STAT 3006: Statistical Computing Lecture 5*

5 February

4 Generating Random Deviates

4.1 The Inverse Method

Definition 4.1. For a non-decreasing function F on \mathbb{R}, the generalized inverse of F, written as F^{-}, is the function defined by

$$
F^{-}(u)=\inf \{x: F(x) \geq u\}
$$

In the figure 1 , the curve is a distribution function F. Select a value u_{1} between 0 and 1 . There is a unique value t_{1}, such that $F\left(t_{1}\right)=u_{1}$, so we denote t_{1} by $F^{-}\left(u_{1}\right)$. Select a value u_{2}, and there exists an interval $\left[t_{3}, t_{2}\right]$ satisfying $F(t)=u_{2}$ for each $t \in\left[t_{3}, t_{2}\right]$. We denote t_{3} by $F^{-}\left(u_{2}\right)$ because of t_{3} is the minimum of all points satisfying $F(t) \geq u_{2}$. Select values u_{3} or u_{4}. Although there is no point t such that $F(t)=u_{3}$ or u_{4}, the minimum of $\left\{t: F(t) \geq u_{3}\right\}=\left[t_{3}, \infty\right]$ or $\left\{t: F(t) \geq u_{4}\right\}=\left[t_{3}, \infty\right]$ does exit, which is t_{3}. Therefore, we also denote t_{3} by $F^{-}\left(u_{3}\right)$ or $F^{-}\left(u_{4}\right) . F^{-}\left(u_{2}\right)=F^{-}\left(u_{3}\right)=F^{-}\left(u_{4}\right)$.

Proposition 4.1. If $U \sim U n i f[0,1]$, then the random variable $F^{-}(U)$ has the distribution F.
Proof. $\forall u \in[0,1]$ and $\forall x \in$ the domain of F, we always have

$$
\begin{align*}
& F\left(F^{-}(u)\right) \geq u \tag{4.1}\\
& F^{-}(F(x)) \leq x . \tag{4.2}
\end{align*}
$$

Equation (4.1) holds based on the right continuity of the distribution function F. Equation (4.2) holds because of the definition of the generalized inverse of F.

Subsequently, $\forall x$, we investigate the two sets $\left\{u: F^{-}(u) \leq x\right\}$ and $\{u: u \leq F(x)\}$. When $F^{-}(u) \leq x, F\left(F^{-}(u)\right) \leq F(x)$ as F is non-decreasing. According to Equation (4.1), we have

[^0]

Figure 1: Figure description for the generalized inverse function $F^{-}(x)$.
$u \leq F(x)$. When $u \leq F(x)$, notice that F^{-}is also non-decreasing, so $F^{-}(u) \leq F^{-}(F(x))$. According to Equation (4.2), we have $F^{-}(u) \leq x$. Therefore, $\left\{u: F^{-}(u) \leq x\right\}=\{u: u \leq F(x)\}$.

It follows that $P\left(F^{-}(U) \leq x\right)=P(U \leq F(x))=F(x)$. It indicates that $F^{-}(U)$ has the distribution F.

Algorithm: Inverse method for drawing samples from F.
Input: the distribution function F, total sample number N.
Initialize: $n \leftarrow 0$.
Repeat
generate a uniform random number U_{n} from $[0,1] ; \quad X_{n} \leftarrow F^{-}\left(U_{n}\right) ; \quad n \leftarrow n+1$;
Until $n==N$.
Output: $\left\{X_{1}, \ldots, X_{N}\right\}$ are N samples from distribution F.
Example: sampling from the exponential distribution $f(x)=e^{-x}$.
$F(x)=1-e^{-x}, F^{-}(u)=-\log (1-u)$. Sample $U \sim U n i f[0,1]$ and let X be $-\log (1-U)$. Notice $1-U$ also follows $U n i f[0,1]$, so $X=-\log (U)$ also follows $f(x)=e^{-x}$.

4.2 The Accept-Reject Method

We are interested in sampling from a probability density function $f . f(x)$ can be written as $\int_{0}^{f(x)} d u=\int_{0}^{\infty} I(u \leq f(x)) d u$. From this perspective, we interpret $f(x)$ as the marginal distribution of $\operatorname{Unif}\{(x, u): 0<u<f(x)\}$. The U is called auxiliary variable.

Theorem 4.2. (Fundamental Theorem of Simulation) Simulating $X \sim f(x) \Leftrightarrow$ simulating $(X, U) \sim \operatorname{Unif}\{(x, u): 0<u<f(x)\}$.

Proof. $F_{X}(x)=P(X \leq x)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} I(0 \leq u \leq f(t), t \leq x) d u d t=\int_{-\infty}^{x} \int_{0}^{f(t)} d u d t=$ $\int_{-\infty}^{x} f(t) d t$. Therefore, $f_{X}(x)=F_{X}^{\prime}(x)=f(x)$.

Figure 2: f 's upper bound in a special case.

