes. These large-sample distribution results can be
 case of the conditional maximum likelihood estimator provided the true
atisfies the regularity conditions alluded to before. Finally, we note that the
arge-sample properties of the estimator are radically different if the true con-
an function is continuous; see Chan and Tsay (1998).
tice, the AR orders in the two regimes need not be identical or known. Thus,
 estimation procedure that also estimates the orders is essential. Recall that
RMA models, the AR orders can be estimated by minimizing the AIC. For

 d, the TAR model is essentially fitting two AR models of orders p1 and p2,
, so that the AIC becomes 

(15.7.3)

 = {(Yt φ1 0, φ1 1, Yt 1–
… φ1 p, Yt p– )

2
I Yt d– r≤( )––––

t p 1+=

n

∑

(Yt φ2 0, φ2 1, Yt 1–
… φ2 p, Yt p– )

2
I Yt d– r>( )}––––+ 

1 n⁄

AIC p1 p2 r d, , ,( ) 2l r d,( )– 2 p1 p2 2+ +( )+=
umber of parameters, excluding r, d, σ1, and σ2, equals p1 + p2 + 2. Now, the
IC (MAIC) estimation method estimates the parameters by minimizing the

t to the constraint that the threshold parameter be searched over some inter-
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rantees any regimes have adequate data for estimation. Adding 2 to the min-
 so found is defined as the nominal AIC of the estimated threshold model,
e naive idea of counting the threshold parameter as one additional parameter.
reshold parameter generally adds much flexibility to the model, it is likely to
an one degree of freedom to the model. An asymptotic argument suggests

 be equivalent to adding three degrees of freedom to the model; see Tong
8). 
strate the estimation methods with the predator series. In the estimation, the
rder is set to be p = 4 and 1 ≤ d ≤ 4. This maximum order is the AR order
 by AIC, which is likely to be not smaller than the order of the true TAR
rnatively, the order may be determined by cross-validation, which is com-
ive; see Cheng and Tong (1992). Using the MAIC method with the search of
ughly between the tenth and ninetieth percentiles, the table in Exhibit 15.11
 nominal AIC value of the estimated TAR model for 1 ≤ d ≤ 4. The nominal

llest when d = 3, so we estimate the delay to be 3. The table in Exhibit 15.12
 the corresponding model fit.

.11 Nominal AIC of the TAR Models Fitted to the Log(predator) 
Series for 1 ≤ d ≤ 4

LL
n 1:4) 
ator.tar=tar(y=log(predator.eq),p1=4,p2=4,d=d,a=.1,b=.9)
ind(AICM, 
redator.tar$AIC,signif(predator.tar$thd,4), 
tor.tar$p1,predator.tar$p2))}
s(AICM)=c('d','nominal AIC','r','p1','p2')
s(AICM)=NULL

gh the maximum autoregressive order is 4, the MAIC method selects order 1
er regime and order 4 for the upper regime. The submodel in each regime is
y ordinary least squares (OLS) using the data falling in that regime. Hence a
estimator of the noise variance may be estimated by the within-regime resid-
 squared errors normalized by the effective sample size which equals the

AIC

19.04 4.15 2 1

12.15 4.048 1 4

10.92 4.661 1 4

18.42 5.096 3 4

r̂ p̂1 p̂2
ata in that regime minus the number of autoregressive parameters (including
t) of the corresponding submodel. The “unbiased” noise variance  of the
elates to its maximum likelihood counterpart by the formula 

σ~i
2
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(15.7.4)

the autoregressive order of the ith submodel. Moreover, 
ately distributed as χ2 with ni − pi − 1 degrees of freedom. For each regime,
ics and corresponding p-values reported in Exhibit 15.12 are identical with
er output for the case of fitting an autoregressive model with the data falling
me. Notice that the coefficients of lags 2 and 3 in the upper regime are not
 while that of lag 4 is mildly significant at the 5% significance level. Hence,
for the upper regime may be approximated by a first-order autoregressive
shall return to this point later.

.12 Fitted TAR(2;1,4) Model for the Predator Data: MAIC Method

r.tar.1=tar(y=log(predator.eq),p1=4,p2=4,d=3,a=.1,b=.9, 
=T)
og(predator.eq),p1=1,p2=4,d=3,a=.1,b=.9,print=T, 
d='CLS') # re-do the estimation using the CLS method
og(predator.eq),p1=4,p2=4,d=3,a=.1,b=.9,print=T, 
d='CLS') # the CLS method does not estimate the AR orders

Estimate Std. Error t-statistic p-value

3

4.661

Lower Regime (n1 = 30)

0.262 0.316 0.831 0.41 

1.02 0.0704 14.4 0.00 

0.0548

Upper Regime (n2 = 23)

4.20 1.28 3.27 0.00 

0.708 0.202 3.50 0.00 

−0.301 0.312 −0.965 0.35 

0.279 0.406 0.686 0.50

−0.611 0.273 −2.24 0.04

0.0560

σ~i
2 ni

ni pi 1––
------------------------σ̂i

2
 ,=

ni pi 1––( )σ~i
2 σi

2⁄
eshold estimate is 4.661, roughly the 57th percentile. In general, a threshold
at is too close to the minimum or the maximum observation may be unreli-
 small sample size in one of the regimes, which, fortunately, is not the case
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it 15.12 does not report the standard error of the threshold estimate because
g distribution is nonstandard and rather complex. Similarly, the discreteness
 estimator renders its standard error useless. However, a parametric boot-
e employed to draw inferences on the threshold and the delay parameters.
ive is to adopt the Bayesian approach of Geweke and Terui (1993). In con-
tted AR(4) model has the coefficient estimates of lags 1 to 4 equal to 0.943
.171 (0.188), −0.1621 (0.186), and −0.238 (0.136), respectively, with their

rors enclosed in parentheses; the noise variance is estimated to be 0.0852,
bstantially larger than the noise variances of the TAR(2;1,4) model. Notice
(4) coefficient estimate is close to being nonsignificant, and the AR(2) and
ficient estimates are not significant.
resting question concerns the interpretation of the two regimes. One way to

 nature of the regimes is to identify which data value falls in which regime in
ries plot of the observed process. In the time series plot in Exhibit 15.2 on
ata falling in the lower regime (that is, those whose lag 3 values are less than
drawn as solid circles, whereas those in the upper regime are displayed as
s. The plot reveals that the estimated lower regime corresponds to the
hase of the predator cycles and the upper regime corresponds to the decreas-
f the predator cycles. A biological interpretation is the following. When the
mber was low one and a half days earlier, the prey species would have been
ease in the intervening period so that the predator species would begin to
he other hand, when the predator numbered more than 106 ≈ exp(4.661) one
days earlier, the prey species crashed in the intervening period so that the
ecies would begin to crash. The increasing phase (lower regime) of the pred-
tion tends to be associated with a robust growth of the prey series that may
ected by other environmental conditions. On the other hand, during the
 phase (upper regime), the predator species would be more susceptible to
tal conditions, as they were already weakened by having less food around.
xplain why the lower regime has a slightly smaller noise variance than the

e; hence the slight conditional heteroscedasticity. The difference of the
ce in the two regimes is unlikely to be significant, although the conditional
sticity is more apparent in the TAR(2;1,1) model to be discussed below. In
 regimes defined by the relative position of the lag d values of the response
for some underlying latent process that effects the switching between the lin-
els. With more substantive knowledge of the switching mechanism, the
echanism may, however, be explicitly modeled. 

the interpretation of the regimes above is based on the time series plot, it may
d by examining the fitted submodels. The fitted model of the lower regime

t on the logarithmic scale

(15.7.5)Yt 0.262 1.02Yt 1– 0.234et+ +=
 1 coefficient is essentially equal to 1 and suggests that the predator species
ian) growth rate of (exp(0.262) − 1)100% ≈ 30% every half day, although the
 not significant at the 5% level. This submodel is explosive because Yt → ∞
 left unchecked. 
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retation of the fitted model of the upper regime is less straightforward
s an order 4 model. However, it was suggested earlier that it may be approxi-
n AR(1) model. Taking up this suggestion, we reestimated the TAR model
aximum order being 1 for both regimes.† The threshold estimate is

. The lower regime gains one data case, with less of an initial data require-
e autoregressive coefficients are almost unchanged. The fitted model of the
e becomes 

(15.7.6)

tationary submodel. The growth rate on the logarithmic scale equals 

(15.7.7)

a negative median since Yt − 1 > 4.661 on the upper regime. Notice that the
 heteroscedasticity is more apparent now than the fitted TAR(2;1,4) model.
al) AIC of the TAR(2;1,1) model with d = 3 equals 14.78, which is, however,
 comparable with 10.92 of the TAR(2;1,4) model because of the difference
ize. Models with different sample sizes may be compared by their nominal
servation. In this case, the normalized AIC increases from 0.206 = 10.92/53
 14.78/54 when the order is decreased from 4 to 1, suggesting that the
 model is preferable to the TAR(2;1,1) model. 
r way to assess a nonlinear model is to examine the long-term (asymptotic)
 its skeleton. Recall that the skeleton of a model is obtained by suppressing
rm from the model; that is, replacing the noise term by 0. The skeleton may
nfinity, or it may converge to a limit point, a limit cycle, or a strange attrac-
an and Tong (2001) for definitions and further discussion. The skeleton of a

RMA model always converges to some limit point. On the other hand, the
 a stationary nonlinear model may display the full complexity of dynamics
arlier. The skeleton of the fitted TAR(2;1,4) model appears to converge to a
of period 10, as shown in Exhibit 15.13. The limit cycle is symmetric in the
ts increase phase and decrease phase are of the same length. The apparent
bility of the skeleton suggests that the fitted TAR(2;1,4) model with d = 3 is
In general, with the noise term in the model, the dynamic behavior of the
 be studied by simulating some series from the stochastic model. Exhibit
s a typical realization from the fitted TAR(2;1,4) model.

Yt 0.517 0.807Yt 1– 0.989et+ +=

Yt Yt 1–– 0.517 0.193Yt 1–– 0.989et+=
dator.tar.2=tar(log(predator.eq),p1=1,p2=1,d=3,a=.1,
9, print=T)
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.13 Skeleton of the TAR(2;1,4) Model for the Predator Series

leton(predator.tar.1)

.14 Simulated TAR(2;1,4) Series

d(356813)
tar.sim(n=57,object=predator.tar.1)$y,x=1:57, 
expression(Y[t]),xlab=expression(t),type='o')

it cycle of the skeleton of the fitted TAR(2;1,1) model with d = 3 is asym-
h the increase phase of length 5 and the decrease phase of length 4; see
15. A realization of the fitted TAR(2;1,1) model is shown in Exhibit 15.16. 
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.15 Skeleton of the First-Order TAR Model for the Predator 
Series

r.tar.2=tar(log(predator.eq),p1=1,p2=1,d=3,a=.1,b=.9, 
=T)
leton(predator.tar.2)

.16 Simulation of the Fitted TAR(2;1,1) Model

d(356813)
tar.sim(n=57,object=predator.tar.2)$y,x=1:57, 
expression(Y[t]),xlab=expression(t),type='o')

 predator data, excluding the two initial transient cycles and the last incom-
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 the table in Exhibit 15.17 lists the length of the successive increasing and
phases. Observe that the mean length of the increasing phases is 5.4 and that
asing phases is 4.6. 
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.17 Length of the Increasing and Decreasing Phases of the 
Predator Series

is some evidence of asymmetry with a longer increase phase than the
ase. Based on the cycle length analysis, the TAR(2;1,1) model appears to

 asymmetric cycle property better than the TAR(2;1,4) model, but the latter
the cycle length better matched to the observed average cycle length. A more
mparison between the cyclical behavior of a fitted model and that of the data
 by comparing the spectral density of the data with that of a long realization

tted model. Exhibit 15.18 plots the spectrum of the data using a modified
dow with a (3,3) span. Also plotted is the spectrum of the fitted TAR(2;1,4)

hed line) and that of the fitted TAR(2;1,1) model (dotted line), both of which
n a simulated realization of size 10,000, a modified Daniell window with a
pan, and 10% tapering. It can be seen that the spectrum of the TAR(2;1,4)
ws that of the predator series quite closely and is slightly better than the sim-
(2;1,1) model. 

.18 Spectra of Log(predator) Series, Dashed Line for TAR(2;1,1), 
Dotted Line for TAR(2;1,4)

Phase
Increasing Decreasing

6 4

7 5

5 4

4 5

5 5

.0 0.1 0.2 0.3 0.4 0.5

frequency
d(2357125)
tar.sim(predator.tar.1,n=10000)$y
r.sim(predator.tar.2,n=10000)$y
4=spec(yy.1.4,taper=.1, span=c(200,200),plot=F)
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spec(yy.1,taper=.1, span=c(200,200),plot=F)
edator=spec(log(predator.eq),taper=.1, 
c(3,3),plot=F)
edator=spec(log(predator.eq),taper=.1,span=c(3,3), 
range(c(spec.1.4$spec,spec.1$spec,spec.predator$spec)))
=spec.1.4$spec,x=spec.1.4$freq,lty=2)
=spec.1$spec,x=spec.1$freq,lty=3)

e that the conditional least squares method with the predator data yields the
old estimate for d = 3 and hence also the other parameter estimates, although
t always be the case. Finally, a couple of clarifying remarks on the predator
sis are in order. As the experimental prey series is also available, a bivariate
 analysis may be studied. But it is not pursued here since nonlinear time
sis with multiple time series is not a well-charted area. Moreover, real bio-
 are often observational, and abundance data of the prey population are often
er than those of the predator population because the predator population
 fewer in number than the prey population. Furthermore, predators may
 their favorite prey food to other available prey species when the former
arce, rendering a more complex prey-predator system. For example, in a

 hares may be seen hopping around in every corner in the neighborhood,
is rare to spot a lynx, their predator! Thus, biological analysis often focuses
dance data of the predator population. Nonetheless, univariate time series
the abundance of the predator species may shed valuable biological insights
-predator interaction; see Stenseth et al. (1998, 1999) for some relevant dis-
a panel of Canadian lynx series. For the lynx data, a TAR(2;2,2) model with
l to 2 is the prototypical model, with delay 2 lending some nice biological
ons. We note that, for the predator series, delay 2 is very competitive; see
11, and hence may be preferred on biological grounds. In one exercise, we
er to fit a TAR model for the predator series with delay set to 2 and interpret
 by making use of the framework studied in Stenseth et al. (1998, 1999).

del Diagnostics

15.7, we introduced some model diagnostic techniques; for example, skele-
s and simulation. Here, we discuss some formal statistical approaches to
nostics via residual analysis. The raw residuals are defined as subtracting the
 from the data, where the tth fitted value is the estimated conditional mean of
st values of Y’s; that is, the residuals  are given by

(15.8.1)

ε̂ t

t Yt φ̂1 0, φ̂1 1, Yt 1–
… φ̂1 p, Yt p–+ + +{ }I Yt d̂– r̂≤( )–=

φ̂ φ̂ Y … φ̂ Y+ + +{ }I Y r̂>( )–
he same as the raw residuals from the fitted submodels. The standardized
re obtained by normalizing the raw residuals by their appropriate standard

2 0, 2 1, t 1– 2 p, t p– t d̂–
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(15.8.2)

 residuals from the lower (upper) regime are normalized by the noise stan-
ion estimate of the lower (upper) regime. As in the linear case, the time series
standardized residuals should look random, as they should be approximately
t and identically distributed if the TAR model is the true data mechanism;
e TAR model is correctly specified. As before, we look for the presence of
 any systematic pattern in such a plot, in which case it may provide a clue for

a more appropriate model. The independence assumption of the standardized
e checked by examining the sample ACF of the standardized residuals. Non-
riance may be checked by examining the sample ACF of the squared stan-
siduals or that of the absolute standardized residuals. 

e consider the generalization of the portmanteau test based on some overall
 the magnitude of the residual autocorrelations. The reader may want to
discussion in Section 12.5 on page 301, where we explain that even if the
rrectly specified, the residuals are generally dependent and so are their sam-
relations. Unlike the case of linear ARIMA models, the dependence of the
ecessitates the employment of a (complex) quadratic form of the residual
tions: 

(15.8.3)

= n − max(p1,p2,d) is the effective sample size,  the ith-lag sample auto-
of the standardized residuals, and qi,j some model-dependent constants given
x L on page 421. If the true model is a TAR model,  are likely close to
 is Bm, but Bm tends to be large if the model specification is incorrect. The
rm is designed so that Bm is approximately distributed as χ2 with m degrees

. Mathematical theory predicts that the χ2 distribution approximation is gen-
 accurate with larger sample size and relatively small m as compared with
size. 
tice, the p-value of Bm may be plotted against m over a range of m values to
ore comprehensive assessment of the independence assumption on the stan-

rors. The bottom figure of Exhibit 15.19 reports the portmanteau test of the
 model fitted to the predator series discussed earlier for 1 ≤ m ≤ 12. The top
 is the time series plot of the standardized residuals. Except for a possible

 plot shows no particular pattern. The middle figure is the ACF plot of the
d residuals. The confidence band is based on the simple  rule and
egarded as a rough guide on the significance of the residual ACF. It suggests
 1 residual autocorrelation is significant. The more rigorous portmanteau

ê t

ε̂ t

σ̂1I Yt d̂– r̂≤( ) σ̂2I Yt d̂– r̂>( )+
------------------------------------------------------------------------------=

Bm neff= qi j, ρ̂iρ̂j
j 1=

m

∑
i 1=

m

∑

ρ̂i

ρ̂i

1.96 n⁄
 significant for m ≤ 6, suggesting a lack of fit for the TAR(2;1,1) model. Sim-
stics for the TAR(2;1,4) model are shown in Exhibit 15.20. Now, the only
roblem is a possible outlier. However, the fitted model changed little upon
 last four data points, including the potential outlier; hence we conclude that
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R(2;1,4) model is fairly robust. Exhibit 15.21 displays the QQ normal score
standardized residuals, which is apparently straight and hence the errors
e normally distributed. In summary, the fitted TAR(2;1,4) model provides a
he predator series. 

