STAT 3006: Statistical Computing Lecture 2*

15 January

2.2 Functional Iteration

When we search a maximum (or minimum) for a differentiable function $h(x)$, we usually turn to solving the equation $\frac{d h(x)}{d x}=0$, i.e.

$$
\begin{equation*}
\frac{d h(x)}{d x}+x=x \tag{2.1}
\end{equation*}
$$

Let $f(x)$ be $\frac{d h(x)}{d x}+x$, the equation (2.1) becomes

$$
\begin{equation*}
f(x)=x \tag{2.2}
\end{equation*}
$$

All x^{*} solving equation (2.2) $\left(f\left(x^{*}\right)=x^{*}\right)$ are called the fixed points of $f(x)$. Generally, our problem is that, for a function f which may be non-differentiable, we would like to find a fixed point of $f(x)$.

```
Algorithm: Fixed point finding algorithm.
Input: continuous and univariate function \(f\), maximum number of iterations \(T\),
and tolerance \(\epsilon\); initial point \(x^{(0)}\).
Output: \(x^{(t)}\) in the last iteration.
\(1: t \leftarrow 0\)
2: repeat
3: let \(y\) be \(x^{(t)}\);
4: calculate \(x^{(t+1)}=f(y)\);
5: \(t \leftarrow t+1\);
6: until \(\left|x^{(t)}-y\right|<\epsilon\) or \(t \geq T\).
```

[^0]Example: Given a positive number a, find \sqrt{a}.
Solution: notice that \sqrt{a} is the solution of the equation $\frac{1}{2}\left(\frac{a}{x}-x\right)=0$. Let $f(x)=\frac{1}{2}\left(\frac{a}{x}-x\right)+x=$ $\frac{1}{2}\left(\frac{a}{x}+x\right)$, we implement the algorithm above by $x^{(t+1)}=\frac{1}{2}\left(\frac{a}{x^{(t)}}+x^{(t)}\right)$.

Q Why don't we take $\tilde{f}(x)=\left(\frac{a}{x}-x\right)+x=\frac{a}{x}$? We have the following proposition.

Proposition 2.1. Suppose $f: I \rightarrow \mathbb{R}$, where I is a closed interval such that
(1) $f(x) \in I$ for $\forall x$.
(2) $|f(y)-f(x)| \leq \lambda|y-x|$ (Lipschitz continuous) for a constant λ (Lipschitz constant) and $\forall x, y \in I$.

If $\lambda \in[0,1)$, then
(1) $f(x)$ has a unique fixed point $x_{\infty} \in I$.
(2) the sequence $x_{n}=f\left(x_{n-1}\right)$ goes to $x_{\infty}, \forall x_{0} \in I$.
(3) $\left|x_{n}-x_{\infty}\right| \leq \frac{\lambda^{n}}{1-\lambda}\left|x_{1}-x_{0}\right|$.

Proof.

$$
\begin{aligned}
\left|x_{k+1}-x_{k}\right| & =\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right| \\
& \leq \lambda\left|x_{k}-x_{k-1}\right| \leq \lambda^{2}\left|x_{k-1}-x_{k-2}\right| \leq \ldots \leq \lambda^{k}\left|x_{1}-x_{0}\right| \\
\forall m>n,\left|x_{m}-x_{n}\right| & \leq \sum_{k=n}^{m-1}\left|x_{k+1}-x_{k}\right| \leq \sum_{k=n}^{m-1} \lambda^{k}\left|x_{1}-x_{0}\right| \leq \frac{\lambda^{n}}{1-\lambda}\left|x_{1}-x_{0}\right|
\end{aligned}
$$

The last inequality indicates that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence. In \mathbb{R}, Cauchy sequence implies the convergence of the sequence, so $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to a point x_{∞}. Moreover, $\left\{x_{n}\right\}_{n=1}^{\infty} \in I$ and I is closed, so $x_{\infty} \in I$. (2) is proved.

