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3 The Expectation-Maximization (EM) Algorithm

3.1 Normal Mixture Example

Q: We collected height data from n people, but we did not record their gender (female or male).

How to use the height data to cluster females into a group and cluster males into another group

simultaneously?

Assume the height distribution is a mixture of two normal distribution. That is to say, female

height follows a normal distribution and male height also follows a normal distribution but

with a different (higher) mean.

Statistical model: assume female height follows N(µ1, σ
2) and male height follows N(µ2, σ

2)

(notice that the two distributions have the same standard deviation). The proportion of females

is p. Xi and Zi represent the height and the gender of person i (notice that Xi is observed,

but Zi is unknown). Zi = 1 if person i is female; Zi = 0 if person i is male. The model is

formulated as follows: for i from 1 to n,

P (Zi = 1) = p, P (Zi = 0) = 1− p,
Xi|Zi = 1 ∼ N(µ1, σ

2), Xi|Zi = 0 ∼ N(µ2, σ
2).

Based on the model, the observed likelihood function of the above model is

Lo(µ1, µ2, σ, p|X1, . . . , Xn) =
n∏
i=1

p(Xi|µ1, µ2, σ, p)

=
n∏
i=1

[p(Xi|Zi = 1;µ1, µ2, σ, p) · p+ p(Xi|Zi = 0;µ1, µ2, σ, p) · (1− p)]

=
n∏
i=1

[
1√
2πσ

e−
(Xi−µ1)

2

2σ2 · p+
1√
2πσ

e−
(Xi−µ2)

2

2σ2 · (1− p)
]
. (3.1)

∗If you have any question about the note, please send an email to xyluo@link.cuhk.edu.hk
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Figure 1: The pdf of a mixture of two normal distributions. The peak on the left hand side

can be regarded as the average of female heights, and the peak on the right hand side can be

interpreted as the average of male heights.

If we want to get MLE of µ1, µ2, σ, p, directly optimizing L(µ1, µ2, σ, p|X1, . . . , Xn) is very

difficult. Notice that {Xi; i = 1, . . . , n} are known and {Zi; i = 1, . . . , n} are missing.

When {Zi; i = 1, . . . , n} are known, we call the likelihood function based on complete data

{Xi, Zi; i = 1, . . . , n} complete-data likelihood function(denoted by Lc), and call (3.1) observed-

data likelihood function(denoted by Lo). Our idea is to use more tractable Lc to approximate

the maximum of Lo.

First, the complete-data likelihood function can be easily derived.

Lc(µ1, µ2, σ
2, p|X1, . . . , Xn, Z1, . . . , Zn) =

n∏
i=1

p(Xi, Zi|µ1, µ2, σ, p)

=
n∏
i=1

p(Xi|Zi;µ1, µ2, σ, p) · p(Zi; p)

=
n∏
i=1

[
1√
2πσ

e−
(Xi−µ1)

2

2σ2 · p
]Zi
·
[

1√
2πσ

e−
(Xi−µ2)

2

2σ2 · (1− p)
]1−Zi

.
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It follows that the complete-data log likelihood function

lc(µ1, µ2, σ
2, p|X1, . . . , Xn, Z1, . . . , Zn)

=
n∑
i=1

{Zi · [−
1

2
log(2π)− 1

2
logσ2 − (Xi − µ1)2

2σ2
+ logp] + (1− Zi)·

[−1

2
log(2π)− 1

2
logσ2 − (Xi − µ2)2

2σ2
+ log(1− p)]}

=
n∑
i=1

{
−1

2
log(2π)− 1

2
logσ2 − Zi(Xi − µ1)2

2σ2
− (1− Zi)(Xi − µ2)2

2σ2
+ Zilogp+ (1− Zi)log(1− p)

}
.

(3.2)

Maximizing lc(µ1, µ2, σ
2, p|X1, . . . , Xn, Z1, . . . , Zn) w.r.t µ1, µ2, σ

2, p is equivalent to solving

the following equation system.

∂lc
∂p

= 0 (3.3)

∂lc
∂µ1

= 0 (3.4)

∂lc
∂µ2

= 0 (3.5)

∂lc
∂σ2

= 0 (3.6)

For equation (3.3),

∂lc
∂p

=
n∑
i=1

Zi
p
− 1− Zi

1− p
= 0

p̂ =

∑n
i=1 Zi
n

.

For equation (3.4) and (3.5),

∂lc
∂µ1

=
n∑
i=1

−2Zi(Xi − µ1)2

2σ2
= 0

µ̂1 =

∑n
i=1 ZiXi∑n
i=1 Zi

(3.7)

Similarly, µ̂2 =

∑n
i=1(1− Zi)Xi∑n
i=1(1− Zi)

. (3.8)

The equation (3.7) and (3.8) indicate that the estimate of µ1 is the average of heights in the

female group and the estimate of µ2 is the average of heights in the male group, respectively.