.19 Model Diagnostics of the First-Order TAR Model: Predator 
Series

ph(width=4.875,height=4.5)
predator.tar.2,gof.lag=20)
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.20 Model Diagnostics for the TAR(2;1,4) Model: Predator Series

predator.tar.1,gof.lag=20)
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.21 QQ Normal Plot of the Standardized Residuals

ph(width=2.5,height=2.5,pointsize=8)
predator.tar.1$std.res); qqline(predator.tar.1$std.res)

diction

on, we consider the problem of predicting future values from a TAR process.
, prediction is based on an estimated TAR model. But, as in the case of
odels, the uncertainty due to parameter estimation is generally small com-
the natural variation of the underlying process. So, we shall proceed below as
 model were the true model. The uncertainty of a future value, say Yt + l , is
 characterized by its conditional probability distribution given the current and

t, Yt − 1,…, referred to as the l-step-ahead predictive distribution below. For
odels with normal errors, all predictive distributions are normal, which
plifies the computation of a predictive interval, as it suffices to find the mean
e of the predictive distribution. However, for nonlinear models, the predic-
utions are generally nonnormal and often intractable. Hence, a prediction
ay have to be computed by brute force via simulation. The simulation
ay be best explained in the context of a first-order nonlinear autoregressive

(15.9.1)

yt, Yt − 1 = yt − 1,…, we have Yt + 1 = h(yt,et + 1) so a realization of Yt + 1 from
p-ahead predictive distribution can be obtained by drawing et + 1 from the
ution and computing h(yt,et + 1). Repeating this procedure independently B
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Yt 1+ h Yt et 1+,( )=
000 times, we get a random sample of B values from the one-step-ahead pre-
ribution. The one-step-ahead predictive mean may be estimated by the sam-
f these B values. However, it is important to inspect the shape of the
ead predictive distribution in order to decide how best to summarize the pre-
rmation. For example, if the predictive distribution is multimodal or very
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 one-step-ahead predictive mean need not be an appropriate point predictor.
y useful approach is to construct a 95% prediction interval for Yt + 1; for
e interval defined by the 2.5th percentile to the 97.5th percentile of the simu-
es. 
ulation approach can be readily extended to finding the l-step-ahead predic-

tion for any integer l ≥ 2 by iterating the nonlinear autoregression. 

(15.9.2)

yt and {et + 1,…,et + l} is a random sample of l values drawn from the error
. This procedure may be repeated B times to yield a random sample from the
 predictive distribution, with which we can compute prediction intervals of

 other predictive summary statistic. 
, the l-tuple (Yt + 1,…,Yt + l) is a realization from the joint predictive distribu-
first l-step-ahead predictions. So, the procedure above actually yields a ran-
e of B vectors from the joint predictive distribution of the first l-step-ahead
. 
orth in this section, we focus on the prediction problem when the true model
odel. Fortunately, the simulation approach is not needed for computing the
ead predictive distribution in the case of a TAR model. To see this, consider
case of a first-order TAR model. In this case, Yt + 1 − d is known, so that the
Yt + 1 is known. If Yt + 1 − d ≤ r, then Yt + 1 follows the AR(1) model

(15.9.3)

= yt is fixed, the conditional distribution of Yt + 1 is normal with mean equal

,1yt and variance . Similarly, if Yt > r, Yt + 1 follows the AR(1) model of
gime so that, conditionally, it is normal with mean φ2,0 + φ2,1yt and variance
lar argument shows that, for any TAR model, the one-step-ahead predictive
 is normal. The predictive mean is, however, a piecewise linear function, and
ve standard deviation is piecewise constant. 
rly, it can be shown that if l ≤ d, then the l-step-ahead predictive distribution
odel is also normal. But if l > d, the l-step-ahead predictive distribution is no
al. The problem can be illustrated in the simple case of a first-order TAR

 d = 1 and l = 2. While Yt + 1 follows a fixed linear model determined by the
lue of Yt, Yt + 2 may be in the lower or upper regime, depending on the ran-

of Yt + 1. Suppose that yt ≤ r. Now, Yt + 1 falls in the lower regime if Yt + 1 =
 + φ y ≤ r, which happens with probability p  = Pr(σ e  + φ  + φ y

Yt 1+ h Yt et 1+,( )=

Yt 2+ h Yt 1+ et 2+,( )=

...

Yt l+ h Yt l 1–+ et l+,( )  ,= ⎭
⎪
⎪
⎬
⎪
⎪
⎫

Yt 1+ φ1 0, φ1 1, Yt σ1et 1++ +=

σ1
2

1,0 1,1 t t 1 t + 1 1,0 1,1 t
which case 
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(15.9.4)

normal distribution with mean equal to and vari-
. On the other hand, with probability 1 − pt, Yt + 1 falls in the upper

which case the conditional distribution of Yt + 2 is normal but with mean
φ1,1yt) + φ2,0 and variance . Therefore, the conditional distribu-
 is a mixture of two normal distributions. Note that the mixture probability pt
 yt. In particular, the higher-step-ahead predictive distributions are nonnor-
R model if l > d, and so we have to resort to simulation to find the predictive

s. 
example, we compute the prediction intervals for the logarithmically trans-
dator data based on the fitted TAR(2;1,4) model with d = 3; see Exhibit
re the middle dashed line is the median of the predictive distribution and the
d lines are the 2.5th and 97.5th percentiles of the predictive distribution.

.22 Prediction of the Predator Series

d(2357125)
ph(width=4.875,height=2.5,pointsize=8)
edator=predict(predator.tar.1,n.ahead=60,n.sim=10000)
(log(predator.eq),pred.predator$fit),frequency=2, 
=start(predator.eq))
,type='n',ylim=range(c(yy,pred.predator$pred.interval)), 
'Log Predator',xlab=expression(t))
og(predator.eq))
indow(yy, start=end(predator.eq)+c(0,1)),lty=2)

t 2+ σ1et 2+ φ1 0, φ1 1, Yt 1++ +=

 σ1et 2+ φ1 1, σ1et 1+ φ1 1, φ1 0, φ1 1,
2

yt φ1 0,+ + + +=

φ1 1, φ1 0, φ1 1,
2 yt φ1 0,+ +

1 1,
2 σ1

2

σ2
2 φ2 1,

2 σ1
2+

t

10 20 30 40 50 60
s(pred.predator$pred.interval[2,], 
=end(predator.eq)+c(0,1),freq=2),lty=2)
s(pred.predator$pred.interval[1,], 
=end(predator.eq)+c(0,1),freq=2),lty=2)
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ulation size here is 10,000. In practice, a smaller size such as 1000 may be
he median of the predictive distribution can serve as a point predictor.

 the predictive medians display the cyclical pattern of the predator data ini-
hen approach the long-run median with increasing number of steps ahead.
he predictive intervals approach the interval defined by the 2.5th and 97.5th
of the stationary distribution of the fitted TAR model. However, a new fea-
prediction need not be less certain with increasing number of steps ahead, as
f the prediction intervals does not increase monotonically with increasing

steps ahead; see Exhibit 15.23. This is radically different from the case of
dels, for which the prediction variance always increases with the number of
teps ahead.

.23 Width of the 95% Prediction Intervals Against Lead Time

(apply(pred.predator$pred.interval,2, 
ion(x){x[2]-x[1]})),
'Length of Prediction Intervals',
'Number of Steps Ahead')

that, for the TAR model, the prediction distribution is normal if and only if
 of steps ahead l ≤ d. Exhibit 15.24 shows the QQ normal score plot of the
head predictive distribution, which is fairly straight. On the other hand, the
 score plot of the six-step-ahead predictive distribution (Exhibit 15.25) is
ith nonnormality.

Number of Steps Ahead
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.24 QQ Normal Plot of the Three-Step-Ahead Predictive 
Distribution

ph(width=2.5,height=2.5,pointsize=8)
pred.predator$pred.matrix[,3])
pred.predator$pred.matrix[,3])

.25 QQ Normal Plot of the Six-Step-Ahead Predictive 
Distribution

pred.predator$pred.matrix[,6])
pred.predator$pred.matrix[,6])
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mmary

pter, we have introduced an important nonlinear times serie model—the
odel. We have shown how to test for nonlinearity and, in particular, for

onlinearity. We then proceeded to consider the estimation of the unknown
in these models using both the minimum AIC (MAIC) criterion and the con-
st squares approach. As with all models, we learned how to criticize them
ious model diagnostics, including an extended portmanteau test. Finally, we
ed how to form predictions from threshold models, including the calculation
 of prediction intervals. Several substantial examples were used to illustrate
s and techniques discussed.

ES

TAR model for the predator series with delay set to 2, and interpret the find-
by making use of the framework studied in Stenseth et al. (1998, 1999). (You
first want to check whether or not their framework is approximately valid for
AR model.) Also, compare the fitted model with the TAR(2;1,4) model with
 3 reported in the text. (The data file is named veilleux.)
TAR model to the square-root-transformed relative sunspot data, and exam-
s goodness of fit. Interpret the fitted TAR model. (The data file is named
.)
ct the annual relative sunspot numbers for ten years using the fitted model
ned in Exercise 15.2. Draw the prediction intervals and the predicted medi-
The data file is named spots.)
ine the long-run behavior of the skeleton of the fitted model for the relative
ot data. Is the fitted model likely to be stationary? Explain your answer. 
late a series of size 1000 from the TAR model fitted to the relative sunspot
 Compute the spectrum of the simulated realization and compare it with the
rum of the data. Does the fitted model capture the correlation structure of the
 
 the lagged regression plots for the square-root-transformed hare data. Is
 any evidence that the hare data are nonlinear? (The data file is named hare.)
 out formal tests (Keenan’s test, Tsay’s test, and threshold likelihood ratio
for nonlinearity for the hare data. Is the hare abundance process nonlinear?
ain your answer. (The data file is named hare.)
ming that the hare data are nonlinear, fit a TAR model to the hare data and
ine the goodness of fit. (The data file is named hare.)
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exercise assumes that the reader is familiar with Markov chain theory. Con-
 a simple TAR model that is piecewise constant: 

e {et} are independent standard normal random variables. Let Rt = 1 if Yt ≤ r
 otherwise, which is a Markov chain.
ind the transition probability matrix of Rt and its stationary distribution. 
erive the stationary distribution of {Yt}. 
ind the lag 1 autocovariance of the TAR process. 

ix L: The Generalized Portmanteau Test for TAR

f the portmanteau test is the result that, if the TAR model is correctly speci-
are approximately jointly normally distributed with zero mean and

 , where Q is an m×m matrix whose (i, j) element equals
se formula is given below; See Chan (2008) for a proof of this result. It can
at Q = I − UV−1UT where I is an m×m identity matrix, 

(Yt − d ≤ r), the expectation of a matrix is taken elementwise, and

Yt
φ1,0 σ1et+  , if Yt 1– r≤

φ2 0, σ2et+  , if Yt 1– r>
⎩
⎪
⎨
⎪
⎧

=

… ρ̂m, ,
Cov ρ̂i ρ̂j,( ) qij=

et 1–

et 2–

...

et m–

It Yt 1– It … Yt p– It 1 It–( ) Yt 1– 1 It–( ) … Yt p2– 1 It–( ), ,, , , , ,[ ]

⎭
⎪
⎪
⎬
⎪
⎪
⎫

It

Yt 1– It

...

Yt p1– It

1 It–( )

1– 1 It–( )

...

p– 1 It–( )

It Yt 1– It … Yt p– It 1 It–( ) Yt 1– 1 It–( ) … Yt p2– 1 It–( ), ,, , , , ,[ ]

⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎫

2
⎭
⎪



422

These expe
errors repla
mates. For 

where the i
Threshold Models

ctations can be approximated by sample averages computed with the true
ced by the standardized residuals and the unknown parameters by their esti-
example, E{et − 1I(Yt − d ≤ r)} can be approximated by

 

nitial standardized residuals  for t ≤ max(p1,p2, ). 
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tion

lots and numerical output displayed in this book were produced with the R
hich is available at no cost from the R Project for Statistical Computing. The
 available under the terms of the Free Software Foundation's GNU General
nse in source code form. It runs on a wide variety of operating systems,
indows, Mac OS, UNIX, and similar systems, including FreeBSD and

 a language and environment for statistical computing and graphics, provides
ety of statistical methods (time series analysis, linear and nonlinear model-
al statistical tests, and so forth) and graphical techniques, and is highly exten-
rticular, one of the authors (KSC) has produced a large number of new or
 functions specifically tailored to the methods described in this book. They
le for download in an R package named TSA on the R Project Website at
ect.org. The TSA functions are listed on page 468.
ant references for learning much more about R are also available at the
ebsite, including An Introduction to R: Notes on R, a Programming Envi-

r Data Analysis and Graphics. Version 2.4.1 (2006-12-18), by W. N. Ven-
. Smith, and the R Development Core Team, (2006), and R: A Language and
t for Statistical Computing Reference Index, Version 2.4.1 (2006-12-18), by
lopment Core Team (2006a).
software is the GNU implementation of the famed S language. It has been
e development by the R team, with contributions from many statisticians all
orld. R has become a versatile and powerful platform for doing statistical
e shall confine our discussion to the Windows version of R. To obtain the
isit the Website at www.r-project.org. Click on CRAN on the left-side of the
r Download. Scroll down the list of CRAN Mirror sites and click on one of

st to you geographically. Click on the link for Windows (or Linux or MacOS
priate) and click on the link named base. Finally, click on the link labeled
32.exe. (This file indicates release 2.6.1, the latest available release as of
. Newer versions come out frequently.) Save the file somewhere convenient,
e, on your desktop. When the download finishes, double-click the program
oceed with installing the software. (The discussion that follows assumes that
 all of the defaults during installation.) At the end of this appendix, on
ou will find a listing and brief description of all the new or enhanced func-
e contained in the TSA package.
 you start the R software for the first time, you should create a folder or
423

ay Rwork, to hold data files that you will use with R for this project or
s will be the working directory whenever you use R for this particular project
This directory is to contain the workspace, a file that contains all the
riables and functions) created in an R session. You should create separate
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Appendix: An Introduction to R

rectories for different projects or different courses.† After R is
y installed on your computer, there will be an R shortcut icon on
p. If you have created your working directory, start R by clicking
shown at the right). When the software has loaded, you will have
indow similar to the one shown in Exhibit 1 with a bottom line that reads >
 a large rectangular cursor (probably in red). This is the R prompt. You may
ands at this prompt, and they will be carried out when you press the Enter

l tasks are available through the menus.
st task is to save your workspace in the working
ou created. To do so, select the File menu and
on the choice Save workspace… .‡ You now
 browse to the directory Rwork that you created
 take many steps) or type in the full path name; for

“C: \Documents and Se t t ings \ JoeStuden t \
ents\Course156\Rwork”. If your working direc-
 USB flash drive designated as drive E, you might
r “E:Rwork”. Click OK, and from this point on in
, R will use the folder Rwork as its working direc-

it R by selecting Exit on the File menu. Every
it R, you will receive a message as to whether or
e the workspace image. Click Yes to save
ace, and it will be saved in your current working
he next time you want to resume work on that

ct, simply navigate to that working directory and
 icon there attached to the file named .RData. If you double-click this icon,

 with this directory already selected as the working directory and you can get
rk on that project. Furthermore, you will receive the message [Previ-
ved workspace restored].
t 1 shows a possible screen display after you have started R, produced two
aphs, and worked with R commands in a script window using the R editor.
results in R are displayed in the console window. Commands may be entered
either the console window and executed immediately or (better) in a script
e R editor) and then submitted to be run in R. The Menu bar and buttons will
ending on which window is currently the “focus.”
 work in a shared computer lab, check with the lab supervisor for information about
g R and about where you may save your work.
 neglected to create a working directory before starting R, you may do so at
oint. Navigate to a suitable place, click the Create new folder button, and
 the folder Rwork now.
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Windows Graphical User Interface for the R Software

A particularly useful feature of R is its ease of
including supplementary tools in the form of
libraries or packages. For example, all the
datasets and the new or enhanced R functions
used in this book are collected into a package
called TSA that can be downloaded and installed
in R. This can be done by clicking the Packages
menu and then selecting Set CRAN mirror.
Again select a mirror site that is closest to you
geographically, and a window containing the
names of all available packages will pop up.

