STAT 3006: Statistical Computing Lecture 5*

5 February

4 Generating Random Deviates

4.1 The Inverse Method

Definition 4.1. For a non-decreasing function F on \mathbb{R} , the generalized inverse of F, written as F^- , is the function defined by

$$F^{-}(u) = \inf\{x : F(x) \ge u\}.$$

In the figure 1, the curve is a distribution function F. Select a value u_1 between 0 and 1. There is a unique value t_1 , such that $F(t_1) = u_1$, so we denote t_1 by $F^-(u_1)$. Select a value u_2 , and there exists an interval $[t_3, t_2]$ satisfying $F(t) = u_2$ for each $t \in [t_3, t_2]$. We denote t_3 by $F^-(u_2)$ because of t_3 is the minimum of all points satisfying $F(t) \ge u_2$. Select values u_3 or u_4 . Although there is no point t such that $F(t) = u_3$ or u_4 , the minimum of $\{t : F(t) \ge u_3\} = [t_3, \infty]$ or $\{t : F(t) \ge u_4\} = [t_3, \infty]$ does exit, which is t_3 . Therefore, we also denote t_3 by $F^-(u_3)$ or $F^-(u_4)$. $F^-(u_2) = F^-(u_3) = F^-(u_4)$.

Proposition 4.1. If $U \sim Unif[0,1]$, then the random variable $F^-(U)$ has the distribution F. Proof. $\forall u \in [0,1]$ and $\forall x \in$ the domain of F, we always have

$$F(F^{-}(u)) \ge u \tag{4.1}$$

$$F^{-}(F(x)) \le x. \tag{4.2}$$

Equation (4.1) holds based on the right continuity of the distribution function F. Equation (4.2) holds because of the definition of the generalized inverse of F.

Subsequently, $\forall x$, we investigate the two sets $\{u : F^{-}(u) \leq x\}$ and $\{u : u \leq F(x)\}$. When $F^{-}(u) \leq x$, $F(F^{-}(u)) \leq F(x)$ as F is non-decreasing. According to Equation (4.1), we have

^{*}If you have any question about the note, please send an email to xyluo@link.cuhk.edu.hk

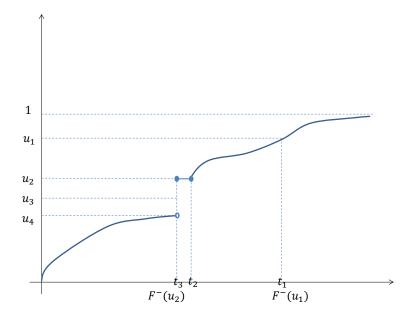


Figure 1: Figure description for the generalized inverse function $F^{-}(x)$.

 $u \leq F(x)$. When $u \leq F(x)$, notice that F^- is also non-decreasing, so $F^-(u) \leq F^-(F(x))$. According to Equation (4.2), we have $F^-(u) \leq x$. Therefore, $\{u : F^-(u) \leq x\} = \{u : u \leq F(x)\}$.

It follows that $P(F^{-}(U) \leq x) = P(U \leq F(x)) = F(x)$. It indicates that $F^{-}(U)$ has the distribution F.

Algorithm: Inverse method for drawing samples from F. Input: the distribution function F, total sample number N. Initialize: $n \leftarrow 0$. Repeat generate a uniform random number U_n from [0,1]; $X_n \leftarrow F^-(U_n)$; $n \leftarrow n+1$; Until n == N. Output: $\{X_1, \ldots, X_N\}$ are N samples from distribution F.

Example: sampling from the exponential distribution $f(x) = e^{-x}$. $F(x) = 1 - e^{-x}$, $F^{-}(u) = -log(1 - u)$. Sample $U \sim Unif[0, 1]$ and let X be -log(1 - U). Notice 1 - U also follows Unif[0, 1], so X = -log(U) also follows $f(x) = e^{-x}$.

4.2 The Accept-Reject Method

We are interested in sampling from a probability density function f. f(x) can be written as $\int_0^{f(x)} du = \int_0^\infty I(u \le f(x)) du$. From this perspective, we interpret f(x) as the marginal distribution of $Unif\{(x, u) : 0 < u < f(x)\}$. The U is called *auxiliary variable*. **Theorem 4.2.** (Fundamental Theorem of Simulation) Simulating $X \sim f(x) \Leftrightarrow$ simulating $(X, U) \sim Unif\{(x, u) : 0 < u < f(x)\}$. Proof. $F_X(x) = P(X \leq x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} I(0 \leq u \leq f(t), t \leq x) du dt = \int_{-\infty}^{x} \int_{0}^{f(t)} du dt = \int_{-\infty}^{x} f(t) dt$. Therefore, $f_X(x) = F'_X(x) = f(x)$.

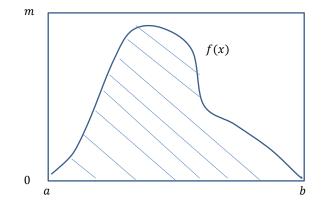


Figure 2: f's upper bound in a special case.