For the equation $x_{n}=f\left(x_{n-1}\right)$, let n go to infinity and notice f is continuous, so we have $x_{\infty}=f\left(x_{\infty}\right)$. If there exists a $y \neq x_{\infty}$ s.t. $y=f(y)$, then

$$
\begin{aligned}
\left|y-x_{\infty}\right| & =\left|f(y)-f\left(x_{\infty}\right)\right| \\
& \leq \lambda\left|y-x_{\infty}\right| \\
& <\left|y-x_{\infty}\right| .
\end{aligned}
$$

The last inequality holds, because $\lambda \in[0,1)$. It is contradictory that $\left|y-x_{\infty}\right|<\left|y-x_{\infty}\right|$, so x_{∞} is the unique fixed point of f. We proved (1). (3) can be easily proved, so we omit it.

Example (continuing) $\tilde{f}(x)=\frac{a}{x}, x>0$,

$$
\begin{aligned}
|\tilde{f}(y)-\tilde{f}(x)| & =\left|\frac{a}{y}-\frac{a}{x}\right|=\left|\frac{a(x-y)}{x y}\right| \\
& =\left|\frac{a}{x y}\right||y-x|=\frac{a}{x y}|y-x| .
\end{aligned}
$$

We need to find $I=[c, d]$ such that
(1) $\tilde{f}(x) \in[c, d], \forall x \in[c, d]$;
(2) $\frac{a}{x y}<1, \forall x \in[c, d]$.
(2) implies that $\frac{a}{c^{2}}<1$, so $c>\sqrt{a}, \sqrt{a} \notin I=[c, d]$. Therefore, we do not use $\tilde{f}(x)$ as the iteration operator to find \sqrt{a}.

As to $f(x)=\frac{1}{2}\left(\frac{a}{x}+x\right), x>0$,

$$
\begin{aligned}
|f(y)-f(x)| & =\left|\frac{1}{2}\left(\frac{a}{y}+y\right)-\frac{1}{2}\left(\frac{a}{x}+x\right)\right| \\
& =\frac{1}{2}\left|\frac{a}{y}-\frac{a}{x}+(y-x)\right| \\
& =\frac{1}{2}\left|\frac{a}{x y}(x-y)+(y-x)\right|=\frac{1}{2}\left|1-\frac{a}{x y}\right||y-x| .
\end{aligned}
$$

Consider the interval $I=\left[\sqrt{\frac{2 a}{3}}, \sqrt{2 a}\right], \sqrt{a} \in I$. For $\forall x \in I, f(x) \in I$. Additionally, for $\forall x, y \in I,\left|1-\frac{a}{x y}\right| \leq \frac{1}{2}$, so $f(x)$ is Lipschitz continuous on I. Therefore, we can use the iterated operation $x_{n}=\frac{1}{2}\left(\frac{a}{x_{n-1}}+x_{n-1}\right)$ to approximate \sqrt{a}.

For illustration, when $a=2$ and $x_{0}=1.7$,

$$
\begin{aligned}
x_{1} & =\tilde{f}\left(x_{0}\right)=\frac{2}{1.7}=1.176471 \\
x_{2} & =\tilde{f}\left(x_{1}\right)=x_{0}=1.7 \\
x_{3} & =x_{1} \\
x_{4} & =x_{2}=x_{0} \ldots
\end{aligned}
$$

In contrast,

$$
\begin{aligned}
& x_{1}=f\left(x_{0}\right)=\frac{1}{2}\left(\frac{2}{1.7}+1.7\right)=1.438235 \\
& x_{2}=f\left(x_{1}\right)=\frac{1}{2}\left(\frac{2}{1.438235}+1.438235\right)=1.414414 \\
& x_{3}=1.414214 \ldots
\end{aligned}
$$

After three iterations, the result is very close to $\sqrt{2}$.