In addition to our TSA package, you will
need to install packages named leaps, locfit,
MASS, mgcv, tseries, and uroot. Click the
Packages menu once more, click Install
package(s), and scroll through the window.

script window

console window

(inactive) graph window

(active) graph window

Menu bar and buttons
Hold down the Ctrl key and click on each of these
seven package names. When you have all seven
selected, click OK, and they will be installed on
your system by R. You only have to install them
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f course, they may be updated in the future and some of them may be incor-
 the core of R and not need to be installed separately).
ll go over commands selected from the various chapters as a tutorial for R,
elving into those, we first present an overview of R. R is an object-oriented
he two main objects in R are data and functions. R admits many data struc-
implest data structure is a vector that contains raw data. To create a data vec-
Dat containing, say, 31, 4, 15, and 93, after the > prompt in the console
ter the following command 

,4,15,93)

ess the Enter key. The equal sign symbol signifies assigning the object on its
side to the object on its left-hand side. The expression c(31,4,15,93)
oncatenating the numbers within the parentheses to make a vector. So, the
reates an object named Dat that is a vector containing the numbers 31, 4,

. R is case-sensitive, so the objects named Dat and DAt are different. To
ontents of an object, simply type the name of the object and press the Enter
ing Dat in the R console window (and pressing the Enter key) will display

s of Dat. If you subsequently enter DAt at the R prompt, it will complain by
 error message saying that object "DAt" is not found. The name of an object
f characters that may contain letters, numerals, and the period sign, but the
racter is required to be a letter.† For example, Abc123.a is a valid name for
 but 12a is not. R has some useful built-in objects, for example pi, which
 numerical value of π required for trigonometric operations such as comput-
 of a circle.
 the most useful data structure is a time series. A time series is a vector with
nformation on the epoch of the first datum and the number of data per a basic
 interval. For example, suppose we have quarterly data starting from the sec-
 of 2006: 12, 31, 22, 24, 30. This time series can be created as follows:

s(c(12,31,22,24,30), start=c(2006,2), frequency=4)

can be verified by the command

1 Qtr2 Qtr3 Qtr4
12 31 22 

4 30 

sets already in a data file (raw data separated by spaces, tabs, or line breaks)
ed into R by the command

s(scan('file1'), start=c(2006,2), frequency=4)

assumed that the data are contained in the file named file1 in the same
here you start up R (or the one changed into via the change dir com-
ice that the file name, file1, is surrounded by single quotes ('). In R, all
n names should be avoided, as they have special meanings in R. For example, the let-
s short for true, F for false, and c for concatenate or combine.
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ariables must be so enclosed. You may, however, use either single quotes or
tes (") as long as you use them in pairs.
ts with several variables may be read into R by the read.table function.
ust be stored in a table form: The first row contains the variable names, and
m the second line, the data are stored so that data from each case make up a
rder of the variable names. The relevant command is

d.table('file2',header=T)

e2 is the name of the file containing the data. The argument header=T
at the variable names are in the first line of the file. For example, let the con-
le named file2 in your working directory be as follows:

ead.table('file2',header=T)

 displaying Dat3, R adds the row labels, defaulted to be from 1 to the num-
 cases. The output of read.table is a data.frame, which is a data
r a table of data. More discussion on data.frame can be found below.

it suffices to remember that the variables inside a data.frame are not
Think of Dat3 as a closed suitcase. It has to be opened before its variables
le in an R session. The command to “open” a data.frame is to attach

bject "Y" not found
(Dat3)

4 5

8 9

read in data from an Excel file saved in the csv (comma-separated values)
h the first row containing the variable names. Suppose file2.csv contains
et containing the same information as in file2. The commands for reading
from file2.csv are similar to the one for a text file.

ead.csv('file2.csv',header=T)
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Appendix: An Introduction to R

ns scan, read.table, and read.csv have many other useful options.
 to learn more about them. For example, run the command ?read.table,
w showing detailed information for the read.table command will open.
that prefacing the question mark to any function name will display the func-
s in a new Help window. 
ns in R are similar to functions in the programming language C. A function

by typing its name followed by a list of arguments enclosed by parentheses.
e, the concatenate function has the name “c” and its purpose is to create a
ined by concatenating the arguments supplied to the function.

1,22,24,30)

here can be no space between the left parenthesis and the function name.
argument list is empty, the parentheses must be included in invoking a func-
e command 

 the name of an object and will simply display its contents by printing the
 commands making up the function in the console window. R has many use-
 functions, including abs, log, log10, exp, sin, cos, sqrt, and so
re useful for manipulating data. (The function abs computes the absolute

 does the log-transformation with base e, while log10 uses base 10; exp is
ntiation function, sin and cos are the trigonometric functions; and sqrt
e square root.)    These functions are applied to a vector or a time series ele-
ment. For example, log(Dat2) log-transforms each element of the time
 and transfers the time series structure to the transformed data.

s(c(12,31,22,24,30), start=c(2006,2), frequency=4)
t2)
 Qtr1     Qtr2     Qtr3     Qtr4
      2.484907 3.433987 3.091042
78054 3.401197 

e, vectors and time series can be manipulated algebraically with the usual
), subtraction (-), multiplication (*), division (/), or power (^ or **) carried
t by element. For example, applying the transformation y = 2x^3 − x + 7 to
saving the transformed data to a new time series named new.Dat2 can be
ed out by the command

= 2*Dat2^3-Dat2+7 
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 1 R Commands

Now, we are ready to check out selected R commands used in
Chapter 1 of the book. Script files of the commands used in
each of the fifteen chapters are available for download at
www.stat.uiowa.edu/~kchan/TSA.htm. The script files contain
the R commands needed to carry out the analyses shown in the
chapters. They also contain a limited amount of additional
explanation. Download the scripts and save them in your work-
ing directory. You may then open them within R in an R editor
(script) window and you will save much typing! Once they are
downloaded, script files may be opened by either clicking the
open file button  or by using the file menu shown at the
left.

A Script Window with Chapter 1 Scripts Displayed

Exhibit 2 shows a portion of the script file for Chapter 1
in a script window. The first four commands have been
highlighted by dragging the mouse pointer across them.
They can now all be executed by either pressing Con-
trol-R (Ctrl-R) or by right-clicking the highlighted group
and choosing Run from the choices displayed, as shown

at the left. If the cursor is in a single command line with
no highlighting, that one command may be executed
similarly.
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beginning of each session with R, you need to load the TSA library. The fol-
mand will accomplish this (but you may wish to investigate the .First
t can automate some startup tasks).

TSA)

ackage contains all datasets and functions needed for repeating the analyses
he exercises. 

t 1.1 on page 2.
h(width=4.875,height=2.5,pointsize=8)

may be interspersed  in the R codes to improve their readability. The # sign
mand signifies that what follows the sign are comments, and hence ignored
irst R command opening with the # sign is therefore a comment. The second
d opens a window for graphics that is 4.875 inches wide and 2.5 inches tall
ters printed with point size 8. The chosen setting and similar settings pro-
equence plots that are appropriate for inclusion in the book. Other settings
ropriate for other purposes. For example, quantile-quantile plots are best

h a 1:1 aspect ratio (height = width). For exploratory data analysis, you will
 graphics windows to use the full resolution of your computer screen to see
l. The command win.graph can be safely omitted altogether. If there is
 open graphics window, R will open a graphics window whenever a graph-
d is issued. You can resize this window in the usual ways by dragging edges

ain)

the time series larain into the R session and makes it available for further
h as

ain,ylab='Inches',xlab='Year',type='o')

 function. It draws the time sequence plot for larain. The argument
ches' specifies “Inches” as the label for the y-axis. Similarly, the label for
s “Year.” The argument type indicates how the data are displayed in the
ype='o', the individual data points are overplotted on the curve;
 (for both) is another option that superimposes the data points on the curve,

e curve broken around the data points. For type='l', only the line seg-
ecting the points are shown. (Note: This character (l) is an “el,” not a one.)
ly the data points, supply the argument type='p'. To learn more about the
tion and the full options for the type argument, run the command

dow on the plot function will then pop up for your browsing. Try it now.
be plotted if the option type='h' is used instead of type='o'? All
 be saved (File > Save as > …) in any of several graphics formats: jpeg, pdf,

raphs may then be imported into most word-processing programs to create
 reports.

t 1.2 on page 2.
h(width=3,height=3,pointsize=8)
arain,x=zlag(larain),ylab='Inches',
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'Previous Year Inches')

function is a multipurpose function. It can do many different kinds of plots,
on the set of arguments passed to it and their attributes. Here, it draws the
ram of larain against its lag 1 values through the arguments y=larain
rain on the y-axis) and x=zlag(larain) (that is, the lag 1 of larain
axis). Note that zlag is a function in the TSA package. Run the command
earn what you can do with it.

t 1.3 on page 3.
or)
or,ylab='Color Property',xlab='Batch',type='o')

ve supplied four arguments to the plot function to draw the time sequence
time series color. The first argument is simply color, but the other sup-
ents are of the form name of the argument = argument value so the
d argument is an unnamed argument, while the other arguments are named

 You may wonder how an unnamed argument is interpreted by R. To under-
use the ?plot command to check that the argument list of the plot func-
, and … . You may guess that the x argument represents the x-variable, and
ent for the y-variable in a plot. The ellipsis (…) argument stands for all other

rguments, which must, however, be specified with the name of the argument.
sult the pages of the plot function to figure out which other arguments

nd y may be passed to plot.) Any unnamed argument is interpreted to be
r the argument whose order matches that of the unnamed argument supplied
ion. For example, color appears as the first argument supplied to the plot
 R interprets it as the value for the x argument. Now there is no value sup-
 y argument. In this case, plot will examine the nature of the x-variable to

hat actions to be taken. Since color is a time series, plot draws a time
lot of color. To reinforce understanding, now try the following command
lor appears twice in the argument list, as the first and second arguments. 

or, color, ylab='Color Property', 
'Batch',type='o')

t will be drawn by R? Now, color is interpreted as the x-variable and also
le; hence a 45 degree line is drawn. However, the line seems to be of nonuni-
ess. (Can you see this?) Why? It is because seeing that the variables are time
t draws the line by connecting data points in the order they are recorded,
er of the data points marked in the plot. This feature can be useful in some
t in this case this feature is distracting. A remedy is to strip the time series
m the x-variables before plotting. (Plot takes the clue of how to do the plot

tribute of the x-variable.) To temporarily turn color into a raw data vector,
mand
r(color)

e command

vector(color), color, ylab='Color Property', 
'Batch',type='o')
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t 1.4 on page 4.
olor,x=zlag(color),ylab='Color Property', 
'Previous Batch Color Property')

function outputs an ordinary vector; that is, zlag(color) is the lag 1 of
t with its time series attribute stripped. 

t 1.9 on page 7.
filters,type='l',ylab='Sales')

igh-level graphics function and, as such, it will replace what is currently in
s window or create a new graphics window if none exists. Recall that the
ype='l' instructs plot to just draw the line segments connecting the

ime series points. 

'J','A','S','O','N','D','J','F','M','A','M','J')

ctor named Month that contains 12 elements that represent the 12 months of
inning with July. 

ilfilters,pch=Month)

 a low-level graphics function that draws on top of an existing graph. Since
rs is a time series, points plots oilfilters against time order, but the
ch=Month instructs the points function to plot the data points using the
values of the Month vector as plotting symbols. So, the first point plotted is
 J, the second as an A, and so forth. When the values of Month are used up,
ycled; think of Month being replicated as Month, Month, Month,…, to
y deficiency. So, the 13th data point is plotted as a J and the 14th as an A.
 is used for the 30th data point?
tively, the exhibit can be reproduced by the following commands

filters,type='l',ylab='Sales')
=oilfilters,x=time(oilfilters), 
s.vector(season(oilfilters)))

function outputs the epochs when the time series values were collected. The
nction returns the month of the data in oilfilters; season is a smart

s it returns the quarter of the data for quarterly data and so forth. The pch
xpects a vector as its value, but the output of the season function has been
 be a factor object; hence the application of the as.vector function to
ilfilters) strips its factor attribute. (See more about factor objects
.)
 way to appreciate the natural variation in a stochastic process is draw real-
m the process and plot them in a time sequence plot. For example, the inde-
d identically normally distributed process is often used as a data generating
 for completely random data; that is, data with no temporal structure. In

s, such data constitute a random sample from a normal distribution that are

entially over time. Simulating data from such a process and viewing their
ce plots is a valuable exercise that can train our eyes to differentiate whether
s is random or dependent over time, c.f. Exercise 1.3. The R command for
and storing in a variable named y a random sample of size, say n = 48, from
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ormal distribution is 
48)

ta can then be plotted using the command 

type='p', ylab='IID Normal Data')

pe='o' option in the above command. Which plotting option do you find
ee the randomness in the data? Notice that executing the command
48) again will yield a different time series realization of the random pro-
et.seed command discussed below addresses the issue of how to make
 in R “reproducible.”
an be simulated from other distributions. For example, the command
df=5) simulates 48 independent observations from a t-distribution with 5

freedom. Similarly, rchisq(n=48,df=2) simulates a realization of size
 chi-square distribution with 2 degrees of freedom.

 2 R Commands

ome R code to simulate your own random walk with, say, 60 independent
rmal errors.

t 2.1 on page 14.

s the value of 60 to the object named n.

(12345)

izes the random number generator so that the simulation is reproducible if

om.walk=ts(cumsum(rnorm(n)),freq=1,start=1)

sion rnorm(n) generates n independent values from the standard normal
. The function cumsum then computes the vector of cumulative sums of the
istributed sample, resulting in a random walk realization. The random walk
is then given the attribute of a time series and saved into the object named
om.walk. 

.random.walk,type='o',ylab='Another Random Walk')

ulated random walk.

 3 R Commands

ve to discuss some of the R commands appearing in Chapter 3. 

t 3.1 on page 31.

lk)

and loads the time series rwalk, which is a random walk realization. 

m(rwalk~time(rwalk))
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n lm fits a linear model (a regression model) with its first argument being a
 formula is an expression including a tilde sign (~), the left-hand side of
e response variable and the right-hand side are the covariates or explanatory
eparated by plus signs if there are two or more covariates). By default, the
rm is included in the model. The intercept can be removed by including the
 on the right-hand side of the tilde sign. Recall that time(rwalk) yields a
of the time epochs at which the random walk was sampled. So the command
~time(rwalk)) fits a time trend regression model to the rwalk series.
fit is saved as the object named model1.

model1)

n summary prints out a summary of the fitted model passed to it. Hence the
bove prints out the fitted time trend regression model for rwalk.

t 3.2 on page 31.
lk,type='o',ylab='y')
odel1)

n abline is a low-level graphics function. If a fitted simple regression
ssed to it, it adds the fitted straight line to an existing graph. Any straight line
 y = β0 + β1x can be superimposed on the graph by running the command

=beta0,b=beta1)

e, the following command adds a 45 degree line on the current graph. 

