
STAT 3006: Statistical Computing

Lecture 1∗

8 January

1 Introduction

1.1 Probability and Statistics

Q1. What is probability? Flipping a coin, the chance of head up is 50%.

Q2. What is statistics? Flipping 100 coins, 48 of them are heads up. Use the 100 samples to

estimate the chance of heads up.

Mathematically, we have a distribution (or population) p(x|Θ) (Θ may be one parameter

or a parameter vector) and a set of independent and identically distributed (i.i.d.) samples

X = {X1, X2, . . . , Xn} from F . The probability is that given the population p(x|Θ), we investi-

gate the properties of X. The statistics is that given the samples X, we estimate the population

p(x|Θ) or equivalently the unknown Θ.

In practice, the population is always unknown, so we accumulate samples to obtain knowl-

edge about the population (Statistics). In the meanwhile, the procedure to gain population

knowledge are largely based on the probability theory (e.g. Method of Moments, Central Limit

Theory) and optimization techniques (e.g. Maximum Likelihood Estimator).

Likelihood function: L(Θ|X) = p(X|Θ) =
∏n

i=1 p(Xi|Θ).

Example: suppose X1, X2, . . . , Xn (i.i.d.) from the normal distribution N (µ, 1),

L(µ|x1, . . . , xn) =
n∏
i=1

p(xi|µ)

=
n∏
i=1

1√
2π
exp{−(xi − µ)2

2
}.

∗If you have any question about the note, please send an email to xyluo@link.cuhk.edu.hk

1



Remark 1. Strictly speaking, X denotes a random variable and its lower case x denotes X’s

realization (observed sample). Sometimes, we also use X to denote the observed sample (e.g.

p(X|Θ) is the same as p(x|Θ) ) in our note.

1.2 Two Schools of Statisticians

Frequentists:

• Samples are random.

• Parameters are fixed.

Definition 1.1. Maximum Likelihood Estimation (MLE) is the value Θ̂ at which the likelihood

function L(Θ|X) is maximized. In other words, Θ̂ := arg max
Θ

L(Θ|X).

the log-likelihood function

l(Θ|X1, X2, . . . , Xn) = logL(Θ|X)

= logp(X|Θ)

= (i.i.d.)log
n∏
i=1

p(Xi|Θ)

=
n∑
i=1

logp(Xi|Θ).

Since log transformation is monotone, maximizing l(Θ|X1, X2, . . . , Xn) is equivalent to maxi-

mizing L(Θ|X). Therefore,

Θ̂ = arg max
Θ

l(Θ|X).

Example (Normal):

l(µ|x1, x2, . . . , xn) = log
n∏
i=1

1√
2π
exp

{
−(xi − µ)2

2

}
=

n∑
i=1

[
−1

2
log(2π)− (xi − µ)2

2

]
= −n

2
log(2π)−

∑n
i=1(xi − µ)2

2

Taking derivative with respect to (w.r.t.) µ, we have that

∂l(µ|x1, x2, . . . , xn)

∂µ
=

∑n
i=1 2(xi − µ)

2
= 0

⇒ µ̂ =

∑n
i=1 xi
n

= x̄.

The problem of finding MLE is equivalent to solving an optimization problem.
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Bayesian:

• Samples are random.

• Parameters are also random.

Three characteristics of Bayesian statistics:

• Prior distribution π(Θ): some prior belief (e.g. previous knowledge, expert advice) about

the parameters.

• Likelihood function L(Θ|x1, . . . , xn) = L(Θ|x): the same definition as the one in the

frequentist statistics.

• Posterior distribution p(Θ|x): update your belief about the parameters after observing

the data.

Q: How to derive the posterior distribution p(Θ|x)? Bayes rule (p(A|B) = p(B|A)p(A)
p(B)

).

p(Θ|x) =
p(Θ,x)

p(x)

=
p(x|Θ)π(Θ)∫
p(x,Θ)dΘ

=
p(x|Θ)π(Θ)∫
p(x|Θ)π(Θ)dΘ

Example (Normal): π(µ) = N (a, b2).

p(µ|x) =
p(x|µ)π(µ)∫
p(x|µ)π(µ)dµ

The denominator is constant as a function of µ, so we focus on the “kernel” part: p(x|µ)π(µ).

