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1.1 Categorical Response Data

1.1.1 Definition
Categorical variable: A variable has a measurement scale
consisting of a set of categories.

Examples:
1. x1 = Grade received in a class

Five categories: A, B, C, D, E
2. x2 = Social class

Three categories: upper, middle, lower
3. x3 = Gender of a patient

Two categories: male, female
4. x4 = Mode of transportation to work

Five categories: automobile, bicycle, bus, subway, walk
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1.1 Categorical Response Data

1.1.2 Data set

A data set of categorical variables consists of frequency counts
for the categories.

e.g. Observations of X1 in a class with N = 50 students:

Grade received A B C D E
Frequency counts 15 25 7 2 1
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1.1 Categorical Response Data

1.1.3 Classifying categorical variables
Nominal variables: variables having categories without a
natural ordering.
e.g. x3 – Gender of a patient

x4 – Mode of transportation to work
For a nominal variable, the order of listing the categories is
irrelevant.

Ordinal variables: variables having ordered categories.
e.g. x1 – Grade received in a class

x2 – Social economic status
Ordinal variables have ordered categories, but distances
between categories are unknown.
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1.1 Categorical Response Data

Interval variables: variables having numerical distances
between any two values
e.g. blood pressure level, annual income

Continuous interval variables can be grouped into a number of
categories
e.g. blood pressure level x: x < 80 is normal, 80 < x < 89 is

prehypertension, 90 < x < 99 is Stage 1 hypertension,
x > 100 is Stage 2 hypertension

e.g. annual income x: x < $4000, $4000 < x < $10000, etc.
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1.1 Categorical Response Data

The levels of categorical variables depend on the amount of
information they include:

nominal variables -> ordinal variables ->interval variables
(lowest level) (highest level)

Tests designed for lower level variables can be applied to
higher level variables, but tests for higher level variables should
not be applied to lower level variables.
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1.2 Some Important Distributions

1.2.1 Bernoulli distribution
This is the most basic of all discrete random variables and a
building block of several others.
Let Y be a random variable with two possible values: Y = 1 with
probability π and Y = 0 with probability 1− π. The probability
mass function (PMF) or distribution of Y, Bern(π), can therefore
be written

p(Y = y) = πy(1− π)1−y for y = 0, 1

Mean:
µ = E(Y) = π

Variance:
σ2 = Var(Y) = π(1− π)
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1.2 Some Important Distributions

1.2.2 Binomial distribution

Let Y1,Y2, · · · ,Yn denote responses for n independent and
identical trials such that p(Yi = 1) = π and p(Yi = 0) = 1− π.
Then, Y =

∑n
i=1 Yi has the binomial distribution B(n, π):

p(Y = y) = p(y) =

(
n
y

)
πy(1− π)n−y, y = 0, 1, 2, · · · , n.

Mean:
µ = E(Y) = nπ

Variance:
σ2 = Var(Y) = nπ(1− π)
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1.2 Some Important Distributions

Clearly B(1, π) is the Bernoulli distribution with probability π.

If Y1,Y2, . . . ,Yn are independent, identically distributed (IID)
Bern(π) random variables, then

∑n
i=1 Yi has the binomial B(n, π)

distribution.

For a fixed π, the distribution approaches the normal
distribution N(nπ, nπ(1− π)) as n grows large.
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1.2 Some Important Distributions

1.2.3 Multinomial distribution
The multinomial distribution extends the binomial distribution:

a binomial random variable can take one of 2 possible
outcomes on each trial
a multinomial random variable can take one of c possible
outcomes on each trial.

Take n independent trials. Each trial has the same c possible
outcomes, E1,E2, . . . ,Ec. On each trial, the probability outcome
Ej occurs is πj. The probabilities satisfy

∑c
j=1 πj = 1.

Consider the random variables
Nj = “# trials in which Ej occurs”, for j = 1, . . . , c. Then
N = (N1, . . . ,Nc) has the multinomial distribution with
parameters n and π = (π1, . . . , πc).
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1.2 Some Important Distributions

For a multinomial random variable N with n trials and c possible
outcomes with probabilities π = (π1, . . . , πc), we may write
N ∼ Mult(n,π).