=0,b=1)

 the lm function can fit multiple regression models, with the covariates or
 variables specified one by one, on the right side of the tilde sign (~) in the
e covariates must be separated with a plus sign (+). Suppose we want to fit a
me trend model to the rwalk series. We need to create a new covariate that
e square of the time indices. The quadratic variable may be created before
e lm function. Or it may be created on the fly when invoking the lm func-
tter approach is illustrated here.

lm(rwalk~time(rwalk)+I(time(rwalk)^2))

 the expression time(rwalk)^2 is enclosed within the I function which
to create a new variable by executing the command passed into the I func-
tted quadratic trend model can be inspected with the summary function. 

y(model1a)

la = rwalk ~ time(rwalk) + I(time(rwalk)^2))
s:
n        1Q    Median        3Q       Max
2 -0.768018  0.008256  0.853365  2.344685
ents:

           Estimate Std. Error t value Pr(>|t|)    
pt)      -1.4272911  0.4534893  -3.147  0.00262 ** 
lk)       0.1746746  0.0343028   5.092 4.16e-06 *** 
walk)^2) -0.0006654  0.0005451  -1.221  0.22721    
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odes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 standard error: 1.132 on 57 degrees of freedom
 R-Squared: 0.8167, Adjusted R-squared: 0.8102
tic:   127 on 2 and 57 DF,  p-value: < 2.2e-16

mmary function repeats the function call to the lm function. It then prints
-number numerical summary of the residuals, followed by a table of the

estimates with their standard errors, t-values and p-values. All significant
re marked with asterisks (*); more asterisks means higher significance, that

p-value, as explained in the line labeled as Signif. codes. Finally, it outputs
 standard error, that is, the noise standard deviation estimate, and the multi-
ed of the fitted model. Clearly, the quadratic term is not significant so that it
d, as is also obvious from the time plot of the series. 
der may wonder why the I function is needed. This is because without the I
 interprets the term time(rwalk)+time(rwalk)^2 using the formula
(run ?formula to learn more about the formula convention), which results
e linear trend model! Refit the quadratic trend model but now omit the I
the R command, and compare the model fit with those of the linear and qua-
 models. 

t 3.3 on page 32.
pdub)

he tempdub series. You can learn more about the dataset tempdub by run-
mmand ?tempdub.
eason(tempdub)

sion season(tempdub) outputs the monthly index of tempdub as a
nd saves it into the object month.. The first period sign (.) is part of the
th.) and is included to make the printout from later commands more clear.

 digress to explain what a factor is. A factor is a kind of data structure
g qualitative (nominal) data that do not have a natural ordering like numbers
r, for purposes of summary and graphics, the user may supply the levels
 indicate an ordering among the factor values. For example, the following

creates a factor containing the qualitative variable sex, with the default
ing the dictionary order. 

ctor(c('M','F','M','M','F'))

M M F
F M

nge the ordering as follows: 

ctor(c('M','F','M','M','F'),levels=c('M','F')) 

M M F

M F

ap of F and M in the levels. The function table counts the frequencies of
es.
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sex)

t lists the frequencies of the values according to the order supplied in the
ent. Now, we return to the R scripts in Chapter 3.

m(tempdub~month.-1)

 month is a factor containing the month of the data. When a formula con-
r covariate, the function lm replaces the factor variable by a set of indicator
rresponding to each distinct level (value) of the factor. Here, month. has

 levels: Jan, Feb,…, and so forth. So, in place of month., lm creates 12
dicator variables and replaces month. by the 12 indicator variables.

ese 12 indicator variables are linearly dependent (they add up to a vector of
e intercept term has to be removed to avoid multicollinearity. The expression
e formula takes care of this. The fitted model corresponds to fitting a mean
or each month. If the expression ‘‘-1’’ is omitted, lm deals with the multi-
 by omitting the first indicator variable; that is, the indicator variable for Jan-
 deleted. In such a fitted model, the intercept represents the overall January

he coefficients for other months are the deviations of their means from the
an.

model2)

 of the fitted regression model is printed out with this command. Many vari-
d from the fitted model can also be easily obtained. For example, the fitted

be printed as

odel2) 

iduals are obtained by using

s(model2)

t 3.4 on page 33.
m(tempdub~month.) # intercept is automatically 
ded so one month (January) is dropped
model3)

t 3.5 on page 35.
monic(tempdub,1)

ir of harmonic functions (sine and cosine pairs) can be constructed by the
 function, which takes a time series as its first argument and the number of

airs as its second argument. Run ?harmonic to learn more about this func-
tput of the harmonic function is a matrix that is saved into an object named

in, the first period is part of the name and included to make the later print-
.

m(tempdub~har.)

model4)

efly discuss the use of matrices in R. A matrix is a rectangular array of num-
 be created by the matrix function. Here is an example:
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ix(1:6,ncol=2)

] [,2]
1    4
2    5
3    6

x function expects a vector as its first argument, and it uses the values in the
ctor to fill up a matrix column by column. The column dimension of a matrix
 by the ncol argument and the row dimension by the nrow argument. The
1:6 stands for the vector containing the integers from 1 to 6. So the matrix
ates a matrix consisting of two columns using the six numbers 1, 2, 3, 4, 5,

e the row dimension is missing, R assumes that the matrix has six elements
the missing row dimension is set to 2. The dimensions of a matrix can be
ing the dim function. 

ys the row and column dimensions of M as a vector. The function apply
 a matrix column by column, with each column operated by a supplied func-
ample, the column means of M can be computed as follows:

M,2,mean)

gument of the apply function is the matrix on which it processes, and the
ment is MARGIN, which should be set to 1 for row processing or 2 for col-
sing. The third argument is FUN, which takes the user-specified function.
le above instructs R to process M column by column and apply the mean
each column. How would you modify the preceding R command to compute
s of M?

t 3.6 on page 35.
fitted(model4),freq=12,start=c(1964,1)), 
'Temperature',type='l', 
range(c(fitted(model4),tempdub)))
empdub)

option ensures that the y-axis has a range that includes both the raw data and
lues.

t 3.8 on page 43.
student(model3),x=as.vector(time(tempdub)), 
'Time', ylab='Standardized Residuals',type='o')

sion rstudent(model3) returns the (externally) Studentized residuals
ted model. To compute the (internally) standardized residuals, use the com-
ndard(model3).
t 3.11 on page 45.
udent(model3),xlab='Standardized Residuals')

n hist draws a histogram of the data passed to it as the first argument. Note
fault heading of the histogram says that the plot is a histogram of



438

rstudent
it is often d
ting the opt

# Exhibi
qqnorm(r

The expres
The qqnor
ence straig
command q

# Exhibi
acf(rstu

The acf fu
plied to the
on the sam
max.lag=

The Sh
tively by th

shapiro.
runs(rst

These comm

Chapter

# Exhibi
data(ma1
plot(ma1

The softw
ylab=exp
math font. 
pages for l
more about

 An M
be simulate

set.seed

This comm
can be repr
ize “random
can be repla

y=arima.

The arima
into the fun
lated mode
Appendix: An Introduction to R

(model3). While the default main label correctly depicts what is plotted,
esirable to have a less technical but more descriptive label; for example, set-
ion main='Histogram of the Standardized Residuals'.

t 3.12 on page 45.
student(model3))

sion rstudent(model3) extracts the standardized residuals of model3.
m function then plots the Q-Q normal scores plot of the residuals. A refer-

ht line can be superimposed on the Q-Q normal score plot by running the
qline(rstudent(model3)).

t 3.13 on page 47.
dent(model3))

nction computes the sample autocorrelation function of the time series sup-
 function. The maximum number of lags is determined automatically based
ple size. It can, however, be changed to, say, 30 by setting the option
30 when calling the function.
apiro-Wilk test and the runs test on the residuals can be carried out respec-
e following commands. 

test(rstudent(model3)) 
udent(model3))

ands compute the test statistics as well as their corresponding p-values. 

 4 R Commands

t 4.2 on page 59.
.2.s)
.2.s,ylab=expression(Y[t]),type='o')

are R can display mathematical symbols in a graph. The option
ression(Y[t]) specifies that the y label is Y with t as its subscript, all in
Typesetting a formula does require some additional work. Read the help
egend (?legend) and run the command demo(mathplot) to learn

 this topic.
A(1) series with MA coefficient equal to θ1 = −0.9 and of length n = 100 can
d by the following commands.

(12345) 

and initializes the seed of the random number generator so that a simulation
oduced if needed. Without this command, the random generator will initial-
ly,” and there is no way to reproduce the simulation. The argument 12345
ced by other numbers to obtain different random numbers.
sim(model=list(ma=-c(-0.9)),n=100)

.sim function simulates a time series from a given ARIMA model passed
ction as a list that contains the AR and MA parameters as vectors. The simu-
l above is an MA(1) model, so there is no AR part in the model list. The soft-
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 a plus convention in parameterizing the MA part, so we have to add a minus
 the vector of MA values to agree with our parameterization. The sample size
ed by the value of the argument n. So, the command above instructs R to
ealization of size 100 from an MA(1) model with θ1 = −0.9. 
w digress to explain some pertinent facts about list. A list is the most flex-
ructure in R. You may think of a list as a cabinet with many drawers (ele-
omponents), each of which contains data with possibly different data
For example, an element of a list can be another list! The elements of a list
 according to the order they are entered. Also, elements can be named to
eir easy retrieval. A list can be created by the list function with elements
 its arguments. The elements may be passed into the list function in the
me = value, delimited by commas. Below is an example of a list contain-
lements named a, b, and c, where a is a three-dimensional vector, b is a
d c is a time series.

list(a=c(1,2,3),b=4,c=ts(c(5,6,7,8), 
=c(2006,2),frequency=4))

3

1 Qtr2 Qtr3 Qtr4
5 6 7

8 

 an element of a list, run the command listname$elementname, for

c
1 Qtr2 Qtr3 Qtr4

5 6 7
8 

gular structure can be stored as a list. The output of a function is often a list.
ering the name of a list may result in dazzling output if the printed list is
lternative is to first explore the structure of a list by the function str (str
tructure). An example follows.

st1)
3
m [1:3] 1 2 3
m 4
me-Series [1:4] from 2006 to 2007: 5 6 7 8

 that list1 has three elements and describes these elements briefly.
 5 R Commands

t 5.4 on page 91.
f(log(oil.price)),ylab='Change in Log(Price)', 
'l')
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n diff outputs the first difference of the supplied time series. Higher-order
 can be computed by supplying the differences argument. For example,
difference of log(oil.price) can be computed by the command

(oil.price), differences=2)

nvention of R is that the name of an argument in a function can be abbrevi-
es not result in ambiguity. For example, the previous command can be short-

(oil.price),diff=2)

he second argument of the diff function is the lag argument. By default,
 the diff function computes regular differences—first or higher differ-

r, when we deal with seasonal time series data, it will sometimes be desirable
 seasonal differences. For example, we may want to subtract this month’s
m the number of the same month one year ago; that is, the differences are
ith a lag of 12 months. This can be done by specifying lag=12. As an illus-
puting the seasonal differences of period 12 can be done by issuing the com-
f(tempdub,lag=12). What will be computed by the command
(oil.price),2)? One of the authors (KSC) committed a serious error,
nce, when he tried to compute the second regular differences of some time
nning a similar command with unnamed arguments. Instead of the second

erences, the first seasonal differences of lag 2 were actually computed by the
ith unnamed arguments! Imagine his frustrations of many anxious hours, all

 data analysis from the flawed computations seriously conflicted with expec-
d on theory! The moral is that passing unnamed arguments to a function is

s you know the positions of the relevant arguments very well. It is well to
hat unnamed arguments, if present, should appear together in the beginning
argument list, and there should be no unnamed argument after a named one.
ed arguments (some named and some unnamed in a haphazard order) may
oneous interpretation by R. The order of the arguments in a function can be
hecked by running the command args(function.name)  or
n.name, where function.name should be replaced by the name of the
u are checking. 

t 5.11 on page 102.
MASS)

the library MASS. Run the command library(help=MASS) to see the
his library.

m(electricity~1))

n boxcox computes the maximum likelihood estimate of the power trans-
n the response variable to make a linear regression model appropriate for the
rst argument is a fitted model by the lm function. By default, the boxcox

oduces a plot of the log-likelihood function of the power parameter. The
 power parameter is the value that maximizes the plotted likelihood curve.
odel is that some power transform of electricity is given by the model of a
an plus normally distributed white noise. But we already know that elec-
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is serially correlated, so this method is not entirely correct, as the autocorre-
 series is not accounted for.
e series analysis, a more appropriate model is that some power transform of

ries variable follows an AR model. The function BoxCox.ar implements
ch. It has two drawbacks in that it is much more computer-intensive and that
iates cannot be included in the model in the current version of the function.
gument of BoxCox.ar is the name of the time series variable. The AR
be supplied by the user through the order argument. If the AR order is
e function estimates the AR order by minimizing the AIC for the log-trans-
a. Both boxcox and BoxCox.ar require the response variable to be posi-

r(electricity)

the log-likelihood function of the power parameter for the model that
r autocorrelation in the data. 

 6 R Commands

t 6.9 on page 120.
s,ci.type='ma',xaxp=c(0,20,10))

nt ci.type='ma' instructs R to plot the sample ACF with the confidence
e kth lag ACF computed based on the assumption of an MA(k − 1) model.
n (6.1.11) on page 112 for details.

t 6.11 on page 121.
.s,xaxp=c(0,20,10))

ates and plots the sample PACF function. Run the command ?par to learn
 the xaxp argument.

t 6.17 on page 124.
a11.s)

utes the sample EACF function (extended autocorrelation function) of the
11.s. The maximum AR and MA orders can be set via the ar.max and
guments. Their default values are seven and thirteen, respectively. For exam-
arma11.s,ar.max=10,ma.max=10) computes the EACF with maxi-
nd MA orders of 10. The EACF function prints a table of symbols with X
r a significant value and O a nonsignificant value. 

uroot)

he uroot library and the following commands illustrate the computation of
Fuller unit-root test.

rwalk))
and finds the AR order for the differenced series, which is order 8, by the
IC criterion.
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(rwalk,selectlags=list(mode=c(1,2,3,4,5,6,7,8), 
8),itsd=c(1,0,0))

tes the ADF test for the data rwalk. The selectlags argument takes a
lue. The mode argument specifies which lags must be included, and if it is

n the Pmax argument sets the maximum lag and the ADF.test function
 which lags to include in the test using several methods by setting the mode
aic, or bic. The option signf is the default value for mode, which esti-
bset AR model by retaining only significant lags. The argument itsd
ector; the first two elements are binary, indicating whether to include a con-
if the first element is 1) or a linear time trend (if the second element is 1);
d element zero if there are no more covariates to include in the model. See
ges for the ADF.test function to learn more about it. Hence, the R com-
cts ADF.test to carry out the test with the null hypothesis that the model

oot and an intercept term. The alternative is that the model is stationary, so a
ue implies stationarity! 

(rwalk,selectlags=list(Pmax=0),itsd=c(1,0,0))

on, the preceding command carries out the ADF test with the null hypothe-
at the model has a unit root, an intercept but no other lags, whereas the alter-
cifies that the model is a stationary AR(1) model with an intercept. If
,0,0), then the alternative model is a centered stationary AR(1) model,

h zero mean. Such a hypothesis is not relevant unless the data are already
cted.

t 6.22 on page 132.
(92397)
ma.sim(model=list(ar=c(rep(0,11),.8), 
rep(0,11),0.7)),n=120)

tes a subset ARMA model. Here rep(0,11) stands for a sequence of 11

subsets(y=test,nar=14,nma=14,y.name='test', 
thod='ols')

ubsets function computes various subset ARMA models, with the maxi-
d MA orders specified by the nar and nma arguments, both set as 14 in the

ove. The associated AR models are estimated by the default method of ols
ast squares).

)

 function is a smart function. Seeing that res is the output from the
ets function, it draws a table indicating several of the best subset ARMA
 7 R Commands

unction that computes the method-of-moments estimator of the MA(1) coef-
n MA(1) model. It is a simple example of an R function. Simply copy and
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 the R console. Press the enter key to compile the code, and the function
.ma1.mom will be created and then be available for use in your workspace.
n only exists in the particular workspace where it was created.

