STAT 3006: Statistical Computing Lecture 2^*

15 January

Functional Iteration 2.2

When we search a maximum (or minimum) for a differentiable function h(x), we usually turn to solving the equation $\frac{dh(x)}{dx} = 0$, i.e.

$$\frac{dh(x)}{dx} + x = x. \tag{2.1}$$

Let f(x) be $\frac{dh(x)}{dx} + x$, the equation (2.1) becomes

$$f(x) = x. (2.2)$$

All x^* solving equation (2.2) $(f(x^*) = x^*)$ are called the *fixed points* of f(x). Generally, our problem is that, for a function f which may be non-differentiable, we would like to find a *fixed* point of f(x).

	Algorithm:	Fixed	point	finding	algorithm.
--	------------	-------	-------	---------	------------

Input: continuous and univariate function f, maximum number of iterations T, and tolerance ϵ ; initial point $x^{(0)}$. **Output**: $x^{(t)}$ in the last iteration.

```
1{:} t \gets 0
```

```
2: repeat
```

```
3: let y be x^{(t)};
```

```
4: calculate x^{(t+1)} = f(y);
```

```
5: t \leftarrow t + 1;
```

6: **until** $|x^{(t)} - y| < \epsilon \text{ or } t \ge T$.

^{*}If you have any question about the note, please send an email to xyluo@link.cuhk.edu.hk

Example: Given a positive number a, find \sqrt{a} .

Solution: notice that \sqrt{a} is the solution of the equation $\frac{1}{2}(\frac{a}{x}-x) = 0$. Let $f(x) = \frac{1}{2}(\frac{a}{x}-x) + x = \frac{1}{2}(\frac{a}{x}+x)$, we implement the algorithm above by $x^{(t+1)} = \frac{1}{2}(\frac{a}{x^{(t)}}+x^{(t)})$.

Q Why don't we take $\tilde{f}(x) = (\frac{a}{x} - x) + x = \frac{a}{x}$? We have the following proposition.

Proposition 2.1. Suppose $f: I \to \mathbb{R}$, where I is a closed interval such that

- (1) $f(x) \in I$ for $\forall x$.
- (2) $|f(y) f(x)| \le \lambda |y x|$ (Lipschitz continuous) for a constant λ (Lipschitz constant) and $\forall x, y \in I$.

If $\lambda \in [0,1)$, then

- (1) f(x) has a unique fixed point $x_{\infty} \in I$.
- (2) the sequence $x_n = f(x_{n-1})$ goes to $x_{\infty}, \forall x_0 \in I$.
- (3) $|x_n x_{\infty}| \le \frac{\lambda^n}{1 \lambda} |x_1 x_0|.$

Proof.

$$|x_{k+1} - x_k| = |f(x_k) - f(x_{k-1})|$$

$$\leq \lambda |x_k - x_{k-1}| \leq \lambda^2 |x_{k-1} - x_{k-2}| \leq \dots \leq \lambda^k |x_1 - x_0|$$

$$\forall m > n, \ |x_m - x_n| \leq \sum_{k=n}^{m-1} |x_{k+1} - x_k| \leq \sum_{k=n}^{m-1} \lambda^k |x_1 - x_0| \leq \frac{\lambda^n}{1 - \lambda} |x_1 - x_0|$$

The last inequality indicates that $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence. In \mathbb{R} , Cauchy sequence implies the convergence of the sequence, so $\{x_n\}_{n=1}^{\infty}$ converges to a point x_{∞} . Moreover, $\{x_n\}_{n=1}^{\infty} \in I$ and I is closed, so $x_{\infty} \in I$. (2) is proved.

For the equation $x_n = f(x_{n-1})$, let n go to infinity and notice f is continuous, so we have $x_{\infty} = f(x_{\infty})$. If there exists a $y \neq x_{\infty}$ s.t. y = f(y), then

$$|y - x_{\infty}| = |f(y) - f(x_{\infty})|$$

$$\leq \lambda |y - x_{\infty}|$$

$$< |y - x_{\infty}|.$$

The last inequality holds, because $\lambda \in [0, 1)$. It is contradictory that $|y - x_{\infty}| < |y - x_{\infty}|$, so x_{∞} is the unique fixed point of f. We proved (1). (3) can be easily proved, so we omit it.