Q: How to verify f satisfies the two requirements of the proposition?
Lagrange's Mean Value Theorem: if f is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b), then there exists a point ξ in (a, b) such that

$$
f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a}
$$

Solution(a sufficient condition): first, we have to find an interval $[a, b]$ s.t. f is continuous on $[a, b]$ and differentiable on (a, b), and $f(x) \in[a, b]$ when $x \in[a, b]$. Second, by the mean value theorem, if there exist a constant λ s.t. $1>\lambda \geq \sup _{\xi \in(a, b)}\left|f^{\prime}(\xi)\right|$, then $|f(x)-f(y)| \leq \lambda|x-y|$. When the two conditions hold, the corresponding f satisfies the two requirements of the proposition.

2.3 Newton's method

In the section, we provide another method called Newton's method to find the maximum (or minimum) for a function f. Assume function $f(x)$ is twice differentiable. Let $g(x)$ be $f^{\prime}(x)$. In most cases, finding optimum of $f(x)$ is equivalent to finding the solution of the equation $g(x)=0$. We will give two perspectives that motivates the Newton method.
1.(See Figure 1) Considering the equation $g(x)=0$, from a starting point $x^{(0)}$, we draw a line that is tangent to $g(x)$ at point $\left(x_{0}, g\left(x_{0}\right)\right)$. We can regard this line as an locally approximate curve to $g(x)$. After some simple algebra, this line $l_{0}(x)$ has the expression $l_{0}(x)=g\left(x_{0}\right)+g^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$. As $l_{0}(x)$ is approximate to $g(x)$, the solution of $l_{0}(x)=0$ is probably close to the solution of $g(x)=0$. By solving $l_{0}(x)=0$, we get the solution $x_{1}=x_{0}-\frac{g\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)}$. Repeat the procedure, and then we have the general step $x_{n}=x_{n-1}-\frac{g\left(x_{n-1}\right)}{g^{\prime}\left(x_{n-1}\right)}$ to find the solution of $g(x)=0$.

Figure 1: Figure demonstration for the Newton's method to solve $g(x)=0$.
2. Notice that when we minimize (or maximize) a convex function $f(x)$, the problem is equivalent to finding the solution $g(x)=f^{\prime}(x)=0$. Plug $f^{\prime}(x)$ into $x_{n}=x_{n-1}-\frac{g\left(x_{n-1}\right)}{g^{\prime}\left(x_{n-1}\right)}$, we have $x_{n}=x_{n-1}-\frac{f^{\prime}\left(x_{n-1}\right)}{f^{\prime \prime}\left(x_{n-1}\right)}$. What does that mean? (See Figure 2) when we minimize $f(x)$, given a starting point x_{0}, the Taylor expansion of $f(x)$ at x_{0} (omit cubic term and terms with higher order) is $q_{0}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2} . q_{0}(x)$ can be regarded as an locally approximate curve to the function $f(x)$. Therefore, the point that minimizes $q_{0}(x)$ is probably close to the point that minimized $f(x)$. By minimizing $q_{0}(x)$, we get the point $x_{1}=x_{0}-\frac{f^{\prime}\left(x_{0}\right)}{f^{\prime \prime}\left(x_{0}\right)}$. Repeat the procedure multiple times, we have the general step: $x_{n}=x_{n-1}-\frac{f^{\prime}\left(x_{n-1}\right)}{f^{\prime \prime}\left(x_{n-1}\right)}$.

Figure 2: Figure demonstration for the Newton's method to minimize $f(x)$.

2.4 Rate of convergence

Definition 2.1. Assume $\left\{x_{n}\right\}_{n=0}^{\infty} \rightarrow x^{*}$. If $\exists p \geq 1$ and $\alpha>0$ s.t. $\lim _{n \rightarrow \infty} \frac{\left\|x_{n+1}-x_{\infty}\right\|}{\left\|x_{n}-x_{\infty}\right\|^{p}}=\alpha$, then $\left\{x_{n}\right\}_{n=0}^{\infty}$ is p-order convergence.

- $\mathrm{p}=1$, linear convergence.
- $\mathrm{p}>1$, super-linear convergence.
- $\mathrm{p}=2$, quadratic convergence.