.ma1.mom=function(x){r=acf(x,plot=F)$acf[1]; 
bs(r)<0.5) return((-1+sqrt(1-4*r^2))/(2*r))
return(NA)}

rs uninterested in the specifics of R programming may skip down to the
 Exhibit 7.1. The syntax of an R function takes the form

.name = function(argument list){function body}

ction body is a set of R statements (commands). Normally, complete R
 are separated by line breaks. Alternatively, they may be separated by the
symbol (;). If an R command is incomplete, R will assume that it is to be
n the next line and so forth until R reads a complete command. So the func-

has a single argument called x and contains two commands. The first one is

plot=F)$acf[1] 

ucts R to compute the acf of x without plotting the values, extract the first
the computed sample acf function (that is, the lag 1 autocorrelation) and then
n object called r. The object r is a local object; it only exists within the
.ma1.mom function environment. The second command is

r)<0.5)
n((-1+sqrt(1-4*r^2))/(2*r)) else return(NA)

e break after the if clause and the second half of the command. Since the
lone is incomplete, R assumes that it is to be continued on the next line. With
line, R finds a complete R command and so concludes the two lines of com-
ther as a complete command. In other words, R sees the next command as
o the following one line:

)<0.5) return((-1+sqrt(1-4*r^2))/(2*r)) else return(NA)

n abs computes the absolute value of the argument passed to it, whereas
e function that computes the square root of its argument. Now, we are ready
 the second command: if the absolute value of r, the lag 1 autocorrelation of
an 0.5 in magnitude, the function returns the number

(−1 + sqrt(1 − 4*r^2))/(2*r)

e method-of-moments estimator of the MA(1) coefficient ; otherwise the
turns NA (see Equation (7.1.4) on page 150). The symbol NA is the code
r a missing value in R. (NA stands for not available.) In this example, R is
 instructed what value to return to the user. However, the default procedure is
ion returns the value created by the last command in the function body. R
powerful computer language for doing statistics. Please consult the docu-

θ1
e R Website to learn more about R programming.

t 7.1 on page 152.
.2.s)

 simulated MA(1) series.
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.ma1.mom(ma1.2.s)

utes the MA(1) coefficient estimate by the method of moments using the
 estime.ma1.mom function above!

.s)

 simulated AR(1) series from the TSA package.

,order.max=1,AIC=F,method='yw')

tes the AR coefficient estimates for the ar1.s series. The ar function esti-
R model for the centered data (that is, mean-corrected data), so the intercept
o and not estimated or printed out in the output. The ar function requires the
cify the maximum AR order through the order.max argument. The AR
be estimated by choosing the order, between 0 and the maximum order,
el has the smallest AIC. This option can be specified by setting the AIC
 take the true value, that is, AIC=T. Or we can switch off order selection by
AIC=F. In the latter case, the AR order is set to the maximum AR order. The
 can estimate the AR model using a number of methods, including solving

alker equations, ordinary least squares, and maximum likelihood estimation
ormally distributed white noise error terms). These correspond to setting the
hod='yw', method='ols', or method='mle', respectively. In par-
preceding R command fits an AR(1) model for the ar1.s series by solving
alker equation. 
gress briefly to discuss the concept of a logical variable, which can take the

 or FALSE. These values can be abbreviated as T and F. In binary represen-
also represented by 1 and F by 0. R adopts the useful convention that a logi-
 appearing in an arithmetic expression will be automatically converted to 1 if
 0 otherwise. 

t 7.6, page 165.
a11.s)
ma11.s, order=c(1,0,1),method='CSS')

 function estimates an ARIMA(p,d,q) model for the time series passed to it
t argument. The ARIMA order is specified by the order argument,
p,d,q), so the command above fits an ARMA(1,1) model to the data.

 can be carried out by the conditional sum-of-squares method (method=
 maximum likelihood (method='ML'). The default estimation method is

likelihood, with initial values determined by the CSS method. The arima
nts out a summary of the fitted model. The fitted model may also be saved as
hat can be further manipulated, for example, for model diagnostics. By
 = 0, a stationary ARMA model will be fitted. Also, the fitted model is in the
rm; that is, an ARMA model fitted to the series minus its sample mean. The
rm reported in the output of the arima function is a misnomer, as it is in fact
owever, the mean so estimated generally differs slightly from the sample
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t 7.10 on page 168.
a(sqrt(hare),order=c(3,0,0))

the fitted AR(3) model in the object named res. The output of the arima
 a list. Run the command str(res) to find out what is saved in res.
d that most of the things in res are not directly useful. Instead, the output of
 function has to be processed by other functions for more informed summa-
xample, (raw) residuals from the fitted model can be computed by the
s function via the command residuals(res). Fitted values can be

y running fitted(res). Other useful functions for processing a fitted
del from the arima function will be discussed below.
pirical approach of using the bootstrap to do inference is illustrated below.

(12345)

izes the seed of the random number generator so that the simulation study
ated. 

nd.norm=arima.boot(res,cond.boot=T,is.normal=T, 
0,init=sqrt(hare))

.boot function carries out a bootstrap analysis based on a fitted ARIMA
irst argument is a fitted ARIMA model, that is, the output from the arima
ur different bootstrap methods are available: The bootstrap series can be ini-

a supplied value (cond.boot=T) or not (cond.boot=F), and a nonpara-
tstrap (is.normal=F) or a parametric bootstrap assuming normal
 (is.normal=T) can be used. For a conditional bootstrap, the initial val-
supplied as a vector (the arima.boot function will use the initial values
pplied vector). The bootstrap sample size, say 1000, is specified by the
tion. The function arima.boot outputs a matrix with each row being the

stimate of the ARIMA coefficients obtained by maximum likelihood estima-
e bootstrap data. So, if B=1000 and the model is an AR(3), then the output
y 4 matrix where each row consists of the bootstrap AR(1), AR(2), and
ficients plus the mean estimate in that order ( ). 

pply(coefm.cond.norm,2,function(x)
tile(x,c(.025,.975),na.rm=T)}),3)

mpound R statement. It is equivalent to the two commands

ly(coefm.cond.norm,2,function(x)
tile (x,c(.025,.975),na.rm=T)})
emp,3)

the temporary variable temp is not created in the original compound state-
ll that the apply function is a general-purpose function for processing a
e the apply function processes the matrix coefm.cond.norm column
 with each column supplied to the no-name user-supplied function 

φ̂1 φ̂2 φ̂3 μ̂, , ,
(x){quantile(x,c(.025,.975),na.rm=T)}

me function has one input, called x, that is processed by the quantile
he quantile function takes a vector and computes the sample quantiles
rresponding probability specified in the second argument. The third argu-
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 quantile function is specified as na.rm=T (na stands for not available and
remove), which means that any missing values in the input are discarded
puting the quantiles. This specification is pivotal because by default any
a dataset with some missing values is defined to be a missing value (NA) in
ootstrap series may have convergence problems upon fitting an ARIMA
ence the output of the bootstrap function may contain some missing values.)

o the interpretation of the command on the right-hand side of temp, it
to compute the 2.5th and 97.5th percentiles of each bootstrap coefficient esti-
able precise calculations, R maintains many significant digits in the numbers
 object. The printed version, however, usually requires fewer significant dig-
y. This can be done by the signif function. The signif function outputs
assed into it as first argument, but only to the number of significant digits
 the second argument, which is three in the example. Altogether, the com-
mmand computes the 95% bootstrap confidence intervals for each AR coef-

 8 R Commands

t 8.2 on page 177.
e)
arima(sqrt(hare),order=c(3,0,0))

the fitted AR(3) model for the square-root-transformed hare data. The AR(2)
estimate ( ) turns out not to be significant. Note that the AR(2) coefficient
nd element in the coefficient vector, as shown in the printout of the fitted
onstrained ARIMA model with some elements fixed at certain values can be
ing the fixed argument in the arima function. The fixed argument
 vector of the same length as the coefficient vector and its elements set to NA
e free elements but set to zero (or another fixed value) for all of the con-

efficients. For example, here the AR(2) coefficient is constrained to be zero
nd hence fixed=c(NA,0,NA,NA), that is, the AR(1), AR(3), and the

’ term are free parameters, whereas the AR(2) is fixed at 0. Remember that
ept’’ term is last. Below is the command for fitting the constrained AR(3)
he hare data. 

arima(sqrt(hare),order=c(3,0,0), 
=c(NA,0,NA,NA)) 

he intercept term is actually the mean in the centered form of the ARMA
 is, if y = sqrt(hare) − intercept, then the model is

φ̂2

y 0.919y 0.5313y– e+=
” estimated intercept equals 5.6889*(1 − 0.919 + 0.5313) = 3.483, as stated

t t 1– t 3– t
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andard(m2.hare), 
'Standardized Residuals',type='b')

n rstandard computes the standardized residuals; that is, the raw residu-
zed by the estimated noise standard deviation. 

=0)

ontal line to the plot with zero y-intercept. Use the help in R to find out how
tical line with x-intercept = 10.

t 8.12 on page 185 (prefaced by some commands in 
it 8.1 on page 176)
or)
=arima(color,order=c(1,0,0))
1.color,gof=15,omit.initial=F) 

g function in the TSA package has been modified from that in the stats
R. It performs model diagnostics on a fitted model. The argument gof spec-
ximum number of lags in the acf function used in the model diagnostics.
argument omit.initial=T omits the few initial residuals from the anal-
ption is especially useful for checking seasonal models where the initial

re close to zero by construction and including them may skew the model
. In the example, the omit.initial argument is set to be F so that the
 are done with all residuals. Recall that the Ljung-Box (portmanteau) test sta-
 the weighted sum of the squared residual autocorrelations from lags 1 to K,
uation (8.1.12) on page 184. Assuming that the ARIMA orders are correctly
e validity of the approximate chi-square distribution for the Ljung-Box test

uires that K be larger than the lag beyond which the original time series has
utocorrelation. The modified tsdiag function in the TSA package checks
ment; consequently the Ljung-Box test is only computed for sufficiently
he required K is larger than the specified maximum lag, tsdiag will return
ssage. This problem can be solved by increasing the maximum lag asked for.
ag to learn more about the modified tsdiag function. 

 9 R Commands

t 9.2 on page 205.
pdub) 
ub1=ts(c(tempdub,rep(NA,24)),start=start(tempdub),
frequency(tempdub)) 

ds two years of missing values to the tempdub data, as we want to forecast
ture for two years into the future. The function start extracts the starting
e series. The function frequency extracts the frequency of the time series

, here being 12. Hence, tempdub1 contains the Dubuque temperature series

 by two years of missing data, with the same starting date and frequency of
er unit time interval. 

monic(tempdub,1)

s the first pair of harmonic functions. 
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ub=arima(tempdub,order=c(0,0,0),xreg=har.)

e harmonic regression model using the arima function. The covariates are
e function through the xreg argument. In the example, har. is the covari-
arima function fits a linear regression model of the response variable on the
ith the errors assumed to follow an ARIMA model. Because the specified

ders p = d = q = 0, the presumed error structure is white noise; that is, the
ction fits an ordinary linear regression model of tempdub on the first pair
c functions. Note that the result is the same as that from the fit using the lm
hich can be verified by the following commands:

monic(tempdub,1); model4=lm(tempdub~har.)
model4)

reg argument expects the covariate input either as a matrix or a
me. A data.frame can be thought of as a matrix made up by binding

veral covariates column by column. It can be created by the data.frame
th multiple arguments, each of which takes the form covariate.name =
ent for computing the covariate. If the covariate.name is omitted, the
ent becomes the covariate name, which may be undesirable for a complex
tement. If the R statement is a matrix, its columns are taken as covariates

lumn names taken as the covariate names. Consider the example of augment-
onic regression model above by a linear time trend. The augmented model

d by the command

mpdub,order=c(0,0,0), 
data.frame(har.,trend=time(tempdub)))

ub

the fitted model.
 illustrate prediction with an example.
harmonic(ts(rep(1,24), start=c(1976,1),freq=12),1)

 the harmonic functions over two years starting from January 1976. Remem-
 tempdub series ends in December 1975. 

tempdub,n.ahead=24,n1=c(1972,1),newxreg=newhar., 
red’, type=’b’,ylab='Temperature',xlab='Year')

tes and plots the forecasts based on the fitted model passed as the first argu-
e, we specify a forecast for 24 steps ahead through the argument
24. The covariate values over the period of forecast have to be supplied by
eg argument. The newxreg argument should match the xreg argument in
 covariates except that their values are from different periods. The plot may
ith a starting date different from the start date of the time series data by using
ment. Here, n1=c(1972,1) specifies January 1972 as the start date for
r nonseasonal data (that is, frequency = 1), n1 should be a scalar. The col

rguments refer to the color and style of the plotted lines.

t 9.3 on page 206.
or)
=arima(color,order=c(1,0,0))
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color,n.ahead=12,col='red',type='b',xlab='Year', 
'Temperature')
=coef(m1.color) 
s(coef(m1.color))=='intercept'])

mmand adds the horizontal line at the estimated mean (intercept). This is a
tement. The expression coef(m1.color) extracts the coefficient vector.
nents of the coefficient vector are named. The names of a vector can be
 the names function, so names(coef(m1.color)) returns the vector of
e components of the coefficient vector. The == operator compares the two

its two sides element by element, resulting in a vector consisting of TRUEs
s depending on whether the elements are equal or not. (If the vectors under
 are of unequal length, R recycles the shorter one repeatedly to match the
) Hence, the command

oef(m1.color))== 'intercept']

ctor with the TRUE value in the position in which the “intercept” component
th all other elements FALSE. Finally, the intercept coefficient estimate is
 the “bracket” operation:

color)[names(coef(m1.color))=='intercept']

on within brackets subsets a vector using one of two mechanisms. Let v be a
ubvector of it can be formed by the command v[s], where s is a Boolean
t is, consisting of TRUEs and FALSEs) that is of the same length as v. The
] is then a sub-vector of v consisting of those elements of v for which the
ing element in s is TRUE; elements in v whose corresponding element in s
re discarded from v[s].
nd way to subset a vector is to construct s so that it contains the position of
ts to be retained and v[s] will return the desired subvector. A variation of
ch is to form a subvector by deletion. Unwanted elements are designated by
 positions multiplied by -1. An illustration follows.

s a vector containing the first five positive integers.

3 4 5

v)

 the components of v are unnamed, so names(v) returns an empty vector
the object NULL. 

v)=c('A','B','C','D','E')
method of assigning names to the components of a vector. 
 E
 5 

nd

v)=='C'
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SE FALSE TRUE FALSE FALSE
 components of names(v) is “C.”
nd

s(v)=='C'] 

y Boolean extraction.
nd

y supplying the positions of the retained elements.
nd

y supplying the positions of the unwanted elements. 

 10 R Commands

ical ACF of a stationary ARMA process can be computed by the ARMAacf
he ar parameter vector, if present, is to be passed into the function via the ar
Similarly, the ma parameter vector is passed into the function via the ma
he maximum lag may be specified by the lag.max argument. Setting the

ment to TRUE computes the theoretical pacf; otherwise the function com-
eoretical acf. Consider as an example the seasonal MA model:

 + 0.5B)(1 + 0.8B12) = (1 + 0.5B + 0.8B12 + 0.4B13) so the ma coefficients
d by the option ma=c(0.5,rep(0,10),0.8,0.4). Its theoretical ACF
 on the left side of Exhibit 10.3, which can be done by the following R com-

RMAacf(ma=c(0.5,rep(0,10),0.8,0.4),
ax=13)[-1],x=1:13,type='h', 
g k',ylab=expression(rho[k]),axes=F,ylim=c(0,0.6)) 
=ARMAacf(ma=c(0.5,rep(0,10),0.8,0.4),
ax=13)[-1],x=1:13,pch=20) 
=0) 
t=1:13, 
s=c(1,NA,3,NA,5,NA,7,NA,9,NA,11,NA,13)) 

Yt 1 0.5B+( ) 1 0.8B
12

+( )et=
,y=.5,labels=expression(list(theta&=&-0.5, 
&=&-0.8))) 

 labeling of the figure requires Greek alphabets and subscripts, the label
n has to be passed via the expression function. Run the help menu
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h to learn more about how to do mathematical annotations in R. 

t 10.10 on page 237
rima(co2,order=c(0,1,1), 
nal=list(order=c(0,1,1),period=12))

nt seasonal supplies the information on the seasonal part of the seasonal
odel. It expects a list with the seasonal order supplied in the component
er and the seasonal period entered via the period component, so the com-
e instructs the arima function to fit a seasonal ARIMA (0,1,1) × (0,1,1)12
e co2 series. 

a summary of the fitted seasonal ARIMA model.