Example (continuing) $\tilde{f}(x) = \frac{a}{x}, x > 0,$

$$\begin{split} |\tilde{f}(y) - \tilde{f}(x)| &= |\frac{a}{y} - \frac{a}{x}| = |\frac{a(x-y)}{xy}| \\ &= |\frac{a}{xy}||y-x| = \frac{a}{xy}|y-x|. \end{split}$$

We need to find I = [c, d] such that

- (1) $\tilde{f}(x) \in [c,d], \forall x \in [c,d];$
- (2) $\frac{a}{xy} < 1, \forall x \in [c,d].$

(2) implies that $\frac{a}{c^2} < 1$, so $c > \sqrt{a}$, $\sqrt{a} \notin I = [c, d]$. Therefore, we do not use $\tilde{f}(x)$ as the iteration operator to find \sqrt{a} .

As to $f(x) = \frac{1}{2}(\frac{a}{x} + x), x > 0$,

$$\begin{split} |f(y) - f(x)| &= \left|\frac{1}{2}(\frac{a}{y} + y) - \frac{1}{2}(\frac{a}{x} + x)\right| \\ &= \frac{1}{2}\left|\frac{a}{y} - \frac{a}{x} + (y - x)\right| \\ &= \frac{1}{2}\left|\frac{a}{xy}(x - y) + (y - x)\right| = \frac{1}{2}|1 - \frac{a}{xy}||y - x| \end{split}$$

Consider the interval $I = \left[\sqrt{\frac{2a}{3}}, \sqrt{2a}\right], \sqrt{a} \in I$. For $\forall x \in I$, $f(x) \in I$. Additionally, for $\forall x, y \in I, |1 - \frac{a}{xy}| \leq \frac{1}{2}$, so f(x) is Lipschitz continuous on I. Therefore, we can use the iterated operation $x_n = \frac{1}{2}(\frac{a}{x_{n-1}} + x_{n-1})$ to approximate \sqrt{a} .

For illustration, when a = 2 and $x_0 = 1.7$,

$$x_1 = \tilde{f}(x_0) = \frac{2}{1.7} = 1.176471$$

$$x_2 = \tilde{f}(x_1) = x_0 = 1.7$$

$$x_3 = x_1$$

$$x_4 = x_2 = x_0 \dots$$

In contrast,

$$x_1 = f(x_0) = \frac{1}{2}(\frac{2}{1.7} + 1.7) = 1.438235$$

$$x_2 = f(x_1) = \frac{1}{2}(\frac{2}{1.438235} + 1.438235) = 1.414414$$

$$x_3 = 1.414214...$$

After three iterations, the result is very close to $\sqrt{2}$.

Q: How to verify f satisfies the two requirements of the proposition?

Lagrange's Mean Value Theorem: if f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there exists a point ξ in (a, b) such that

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

Solution(a sufficient condition): first, we have to find an interval [a, b] s.t. f is continuous on [a, b] and differentiable on (a, b), and $f(x) \in [a, b]$ when $x \in [a, b]$. Second, by the mean value theorem, if there exist a constant λ s.t. $1 > \lambda \ge \sup_{\xi \in (a,b)} |f'(\xi)|$, then $|f(x) - f(y)| \le \lambda |x - y|$. When the two conditions hold, the corresponding f satisfies the two requirements of the proposition.

2.3 Newton's method

In the section, we provide another method called Newton's method to find the maximum (or minimum) for a function f. Assume function f(x) is twice differentiable. Let g(x) be f'(x). In most cases, finding optimum of f(x) is equivalent to finding the solution of the equation g(x) = 0. We will give two perspectives that motivates the Newton method.

