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2.2 Functional Iteration

When we search a maximum (or minimum) for a differentiable function h(x), we usually turn

to solving the equation dh(x)
dx

= 0, i.e.

dh(x)

dx
+ x = x. (2.1)

Let f(x) be dh(x)
dx

+ x, the equation (2.1) becomes

f(x) = x. (2.2)

All x∗ solving equation (2.2) (f(x∗) = x∗) are called the fixed points of f(x). Generally, our

problem is that, for a function f which may be non-differentiable, we would like to find a fixed

point of f(x).

Algorithm: Fixed point finding algorithm.

Input: continuous and univariate function f , maximum number of iterations T ,

and tolerance ε; initial point x(0).

Output: x(t) in the last iteration.

1: t← 0

2: repeat

3: let y be x(t);

4: calculate x(t+1) = f(y);

5: t← t+ 1;

6: until |x(t) − y| < ε or t ≥ T .

∗If you have any question about the note, please send an email to xyluo@link.cuhk.edu.hk
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Example: Given a positive number a, find
√
a.

Solution: notice that
√
a is the solution of the equation 1

2
(a
x
−x) = 0. Let f(x) = 1

2
(a
x
−x)+x =

1
2
(a
x

+ x), we implement the algorithm above by x(t+1) = 1
2
( a
x(t)

+ x(t)).

Q Why don’t we take f̃(x) = (a
x
− x) + x = a

x
? We have the following proposition.

Proposition 2.1. Suppose f : I → R, where I is a closed interval such that

(1) f(x) ∈ I for ∀x.

(2) |f(y)− f(x)| ≤ λ|y − x| (Lipschitz continuous) for a constant λ (Lipschitz constant) and

∀x, y ∈ I.

If λ ∈ [0, 1), then

(1) f(x) has a unique fixed point x∞ ∈ I.

(2) the sequence xn = f(xn−1) goes to x∞, ∀x0 ∈ I.

(3) |xn − x∞| ≤ λn

1−λ |x1 − x0|.

Proof.

|xk+1 − xk| = |f(xk)− f(xk−1)|
≤ λ|xk − xk−1| ≤ λ2|xk−1 − xk−2| ≤ . . . ≤ λk|x1 − x0|

∀m > n, |xm − xn| ≤
m−1∑
k=n

|xk+1 − xk| ≤
m−1∑
k=n

λk|x1 − x0| ≤
λn

1− λ
|x1 − x0|

The last inequality indicates that {xn}∞n=1 is a Cauchy sequence. In R, Cauchy sequence implies

the convergence of the sequence, so {xn}∞n=1 converges to a point x∞. Moreover, {xn}∞n=1 ∈ I
and I is closed, so x∞ ∈ I. (2) is proved.

For the equation xn = f(xn−1), let n go to infinity and notice f is continuous, so we have

x∞ = f(x∞). If there exists a y 6= x∞ s.t. y = f(y), then

|y − x∞| = |f(y)− f(x∞)|
≤ λ|y − x∞|
< |y − x∞|.

The last inequality holds, because λ ∈ [0, 1). It is contradictory that |y − x∞| < |y − x∞|, so

x∞ is the unique fixed point of f . We proved (1). (3) can be easily proved, so we omit it.
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Example (continuing) f̃(x) = a
x
, x > 0,

|f̃(y)− f̃(x)| = |a
y
− a

x
| = |a(x− y)

xy
|

= | a
xy
||y − x| = a

xy
|y − x|.

We need to find I = [c, d] such that

(1) f̃(x) ∈ [c, d], ∀x ∈ [c, d];

(2) a
xy
< 1, ∀x ∈ [c, d].

(2) implies that a
c2
< 1, so c >

√
a,
√
a 6∈ I = [c, d]. Therefore, we do not use f̃(x) as the

iteration operator to find
√
a.

As to f(x) = 1
2
(a
x

+ x), x > 0,

|f(y)− f(x)| = |1
2

(
a

y
+ y)− 1

2
(
a

x
+ x)|

=
1

2
|a
y
− a

x
+ (y − x)|

=
1

2
| a
xy

(x− y) + (y − x)| = 1

2
|1− a

xy
||y − x|.

Consider the interval I = [
√

2a
3
,
√

2a],
√
a ∈ I. For ∀x ∈ I , f(x) ∈ I. Additionally, for

∀x, y ∈ I, |1− a
xy
| ≤ 1

2
, so f(x) is Lipschitz continuous on I. Therefore, we can use the iterated

operation xn = 1
2
( a
xn−1

+ xn−1) to approximate
√
a.

For illustration, when a = 2 and x0 = 1.7,

x1 = f̃(x0) =
2

1.7
= 1.176471

x2 = f̃(x1) = x0 = 1.7

x3 = x1

x4 = x2 = x0 . . .

In contrast,

x1 = f(x0) =
1

2
(

2

1.7
+ 1.7) = 1.438235

x2 = f(x1) =
1

2
(

2

1.438235
+ 1.438235) = 1.414414

x3 = 1.414214 . . .