 11 R Commands

t 11.5 on page 255.

ector(diff(diff(window(log(airmiles), 
(2001,8)),12))),lag.max=48)

ssion window(log(airmiles),end=c(2001,8)) subsets the
iles) time series by specifying a new end date of August 2001. The sub-

is first seasonally differenced with lag 12 and then regularly differenced. The
erenced series is then passed to the acf function for computing the sample
 48 lags.

t 11.6 on page 255.
rimax(log(airmiles),order=c(0,1,1),seasonal= 
order=c(0,1,1),period=12), 
sf=data.frame(I911=1*(seq(airmiles)==69), 
1*(seq(airmiles)==69)), 
fer=list(c(0,0),c(1,0)), 
data.frame(Dec96=1*(seq(airmiles)==12), 
=1*(seq(airmiles)==13), 
=1*(seq(airmiles)==84)),method='ML')

x function extends the arima function so that it can handle intervention
d outliers (both AO and IO) in time series. It is assumed that the intervention
mean function of the process, with the deviation from the unperturbed mean
odeled as the sum of the outputs of an ARMA filter of a number of covari-
viation is known as the transfer function. The covariates making up the trans-
 are passed to the arimax function via the xtransf argument in the form
 or a data.frame. For each such covariate, its contribution to the transfer
es the form of a dynamic response given by 

… q
r function is the sum of the dynamic responses, in the form of some ARMA
l covariates in the xtransf argument. The ARMA order of the filter is

a0 a1B aqB+ + +( )

1 b1B– b2B2– … bpBp––( )
---------------------------------------------------------------------covariatet
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the vector c(p,q). If p = q = 0 (that is, c(p,q) = c(0,0)), the contribu-
covariate is of the form . If c(p,q) = c(1,0), the output

 orders for the dynamic components of the transfer function are supplied via
f argument as a list containing the vectors of ARMA orders in the order
iates defined in the xtransf argument. Hence, the options:

data.frame(I911=1*(seq(airmiles)==69), 
1*(seq(airmiles)==69)), 
fer=list(c(0,0),c(1,0))

 arimax function to create two identical covariates called I911, which is
r variable, say Pt, that equals 1 in September 2001 and 0 otherwise, and the
ction is the sum of two ARMA filters of the 9/11 indicator variable of
) and c(1,0) respectively. Hence the transfer function equals

valent to an ARMA(1,1) filter of the form

e specified by the following options

data.frame(I911=1*(seq(airmiles)==69)), 
fer=list(c(1,1))

e outliers (AO) in a time series can be incorporated as indicator variables
he xreg argument. For example, three potential AOs are included in the
e following supplied argument:

a.frame(Dec96=1*(seq(airmiles)==12), 
=1*(seq(airmiles)==13), 
=1*(seq(airmiles)==84))

e first potential outlier occurs in December 1996. The corresponding indica-
le is labeled as Dec96 and is computed by the formula
irmiles)==12), which results in a vector that equals 0 except its twelfth
ich equals 1, and the vector is of the same length as airmiles. Some spe-

s “simple” command follow. The function seq creates a vector consisting of
ositive integers, where n is the length of the vector passed to the seq func-
xpression seq(airmiles)==12 creates a vector of the same length as

a0covariatet

covariatet a0 covariatet b1covariatet 1– b1
2covariatet 2–

…+ + +( )=

ω0Pt

ω1

1 ω2B–( )
------------------------Pt+

ω0 ω1+( ) ω0ω2B–{ }
1 ω2B–( )

-------------------------------------------------------Pt
, and its elements are all FALSE except that the twelfth element is TRUE.
eq(airmiles)==12) is an arithmetic expression for which R automati-
rts any imbedded Boolean vector (seq(airmiles)==12) to a binary
all that the TRUE values are converted to 1s and the FALSE values to 0s.
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 by 1 does not alter the converted binary vector. Indeed, multiplication is
o trigger the conversion from the Boolean values to binary values. 
s example, the unperturbed process is assumed to be an IMA(1,1) process, as
from the supplied argument order=c(0,1,1). In general, a seasonal
perturbed process is specified in the same way that it is specified for the
ction. 

out the fitted intervention model, as displayed below. 

max(x=log(airmiles),order=c(0,1,1),seasonal= 
order=c(0,1,1),period=12),xreg=data.frame(Dec96= 
q(airmiles)==12),Jan97=1*(seq(airmiles)==13), 
=1*(seq(airmiles)==84)),method='ML',     
sf=data.frame(I911=1*(seq(airmiles)==69),I911=1* 
airmiles)==69)),transfer=list(c(0,0),c(1,0)))

ts:
a1 sma1 Dec96 Jan97 Dec02 I911-MA0 I911.1-AR1 I911.1-MA0
25 -0.6499 0.0989 -0.0690 0.0810 -0.0949 0.8139 -0.2715
26 0.1189 0.0228 0.0218 0.0202 0.0462 0.0978 0.0439
stimated as 0.000672: log likelihood=219.99, aic=-423.98

e parameter in the transfer-function component defined by the first instance
ator variable I911 is labeled as I911-MA0; that is, the MA(0) coefficient.
r-function components defined by the second instance of the indicator vari-
are labeled as I911.1-AR1 and I911.1-MA0. These are the AR(1) and
fficient estimates.
 also try the equivalent parameterization of specifying an ARMA(1,1) filter
1 indicator variable.

a=arimax(log(airmiles),order=c(0,1,1), 
nal=list(order=c(0,1,1),period=12), 
sf=data.frame(I911=1*(seq(airmiles)==69)), 
fer=list(c(1,1)), 
data.frame(Dec96=1*(seq(airmiles)==12), 
=1*(seq(airmiles)==13), 
=1*(seq(airmiles)==84)),method='ML')
a
max(x=log(airmiles),order=c(0,1,1),seasonal= 
order=c(0,1,1),period=12),xreg=data.frame(Dec96=1 
(airmiles)==12),Jan97=1*(seq(airmiles)==13),Dec02= 
q(airmiles)==84)),method='ML',xtransf= 
frame(I911=1*(seq(airmiles)==69)),transfer= 
c(1,1)))

ts:
a1 sma1 Dec96 Jan97 Dec02 I911-AR1 I911-MA0 I911-MA1

01 -0.6130 0.0949 -0.0840 0.0802 0.8094 -0.3660 0.0741
26 0.1261 0.0222 0.0229 0.0194 0.0924 0.0233 0.0424
stimated as 0.000648: log likelihood=221.76, aic=-427.52
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he parameter estimates of this model are similar to those of the previous
this model has a better fit, which may happen as the optimization is done
. 

t 11.8 on page 256.
1*(seq(airmiles)==69)

s the 9/11 indicator variable.

Nine11p*(-0.0949)+ filter(Nine11p,filter=.8139, 
d='recursive',side=1)*(-0.2715), 
ency=12,start=1996),type='h',ylab='9/11 Effects')

nd

(-0.0949)+filter(Nine11p,filter=.8139, 
d='recursive',side=1)*(-0.2715)

e estimated transfer function. Note that the command

ine11p,filter=.8139,method=’recursive’,side=1)

1-0.8139*B)Nine11p. The function filter performs an MA or AR
 the input sequence passed to it as the first argument. Suppose the input is a
(x1,x2,…,xn). Then the output y = c(y1,y2,…,yn) defined by the MA filter

puted by the command

,filter=c(c0,c1,...,cq),side=1).

nt side=1 specifies that the MA operator works on current and past values
uting an output value. To compute y1, the value of x0 is needed. Since the
 observed, the filter sets it to NA, and hence y1 is also NA. In this case, y2,
 forth can be computed. For an AR filtering with the output defined recur-
e equation

and is

,filter=c(c1,c2,...,cp),method='recursive', 
1)

nlike the case of the MA filter, the filter vector starts with c1 and there is no
uation. The argument method='recursive' signifies an AR type of fil-
the AR filter, the initial values cannot be set to NA, lest all output values be
fault initial values are zeros although other initial values may be specified via
rgument.

=0)

ontal line with zero y-intercept.

yt c0xt c1xt 1–
… cqxt q–+ + +=

yt xt c1yt 1– … cpyt p–+ + +=
t 11.9 on page 259.
(12345)
sim(model=list(ar=.8,ma=.5),n.start=158,n=100)
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tes an ARMA(1,1) series of sample size 100. To remove transient effects of
alues, a burn-in of size 158 is specified. A large burn-in of the order of hun-
ld generally ensure that the simulated process is approximately stationary.
r 158 is chosen for no particular good reason.

out the tenth simulated value.

the tenth value to be 10; that is, it becomes an additive outlier, mimicking the
lerical recording mistake, for example! 

req=1,start=1); plot(y,type=’o’)

atory analysis suggests an AR(1) model.

(y,order=c(1,0,0)); m1; detectAO(m1)

s the presence of any additive outliers (AO) in the fitted AR(1) model. The
s an estimate of the standard deviation of the error (innovation) term, which
s estimated by a robust estimation scheme, resulting in a more powerful test.
estimation scheme can be switched off by the argument robust=F, as illus-
 command below.

(m1, robust=F)

s that a nonrobust procedure is less powerful. 

(m1)

s the presence of any innovative outliers (IO) in the fitted AR(1) model. As
und in the tenth case, it is incorporated as an indicator covariate in the fol-
el. 

(y,order=c(1,0,0),xreg=data.frame(AO=seq(y)==10))

t 11.10 on page 260
)
rima(co2,order=c(0,1,1),seasonal=list 
r=c(0,1,1),period=12))

(m1.co2)
(m1.co2)

 found in the 57th data case, it is incorporated in the model.

rimax(co2,order=c(0,1,1), 
nal=list(order=c(0,1,1),period=12),io=c(57))
s of IOs are passed to the arimax function via the io argument, which
ist containing the positions of the IOs either as the time index of the IO or
in the form of c(year,month) that gives the year and month of the IO for
ta; the latter format also works similarly for seasonal data of other types. For
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 it is not necessary to enclose the single vector of index in a list before pass-
 io argument. 

t 11.11 on page 262.
(12345)
105)
,2)+.5*rnorm(105)

nd zlag(X,2) computes the second lag of X.

(1:5)],start=1,freq=1)

the first five values of X and converts the remaining values to form a time

(1:5)],start=1,freq=1)
ylab='CCF')

tes the cross-correlation function of X and Y. The ylab argument is sup-
 of the default y-label of the ccf function that is “ACF”. 

t 11.14 on page 264.
k)
ctricity)
ctricity=ts.intersect(milk,log(electricity))

tersect function merges several time series into a matrix (panel) of time
the time frame where each series has data. The object milk.electric-
atrix of two time series, the first column of which is the milk series and the
log of electricity, over the time period when these two series overlap.

k.electricity,yax.flip=T) 

yax.flip=T flips the label for the y-axis for the series alternately so as to
beling clearer.

t 11.15 on page 265.
.electricity[,1],milk.electricity[,2],
'milk & electricity',ylab='CCF')

ssion milk.electricity[,1]  extracts the milk series and
ctricity[,2] the log electricity series.
.vector function strips the time series attribute from the time series. This
ullify the default way that the ccf function plots the cross-correlations. You
o repeat the command without the as.vector function to see the default
e lags according to the period of the data.

k.electricity[,1]),(milk.electricity[,2]), 
'milk & electricity',ylab='CCF')

et operator extracts a submatrix from a matrix, say M, in the form of
, where v1 indicates which rows are kept and v2 indicates which columns
. Consequently, the submatrix M[v1,v2] contains all elements of M in the

 of the retained rows and columns. If v1 (v2) is missing, then all rows (col-
etained. Hence, M[,1] is simply the submatrix consisting of the first col-
However, R adopts the convention that a submatrix with a single row or
demoted” to a vector; that is, it loses one dimension. This convention makes
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st cases. However, if you do matrix algebra in R, this convention may result
 error messages! To prevent automatic dimension reduction, use
drop=F]. Instead of specifying which rows or columns are to be retained
atrix, you can specify which rows or columns are to be deleted by specifying
 of their positions. Or v1 (v2) can be specified as a Boolean vector, where
s to be retained (eliminated) are denoted by TRUE (FALSE).

t 11.16 on page 267.
s.intersect(diff(diff(milk,12)), 
diff(log(electricity),12)))
n(as.vector(me.dif[,1]),as.vector(me.dif[,2]), 
'CCF')

iten function expects two time series input via the x and y arguments.
 will be filtered according to an ARIMA model. The ARIMA model can be
 the x.model argument and should be the output of the arima function. If
 model is supplied, an AR model will be fitted to the x series, with the AR
ted by minimizing the AIC. The prewhiten function computes and plots
orrelation function (CCF) of the residuals of the x series and those of the y
 the same (supplied or fitted) model. 

 12 R Commands

show how to implement the Jarque-Bera test for normality in two different
 we show the direct approach.

(r.cref)

tes the skewness of the r.cref series. 

(r.cref)

tes the kurtosis of the data.

.cref)*skewness(r.cref)^2/6

n length returns the length of the vector (time series) passed into it, so the
above computes the first part of the Jarque-Bera statistic. 

.cref)*kurtosis(r.cref)^2/24

e second half of the Jarque-Bera statistic.

h(r.cref)*(skewness(r.cref)^2/6 + 
sis(r.cref)^2/24)

JB then contains the Jarque-Bera statistic and the command JB prints out the
he command 1-pchisq(JB,df=2) computes the p-value of the

a test for normality. The function pchisq computes the cumulative proba-
hi-square distribution being less than or equal to the value in the first argu-

df argument of the pchisq function specifies the degrees of freedom for
are distribution. Because the p-value equals the right tail area, it equals 1
umulative probability. Besides pchisq, other functions associated with the
distribution include qchisq, which computes quantiles; dchisq, which
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he probability density; and rchisq, which simulates realizations from the
distributions. Use Help in R to learn more about these functions. For other
 distributions, similar functions are available. Associated with the normal
s are rnorm, pnorm, dnorm, and qnorm. Check out the usages of the rel-
ions for the binomial (binom), Poisson, and other distributions.

tseries)

the tseries library, which contains a number of functions needed for the
orted in this chapter. Run library(help=tseries) for more informa-
he tseries package.

era.test(r.cref)

 out the Jargue-Bera test for normality with the time series r.cref.

t 12.9 on page 283.
i.test(y=r.cref)

ms the McLeod-Li test for presence of ARCH in the daily CREF returns. The
guments of the function are object and y, respectively. For the test with
e time series is supplied to the function via the y argument. Then, the func-
tes the Box-Ljung statistics with the autocorrelations of the squared data to
onditional heteroscedascity. The test is carried out with the first m autocorre-
e squared data, with m ranging from 1 to the maximum lag specified by the

 argument. If the gof.lag argument is missing, the default is set to
here n is  the sample size.
cLeod-Li test can also be applied to residuals from an ARMA model fitted to
r example, the US dollar/Hong Kong dollar exchange rate data was found to
R(1) + outlier model.  The  need for incorporating ARCH in the model for
e rate data can be tested by the command

i.test(arima(hkrate,order=c(1,0,0), 
data.frame(outlier1)))

bject is the first argument so in the above command, the fitted AR(1) + out-
is passed into the function. The function then computes the test statistics
e squared residuals from the fitted AR(1) + outlier model. If the object argu-
plied explicitly or implicitly, the y argument is ignored by the function even
lied. Remember that to apply the test to raw data, the y argument must be
d the object argument suppressed.

t 12.11 on page 286.
(1235678)
sim=garch.sim(alpha=c(.01,.9),n=500)

.sim function simulates a GARCH process, with the ARCH coefficients
a the alpha argument and the GARCH coefficients via the beta argument.
 size is passed into the function via the n argument. In the example above,

.01,.9) specifies that the constant term is 0.01 and the ARCH(1) coeffi-
 0.9. So, garch01.sim saves a realization from an ARCH(1) process.

t 12.25 on page 300.
(x=r.cref,order=c(1,1))
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ARCH(1,1) model with the r.cref series. The garch function estimates
model by maximum likelihood. The time series is supplied into the function
gument and the GARCH order by the order argument. The order takes
p,q) where p is the GARCH order and q the ARCH order. 

m1)

arizes the fitted GARCH(1,1) model. Ignore the Box-Ljung test results
 the summary, as the generalized portmanteau tests should be used; see the

t 12.29 on page 305.
method='squared')

function computes the generalized portmanteau test for checking whether or
 any residual heteroscedasticity in the residuals of a fitted GARCH model. It
plying the fitted GARCH model from the garch function through the first
he model argument, the first argument of the function). By default, the tests
 out with the squared residuals from the fitted GARCH model. To inspect
siduals, use the option method='absolute'. By default, the test is car-
 the ACF for lags from 1 to, say, K, where K runs from 1 to 20. The collection
be specified by the lags argument. For example, to carry out the test for K
m 1 to 30, supply the option lags=1:30.

lags=20,plot=F,x=r.cref, method='squared')$pvalue

he p-values of the generalized portmanteau test with the squared residuals
; that is, it tests any residual heteroscedasticity based on the first 20 lags of
CF of the squared residuals from the fitted GARCH model. Plotting is
ff by the plot=F option. The gBox function returns a list, an element of
med pvalue and contains the p-values of the test for each K. Thus, the
rints out the p-value for the test with K = 20.

t 12.30 on page 306.
residuals(m1)),na.action=na.omit)

al residuals from a fitted GARCH model may be missing, it is essential to
e ACF to omit all missing values through the argument na.action=
(the preferred action when encountering a missing value is to omit it). If this
s omitted, the acf function uses all data and will return missing values if
y missing data.
ting the GARCH(1,2) model to the CREF returns can be carried out by the
ommand

(x=r.cref,order=c(1,2))
m2,diagnostics=F) 

ry is based on the summary.garch function in the tseries package.

e p-values of the Ljung-Box test from the summary are invalid; the general-
nteau tests should be used instead. Hence, the diagnostics are turned off.

tes the AIC of the fitted GARCH model m1.
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t 12.31 on page 306.
x=r.cref,method='absolute')

 out the generalized portmanteau test based on the absolute residuals.

test(na.omit(residuals(m1)))

utes the Shapiro-Wilk test for normality with the residuals from the fitted
The function na.omit strips all missing values from the residuals. Thus,
arried out with the nonmissing residuals. Without preprocessing the residuals
omit function, the test may return a missing value if some of the residuals
!

t 12.32 on page 307.
tted(m1)[,1])^2,type='l',
'conditional variance',xlab='t')

d function is a smart function that processes differently depending on the
l passed to it as the first argument. If the fitted model is some output from the
ction, the default output from the fitted function is a two-column matrix

 column contains the one-step-ahead conditional standard deviations. Hence,
s are the conditional variances. So (fitted(m1)[,1])^2 computes the
of estimated one-step-ahead conditional variances based on the model m1.