1.(See Figure 1) Considering the equation g(x) = 0, from a starting point $x^{(0)}$, we draw a line that is tangent to g(x) at point $(x_0, g(x_0))$. We can regard this line as an locally approximate curve to g(x). After some simple algebra, this line $l_0(x)$ has the expression $l_0(x) = g(x_0) + g'(x_0)(x - x_0)$. As $l_0(x)$ is approximate to g(x), the solution of $l_0(x) = 0$ is probably close to the solution of g(x) = 0. By solving $l_0(x) = 0$, we get the solution $x_1 = x_0 - \frac{g(x_0)}{g'(x_0)}$. Repeat the procedure, and then we have the general step $x_n = x_{n-1} - \frac{g(x_{n-1})}{g'(x_{n-1})}$ to find the solution of q(x) = 0.

Figure 1: Figure demonstration for the Newton's method to solve g(x) = 0.

2. Notice that when we minimize (or maximize) a convex function f(x), the problem is equivalent to finding the solution g(x) = f'(x) = 0. Plug f'(x) into $x_n = x_{n-1} - \frac{g(x_{n-1})}{g'(x_{n-1})}$, we have $x_n = x_{n-1} - \frac{f'(x_{n-1})}{f''(x_{n-1})}$. What does that mean? (See Figure 2)when we minimize f(x), given a starting point x_0 , the Taylor expansion of f(x) at x_0 (omit cubic term and terms with higher order) is $q_0(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2$. $q_0(x)$ can be regarded as an locally approximate curve to the function f(x). Therefore, the point that minimizes $q_0(x)$ is probably close to the point that minimized f(x). By minimizing $q_0(x)$, we get the point $x_1 = x_0 - \frac{f'(x_0)}{f''(x_0)}$. Repeat the procedure multiple times, we have the general step: $x_n = x_{n-1} - \frac{f'(x_{n-1})}{f''(x_{n-1})}$.

Figure 2: Figure demonstration for the Newton's method to minimize f(x).

2.4 Rate of convergence

Definition 2.1. Assume $\{x_n\}_{n=0}^{\infty} \to x^*$. If $\exists p \ge 1$ and $\alpha > 0$ s.t. $\lim_{n\to\infty} \frac{\|x_{n+1}-x_{\infty}\|}{\|x_n-x_{\infty}\|^p} = \alpha$, then $\{x_n\}_{n=0}^{\infty}$ is *p*-order convergence.

- p = 1, linear convergence.
- p > 1, super-linear convergence.
- p = 2, quadratic convergence.

Theorem 2.2. if $\{x_n\}_{n=0}^{\infty}$ super-linearly converges to x_{∞} , then when $x_n \neq x_{\infty}$, $\lim_{n\to\infty} \frac{\|x_{n+1}-x_n\|}{\|x_n-x_{\infty}\|} = 1$.

Proof.

$$\lim_{n \to \infty} \left| \frac{\|x_{n+1} - x_n\|}{\|x_n - x_\infty\|} - 1 \right| = \lim_{n \to \infty} \left| \frac{\|x_{n+1} - x_n\| - \|x_n - x_\infty\|}{\|x_n - x_\infty\|} \right| \le \frac{\|x_{n+1} - x_\infty\|}{\|x_n - x_\infty\|} = 0.$$

When a sequence is super-linear convergence, we can use $||x_{n+1} - x_n|| < \epsilon$ as a stopping rule.

For Newton's method, let M(x) be $x - \frac{g(x)}{g'(x)}$.

$$M'(x) = 1 - \frac{g'(x)}{g'(x)} + \frac{g(x)g''(x)}{g'(x)^2} = \frac{g(x)g''(x)}{g'(x)^2}$$
$$M'(x_{\infty}) = \frac{g(x_{\infty})g''(x_{\infty})}{g'(x_{\infty})^2} = 0$$

The last equation holds since $g(x_{\infty}) = 0$.

$$\begin{aligned} x_n - x_\infty &= M(x_{n-1}) - M(x_\infty) \\ &= (Taylor \ expansion)M'(x_\infty)(x_{n-1} - x_\infty) + \frac{1}{2}M''(z_n)(x_{n-1} - x_\infty)^2 \\ &= \frac{1}{2}M''(z_n)(x_{n-1} - x_\infty)^2. \end{aligned}$$

It follows that

$$\lim_{n \to \infty} \frac{\|x_n - x_\infty\|}{\|x_{n-1} - x_\infty\|^2} = \lim_{n \to \infty} \frac{1}{2} M''(z_n) = \frac{1}{2} M''(x_\infty)$$

Therefore, Newton sequence is quadratic convergence.