Proposition 4.3. When the region $\{(x, u): u \leq f(x)\}$ is bounded by a rectangle $[a, b] \times[0, m]$ (see Figure 2), simulating uniform samples (X, U) from $\{(x, u): u \leq f(x)\} \Leftrightarrow$ simulating uniform samples from $[a, b] \times[0, m]$ but only accepting samples in the $\{(x, u): u \leq f(x)\}$.

Proof. The theorem is equivalent to $X \sim f(x) \Leftrightarrow Y \sim U n i f[a, b], U \sim U n i f[0, m]$ and accept Y as X if $U \leq f(Y)$.

$$
\begin{aligned}
P(X \leq x) & =P(Y \leq x \mid U \leq f(Y)) \\
& =\frac{P(Y \leq x, U \leq f(Y))}{P(U \leq f(Y))} \\
& =\frac{\int_{a}^{x} \frac{1}{b-a} \int_{0}^{f(y)} \frac{1}{m} d u d y}{\int_{a}^{b} \frac{1}{b-a} \int_{0}^{f(y)} \frac{1}{m} d u d y} \\
& =\frac{\int_{a}^{x} f(y) d y}{1} \\
& =\int_{a}^{x} f(y) d y .
\end{aligned}
$$

Furthermore, we can calculate that the acceptance rate is $P(U \leq f(Y))=\frac{1}{m(b-a)}$.

Figure 3: f 's upper bound in the general case.

Proposition 4.4. When the region $\{(x, u): u \leq f(x)\}$ is bounded by the region $\{(x, u): u \leq$ $M \cdot g(x)\}$ (see Figure 3), where $f(x) \leq M g(x) \forall x \in \operatorname{dom}(f)$, simulating uniform samples (X, U) from $\{(x, u): u \leq f(x)\} \Leftrightarrow$ simulating uniform samples from $\{(x, u): u \leq M \cdot g(x)\}$ but only accepting samples in the $\{(x, u): u \leq f(x)\}$.
Remark 1. : Usually, drawing samples from g is much easier than drawing samples from f, so we "reshape" samples from g to "construct" samples from f.

Proof. The theorem is equivalent to $X \sim f(x) \Leftrightarrow Y \sim g(y), U \mid Y=y \sim U n i f[0, M g(y)]$ and accept Y as X if $U \leq f(Y)$.

$$
\begin{aligned}
P(X \leq x) & =P(Y \leq x \mid U \leq f(Y)) \\
& =\frac{P(Y \leq x, U \leq f(Y))}{P(U \leq f(Y))} \\
& =\frac{\int_{-\infty}^{x} \int_{0}^{f(y)} \frac{1}{M g(y)} d u g(y) d y}{\int_{-\infty}^{\infty} \int_{0}^{f(y)} \frac{1}{M g(y)} d u g(y) d y} \\
& =\int_{-\infty}^{x} f(y) d y .
\end{aligned}
$$

Moreover, the acceptance rate is $P(U \leq f(Y))=\frac{1}{M}$.

Algorithm: Accept-Reject method for drawing samples from f.
Input: target pdf f, proposal pdf g, constant $M(f(x) \leq M g(x))$, total sample number N. Initialize: $n \leftarrow 0$.
repeat
generate a uniform random number U_{n} from $[0,1]$;
generate a random number Y_{n} from $g(y)$;
if $U_{n} \leq \frac{f\left(Y_{n}\right)}{M g\left(Y_{n}\right)}$
$X_{n} \leftarrow Y_{n} ;$
$n \leftarrow n+1 ;$
end if
until $n==N$.
Output: $\left\{X_{1}, \ldots, X_{N}\right\}$ are N samples from distribution f.

4.3 Sequential Sampling

Proposition 4.5. sampling $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ from $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ is equivalent to first sampling $x_{1} \sim f\left(x_{1}\right)$, second sampling $x_{2} \sim f\left(x_{2} \mid x_{1}\right), \ldots$, and finally sampling $x_{k} \sim f\left(x_{k} \mid x_{1}, \ldots, x_{k-1}\right)$.

Example: draw a sample $\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ from a multinomial distribution Multi $\left(n ; p_{1}, p_{2}, \ldots, p_{k}\right)$, where X_{j} denotes the count of type $j(1 \leq j \leq k), \sum_{j=1}^{k} X_{j}=n, \sum_{j=1}^{k} p_{j}=1$.
$X_{1} \sim \operatorname{Binomial}\left(n, p_{1}\right), X_{2}\left|X_{1}=x_{1} \sim \operatorname{Binomial}\left(n-x_{1}, \frac{p_{2}}{1-p_{1}}\right), \ldots, X_{k-1}\right| X_{1}=x_{1}, \ldots, X_{k-2}=$ $x_{k-2} \sim \operatorname{Binomial}\left(n \sum_{i=1}^{k-2} x_{i}, \frac{p_{k-1}}{1-\sum_{i=1}^{k-2} p_{i}}\right)$, and $X_{k}=n-\sum_{i=1}^{k-1} X_{i}$.

[^0]: *If you have any question about the note, please send an email to xyluo@link.cuhk.edu.hk