Theorem 2.2. if $\left\{x_{n}\right\}_{n=0}^{\infty}$ super-linearly converges to x_{∞}, then when $x_{n} \neq x_{\infty}, \lim _{n \rightarrow \infty} \frac{\left\|x_{n+1}-x_{n}\right\|}{\left\|x_{n}-x_{\infty}\right\|}=$ 1.

Proof.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{\left\|x_{n+1}-x_{n}\right\|}{\left\|x_{n}-x_{\infty}\right\|}-1\right| & =\lim _{n \rightarrow \infty}\left|\frac{\left\|x_{n+1}-x_{n}\right\|-\left\|x_{n}-x_{\infty}\right\|}{\left\|x_{n}-x_{\infty}\right\|}\right| \\
& \leq \frac{\left\|x_{n+1}-x_{\infty}\right\|}{\left\|x_{n}-x_{\infty}\right\|}=0
\end{aligned}
$$

When a sequence is super-linear convergence, we can use $\left\|x_{n+1}-x_{n}\right\|<\epsilon$ as a stopping rule.

For Newton's method, let $M(x)$ be $x-\frac{g(x)}{g^{\prime}(x)}$.

$$
\begin{aligned}
M^{\prime}(x) & =1-\frac{g^{\prime}(x)}{g^{\prime}(x)}+\frac{g(x) g^{\prime \prime}(x)}{g^{\prime}(x)^{2}}=\frac{g(x) g^{\prime \prime}(x)}{g^{\prime}(x)^{2}} \\
M^{\prime}\left(x_{\infty}\right) & =\frac{g\left(x_{\infty}\right) g^{\prime \prime}\left(x_{\infty}\right)}{g^{\prime}\left(x_{\infty}\right)^{2}}=0
\end{aligned}
$$

The last equation holds since $g\left(x_{\infty}\right)=0$.

$$
\begin{aligned}
x_{n}-x_{\infty} & =M\left(x_{n-1}\right)-M\left(x_{\infty}\right) \\
& =(\text { Taylor expansion }) M^{\prime}\left(x_{\infty}\right)\left(x_{n-1}-x_{\infty}\right)+\frac{1}{2} M^{\prime \prime}\left(z_{n}\right)\left(x_{n-1}-x_{\infty}\right)^{2} \\
& =\frac{1}{2} M^{\prime \prime}\left(z_{n}\right)\left(x_{n-1}-x_{\infty}\right)^{2} .
\end{aligned}
$$

It follows that

$$
\lim _{n \rightarrow \infty} \frac{\left\|x_{n}-x_{\infty}\right\|}{\left\|x_{n-1}-x_{\infty}\right\|^{2}}=\lim _{n \rightarrow \infty} \frac{1}{2} M^{\prime \prime}\left(z_{n}\right)=\frac{1}{2} M^{\prime \prime}\left(x_{\infty}\right)
$$

Therefore, Newton sequence is quadratic convergence.
Example: Given a, we need to find $\frac{1}{a}$. Construct $g(x)=a-\frac{1}{x}$, then the Newton iteration is $x_{n+1}=x_{n}\left(2-a x_{n}\right)$.

2.5 Multivariate case

So far we have talked about the application of Newton's method to the univariate function $f(x)$ (or $g(x)$). Next, we will discuss the Newton's method for a mapping \vec{F} (e.g. $\vec{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$). We consider the mapping $\vec{F}(\vec{x})$ from a \mathbb{R}^{m} domain D to \mathbb{R}^{m}, where $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ and $\vec{F}(\vec{x})=\left(f_{1}(\vec{x}), f_{2}(\vec{x}), \ldots, f_{m}(\vec{x})\right)$. Our goal is to solve the equation system $\vec{F}(\vec{x})=\overrightarrow{0}$.