The probability N takes the value (n1, . . . , nc) is

p(N1 = n1, · · · ,Nc = nc) := p(n1, · · · , nc)

=
n!

n1!n2! · · · nc!
πn1

1 π
n2
2 · · ·π

nc
c

for all possible (n1, . . . , nc) such that each nj ∈ {0, 1, . . . , n} and∑c
j=1 nj = n.
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1.2 Some Important Distributions

Mean:
µj = E(Nj) = nπj,

Variance:
Var(Nj) = nπj(1− πj),

Covariance:
Cov(Nj,Nh) = −nπjπh.

(Note the Nj are negatively correlated - they must be, as their
sum is fixed.)

The probabilities πj, j = 1, . . . , c are constrained to lie inside the
simplex (region of c-dimensional space) defined by
0 ≤ π1, . . . , πc ≤ 1 and

∑c
j=1 πj = 1. As such, only c− 1 of them

are “free”: any of them must equal one minus the sum of the
others. For example, we could replace πc by 1− π1 − · · · − πc−1.
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1.2 Some Important Distributions

Example: c = 5,

y 1 2 3 4 5
p π1 π2 π3 π4 π5

3 — (0,0,1,0,0) , 2 — (0,1,0,0,0)
5 — (0,0,0,0,1) , 3 — (0,0,1,0,0)
1 — (1,0,0,0,0) , 4 — (0,0,0,1,0)
...

Repeat n multinomial trials (
∑5

j=1 nj = n,
∑5

j=1 πj = 1):

P(n1, n2, n3, n4) =

(
n!

n1! n2! n3! n4! n5!

)
πn1

1 π
n2
2 π

n3
3 π

n4
4 π

n5
5 .
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1.2 Some Important Distributions

Clearly Mult(n,π) with c = 2 is equivalent to the binomial
distribution.

The marginal distribution of each Nj is binomial. That is,
Nj ∼ B(n, π) for each j = 1, . . . , c.

We can decompose into n IID random variables, Yi for
i = 1, . . . , n, say:

N =
∑n

i=1 Yi

Yi ∼ Mult(1,π), for i = 1, . . . , n.
Yi is the outcome of the ith trial. We can think of it as a
vector of length c that takes a value 1 in entry j if outcome
Ej occurs on trial i, and all other entries are zero.
The entries of Yi are correlated Bernoulli random variables.
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1.2 Some Important Distributions

1.2.4 Poisson distribution

The Poisson distribution is used for describing the counts of
events that occur randomly over time or space, when outcomes
in disjoint periods or regions are independent.

If random variable Y follows the Poisson distribution with
parameter µ (i.e. Y ∼ Po(µ)), then it has distribution

p(Y = y) = p(y) =
e−µµy

y!
, y = 0, 1, 2, · · ·

and moments Mean: E(Y) = µ, Variance: Var(Y) = µ.

Note the support for the Poisson distribution is infinite, unlike
any of the other distributions we have seen so far.
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1.2 Some Important Distributions

The Poisson distribution approaches the normal distribution
N(µ, µ) as µ grows large.

If Y ∼ B(n, π) and n→∞ and π → 0 such that nπ → µ, where µ
is a constant, then the distribution of Y will tend towards Po(µ).
(This is the so called “Law of Rare Events”.) That is, the
Poisson distribution is a limiting case of the Binomial
distribution. Hence, Po(nπ) can be used to approximate B(n, π)
when n is large and π is small.

If Yj ∼ Po(µj), j = 1, . . . , c, are independent, then∑c
j=1 Yj ∼ Po(

∑c
j=1 µj).
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1.2 Some Important Distributions

Consider c independent Poisson variables, Y1, . . . ,Yc, with
parameters µ1, . . . , µc. Then the distribution of Y := (Y1, . . . ,Yc)
conditioned on the event

∑c
j=1 Yj = n is Mult(n,π), where

π = (π1, . . . , πc) and πj =
µj∑c

j=1 µj
for j = 1, . . . , c.

This means we can “split” the unconditional distribution of Y
into two parts

a Poisson part for the overall total, n

a multinomial part for the distribution of Y given n

and crucially, n and π are completely independent of each
other. This is very important for drawing inference about π, as
we shall see later.
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1.2 Some Important Distributions

1.2.5 Negative Binomial distribution
Duality between Binomial and Negative Binomial:

Binomial:
n — Number of Bernoulli trials (fixed)
Y — Number of successes among n Bernoulli trials (random)

P(Y = y) =

(
n
y

)
πy(1− π)n−y, y = 0, 1, · · · , n

Negative Binomial:
r — Number of successes (fixed)
Y — Number of Bernoulli trials until r successes (random)