 13 R Commands

t 13.3 on page 323.

ogram of a time series can be computed and plotted by the function peri-
into which the data are passed as its first argument.

dogram(y); abline(h=0); 
1,at=c(0.04167,.14583))

n periodogram has several useful arguments. Setting log='yes' tells
 a log scale, whereas log='no' (the default) says to plot on a linear scale.

ments for the plot function may be passed into the function to make better
 function axis draws an axis with the first argument specifying the side on
xis is drawn. The sides are labeled from 1 to 4 starting from the bottom in a
irection. The vector of locations of the tick marks can be specified by the at
he command above instructs R to draw an (additional) axis on the bottom of
ith tick marks placed at 0.04167 and 0.14583.

t 13.9 on page 333.
 # Reset theta for other MA(1) plots
(model=list(ma=-theta))

n ARMAspec calculates and plots the theoretical spectral density function of
 model supplied to the function as the first argument. Recall that R uses the

tion in the MA specification, so the minus sign is added to theta. The format
l is the same as that for the arima function.



Chapter 14

Chapter

# Exhibi

The spec 
periodogra
arguments. 
to plot on a
detrend=
and 0.5. Th

k=kernel

Here, the ob
to learn mo

sp=spec(
xlab=

Specifying 
the spectra
averaging t
on its left, a
can be spec

lines(sp
plot=

This adds th

# Exhibi
# Spectr
set.seed
n=100
phi1=1.5

Exhib
y=arima.

This simula

sp1=spec
ylab=

This estim
default ker
plied). The 
the m argum
of three con
passing a v
forms local
spans=3 
modified D
due to the C
 R Commands 461

 14 R Commands

t 14.2 on page 353.

function can estimate the spectral density function by locally averaging the
m via some suitable kernel function. The function spec has several useful
Setting log='yes' tells R to plot on a log scale whereas log='no' says
 linear scale. Data may be detrended (fitting a linear time trend) by setting
T, and tapering may be enforced by setting taper to some fraction between 0
e default options are: taper=0 and detrend=F.

('daniell',m=15)

ject k contains the Daniell kernel function with halfwidth 15. Use Help in R
re about the kernel function. 

y,kernel=k,log='no',sub='', 
'Frequency',ylab='Smoothed Sample Spectral Density')

the kernel to be the Daniell kernel function instructs R to compute and plot
l density estimate, where the estimate at a certain frequency is obtained by
he current (raw) periodogram value, the neighboring 15 periodogram values
nd another 15 periodogram values on its right. More or less local averaging
ified through the m argument in the kernel function.

$freq,ARMAspec(model=list(ar=phi),freq=sp$freq, 
F)$spec,lty='dotted')

e theoretical spectral density function.

ts 14.11 and 14.12, page 364.
al analysis of simulated series
(271435)

; phi2=-.75 # Reset parameter values to obtain 
its 14.13 & 14.14
sim(model=list(ar=c(phi1,phi2)),n=n)

tes an AR(2) time series of length 100.

(y,spans=3,sub='',lty='dotted', xlab='Frequency', 
'Log(Estimated Spectral Density)')

ates the special density function using the modified Daniell kernel (the
nel when the kernel argument is missing and the spans argument is sup-
spans argument supplies the width of the kernel function; that is, it is twice
ent in the kernel function plus 1. Here, spans=3 specifies local averaging
secutive periodogram values. Note that local averaging may be repeated by
ector as the value of spans. For example, setting spans=c(3,5) per-
 averaging twice. The estimated function obtained by local averaging with

is then averaged again locally with spans=5. Repeated averaging with a
aniell (rectangular) kernel is similar to averaging using a bell-shaped kernel
entral Limit effect.
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(y,spans=9,plot=F)

tes the spectrum estimate using a wider window encompassing nine peri-
alues without plotting via the plot=F argument. The output of the spec
saved into an object named sp2.

(y,spans=15,plot=F)

n even wider window. How many periodogram values are included in each
ing?

2$freq,sp2$spec,lty='dashed')

he smoother spectrum estimate (spans=9) as a dashed line.

3$freq,sp3$spec,lty='dotdash')

he smoothest spectrum estimate (spans=15) as a dotdash line.

001,.5,by=.001)

s an arithmetic sequence starting from 0.001 and ending at 0.5, with incre-
, which is then saved into the object f.

ARMAspec(model=list(ar=c(phi1,phi2)),freq=f, 
F)$spec,lty='solid')

the theoretical spectral density function for the specified ARMA model as
ine segments on top of the estimated spectral density plot.

t 14.12 on page 365.
(y,method='ar',lty='dotted', xlab='Frequency', 
'Log(Estimated AR Spectral Density)')

tes the spectral density function using the theoretical spectral density func-
R model fitted to the data by minimizing the AIC. 

001,.5,by=.001)
ARMAspec(model=list(ar=c(phi1,phi2)), 
f,plot=F)$spec,lty='solid')

he theoretical spectral density function.

od

ys the order of the AR model selected.

 15 R Commands

t 15.1 on page 386.
(2534567)
w=c(3,2))
sim(n=61,model=list(ar=c(1.6,-0.94),ma=-0.64))

tes an ARMA(2,1) series of sample size 61.
y)

he lagged regression plots, where the time series is plotted against its lags
th curve is superimposed on each scatter diagram. The smooth curves are
 local linear fits to the data. By increasing the value specified in the nn argu-
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ult nn=0.7), the local fitting scheme uses more local data, resulting in a
t that is likely to be more biased but less variable due to more smoothing. On
, decreasing the value in the nn argument leads to a rougher fit that is less
ore variable due to less smoothing. The smooth curve in the scatter diagram

series response versus its lag j estimates the conditional mean response given
a function of the value of the lag j of the response. By default, lagplot
gged regression plot for lags 1 to 6. More lags can be computed via the

argument. For instance, lag.max=12 computes the lagged regression plots
hrough 12. Note that the lagplot function requires the installation of the
ckage of R. 

t 15.2 on page 387.
lleux)

 veilleux is a matrix consisting of two time series. Its first column is the
idinium abundance and the second column the series of Paramecium abun-
 counted every 12 hours. The basic time unit is days, so these are series of
, as they are sampled twice per day. 

=veilleux[,1]

s the predator series as the abundance series of Didinium.

(predator),lty=2,type='b',xlab='Day', 
'Log(predator)')

he entire log-transformed predator series as a dashed line. 

.eq=window(predator,start=c(7,1))

s the “stationary” part of the predator series that appears to begin on the sev-
 the experiment. Subsequent analyses of the predator series reported in the
one with this log-transformed stationary subseries.

g(predator.eq))

the stationary part as a solid line.

lag(log(predator.eq),3)<=4.661

and zlag(log(predator.eq),3) returns the lag 3 of the (log-trans-
dator series. The expression zlag(log(predator.eq),3)<=4.661

 Boolean vector whose elements are TRUE if and only if their corresponding
the lag 3 of the predator series is less than or equal to 4.661. The Boolean
ved in an object named index1. Other comparison operators, including >=,
=, can be used to compare the vectors on the two sides of the comparison
 the example above, the left-hand side of <= is a vector, but its right-hand

alar! The discrepancy is resolved by the recycling rule, that R replicates the
tor repeatedly to match its longer part. Note that the equality operator is
 the double equal sign ==, as the single equal sign represents the assignment
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=log(predator.eq)[index1],(time(predator.eq)) 
x1],pch=19)

 as solid circles (pch=19) those data points whose lag 3 of the predator
is less than or equal to 4.661. Run the command ?points to learn other
lotting data points. 

for nonlinearity, page 390.
est(sqrt(spots))

 out Keenan’s test for linearity. The working order of the AR process under
pothesis of linearity can be supplied via the order argument. For example,
sets the working AR order to 2. If the order argument is missing, the order is
ly determined by minimizing the AIC via the ar function. The ar function
stimates the models by solving the Yule-Walker equations. But other estima-
ds may be used by including the method argument when calling the
est function; for example, method='mle' specifies using maximum

n the ar function.

t(sqrt(spots)), page 390.

ments Tsay’s test for linearity; see Tsay (1986). The design of the
t function and its arguments are similar to those of the Keenan.test

t 15.6 on page 400.
m(n=100,const=0.0,phi0=3.97, 
-3.97,sigma=0,init=.377)

n qar.sim simulates a time series realization from a first-order quadratic
where phi0 is the coefficient of the lag 1 and phi1 is that of the square of
efault intercept is zero, otherwise it can be set by the const argument. The

standard deviation is passed into the function via the sigma argument. Here,
sets the standard deviation to be 1. The argument n=15 sets the sample size
ly, the argument init=.377 sets the initial value to be 0.377. The default
 is 0.

:100,y=y,type='l',ylab=expression(Y[t]),xlab='t')

 of the qar.sim function is a vector. To draw the time sequence plot, both
le and the y-variable have to be specified.

t 15.8 on page 411.
(1234579)
m(n=100,Phi1=c(0,0.5),Phi2=c(0,-1.8),p=1,d=1, 
1=1,thd=-1,sigma2=2)$y

on tar.sim simulates time series realizations from a two-regime TAR
 order of the model is specified by the p argument, so p=1 specifies a

model. The delay is passed into the function by the d argument, so d = 1

e delay to be 1. The AR coefficient vector for the lower (upper) regime, with
t being the first component, is supplied via the Phi1 (Phi2) argument. The
rgument imposes the threshold parameter of −1. The innovation standard
or the lower and upper regimens are specified via the sigma1 and sigma2
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respectively. The simulated TAR model in the example is conditionally het-
c, as the innovation standard deviation for the upper regime is twice that for
gime. The sample size is set to 100 by the n=100 argument.
elihood ratio test for threshold nonlinearity, assuming normally distributed
, can be carried out by the tlrt function, with which the data enter into the
 the first argument. Other required information includes the order and
uments. Also, the threshold parameter must be searched over a finite interval
times 100 percentile to the b times 100 percentile of the data. Often, data
ransformed before testing for nonlinearity, which can be specified by supply-
sformed data or supplying the raw data with the transform argument set to
 available options: 'no' (means no transformation, the default), 'log',
 'sqrt'. For example, the following command does the likelihood ratio test
hypothesis that the square root transformation of relative sunspot data is an
ess versus the alternative that it follows a threshold model with delay 1,
 with the threshold parameter searched from the first to the third quartile of

rmed) data.

t(spots),p=5,d=1,a=0.25,b=0.75)

function outputs a list containing the test statistic and its p-value. In practice,
ay of the threshold model is unknown, although it is likely to be between 1
er of the model. (The delay may be specified to some value greater than the
 is deemed appropriate.) The command above can be replicated a number of

ach possible delay value. A more elegant way is to use a for loop as fol-

for threshold nonlinearity, page 400.
NULL

s an empty object named pvaluem. 

n 1:5) 
tlrt(sqrt(spots),p=5,d=d,a=0.25,b=0.75); pvaluem= 
(pvaluem,c(d,res$test.statistic,res$p.value))}

ents within the curly brackets are repeated for each value the variable d takes
 from the vector 1:5, which contains the first five positive integers. Thus, d
 1, and the likelihood ratio test for threshold nonlinearity is carried out, with

tored in an object named res. The command c(d,res$test.statis-
p.value) creates a vector containing the value 1, the likelihood ratio test

d its p-value. The vector so created is then augmented to the right-hand side
m to form a matrix. So, after the first loop, pvaluem is a matrix consisting
esults for d=1. Then the loop sets d to the second value, namely 2; carries
shold likelihood ratio test for d=2; augments the test results for d=2 to the
side of pvaluem; and so forth until the loop exhausts all possible values for

 then R exits from the loop.   

(pvaluem)=c('d','test statistic','p-value')

the rows of the pvaluem matrix, with the first row labeled as “d”, the sec-
atistic”, and the third row “p-value”.



466

round(pv

This prints 
mal places.
by declarin
uem= mat

# Exhibi
predator

b=.9,

This fits a t
imum AR 
parameter 
printed out
(minimum 
method of
method='

In the 
that the CL
AR orders 
That is why
in fact set a

tar(y=lo
metho

# Exhibi
tar.skel

This comp
default sam
plot of the l
the objec
specified in
mary statem

# Exhibi
set.seed
plot(y=t

ylab=

This plots 
series. The 

# Exhibi
tsdiag(p

This carries
tor series. T
residual AC
gof.lag=
Appendix: An Introduction to R

aluem,3)

out the matrix (table) of test results, with the numbers rounded to three deci-
 Note that the computational efficiency of the R code above can be improved
g pvaluem as a matrix with appropriate dimension (for example, pval-
rix('NA',nrow=3,ncol=5)) in which the test results are saved. 

t 15.12 on page 405.
.tar.1=tar(y=log(predator.eq),p1=4,p2=4,d=3,a=.1, 
print=T)

hreshold model with the (log-transformed) predator.eq series with max-
order to be 4 for both lower and upper regimes, d=3, and the threshold
searched from the tenth to the ninetieth percentiles. The fitted model is
 if the print argument is set to T. By default, the function uses the MAIC
AIC) method for estimation, with the AR orders estimated as well. Another
 estimation is conditional least squares, which can be specified by the
CLS', as illustrated in the next command.

command below, we repeat the estimation but using the CLS method. Note
S method does not estimate the AR orders of the two regimes. Instead, the
are set as the maximum orders specified through the p1 and p2 arguments!
 the values of p1 and p2 are set differently from the previous command and
s the orders estimated from the model using the MAIC method.

g(predator.eq),p1=1,p2=4,d=3,a=.1,b=.9,print=T, 
d='CLS')

t 15.13 on page 408.
eton(predator.tar.1)

utes the skeleton of a TAR model supplied as the first argument, with a
ple size of 500 values, a burn-in of 500 values, and plots the time sequence
ast 50 values of the skeleton. The TAR model is usually the output of that of
t argument of the tar function. Alternatively, the model parameters can be
 a format similar to the tar.sim function. The function also prints a sum-
ent on the long-run behavior of the skeleton.

t 15.14 on page 408.
(356813)
ar.sim(n=57,object=predator.tar.1)$y,x=1:57, 
expression(Y[t]),xlab=expression(t),type='o')

a simulated time series from the fitted TAR(2;1,4) model to the predator
fitted model is supplied via the object argument.

t 15.20 on page 414.
redator.tar.1,gof.lag=20)

 out several model diagnostics on the fitted TAR(2;1,4) model to the preda-

he function plots a time sequence plot of the standardized residuals, the
F, and the p-value plots of the generalized portmanteau tests. The argument
20 specifies that the last two plots use a maximum lag of 20.
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t 15.21 on page 415.
redator.tar.1$std.res)

he quantile-quantile normal score plot for the standardized residuals from the
 model fitted to the predator series.

redator.tar.1$std.res)

erence line on the Q-Q plot. 

t 15.22 on page 417.
(2357125)
dator=predict(predator.tar.1,n.ahead=60, 
=1000)

tes a time series from the conditional distribution of the future values given
d a threshold model (usually the output of the tar function, here being
.tar.1), with a forecast horizon of a maximum sixty-step-ahead predic-
oint predictors and their 95% prediction limits are computed by simulation.

tion size is specified as n.sim=1000. The output of the predict function
 contains the prediction means as a vector in the component (element) named
e lower and upper prediction limits as a matrix in the pred.interval
. The function predict is a smart function and recognizes that the first
s a TAR model, on the basis of which it computes the prediction. To learn
 the predict function for TAR models, run ?predict.TAR. The exten-
ignifies the particular predict function for processing prediction based on a
.

log(predator.eq),pred.predator$fit),frequency=2, 
=start(predator.eq))

nts the point prediction values to the data. 

type='n', 
range(c(yy,pred.predator$pred.interval)), 
'Log Prey', xlab=expression(t))

p a plot of the data and the predicted future values without actual plotting
'). We anticipate superimposing the prediction intervals, so the range of the
ecified through the ylim argument to the vector containing the minimum
um of the combined vector of the observed + predicted values (yy) and the
limits (pred.predator$pred.interval), computed via the range

g(predator.eq))

the data as a solid line.

ndow(yy, start=end(predator.eq)+c(0,1)),lty=2)

e curve of the predicted values as a dashed line.
(pred.predator$pred.interval[2,], 
=end(predator.eq)+c(0,1),freq=2),lty=2)

e upper prediction limits.
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(pred.predator$pred.interval[1,], 
=end(predator.eq)+c(0,1),freq=2),lty=2)

e lower prediction limits.

t 15.24 on page 419.
red.predator$pred.matrix[,3])

 of the predict function is a list that contains another component, named
rix, which is a matrix containing all simulated future values, with the first
sisting of the simulated one-step-ahead values, the second column those of

ps-ahead values, and so forth.

red.predator$pred.matrix[,3])

ts all 1000 simulated three-steps-ahead values, which are then passed into the
nction to make the Q-Q normal score plot for these data.

red.predator$pred.matrix[,6])

he reference straight line for checking the normality of the three-steps-ahead
 distribution.
, here is a listing and brief description of all the new or enhanced functions
tained in the TSA package.