Given current point $\vec{x}^{(n)}$, we carry out Taylor expansion for $f_{i}(\vec{x})(i=1, \ldots, m)$ at $\vec{x}^{(n)}$,

$$
f_{i}(\vec{x}) \approx f_{i}\left(\vec{x}^{(n)}\right)+\frac{\partial f_{i}}{\partial x_{1}}\left(\vec{x}^{(n)}\right)\left(x_{1}-x_{1}^{(n)}\right)+\ldots+\frac{\partial f_{i}}{\partial x_{m}}\left(\vec{x}^{(n)}\right)\left(x_{m}-x_{m}^{(n)}\right) .
$$

The equation above holds for $i=1, \ldots, m$. We put these m equations together, which become

$$
\begin{equation*}
\vec{F}(\vec{x}) \approx \vec{F}\left(\vec{x}^{(n)}\right)+\vec{F}^{\prime}\left(\vec{x}^{(n)}\right)\left(\vec{x}-\vec{x}^{(n)}\right), \tag{2.3}
\end{equation*}
$$

where the Jacobian matrix of \vec{F} is

$$
F^{\prime}\left(\vec{x}_{n}\right)=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}\left(\vec{x}^{(n)}\right) & \cdots & \frac{\partial f_{1}}{\partial x_{m}}\left(\vec{x}^{(n)}\right) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}\left(\vec{x}^{(n)}\right) & \cdots & \frac{\partial f_{m}}{\partial x_{m}}\left(\vec{x}^{(n)}\right)
\end{array}\right)
$$

and

$$
\left(\vec{x}-\vec{x}^{(n)}\right)=\left(\begin{array}{c}
x_{1}-x_{1}^{(n)} \\
\vdots \\
x_{m}-x_{m}^{(n)}
\end{array}\right)
$$

Let the left hand side of equation (2.3) be zero. It yields that

$$
\vec{x}^{(n+1)}=\vec{x}^{(n)}-\left(\vec{F}^{\prime}\left(\vec{x}^{(n)}\right)\right)^{-1} \vec{F}\left(\vec{x}^{(n)}\right)
$$

The equation above can be decomposed to two steps:

- solve $\vec{F}^{\prime}\left(\vec{x}_{n}\right) \Delta x^{(n)}=-\vec{F}\left(x^{(n)}\right) ;$
- $x^{(n+1)}=x^{(n)}+\Delta x^{(n)}$.

Example(calculate MLE): $l\left(\Theta \mid x_{1}, \ldots, x_{n}\right)=\log L\left(\Theta \mid x_{1}, \ldots, x_{n}\right)$. Under some regular conditions, Theta solves the following equation,

$$
\left(\begin{array}{c}
\frac{\partial l}{\partial \theta_{1}} \\
\vdots \\
\frac{\partial l}{\partial \theta_{m}}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)
$$

By Newton's method, we iteratively update the $\Theta^{(n)}$ according to

$$
\Theta^{(n+1)}=\Theta^{(n)}-\left(\begin{array}{ccc}
\frac{\partial^{2} l}{\partial \theta_{1} \partial \theta_{1}}\left(\Theta^{(n)}\right) & \cdots & \frac{\partial^{2} l}{\partial \theta_{1} \partial \theta_{m}}\left(\Theta^{(n)}\right) \tag{2.4}\\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} l}{\partial \theta_{m} \partial \theta_{1}}\left(\Theta^{(n)}\right) & \cdots & \frac{\partial^{2} l}{\partial \theta_{m} \partial \theta_{m}}\left(\Theta^{(n)}\right)
\end{array}\right)^{-1}\left(\begin{array}{c}
\frac{\partial l}{\partial \theta_{1}}\left(\Theta^{(n)}\right) \\
\vdots \\
\frac{\partial l}{\partial \theta_{m}}\left(\Theta^{(n)}\right)
\end{array}\right)
$$

Example (MLE of Poisson distribution):

$$
\begin{aligned}
f\left(y_{1}, \ldots, y_{n} \mid \lambda\right) & =\prod_{i=1}^{n} \frac{e^{-\lambda} \lambda^{y_{i}}}{y_{i}!} \\
l\left(\lambda \mid y_{1}, \ldots, y_{n}\right) & =\sum_{i=1}^{n}\left(y_{i} \log \lambda-\lambda-\log y_{i}!\right) \\
& =\left(\sum_{i=1}^{n} y_{i}\right) \log \lambda-n \lambda-\sum_{i=1}^{n} \log y_{i}! \\
\frac{d l}{d \lambda} & =\frac{\sum_{i=1}^{n} y_{i}}{\lambda}-n .
\end{aligned}
$$

- MLE direct derivation: $\hat{\lambda}=\frac{\sum_{i=1}^{n} y_{i}}{n}$.
- Newton's method to solve: $\lambda_{k+1}=\lambda_{k}+\frac{\lambda_{k}^{2}}{\sum_{i=1}^{n} y_{i}}\left(\frac{\sum_{i=1}^{n} y_{i}}{\lambda_{k}}-n\right)$.