Example: Given a, we need to find $\frac{1}{a}$. Construct $g(x) = a - \frac{1}{x}$, then the Newton iteration is $x_{n+1} = x_n(2 - ax_n)$.

2.5 Multivariate case

So far we have talked about the application of Newton's method to the univariate function f(x)(or g(x)). Next, we will discuss the Newton's method for a mapping \vec{F} (e.g. $\vec{F} : \mathbb{R}^3 \to \mathbb{R}^3$). We consider the mapping $\vec{F}(\vec{x})$ from a \mathbb{R}^m domain D to \mathbb{R}^m , where $\vec{x} = (x_1, x_2, \ldots, x_m)$ and $\vec{F}(\vec{x}) = (f_1(\vec{x}), f_2(\vec{x}), \ldots, f_m(\vec{x}))$. Our goal is to solve the equation system $\vec{F}(\vec{x}) = \vec{0}$.

Given current point $\vec{x}^{(n)}$, we carry out Taylor expansion for $f_i(\vec{x})$ (i = 1, ..., m) at $\vec{x}^{(n)}$,

$$f_i(\vec{x}) \approx f_i(\vec{x}^{(n)}) + \frac{\partial f_i}{\partial x_1}(\vec{x}^{(n)})(x_1 - x_1^{(n)}) + \ldots + \frac{\partial f_i}{\partial x_m}(\vec{x}^{(n)})(x_m - x_m^{(n)}).$$

The equation above holds for i = 1, ..., m. We put these m equations together, which become

$$\vec{F}(\vec{x}) \approx \vec{F}(\vec{x}^{(n)}) + \vec{F}'(\vec{x}^{(n)})(\vec{x} - \vec{x}^{(n)}),$$
(2.3)

where the Jacobian matrix of \vec{F} is

$$F'(\vec{x}_n) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\vec{x}^{(n)}) & \cdots & \frac{\partial f_1}{\partial x_m}(\vec{x}^{(n)}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\vec{x}^{(n)}) & \cdots & \frac{\partial f_m}{\partial x_m}(\vec{x}^{(n)}) \end{pmatrix},$$

and

$$(\vec{x} - \vec{x}^{(n)}) = \begin{pmatrix} x_1 - x_1^{(n)} \\ \vdots \\ x_m - x_m^{(n)} \end{pmatrix}.$$

Let the left hand side of equation (2.3) be zero. It yields that

$$\vec{x}^{(n+1)} = \vec{x}^{(n)} - (\vec{F}'(\vec{x}^{(n)}))^{-1}\vec{F}(\vec{x}^{(n)}).$$

The equation above can be decomposed to two steps:

- solve $\vec{F}'(\vec{x}_n)\Delta x^{(n)} = -\vec{F}(x^{(n)});$
- $x^{(n+1)} = x^{(n)} + \Delta x^{(n)}$.

Example(calculate MLE): $l(\Theta|x_1, \ldots, x_n) = logL(\Theta|x_1, \ldots, x_n)$. Under some regular conditions, *Theta* solves the following equation,

$$\left(\begin{array}{c}\frac{\partial l}{\partial \theta_1}\\\vdots\\\frac{\partial l}{\partial \theta_m}\end{array}\right) = \left(\begin{array}{c}0\\\vdots\\0\end{array}\right).$$

By Newton's method, we iteratively update the $\Theta^{(n)}$ according to

$$\Theta^{(n+1)} = \Theta^{(n)} - \begin{pmatrix} \frac{\partial^2 l}{\partial \theta_1 \partial \theta_1}(\Theta^{(n)}) & \cdots & \frac{\partial^2 l}{\partial \theta_1 \partial \theta_m}(\Theta^{(n)}) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 l}{\partial \theta_m \partial \theta_1}(\Theta^{(n)}) & \cdots & \frac{\partial^2 l}{\partial \theta_m \partial \theta_m}(\Theta^{(n)}) \end{pmatrix}^{-1} \begin{pmatrix} \frac{\partial l}{\partial \theta_1}(\Theta^{(n)}) \\ \vdots \\ \frac{\partial l}{\partial \theta_m}(\Theta^{(n)}) \end{pmatrix}.$$
(2.4)

