STAT 3006: Statistical Computing Lecture 4*

29 January

3.5 Why EM algorithm Works?

In the subsection 3.3, we have known that

$$
\begin{aligned}
l_{o}\left(\Theta \mid \mathbf{Y}_{o b s}\right)= & \int l_{c}\left(\Theta \mid \mathbf{Y}_{o b s}, \mathbf{Y}_{m i s}\right) \cdot k\left(\mathbf{Y}_{m i s} \mid \mathbf{Y}_{o b s}, \Theta^{(t)}\right) d \mathbf{Y}_{m i s}- \\
& \int \log k\left(\mathbf{Y}_{m i s} \mid \mathbf{Y}_{o b s}, \Theta\right) \cdot k\left(\mathbf{Y}_{m i s} \mid \mathbf{Y}_{o b s}, \Theta^{(t)}\right) d \mathbf{Y}_{m i s} \\
:= & Q\left(\Theta \mid \Theta^{(t)}\right)-H\left(\Theta \mid \Theta^{(t)}\right) .
\end{aligned}
$$

If we can prove

$$
\begin{equation*}
H\left(\Theta^{(t+1)} \mid \Theta^{(t)}\right) \leq H\left(\Theta^{(t)} \mid \Theta^{(t)}\right) \tag{3.1}
\end{equation*}
$$

then $l_{o}\left(\Theta^{(t+1)} \mid \mathbf{Y}_{\text {obs }}\right) \geq l_{o}\left(\Theta^{(t)} \mid \mathbf{Y}_{\text {obs }}\right)$, which indicates the non-decreasing property of the sequence $\left\{\Theta^{(t)}\right\}$ produced by the EM algorithm. To prove the inequality (3.1), we first review the convex function.

Definition 3.1. A function f defined on an interval $[a, b]$ is convex, if $f\left(t x_{1}+(1-t) x_{2}\right) \leq$ $t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)$ for $\forall x_{1}, x_{2} \in[a, b]$ and $\forall t \in[0,1]$.

Intuitively, a function f is convex if the segment between points $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$ for $\forall x_{1}, x_{2} \in[a, b]$ is always above or lies in the curve $\left\{(x, f(x)): x_{1} \leq x \leq x_{2}\right\}$ (illustrated in the figure 1).

There are some equivalent definitions for convexity:
1 A differentiable function f on $[a, b]$ is convex if and only if $f(x) \geq f(y)+f^{\prime}(y)(x-y)$;
2 A twice differentiable function f on $[a, b]$ is convex if and only if $f^{\prime \prime}(x) \geq 0$.
Jensen's inequality: If $h(x)$ is convex and W is a random variable, then

$$
E(h(W)) \geq h(E W)
$$

[^0]

Figure 1: Figure demonstration for the convex function $f(x)$.

Proof. $h(x)$ is convex, so there exists a constant ξ such that

$$
\begin{equation*}
h(x) \geq h\left(x_{0}\right)+\xi\left(x-x_{0}\right) \tag{3.2}
\end{equation*}
$$

for any fixed x_{0}. Let x_{0} be $E(W)$ and x be W. The inequality (3.2) becomes $h(W) \geq$ $h(E(W))+\xi(W-E(W))$. Taking expectation in the inequality, we have $E(h(W)) \geq h(E W)$. As you can see, $E(h(W))=h(E(W))$ if and only if h is a linear function.

We now come back to prove $H\left(\Theta^{(t+1)} \mid \Theta^{(t)}\right) \leq H\left(\Theta^{(t)} \mid \Theta^{(t)}\right)$.
Proof. $\forall \Theta$,

$$
\begin{aligned}
H\left(\Theta \mid \Theta^{(t)}\right)-H\left(\Theta^{(t)} \mid \Theta^{(t)}\right) & =\int \log \frac{k\left(\mathbf{Y}_{m i s} \mid \mathbf{Y}_{o b s}, \Theta\right)}{k\left(\mathbf{Y}_{m i s} \mid \mathbf{Y}_{o b s}, \Theta^{(t)}\right)} \cdot k\left(\mathbf{Y}_{m i s} \mid \mathbf{Y}_{o b s}, \Theta^{(t)}\right) d \mathbf{Y}_{m i s} \\
& =-\int-\log \frac{k\left(\mathbf{Y}_{m i s} \mid \mathbf{Y}_{o b s}, \Theta\right)}{k\left(\mathbf{Y}_{m i s} \mid \mathbf{Y}_{o b s}, \Theta^{(t)}\right)} \cdot k\left(\mathbf{Y}_{m i s} \mid \mathbf{Y}_{o b s}, \Theta^{(t)}\right) d \mathbf{Y}_{m i s} \\
& \leq\left({\text { Jensen's Inequality }) \log \left(\int \frac{k\left(\mathbf{Y}_{m i s} \mid \mathbf{Y}_{o b s}, \Theta\right)}{k\left(\mathbf{Y}_{m i s} \mid \mathbf{Y}_{o b s}, \Theta^{(t)}\right)} \cdot k\left(\mathbf{Y}_{m i s} \mid \mathbf{Y}_{o b s}, \Theta^{(t)}\right) d \mathbf{Y}_{m i s}\right)}=\log (1)=0 .\right.
\end{aligned}
$$

Notice that we apply Jensen inequality to the function $h(x)=-\log (x)$.

[^0]: *If you have any question about the note, please send an email to xyluo@link.cuhk.edu.hk