Enhanced Functions in the TSA Library
unction Description

Computes and plots the sample autocorrelation function start-
ing with lag 1.
This command has been amended to compute the AIC accord-
ing to our definition.

ot Bootstraps time series according to a fitted ARMA(p,d,q)
model.
Extends the arima function, allowing the incorporation of
transfer functions and innovative and additive outliers.
Computes and plots the theoretical spectrum of an ARMA
model.

ets Finds “best subset” ARMA models.

r Finds a power transformation so that the transformed time
series is approximately an AR process with normal error terms.
Detects additive outliers in time series.

Detects innovative outliers in time series.

Computes and displays the extended autocorrelation function
of a time series.

m Simulates a GARCH process.
Performs a goodness-of-fit test for fitted GARCH models.

Creates a matrix of the first m pairs of harmonic functions for
fitting a harmonic trend (cosine-sine trend, Fourier regression)
model with a time series response.
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est Carries out Keenan's test for nonlinearity against the null
hypothesis that the time series follows some AR process.
Calculates the (excess) coefficient of kurtosis.

Computes and plots nonparametric regression functions of a
time series against its various lags.

ram Computes the periodogram of a time series.

Computes the Ljung-Box or Box-Pierce tests checking whether
or not the residuals from an ARIMA model appear to be white
noise.

i.test Perform the McLeod-Li test for conditional heteroscedascity
(ARCH).

ma Plots a time series and its predictions (forecasts) with 95% pre-
diction bounds based on a fitted ARIMA model.

TAR Calculates predictions based on a fitted TAR model. The errors
are assumed to be normally distributed and the predictive distri-
butions are approximated by simulation.

n Bivariate time series are prewhitened according to an AR
model fitted to the x-component of the bivariate series. Alterna-
tively, if an ARIMA model is provided, it is used to prewhiten
both series. The CCF of the prewhitened bivariate series is then
computed and plotted.
Simulates a first-order quadratic AR model with normally dis-
tributed white noise error terms.

d.Arima Computes internally standardized residuals from a fitted
ARIMA model.
Tests the independence of a sequence of values by checking
whether there are too many or too few runs above (or below)
the median.
Extracts season information from a time series and creates a
vector of the season information. For example, for monthly
data, the function outputs a vector containing the months of the
data.
Calculates the skewness coefficient of a dataset.

Allows the user to invoke either the spec.pgram function or
the spec.ar function in the stats package. The seasonal
attribute of the data, if it exists, is surpressed for our preferred
way of presenting the output. Alters defaults to demean=T,
detrend=F, taper=0, and permits plotting of confidence

Enhanced Functions in the TSA Library (Continued)
unction Description
interval bands.

armasub- Summary method for class armasubsets, that is useful for
ARMA subset selection.

Estimates a two-regime TAR model.
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Simulates a two-regime TAR model.

eton Obtains the skeleton of a TAR model by suppressing the noise
term in the TAR model.
Carries out the likelihood ratio test for threshold nonlinearity,
with the null hypothesis being a normal AR process and the
alternative hypothesis being a TAR model with homogeneous,
normally distributed errors.

t Carries out Tsay’s test for quadratic nonlinearity in a time
series.

rima Modifies the tsdiag function of the stats package sup-
pressing initial residuals and displaying Bonferroni bounds. It
also checks the condition for the validity of the chi-square
asymptotics for the portmanteau tests.

AR Displays the time series plot and the sample ACF of the stan-
dardized residuals. Also, portmanteau tests for detecting auto-
correlations in the standardized residuals are computed and
displayed. 
Computes the lag of a vector, with missing elements replaced
by NA.

Enhanced Functions in the TSA Library (Continued)
unction Description



DATA

Filename/
Variable(s)

airmiles

airpass

beersales

bluebird: 
(log.sales 
price)

bluebirdlite:
(log.sales 
price)

boardings: 
(log.board
s & log.pric

co2

color

CREF

cref.bond

days
SET INFORMATION

Description and Source Page(s)

Monthly U.S. airline passenger-miles: 01/1996–05/2005. Source: 
www.bts.gov/xml/air_traffic/src/index.xml#MonthlySystem

249

Monthly total international airline passengers from 01/1960- 
12/1971. Source: Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. 
Time Series Analysis: Forecasting and Control, second edition, Pren-
tice-Hall, Engelwood Cliffs, NJ, 1994.

104

Monthly U.S. beer sales (in millions of barrels), 01/1975–12/1990. 
Source: Frees, E. W., Data Analysis Using Regression Models, Pren-
tice-Hall, Engelwood Cliffs, NJ, 1996.

51

& 
Weekly unit sales of Bluebird standard potato chips (New Zealand) 
and their price for 104 weeks. From the website of Dr. Andrew 
Balemi. Source: www.stat.auckland.ac.nz/~balemi/Assn3.xls

267

 
& 

Weekly unit sales of Bluebird Lite potato chips (New Zealand) and 
their price for 104 weeks. From the website of Dr. Andrew Balemi.
Source: www.stat.auckland.ac.nz/~balemi/Assn3.xls

276

ing
e)

Monthly public transit boardings (mostly buses and light rail), Den-
ver, Colorado region, 08/2000–03/2006. Source: Personal communi-
cation from Lee Cryer, Project Manager, Regional Transportation 
District, Denver, Colorado. Denver gasoline prices were obtained 
from the Energy Information Administration, U.S. Department of 
Energy, Washington, D.C., at www.eia.doe.gov

248, 271, 
273

Monthly carbon dioxide levels in northern Canada, 01/1994– 
12/2004. Source: http://cdiac.ornl.gov/ftp/trends/co2/altsio.co2

234, 234

Color properties from 35 consecutive batches of an industrial chemi-
cal process. Source: Cryer, J. D. and Ryan, T. P., “The estimation of 
sigma for an X chart”, Journal of Quality Technology, 22, No. 3, 
187–192.

3, 134, 
147, 165, 
176, 194

Daily values of one unit of the CREF (College Retirement Equity 
Fund) Stock fund, 08/26/04–08/15/06. Source: 
www.tiaa-cref.org/performance/retirement/data/index.html

278

Daily values of one unit of the CREF (College Retirement Equity 
Fund) Bond fund, 08/26/04–08/15/06. Source: 
www.tiaa-cref.org/performance/retirement/data/index.html

316
471

Accounts receivable data. Number of days until a distributor of Win-
egard Company products pays their account. Source: Personal com-
munication from Mark Selergren, Vice President, Winegard, Inc., 
Burlington, Iowa.

147, 174, 
217, 276
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deere1

deere2

deere3

eeg

electricity

euph

flow

gold

google

Filename/
Variable(s)
Dataset Information

82 consecutive values for the amount of deviation (in 0.000025 inch 
units) from a specified target value that an industrial machining pro-
cess at Deere & Co. produced under certain specified operating con-
ditions. Source: Personal communication from William F. Fulkerson, 
Deere & Co. Technical Center, Moline, Illinois.

146, 275

102 consecutive values for the amount of deviation (in 0.0000025 
inch units) from a specified target value that another industrial 
machining process produced at Deere & Co. Source: Personal com-
munication from William F. Fulkerson, Deere & Co. Technical Cen-
ter, Moline, Illinois.

146

57 consecutive values from a complex machine tool at Deere & Co. 
The values given are deviations from a target value in units of ten 
millionths of an inch. The process employs a control mechanism that 
resets some of the parameters of the machine tool depending on the 
magnitude of deviation from target of the last item produced. Source: 
Personal communication from William F. Fulkerson, Deere & Co. 
Technical Center, Moline, Illinois.

147, 174, 
190, 217

An electroencephalogram (EEG) is a noninvasive test used to detect 
and record the electrical activity generated in the brain. These data 
were measured at a frequency of 256 per second and came from a 
patient suffering a seizure. This is a portion of a series on the website 
of Professor Richard Smith, University of North Carolina. His 
source: Professors Mike West and Andrew Krystal, Duke University. 
Source:
http://www.stat.unc.edu/faculty/rs/s133/Data/datadoc.html

380

Monthly U.S. electricity generation (in millions of kilowatt hours) of 
all types: coal, natural gas, nuclear, petroleum, and wind, 
01/1973–12/2005. Source: www.eia.doe.gov/emeu/mer/elect.html

99, 214, 
247, 264, 
380

A digitized sound file of about 0.4 seconds of a Bb just below middle 
C played on a euphonium by one of the authors (JDC), a member of 
the group Tempered Brass.

374

Flow data (in cubic feet per second) for the Iowa River measured at 
Wapello, Iowa, for the period 09/1958–08/2006. 
Source: http://waterdata.usgs.gov/ia/nwis/sw

372, 381

Daily price of gold (in U.S. dollars per troy ounce), 01/04/2005– 
12/30/2005. Source: www.lbma.org.uk/2005dailygold.htm

105

Daily returns of Google stock from 08/20/04 to 09/13/06. Source: 317

Description and Source (Continued) Page(s)
http://finance.yahoo.com/q/hp?s=GOOG
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milk
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oilfilters
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Annual Canadian hare abundance, 1905–1935. Source: Stenseth, N. 
C., Falck, W., Bjørnstad, O. N. and Krebs. C. J. (1997) “Population 
regulation in snowshoe hare and Canadian lynx: Asymmetric food 
web configurations between hare and lynx.” Proceedings of the 
Natlional Academy of Scinces, USA, 94, 5147–5152.

4, 136, 
152, 176, 
206

Monthly average hours worked per week in the U.S. manufacturing 
sector for 07/1982–06/1987. Source: Cryer, J. D. Time Series Analy-
sis, Duxbury Press, Boston, 1986.

51

Quarterly earnings per share for 1960Q1–1980Q4 of the U.S. com-
pany, Johnson & Johnson, Inc. From the web site of David Stoffer.
Source: www.stat.pitt.edu/stoffer/tsa2/

105, 248

Annual rainfall totals for Los Angeles, California, 1878–1992. 
Source: Personal communication from Professor Donald Bentley, 
Pomona College, Claremont, California. For more data see 
www.wrh.noaa.gov/lox/climate/cvc.php

1, 49, 105, 
133, 379

Monthly U.S. milk production from 01/1994 to 12/2005. Source: 
National Agricultural Statistics Service: usda.mannlib
.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1103

264, 374, 
374

Monthly spot price for crude oil, Cushing, OK (in U.S. dollars per 
barrel), 01/1986–01/2006. U.S. Energy Information Administration. 
Source: tonto.eia.doe.gov/dnav/pet/hist/rwtcM.htm

87, 125, 
153, 177, 
276, 317

Monthly wholesale specialty oil filter sales, Deere & Co., 07/1983– 
06/1987. Source: Personal communication from William F. 
Fulkerson, Deere & Co. Technical Center, Moline, Illinois.

6

Monthly U.S. average prescription costs for the months 08/1986 - 
03/1992. Source: Frees, E. W., Data Analysis Using Regression 
Models, Prentice-Hall, Engelwood Cliffs,NJ, 1996.

52

Monthly total UK (United Kingdom) retail sales (non-food stores in 
billions of pounds), 01/1983–12/1987. 
Source: www.statistics.gov.uk/statbase/TSDdownload1.asp

52

Final position in the “x” direction of an industrial robot put through a 
series of planned exercises many times. Source: Personal communi-
cation from William F. Fulkerson, Deere & Co. Technical Center, 
Moline, Illinois.

147, 174, 
190, 217, 
370

Quarterly S&P Composite Index, 1936Q1–1977Q4, Source: Frees, 
E. W., Data Analysis Using Regression Models, Prentice-Hall, 

104

Description and Source (Continued) Page(s)
Engelwood Cliffs,NJ, 1996.
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spots

spots1

star

tbone

tempdub

tuba

units

usd.hkd

veilleux: Da
Didinium, 
Paramecium

Filename/
Variable(s)
Dataset Information

Annual American (relative) sunspot numbers collected from 1945 to 
2005. The annual (relative) sunspot number is a weighted average of 
solar activity measured from a network of observatories. Source:
www.ngdc.noaa.gov/stp/SOLAR/ftpsunspotnumber.html#
american

392

Annual international sunspot numbers, 1700–2005, NOAA National 
Geophysical Data Center. Source: 
ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT_NUMBERS/
YEARLY.PLT

379

Brightness of a variable star at midnight on 600 successive nights. 
Source: www.statsci.org/data/general/star.html

325

A digitized sound file of about 0.4 seconds of a Bb just below middle 
C played on a tenor trombone by Chuck Kreeb, a member of Tem-
pered Brass and a friend of one of the authors.

374

Monthly average temperatures in Dubuque, Iowa, 1/1964–12/1975. 
Source: http://mesonet.agron.iastate.edu/climodat/index.phtml?
station=ia2364&report=16

6, 213, 
379

A digitized sound file of about 0.4 seconds of a Bb an octave and one 
whole step below middle C played on a BBb tuba by Linda Fisher, a 
member of Tempered Brass and a friend of one of the authors.

381

Annual sales of certain large equipment, 1983–2005. (Proprietary 
sales data from a large international company.)

276

Daily exchange rates of U.S. dollar to Hong Kong dollar, 01/2005– 
03/2006. A data frame with 431 observations on the following six 
variables.
r: daily returns of USD/HKD exchange rates 
v: estimated conditional variances based on an AR(1)+GARCH(3,1) 
hkrate: daily USD/HKD exchange rates 
outlier1: dummy variable of day 203, corresponding to July 22, 2005 
outlier2: dummy variable of day 290, another possible outlier 
day: calendar day 
Source: www.oanda.com/convert/fxhistory

310

y, A bivariate time series from an experiment studying prey-predator 
dynamics. The first time series consists of the number of prey 
individuals (Didinium natsutum) per ml measured every 12 hours 
over a period of 35 days. The second time series consists of the 
corresponding number of predators (Paramecium aurelia) per ml. 

386

Description and Source (Continued) Page(s)
Source: Veilleux, B. G. (1976) “The analysis of a predatory interac-
tion between Didinium and Paramecium.” MSc thesis, University of 
Alberta, Canada. See also www.journals
.royalsoc.ac.uk/content/lekv0yqp2ecpabvd/archive1.pdf
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Monthly average hourly wages in the U.S. apparel industry: 
07/1981–06/1987. Source: Cryer, J. D. Time Series Analysis, 
Duxbury Press, Boston, 1986.

51

Monthly unit sales of recreational vehicles from Winnebago, Inc. 
from 11/1966 to 02/1972. Source: Roberts, H. V., Data Analysis for 
Managers with Minitab, second edition, The Scientific Press, Red-
wood City, CA, 1991.

51, 104

Description and Source (Continued) Page(s)
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