p(x|µ)π(µ) =

[
n∏
i=1

1√
2π
exp

{
−(xi − µ)2

2

}]
· 1√

2πb
exp

{
−(µ− a)2

2b2

}
= (

1√
2π

)n+1 1

b
exp

{
−
∑n

i=1(µ− xi)2

2
− (µ− a)2

2b2

}
∝ (up to a constant)exp

{
−(b2n+ 1)µ2 − 2(a+

∑n
i=1 xib

2)µ

2b2

}

= exp

−
µ2 − 2(

a
b2

+nx̄
1
b2

+n
)µ

2 1
n+ 1

b2


∝ exp

−
(
µ−

a
b2

+nx̄
1
b2

+n

)2

2 1
n+ 1

b2

 ,
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which is the kernel of the normal distribution. Based on theorem 1.1 (discussed later), the

posterior distribution of µ (the distribution of µ after observing data x) is also a normal distri-

bution. Specifically, assume η, τ 2 are the mean and the variance of µ’s posterior distribution,

respectively, then we have

η =
a
b2

+ nx̄
1
b2

+ n
(1.1)

τ 2 =
1

n+ 1
b2

. (1.2)

Please notice that µ ∼ N (a, b2) and x̄ ∼ N (µ, 1
n
). If we call 1

variance
as precision, then the

precision of the posterior ( 1
τ2

) equals the summation of the precision of the likelihood ( 1
1/n

= n)

and the precision of the prior ( 1
b2

) (1.2). Furthermore, the mean of the posterior (η) is the

weighted average of sample mean (x̄, MLE!) and the prior mean (a), and the weights are

exactly the precisions (1.1).

As you can see from the posterior distribution N (
a
b2

+nx̄
1
b2

+n
, 1
n+ 1

b2
), it contains not only the in-

formation from the sample x̄ but also the information from the prior a and b2. When n is

relatively small, the prior information play a big role for the estimation of µ. When n is large

(e.g. n goes to infinity), the information from samples dominates the estimation of µ.

Theorem 1.1. If f(x) = c0ker(x) is a density function, and h(x) = d0ker(x) is also a density

function, then c0 = d0, f(x) = h(x) for ∀x.

Proof. On the one hand, f(x) is a pdf ⇒
∫
f(x)dx = 1 ⇒ c0

∫
ker(x)dx = 1 ⇒ c0 = 1∫

ker(x)dx
.

On the other hand,
∫
h(x)dx = 1 ⇒ d0

∫
ker(x)dx = 1 ⇒ d0 = 1∫

ker(x)dx
. Therefore, c0 = d0.
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1.3 A complex situation (normal mixture)

In the last example, we assume samples are i.i.d. from a normal distribution. How about a

distribution with a complicated form? Assume X1, . . . , Xn from

p(x|Θ) = πp(x|µ1, σ
2
1) + (1− π)p(x|µ2, σ

2
2), (1.3)

where Θ = (µ1, µ2, σ
2
1, σ

2
2, π) and p(x|µ, σ2) represents the density function of a normal distri-

bution with mean µ and variance σ2. We also call πp(x|µ1, σ
2
1) + (1− π)p(x|µ2, σ

2
2) the normal

mixture model.

How is each sample Xi drawn from p(x|Θ)? We introduce a latent variable Zi, which represents

the group where Xi is from. When Zi = 1, Xi ∼ N (µ1, σ
2
1); when Zi = 2, Xi ∼ N (µ2, σ

2
2). It

follows that

p(Xi|Θ) =
2∑

k=1

p(Xi, Zi = k|Θ)

=
2∑

k=1

p(Xi|Zi = k|Θ) · p(Zi = k|Θ)

= π · p(Xi|µ1, σ
2
1) + (1− π) · p(Xi|µ2, σ

2
2).

The calculation results in

Xi ∼ p(x|Θ)(1.3)⇔ Zi =

{
1 with probability π

2 with probability 1− π Xi ∼ p(x|µZi , σ2
Zi

)

How to estimate unknown parameters Θ? We first investigate the likelihood function for all

samples.

L(µ1, µ2, σ1, σ2, π|x1, . . . , xn) =
n∏
i=1

p(xi|µ1, µ2, σ1, σ2, π)

=
n∏
i=1

πp(x|µ1, σ
2
1) + (1− π)p(x|µ2, σ

2
2)

To derive the MLE of Θ, we need to search the values at which L(µ1, µ2, σ1, σ2, π|x1, . . . , xn)

attains maximum. Usually, the function L is too complex to be solved analytically. In practice,

we can make use of numerical optimization methods (e.g. gradient descent) or statistical

optimization algorithms (e.g. EM) or sampling algorithm (e.g. MCMC), all of which are

computationally efficient and guaranteed by mathematical theories. Our course will focus on

the last two statistical approaches.
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2 Solution to Nonlinear Equations

2.1 Bisection

Problem: given a univariate and continuous function g(x), we are interested in a value x0 such

that g(x0) = 0. x0 is called zero point of g.