Generally speaking, the estimate of µ1 is the weighted average of heights in all people with

equal weights in the female group and zero weights in the male group; the estimate of µ2 is

the weighted average of heights in all people with zero weights in the female group and equal

weights in the male group.
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For equation (3.6),

∂l

∂σ2
=

n∑
i=1

[
− 1

2σ2
+
Zi(Xi − µ̂1)2

2σ4
+

(1− Zi)(Xi − µ̂2)2

2σ4

]
= 0

σ̂2 =
1

n

[
n∑
i=1

Zi(Xi − µ̂1)2 + (1− Zi)(Xi − µ̂2)2

]
. (3.9)

As you can see, the estimate of σ2 is the weighted average of two sample variances with the

weight proportional to the female number in the female group and to the male number in the

male group.

However, {Zi; i = 1, . . . , n} are unknown, so how to approximate Zi? In the EM algorithm, we

replace Zi by the conditional expectation (E step) E(Zi|Xi;µ
(t)
1 , µ

(t)
2 , σ2(t), p(t)) in the complete-

data log likelihood functionlc, where µ
(t)
1 , µ

(t)
2 , σ2(t), p(t) are estimates in the current iteration,

and then maximize lc (M step), which is usually much easier than directly maximizing Lo. We

alternate E step and M step enough times (with good initial values), and the final esimates of

parameters are the maximum points of Lo.

3.2 Calculate Conditional Expectation

Definition 3.1. A random variable X ∼ f(x), where f(x) is the probability density func-

tion or the probability mass function. The expectation of X, E(X), is defined as
∫
xf(x)dx.

Specifically, E(X) =
∫∞
−∞ xf(x)dx (continuous case); E(X) =

∑∞
i=−∞ xkf(xk) =

∑∞
i=−∞ xkpk

(discrete case), where we let pk be f(xk).

Example: flip a biased coin twice, what is the expected number of observed head?

Suppose the probability to observe one head in one trial is p and X represents the number of

heads. It follows that X ∼ Binomial(2, p), E(X) = 0 · (1− p)2 + 1 · 2(1− p)p+ 2 · p2 = 2p.

Definition 3.2. We have two random variables X and Y . We also know the conditional

density (or mass) function of X given Y = y is fX(x|y). The conditional expectation of X

given Y = y, E(X|Y = y), is defined as
∫
xfX(x|y)dx.

Remark 1. when the joint density (or mass) function of X and Y (f(x, y)) and the marginal

density (or mass) function of Y (fY (y)) is known, the conditional density (or mass) function

fX(x|y) = f(x,y)
fY (y)

.

Keeping these definitions in mind, we calculate the E step, which is calculating E(Zi|Xi;µ
(t)
1 , µ

(t)
2 , σ2(t), p(t)).
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We denote the conditional expectation by wit.

wit = E(Zi|Xi;µ
(t)
1 , µ

(t)
2 , σ2(t), p(t))

= 0 · p(Zi = 0|Xi;µ
(t)
1 , µ

(t)
2 , σ2(t), p(t)) + 1 · p(Zi = 1|Xi, µ

(t)
1 , µ

(t)
2 , σ2(t), p(t))

= p(Zi = 1|Xi, µ
(t)
1 , µ

(t)
2 , σ2(t), p(t))

=
p(Zi = 1, Xi;µ

(t)
1 , µ

(t)
2 , σ2(t), p(t))

p(Zi = 0, Xi;µ
(t)
1 , µ

(t)
2 , σ2(t), p(t)) + p(Zi = 1, Xi;µ

(t)
1 , µ

(t)
2 , σ2(t), p(t))

=
p(t) · 1√

2πσ(t) e
−

(Xi−µ
(t)
1 )2

2σ2(t)

p(t) · 1√
2πσ(t) e

−
(Xi−µ

(t)
1 )2

2σ2(t) + (1− p(t)) · 1√
2πσ(t) e

−
(Xi−µ

(t)
2 )2

2σ2(t)

. (3.10)

The EM algorithm for maximizing Lo in the equation (3.1) is as follows.

Algorithm: EM algorithm for the normal mixture example.

Input: {Xi; i = 1, . . . , n},p(0), µ
(0)
1 , µ

(0)
2 , σ2(0), total interation number T .

Initialize: p(0), µ
(0)
1 , µ

(0)
2 , σ2(0), t← 0.

Repeat

(E step) calculate wit for i = 1, . . . , n based on the equation (3.10);

(M step) maximize lc in the equation (3.2) with Zi being replaced by wit:

p(t+1) =
∑n

i=1 wit/n;

µ
(t+1)
1 =

∑n
i=1 witXi/

∑n
i=1wit;

µ
(t+1)
2 =

∑n
i=1(1− wit)Xi/

∑n
i=1(1− wit);

σ2(t+1) = 1/n · [
∑n

i=1 wit(Xi − µ(t+1)
1 )2 + (1− wit)(Xi − µ(t+1)

2 )2].

t← t+ 1;

Until t == T .