After three iterations, the result is very close to
√

2.
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Q: How to verify f satisfies the two requirements of the proposition?

Lagrange’s Mean Value Theorem: if f is continuous on the closed interval [a, b] and differentiable

on the open interval (a, b), then there exists a point ξ in (a, b) such that

f ′(ξ) =
f(b)− f(a)

b− a
.

Solution(a sufficient condition): first, we have to find an interval [a, b] s.t. f is continuous on

[a, b] and differentiable on (a, b), and f(x) ∈ [a, b] when x ∈ [a, b]. Second, by the mean value

theorem, if there exist a constant λ s.t. 1 > λ ≥ sup
ξ∈(a,b)

|f ′(ξ)|, then |f(x) − f(y)| ≤ λ|x − y|.

When the two conditions hold, the corresponding f satisfies the two requirements of the

proposition.

2.3 Newton’s method

In the section, we provide another method called Newton’s method to find the maximum (or

minimum) for a function f . Assume function f(x) is twice differentiable. Let g(x) be f ′(x).

In most cases, finding optimum of f(x) is equivalent to finding the solution of the equation

g(x) = 0. We will give two perspectives that motivates the Newton method.

1.(See Figure 1) Considering the equation g(x) = 0, from a starting point x(0), we draw

a line that is tangent to g(x) at point (x0, g(x0)). We can regard this line as an locally

approximate curve to g(x). After some simple algebra, this line l0(x) has the expression

l0(x) = g(x0) + g′(x0)(x − x0). As l0(x) is approximate to g(x), the solution of l0(x) = 0

is probably close to the solution of g(x) = 0. By solving l0(x) = 0, we get the solution

x1 = x0 − g(x0)
g′(x0)

. Repeat the procedure, and then we have the general step xn = xn−1 − g(xn−1)
g′(xn−1)

to find the solution of g(x) = 0.

Figure 1: Figure demonstration for the Newton’s method to solve g(x) = 0.
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2. Notice that when we minimize (or maximize) a convex function f(x), the problem is equiv-

alent to finding the solution g(x) = f ′(x) = 0. Plug f ′(x) into xn = xn−1 − g(xn−1)
g′(xn−1)

, we have

xn = xn−1 − f ′(xn−1)
f ′′(xn−1)

. What does that mean? (See Figure 2)when we minimize f(x), given a

starting point x0, the Taylor expansion of f(x) at x0 (omit cubic term and terms with higher

order) is q0(x) = f(x0) + f ′(x0)(x− x0) + f ′′(x0)
2

(x− x0)2. q0(x) can be regarded as an locally

approximate curve to the function f(x). Therefore, the point that minimizes q0(x) is probably

close to the point that minimized f(x). By minimizing q0(x), we get the point x1 = x0 − f ′(x0)
f ′′(x0)

.

Repeat the procedure multiple times, we have the general step: xn = xn−1 − f ′(xn−1)
f ′′(xn−1)

.

Figure 2: Figure demonstration for the Newton’s method to minimize f(x).

2.4 Rate of convergence

Definition 2.1. Assume {xn}∞n=0 → x∗. If ∃p ≥ 1 and α > 0 s.t. limn→∞
‖xn+1−x∞‖
‖xn−x∞‖p = α, then

{xn}∞n=0 is p-order convergence.

• p = 1, linear convergence.

• p > 1, super-linear convergence.

• p = 2, quadratic convergence.

Theorem 2.2. if {xn}∞n=0 super-linearly converges to x∞, then when xn 6= x∞, limn→∞
‖xn+1−xn‖
‖xn−x∞‖ =

1.

Proof.

lim
n→∞

∣∣∣∣‖xn+1 − xn‖
‖xn − x∞‖

− 1

∣∣∣∣ = lim
n→∞

∣∣∣∣‖xn+1 − xn‖ − ‖xn − x∞‖
‖xn − x∞‖

∣∣∣∣
≤ ‖xn+1 − x∞‖
‖xn − x∞‖

= 0.

When a sequence is super-linear convergence, we can use ‖xn+1 − xn‖ < ε as a stopping rule.
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For Newton’s method, let M(x) be x− g(x)
g′(x)

.

M ′(x) = 1− g′(x)

g′(x)
+
g(x)g′′(x)

g′(x)2
=
g(x)g′′(x)

g′(x)2

M ′(x∞) =
g(x∞)g′′(x∞)

g′(x∞)2
= 0

The last equation holds since g(x∞) = 0.

xn − x∞ = M(xn−1)−M(x∞)

= (Taylor expansion)M ′(x∞)(xn−1 − x∞) +
1

2
M ′′(zn)(xn−1 − x∞)2

=
1

2
M ′′(zn)(xn−1 − x∞)2.

It follows that

lim
n→∞

‖xn − x∞‖
‖xn−1 − x∞‖2

= lim
n→∞

1

2
M ′′(zn) =

1

2
M ′′(x∞).

Therefore, Newton sequence is quadratic convergence.