Proposition 4.3. When the region $\{(x, u) : u \leq f(x)\}$ is bounded by a rectangle $[a, b] \times [0, m]$ (see Figure 2), simulating uniform samples(X, U) from $\{(x, u) : u \leq f(x)\} \Leftrightarrow$ simulating uniform samples from $[a, b] \times [0, m]$ but only accepting samples in the $\{(x, u) : u \leq f(x)\}$.

Proof. The theorem is equivalent to $X \sim f(x) \Leftrightarrow Y \sim Unif[a, b], U \sim Unif[0, m]$ and accept Y as X if $U \leq f(Y)$.

$$P(X \le x) = P(Y \le x | U \le f(Y))$$

$$= \frac{P(Y \le x, U \le f(Y))}{P(U \le f(Y))}$$

$$= \frac{\int_a^x \frac{1}{b-a} \int_0^{f(y)} \frac{1}{m} du dy}{\int_a^b \frac{1}{b-a} \int_0^{f(y)} \frac{1}{m} du dy}$$

$$= \frac{\int_a^x f(y) dy}{1}$$

$$= \int_a^x f(y) dy.$$

Furthermore, we can calculate that the acceptance rate is $P(U \le f(Y)) = \frac{1}{m(b-a)}$.

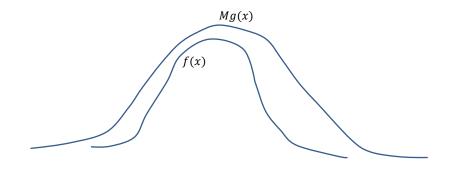


Figure 3: f's upper bound in the general case.

Proposition 4.4. When the region $\{(x, u) : u \leq f(x)\}$ is bounded by the region $\{(x, u) : u \leq M \cdot g(x)\}$ (see Figure 3), where $f(x) \leq Mg(x) \forall x \in dom(f)$, simulating uniform samples(X, U) from $\{(x, u) : u \leq f(x)\} \Leftrightarrow$ simulating uniform samples from $\{(x, u) : u \leq M \cdot g(x)\}$ but only accepting samples in the $\{(x, u) : u \leq f(x)\}$.

Remark 1. : Usually, drawing samples from g is much easier than drawing samples from f, so we "reshape" samples from g to "construct" samples from f.

Proof. The theorem is equivalent to $X \sim f(x) \Leftrightarrow Y \sim g(y), U|Y = y \sim Unif[0, Mg(y)]$ and accept Y as X if $U \leq f(Y)$.

$$P(X \le x) = P(Y \le x | U \le f(Y))$$

$$= \frac{P(Y \le x, U \le f(Y))}{P(U \le f(Y))}$$

$$= \frac{\int_{-\infty}^{x} \int_{0}^{f(y)} \frac{1}{Mg(y)} dug(y) dy}{\int_{-\infty}^{\infty} \int_{0}^{f(y)} \frac{1}{Mg(y)} dug(y) dy}$$

$$= \int_{-\infty}^{x} f(y) dy.$$

Moreover, the acceptance rate is $P(U \le f(Y)) = \frac{1}{M}$.

Algorithm: Accept-Reject method for drawing samples from f.

Ingerteinit: Receipt Reject intender for drawing samples from f: Input: target pdf f, proposal pdf g, constant M ($f(x) \le Mg(x)$), total sample number N. Initialize: $n \leftarrow 0$. repeat generate a uniform random number U_n from [0, 1]; generate a random number Y_n from g(y); if $U_n \le \frac{f(Y_n)}{Mg(Y_n)}$ $X_n \leftarrow Y_n$; $n \leftarrow n + 1$; end if until n == N. Output:{ X_1, \ldots, X_N } are N samples from distribution f.

4.3 Sequential Sampling

Proposition 4.5. sampling (x_1, x_2, \ldots, x_k) from $f(x_1, x_2, \ldots, x_k)$ is equivalent to first sampling $x_1 \sim f(x_1)$, second sampling $x_2 \sim f(x_2|x_1), \ldots$, and finally sampling $x_k \sim f(x_k|x_1, \ldots, x_{k-1})$.

Example: draw a sample (X_1, X_2, \ldots, X_k) from a multinomial distribution $Multi(n; p_1, p_2, \ldots, p_k)$, where X_j denotes the count of type j $(1 \le j \le k)$, $\sum_{j=1}^k X_j = n$, $\sum_{j=1}^k p_j = 1$.

 $X_{1} \sim Binomial(n, p_{1}), X_{2}|X_{1} = x_{1} \sim Binomial(n - x_{1}, \frac{p_{2}}{1 - p_{1}}), \dots, X_{k-1}|X_{1} = x_{1}, \dots, X_{k-2} = x_{k-2} \sim Binomial(n \sum_{i=1}^{k-2} x_{i}, \frac{p_{k-1}}{1 - \sum_{i=1}^{k-2} p_{i}}), and X_{k} = n - \sum_{i=1}^{k-1} X_{i}.$