Fact: If f(a) · f(b) < 0 (a < b), due to the continuity of function f , there exists at least one

zero point between a and b.

Solution: based on the fact, we first initialize a(0) and b(0) s.t.(such that) f(a(0)) · f(b(0)) < 0.

(∗) Then we calculate the middle point c(0) of the interval [a(0), b(0)]. There are three cases

now: 1)If f(c(0)) equals 0, we found one zero point and end the calculation procedure; 2) If

f(c(0)) · f(a(0)) < 0, then the zero point must fall in the interval [a(0), c(0)]. In this case, we let

a(1) be a(0) and let b(1) be c(0); 3)If f(c(0)) · f(b(0)) < 0, we let a(1) be c(0) and let b(1) be b(0). In

the last two cases, we obtained a new interval [a(1), b(1)] ⊂ [a(0), b(0)], and then we repeat the

(∗) procedure until b(t) − a(t) is less than a specified tolerance.

Algorithm:

INPUT: continuous and univariate function f and interval [a, b] with f(a)f(b) < 0.

INITIALIZE: a(0) ← a and b(0) ← b, and t← 0.

Repeat

calculate c(t) ← a(t)+b(t)

2
;

If f(c(t)) · f(a(t)) < 0, let a(t+1) ← a(t) and b(t+1) ← c(t);

else if f(c(t)) · f(b(t)) < 0, let a(t+1) ← c(t) and b(t+1) ← b(t);

else break;

t← t+ 1;

Until |a(t) − b(t)| < ε.

OUTPUT: a(t), b(t) in the last iteration. c(t) ← a(t)+b(t)

2
is the final answer.

Figure 1: Figure demonstration for the bisection approach to obtain the zero point of f(x) =

x3 − x− 2.
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Example: find the shortest confidence interval.

Problem: Y is a random variable with known probability density function f(y). Given α0 (e.g.

α0 = 0.95),we want to find the shortest interval [a, b] s.t. P (a ≤ Y ≤ b) = α0 or equivalently∫ b
a
f(y)dy = α0.

Proposition: assume f is unimodal. If one interval [a∗, b∗] satisfies
∫ b∗
a∗
f(y)dy = α0 and

f(a∗) = f(b∗), then for any other interval [a, b] with
∫ b
a
f(y)dy = α0, we have b∗ − a∗ < b− a.

(The proof will be discussed in the tutorial.)

Solution: based on the proposition, the shortest interval [a, b] must satisfy f(a) = f(b). We let

λ be the value of f(a) and f(b). For any fixed λ, we use the bisection method to find aλ and bλ,

respectively, s.t. f(aλ) ≈ λ, f(bλ) ≈ λ and aλ < bλ. Then we numerically calculate the value

of
∫ bλ
aλ
f(y)dy, α(λ). Finally we apply the bisection method to finding the zero point of α(λ)−α0.

Algorithm:

INPUT: continuous, univariate and unimodal function f , α0(e.g. 0.95), tolerance ε(e.g. e-5),

a small value λlw (near zero), and a large value λup (near the maximum of f).

INITIALIZE: λ
(0)
lw ← λlw and λ

(0)
up ← λup, and t← 0.

Repeat

calculate λ
(t)
mid ←

λ
(t)
lw+λ

(t)
up

2
;

Use the bisection method to find one zero point of f(x)− λ(t)
mid = 0, ã ;

Use the bisection method again to find another zero point of f(x)− λ(t)
mid = 0, b̃ ;

(Without loss of generality, we assume ã < b̃.)

Numerically integrate f(x) from ã to b̃, the result is denoted by α(λ
(t)
mid);

If α(λ
(t)
mid) < α0, let λ

(t+1)
lw ← λ

(t)
lw and λ

(t+1)
up ← λ

(t)
mid;

else if α(λ
(t)
mid) > α0, let λ

(t+1)
lw ← λ

(t)
mid and λ

(t+1)
up ← λ

(t)
up ;

else break;

t← t+ 1;

Until |λ(t)
up − λ(t)

lw | < ε
2
.

OUTPUT: [ã, b̃] is the shortest confidence interval with confidence levelα0.

Figure 2: Figure demonstration for the nested bisection approach to find the shortest confidence

interval.
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