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4 Generating Random Deviates

4.1 The Inverse Method

Definition 4.1. For a non-decreasing function F on R, the generalized inverse of F , written

as F−, is the function defined by

F−(u) = inf{x : F (x) ≥ u}.

In the figure 1, the curve is a distribution function F . Select a value u1 between 0 and 1. There

is a unique value t1, such that F (t1) = u1, so we denote t1 by F−(u1). Select a value u2, and

there exists an interval [t3, t2] satisfying F (t) = u2 for each t ∈ [t3, t2]. We denote t3 by F−(u2)

because of t3 is the minimum of all points satisfying F (t) ≥ u2. Select values u3 or u4. Although

there is no point t such that F (t) = u3 or u4, the minimum of {t : F (t) ≥ u3} = [t3,∞] or

{t : F (t) ≥ u4} = [t3,∞] does exit, which is t3. Therefore, we also denote t3 by F−(u3) or

F−(u4). F−(u2) = F−(u3) = F−(u4).

Proposition 4.1. If U ∼ Unif [0, 1], then the random variable F−(U) has the distribution F .

Proof. ∀u ∈ [0, 1] and ∀x ∈ the domain of F , we always have

F (F−(u)) ≥ u (4.1)

F−(F (x)) ≤ x. (4.2)

Equation (4.1) holds based on the right continuity of the distribution function F . Equation

(4.2) holds because of the definition of the generalized inverse of F .

Subsequently, ∀x, we investigate the two sets {u : F−(u) ≤ x} and {u : u ≤ F (x)}. When

F−(u) ≤ x, F (F−(u)) ≤ F (x) as F is non-decreasing. According to Equation (4.1), we have
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Figure 1: Figure description for the generalized inverse function F−(x).

u ≤ F (x). When u ≤ F (x), notice that F− is also non-decreasing, so F−(u) ≤ F−(F (x)). Ac-

cording to Equation (4.2), we have F−(u) ≤ x. Therefore, {u : F−(u) ≤ x} = {u : u ≤ F (x)}.

It follows that P (F−(U) ≤ x) = P (U ≤ F (x)) = F (x). It indicates that F−(U) has the

distribution F .

Algorithm: Inverse method for drawing samples from F .

Input: the distribution function F , total sample number N .

Initialize: n← 0.

Repeat

generate a uniform random number Un from [0, 1]; Xn ← F−(Un); n← n + 1;

Until n == N .

Output:{X1, . . . , XN} are N samples from distribution F .

Example: sampling from the exponential distribution f(x) = e−x.

F (x) = 1 − e−x, F−(u) = −log(1 − u). Sample U ∼ Unif [0, 1] and let X be −log(1 − U).

Notice 1− U also follows Unif [0, 1], so X = −log(U) also follows f(x) = e−x.

4.2 The Accept-Reject Method

We are interested in sampling from a probability density function f . f(x) can be written

as
∫ f(x)

0
du =

∫∞
0

I(u ≤ f(x))du. From this perspective, we interpret f(x) as the marginal

distribution of Unif{(x, u) : 0 < u < f(x)}. The U is called auxiliary variable.
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Theorem 4.2. (Fundamental Theorem of Simulation) Simulating X ∼ f(x) ⇔ simulating

(X,U) ∼ Unif{(x, u) : 0 < u < f(x)}.

Proof. FX(x) = P (X ≤ x) =
∫∞
−∞

∫∞
−∞ I(0 ≤ u ≤ f(t), t ≤ x)dudt =

∫ x

−∞

∫ f(t)

0
dudt =∫ x

−∞ f(t)dt. Therefore, fX(x) = F ′X(x) = f(x).

𝑎 𝑏 
0 

𝑚 

𝑓(𝑥) 

Figure 2: f ’s upper bound in a special case.

Proposition 4.3. When the region {(x, u) : u ≤ f(x)} is bounded by a rectangle [a, b]× [0,m]

(see Figure 2), simulating uniform samples(X,U) from {(x, u) : u ≤ f(x)} ⇔ simulating

uniform samples from [a, b]× [0,m] but only accepting samples in the {(x, u) : u ≤ f(x)}.

Proof. The theorem is equivalent to X ∼ f(x) ⇔ Y ∼ Unif [a, b], U ∼ Unif [0,m] and accept

Y as X if U ≤ f(Y ).

P (X ≤ x) = P (Y ≤ x|U ≤ f(Y ))

=
P (Y ≤ x, U ≤ f(Y ))

P (U ≤ f(Y ))

=

∫ x

a
1

b−a

∫ f(y)

0
1
m
dudy∫ b

a
1

b−a

∫ f(y)

0
1
m
dudy

=

∫ x

a
f(y)dy

1

=

∫ x

a

f(y)dy.

Furthermore, we can calculate that the acceptance rate is P (U ≤ f(Y )) = 1
m(b−a) .
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Figure 3: f ’s upper bound in the general case.

Proposition 4.4. When the region {(x, u) : u ≤ f(x)} is bounded by the region {(x, u) : u ≤
M · g(x)} (see Figure 3), where f(x) ≤Mg(x)∀x ∈ dom(f), simulating uniform samples(X,U)

from {(x, u) : u ≤ f(x)} ⇔ simulating uniform samples from {(x, u) : u ≤M · g(x)} but only

accepting samples in the {(x, u) : u ≤ f(x)}.
Remark 1. : Usually, drawing samples from g is much easier than drawing samples from f , so

we “reshape” samples from g to “construct” samples from f .

Proof. The theorem is equivalent to X ∼ f(x) ⇔ Y ∼ g(y), U |Y = y ∼ Unif [0,Mg(y)] and

accept Y as X if U ≤ f(Y ).

P (X ≤ x) = P (Y ≤ x|U ≤ f(Y ))

=
P (Y ≤ x, U ≤ f(Y ))

P (U ≤ f(Y ))

=

∫ x

−∞

∫ f(y)

0
1

Mg(y)
dug(y)dy∫∞

−∞

∫ f(y)

0
1

Mg(y)
dug(y)dy

=

∫ x

−∞
f(y)dy.

Moreover, the acceptance rate is P (U ≤ f(Y )) = 1
M

.
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Algorithm: Accept-Reject method for drawing samples from f .

Input: target pdf f , proposal pdf g, constant M (f(x) ≤Mg(x)), total sample number N .

Initialize: n← 0.

repeat

generate a uniform random number Un from [0, 1];

generate a random number Yn from g(y);

if Un ≤ f(Yn)
Mg(Yn)

Xn ← Yn;

n← n + 1;

end if

until n == N .

Output:{X1, . . . , XN} are N samples from distribution f .

4.3 Sequential Sampling

Proposition 4.5. sampling (x1, x2, . . . , xk) from f(x1, x2, . . . , xk) is equivalent to first sampling

x1 ∼ f(x1), second sampling x2 ∼ f(x2|x1), . . . , and finally sampling xk ∼ f(xk|x1, . . . , xk−1).

Example: draw a sample (X1, X2, . . . , Xk) from a multinomial distribution Multi(n; p1, p2, . . . , pk),

where Xj denotes the count of type j (1 ≤ j ≤ k),
∑k

j=1Xj = n,
∑k

j=1 pj = 1.

X1 ∼ Binomial(n, p1), X2|X1 = x1 ∼ Binomial(n−x1,
p2

1−p1 ), . . . , Xk−1|X1 = x1, . . . , Xk−2 =

xk−2 ∼ Binomial(n
∑k−2

i=1 xi,
pk−1

1−
∑k−2

i=1 pi
), and Xk = n−

∑k−1
i=1 Xi.
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