Output:µ
(t)
1 , µ

(t)
2 , σ2(t), p(t) are the MLE of Lo in the equation (3.1) .
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3.3 The General Case

In this subsection, we will talk about the EM algorithm to deal with general problems with

unknown data. The data Y has two parts. One is observed data Yobs. The other is unknown

(missing) data Ymis. That is to say, Y = (Yobs,Ymis). Assume Θ are the parameters of

our interest, f(Y|Θ) is the complete-data likelihood function, g(Yobs|Θ) is the observed-data

likelihood function, and k(Ymis|Yobs,Θ) is the conditional density function of Ymis given Yobs.

We have the following derivation.

f(Yobs,Ymis|Θ) = g(Yobs|Θ) · k(Ymis|Yobs,Θ)

(Taking logarithm) lc(Θ|Yobs,Ymis) = lo(Θ|Yobs) + logk(Ymis|Yobs,Θ)

lo(Θ|Yobs) = lc(Θ|Yobs,Ymis)− logk(Ymis|Yobs,Θ)

Our target is to find Θ̂ = arg max
Θ

lo(Θ|Yobs) assuming it is more convenient to work with

lc(Θ|Yobs,Ymis).

Given Θ(t),

lo(Θ|Yobs) =

∫
lc(Θ|Yobs,Ymis) · k(Ymis|Yobs,Θ

(t))dYmis−∫
logk(Ymis|Yobs,Θ) · k(Ymis|Yobs,Θ

(t))dYmis

:= Q(Θ|Θ(t))−H(Θ|Θ(t)).

By calculating (E step) and maximizing (M step) Q(Θ|Θ(t)), we get Θ(t+1) = arg maxQ(Θ|Θ(t)).

In addition, it can be proved that H(Θ(t+1)|Θ(t)) ≤ H(Θ(t)|Θ(t)) by the Jensen inequality. It

follows that lo(Θ
(t+1)|Yobs) ≥ lo(Θ

(t)|Yobs). The inequality indicates that after each iteration

of the EM algorithm, the obtained Θ(t+1) always make the observed likelihood increasing.

Algorithm: EM algorithm for the general case.

Input: Yobs, Θ(0), total interation number T .

Initialize: Θ(0), t← 0.

Repeat

(E step) calculate the conditional expectation Q(Θ|Θ(t));

(M step) maximize Q(Θ|Θ(t)) w.r.t Θ;

Θ(t+1) = arg maxQ(Θ|Θ(t));

t← t+ 1;

Until t == T .

Output:Θ(t+1) is an approaximate value to the MLE of observed likelihood function .
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3.4 Example: Blood Type

Q: There are n people. nA people are observed to have blood type A; nB people are observed

to have blood type B; nAB people are observed to have blood type B; nO poeple are observed

to have blood type O. What is the frequency of allele A, B, O (pA, pB, pO) in the population ?

Interpretation: nA people have genotype AA or AO; nB people have genotype BB or BO;

nAB people have genotype AB; nO people have genotype OO. The frequencey of AA,

AO, BB, BO, AB and OO is p2
A, 2pApO, p2

B, 2pBpO, pApB and p2
O, respectively. More-

over, nA = nAA + nAO, nB = nBB + nBO, nAB = nAB, and nO = nOO. Complete data is

{nAA, nAO, nBB, nBO, nAB, nOO}, and the observed data is {nA, nB, nAB, nO}.

The complete-data likelihood can be derived as follows:

L(pA, pB, pO|nAA, nAO, nBB, nBO, nAB, nOO)

=
n!

nAA!nAO!nBB!nBO!nAB!nOO!
(p2
A)nAA(2pApO)nAO(p2

B)nBB(2pBpO)nBO(2pApB)nAB(p2
O)nOO .

(3.11)

Taking logarithm,

l(pA, pB, pO|nAA, nAO, nBB, nBO, nAB, nOO)

= C + (nAO + nBO + nAB)log2 + logpA(2nAA + nAO + nAB)+

logpB(2nBB + nBO + nAB) + logp0(2nOO + nAO + nBO).

In the E step, we calculate

n
(t)
AA := E[nAA|nA; p

(t)
A , p

(t)
B , p

(t)
O ] = nA

p
(t)
A

p
(t)
A + 2p

(t)
O

n
(t)
AO := E[nAO|nA; p

(t)
A , p

(t)
B , p

(t)
O ] = nA

2p
(t)
O

p
(t)
A + 2p

(t)
O

n
(t)
BB := E[nBB|nB; p

(t)
A , p

(t)
B , p

(t)
O ] = nB

p
(t)
B

p
(t)
B + 2p

(t)
O

n
(t)
BO := E[nBO|nB; p

(t)
A , p

(t)
B , p

(t)
O ] = nB

2p
(t)
B

p
(t)
B + 2p

(t)
O

.

(3.12)

In the M step, we calculate

p
(t)
A =

2n
(t)
AA + n

(t)
AO + nAB

2n

p
(t)
B =

2n
(t)
BB + n

(t)
BO + nAB

2n
.
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