Example (MLE of Poisson distribution):

$$f(y_1, \dots, y_n | \lambda) = \prod_{i=1}^n \frac{e^{-\lambda} \lambda^{y_i}}{y_i!}$$
$$l(\lambda | y_1, \dots, y_n) = \sum_{i=1}^n (y_i \log \lambda - \lambda - \log y_i!)$$
$$= (\sum_{i=1}^n y_i) \log \lambda - n\lambda - \sum_{i=1}^n \log y_i!$$
$$\frac{dl}{d\lambda} = \frac{\sum_{i=1}^n y_i}{\lambda} - n.$$

- MLE direct derivation: $\hat{\lambda} = \frac{\sum_{i=1}^{n} y_i}{n}$.
- Newton's method to solve: $\lambda_{k+1} = \lambda_k + \frac{\lambda_k^2}{\sum_{i=1}^n y_i} (\frac{\sum_{i=1}^n y_i}{\lambda_k} n).$

Example (Poisson regression):

We have independent count data $\{y_1, \ldots, y_n\}$. For each Y_i, Y_i follows $Poi(\lambda_i)$, where $log(\lambda_i) =$

 $\alpha + \beta x_i$, α and β are parameters and x_i is the fixed covariate. The p.d.f (probability density function) of y_i is $f(y_i|\alpha, \beta, x_i) = e^{-e^{(\alpha + \beta x_i)} \frac{(e^{\alpha + \beta x_i})y_i}{y_i!}}$. It follows that the joint p.d.f. is

$$f(y_1, y_2, \dots, y_n | \alpha, \beta) = \prod_{i=1}^n e^{-e^{(\alpha+\beta x_i)}} \frac{(e^{\alpha+\beta x_i})^{y_i}}{y_i!}.$$

$$\begin{split} l(\alpha,\beta) &= \log f(y_1, y_2, \dots, y_n | \alpha, \beta) = \sum_{i=1}^n [-e^{\alpha + \beta x_i} + y_i(\alpha + \beta x_i) - \log y_i!] \\ \frac{\partial l}{\partial \alpha} &= -\sum_{i=1}^n e^{\alpha + \beta x_i} + \sum_{i=1}^n y_i \\ \frac{\partial l}{\partial \beta} &= -\sum_{i=1}^n x_i e^{\alpha + \beta x_i} + \sum_{i=1}^n x_i y_i \\ \frac{\partial^2 l}{\partial \alpha^2} &= -\sum_{i=1}^n e^{\alpha + \beta x_i} \\ \frac{\partial^2 l}{\partial \alpha \beta} &= -\sum_{i=1}^n x_i e^{\alpha + \beta x_i} \\ \frac{\partial^2 l}{\partial \beta^2} &= -\sum_{i=1}^n x_i^2 e^{\alpha + \beta x_i}. \end{split}$$

The Newton step is

$$\begin{pmatrix} \alpha_{k+1} \\ \beta_{k+1} \end{pmatrix} = \begin{pmatrix} \alpha_k \\ \beta_k \end{pmatrix} - \begin{pmatrix} -\sum_{i=1}^n e^{\alpha_k + \beta_k x_i} & -\sum_{i=1}^n x_i e^{\alpha_k + \beta_k x_i} \\ -\sum_{i=1}^n x_i e^{\alpha_k + \beta_k x_i} & -\sum_{i=1}^n x_i^2 e^{\alpha_k + \beta_k x_i} \end{pmatrix}^{-1} \begin{pmatrix} -\sum_{i=1}^n e^{\alpha_k + \beta_k x_i} + \sum_{i=1}^n y_i \\ -\sum_{i=1}^n x_i e^{\alpha_k + \beta_k x_i} + \sum_{i=1}^n x_i y_i \end{pmatrix}$$

.