Example: Given a, we need to find 1
a
. Construct g(x) = a− 1

x
, then the Newton iteration is

xn+1 = xn(2− axn).

2.5 Multivariate case

So far we have talked about the application of Newton’s method to the univariate function f(x)

(or g(x)). Next, we will discuss the Newton’s method for a mapping ~F (e.g. ~F : R3 → R3).

We consider the mapping ~F (~x) from a Rm domain D to Rm, where ~x = (x1, x2, . . . , xm) and
~F (~x) = (f1(~x), f2(~x), . . . , fm(~x)). Our goal is to solve the equation system ~F (~x) = ~0.

Given current point ~x(n), we carry out Taylor expansion for fi(~x) (i = 1, . . . ,m) at ~x(n),

fi(~x) ≈ fi(~x
(n)) +

∂fi
∂x1

(~x(n))(x1 − x(n)1 ) + . . .+
∂fi
∂xm

(~x(n))(xm − x(n)m ).

The equation above holds for i = 1, . . . ,m. We put these m equations together, which become

~F (~x) ≈ ~F (~x(n)) + ~F ′(~x(n))(~x− ~x(n)), (2.3)

where the Jacobian matrix of ~F is

F ′(~xn) =


∂f1
∂x1

(~x(n)) · · · ∂f1
∂xm

(~x(n))
...

. . .
...

∂fm
∂x1

(~x(n)) · · · ∂fm
∂xm

(~x(n))

 ,
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and

(~x− ~x(n)) =

 x1 − x(n)1
...

xm − x(n)m

 .

Let the left hand side of equation (2.3) be zero. It yields that

~x(n+1) = ~x(n) − (~F ′(~x(n)))−1 ~F (~x(n)).

The equation above can be decomposed to two steps:

• solve ~F ′(~xn)∆x(n) = −~F (x(n));

• x(n+1) = x(n) + ∆x(n).

Example(calculate MLE): l(Θ|x1, . . . , xn) = logL(Θ|x1, . . . , xn). Under some regular conditions,
ˆTheta solves the following equation,

∂l
∂θ1
...
∂l
∂θm

 =

 0
...

0

 .

By Newton’s method, we iteratively update the Θ(n) according to

Θ(n+1) = Θ(n) −


∂2l

∂θ1∂θ1
(Θ(n)) · · · ∂2l

∂θ1∂θm
(Θ(n))

...
. . .

...
∂2l

∂θm∂θ1
(Θ(n)) · · · ∂2l

∂θm∂θm
(Θ(n))


−1

∂l
∂θ1

(Θ(n))
...

∂l
∂θm

(Θ(n))

 . (2.4)

Example (MLE of Poisson distribution):

f(y1, . . . , yn|λ) =
n∏
i=1

e−λλyi

yi!

l(λ|y1, . . . , yn) =
n∑
i=1

(yi log λ− λ− log yi!)

= (
n∑
i=1

yi) log λ− nλ−
n∑
i=1

log yi!

dl

dλ
=

∑n
i=1 yi
λ

− n.

• MLE direct derivation: λ̂ =
∑n
i=1 yi
n

.

• Newton’s method to solve: λk+1 = λk +
λ2k∑n
i=1 yi

(
∑n
i=1 yi
λk
− n).

Example (Poisson regression):

We have independent count data {y1, . . . , yn}. For each Yi, Yi follows Poi(λi), where log(λi) =
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α+ βxi, α and β are parameters and xi is the fixed covariate. The p.d.f (probability density

function) of yi is f(yi|α, β, xi) = e−e
(α+βxi) (eα+βxi )yi

yi!
. It follows that the joint p.d.f. is

f(y1, y2, . . . , yn|α, β) =
n∏
i=1

e−e
(α+βxi) (eα+βxi)yi

yi!
.

l(α, β) = log f(y1, y2, . . . , yn|α, β) =
n∑
i=1

[−eα+βxi + yi(α + βxi)− log yi!]

∂l

∂α
= −

n∑
i=1

eα+βxi +
n∑
i=1

yi

∂l

∂β
= −

n∑
i=1

xie
α+βxi +

n∑
i=1

xiyi

∂2l

∂α2
= −

n∑
i=1

eα+βxi

∂2l

∂α∂β
= −

n∑
i=1

xie
α+βxi

∂2l

∂β2
= −

n∑
i=1

x2i e
α+βxi .

The Newton step is(
αk+1

βk+1

)
=

(
αk
βk

)
−
(
−
∑n

i=1 e
αk+βkxi −

∑n
i=1 xie

αk+βkxi

−
∑n

i=1 xie
αk+βkxi −

∑n
i=1 x

2
i e
αk+βkxi

)−1( −
∑n

i=1 e
αk+βkxi +

∑n
i=1 yi

−
∑n

i=1 xie
αk+βkxi +

∑n
i=1 xiyi

)
.
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