Example (Poisson regression):
We have independent count data $\left\{y_{1}, \ldots, y_{n}\right\}$. For each Y_{i}, Y_{i} follows $\operatorname{Poi}\left(\lambda_{i}\right)$, where $\log \left(\lambda_{i}\right)=$
$\alpha+\beta x_{i}, \alpha$ and β are parameters and x_{i} is the fixed covariate. The p.d.f (probability density function) of y_{i} is $f\left(y_{i} \mid \alpha, \beta, x_{i}\right)=e^{-e^{\left(\alpha+\beta x_{i}\right)}} \frac{\left(e^{\alpha+\beta x_{i}}\right)^{y_{i}}}{y_{i}!}$. It follows that the joint p.d.f. is

$$
\begin{aligned}
f\left(y_{1}, y_{2}, \ldots, y_{n} \mid \alpha, \beta\right)=\prod_{i=1}^{n} e^{-e^{\left(\alpha+\beta x_{i}\right)}} \frac{\left(e^{\alpha+\beta x_{i}}\right)^{y_{i}}}{y_{i}!} \\
l(\alpha, \beta)=\log f\left(y_{1}, y_{2}, \ldots, y_{n} \mid \alpha, \beta\right)=\sum_{i=1}^{n}\left[-e^{\alpha+\beta x_{i}}+y_{i}\left(\alpha+\beta x_{i}\right)-\log y_{i}!\right] \\
\frac{\partial l}{\partial \alpha}=-\sum_{i=1}^{n} e^{\alpha+\beta x_{i}}+\sum_{i=1}^{n} y_{i} \\
\frac{\partial l}{\partial \beta}=-\sum_{i=1}^{n} x_{i} e^{\alpha+\beta x_{i}}+\sum_{i=1}^{n} x_{i} y_{i} \\
\frac{\partial^{2} l}{\partial \alpha^{2}}=-\sum_{i=1}^{n} e^{\alpha+\beta x_{i}} \\
\frac{\partial^{2} l}{\partial \alpha \partial \beta}=-\sum_{i=1}^{n} x_{i} e^{\alpha+\beta x_{i}} \\
\frac{\partial^{2} l}{\partial \beta^{2}}=-\sum_{i=1}^{n} x_{i}^{2} e^{\alpha+\beta x_{i}} .
\end{aligned}
$$

The Newton step is

$$
\binom{\alpha_{k+1}}{\beta_{k+1}}=\binom{\alpha_{k}}{\beta_{k}}-\left(\begin{array}{cc}
-\sum_{i=1}^{n} e^{\alpha_{k}+\beta_{k} x_{i}} & -\sum_{i=1}^{n} x_{i} e^{\alpha_{k}+\beta_{k} x_{i}} \\
-\sum_{i=1}^{n} x_{i} e^{\alpha_{k}+\beta_{k} x_{i}} & -\sum_{i=1}^{n} x_{i}^{2} e^{\alpha_{k}+\beta_{k} x_{i}}
\end{array}\right)^{-1}\binom{-\sum_{i=1}^{n} e^{\alpha_{k}+\beta_{k} x_{i}}+\sum_{i=1}^{n} y_{i}}{-\sum_{i=1}^{n} x_{i} e^{\alpha_{k}+\beta_{k} x_{i}}+\sum_{i=1}^{n} x_{i} y_{i}}
$$

[^0]: *If you have any question about the note, please send an email to xyluo@link.cuhk.edu.hk