P(Y = y) =

(
y− 1
r − 1

)
πr(1− π)y−r, y = r, r + 1, · · ·
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1.2 Some Important Distributions

Be careful: there are several different formulations of the
Negative Binomial distribution

r = # successes (fixed); Y = # trials until r successes
(random)
r = # failures (fixed); Y = # successes until r failures
(random)

p(Y = y) =
(y+r−1

y

)
πy(1− π)r, for y = 0, 1, . . .

r = # successes (fixed); Y = # failures until r successes
(random)

p(Y = y) = Γ(y+r)
Γ(r)Γ(y+1)

(
r

µ+r

)r (
1− r

µ+r

)y
for y = 0, 1, . . . ,

µ ≥ 0 and π = r
µ+r . Γ(·) is the Gamma function:

Γ(n) = (n− 1)! for positive integer n.
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1.2 Some Important Distributions

In the last formulation, the distribution was parametrized using
mean µ rather than probability of success π. Let us denote that
distribution by NB(r, µ). Then if Y ∼ NB(r, µ),

E(Y) = µ; Var(Y) = µ+ µ2

r

Compare this with the Poisson distribution: both have infinite
support; the means are the same; but the Negative Binomial
distribution has a larger variance.

This is the major motivation for knowing about the Negative
Binomial distribution - when the observed variance is too large
for the Poisson distribution (this is called overdispersion), then
perhaps the Negative Binomial distribution can be used.
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1.3 Likelihood and Maximum-likelihood Estimation

1.3.1 Likelihood functions

The distributions we have seen depend on parameters, many of
which (e.g. π, π = (π1, . . . , π2), µ, etc.) are unknown. Much of
this course will involve making inferences about these unknown
parameters. Our principal tool for doing so is likelihood.

Take a probability distribution (a PMF or PDF) p(y). This
depends on some unknown parameter(s), θ. So let’s make that
dependence explicit by writing p(y) = p(y; θ).

e.g. Y ∼ Po(µ), hence p(y) = p(y;µ) = e−µµy

y!

e.g. Y ∼ Bern(π), hence p(y) = p(y;π) = πy(1− π)1−y
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1.3 Likelihood and Maximum-likelihood Estimation

If we plug an observed value into p(y; θ), we end up with a
function of the unknown parameter(s) θ only
e.g. Y ∼ Po(µ), we observe value of 3 hence

p(3) = p(3;µ) = e−µµ3

6 := L(µ)

e.g. Y ∼ Bern(π), we observe value of 0 hence
p(0) = p(0;π) = (1− π) := L(π)

Thus L(θ), called the likelihood function, is the result of
plugging in an observed value into distribution function p(y; θ).
To make the influence of the observed data y on the likelihood
function explicit, we can use the notation L(θ) := L(θ; y).
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1.3 Likelihood and Maximum-likelihood Estimation

Of course, in practice we don’t just observe one single value -
we usually have an independent sample of size n, e.g.
y = (y1, . . . , yn). In that case, the overall likelihood is a product
of the individual likelihoods

L(θ; y) = L(θ; y1)× · · · × L(θ; yn) =

n∏
i=1

L(θ; yi) =

n∏
i=1

p(yi; θ).

e.g. Y ∼ Po(µ), we observe y = (y1, . . . , yn) hence

L(µ; y) = e−nµ µ
∑n

i=1 yi

y1!···yn!
.

e.g. Y ∼ Bern(π), we observe y = (y1, . . . , yn) hence
L(π; y) = π

∑n
i=1 yi(1− π)n−

∑n
i=1 yi .
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1.3 Likelihood and Maximum-likelihood Estimation

1.3.2 Loglikelihood function

For computational reasons, we will usually work with the
loglikelihood function l(θ; y), which is just the natural logarithm
of the likelihood function

l(θ; y) := log(L(θ; y)) = log(

n∏
i=1

L(θ; yi)) =

n∑
i=1

l(θ; yi)

e.g. Y ∼ Po(µ), we observe y = (y1, . . . , yn) hence
l(µ; y) = −nµ+

∑n
i=1 yi log(µ)−

∑n
i=1 log(y!).

e.g. Y ∼ Bern(π), we observe y = (y1, . . . , yn) hence
l(π; y) =

∑n
i=1 yi log(π) + (n−

∑n
i=1 yi) log(1− π).
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1.3 Likelihood and Maximum-likelihood Estimation

1.3.3 Maximum likelihood estimation
As the sample size grows, two things happen for “nice”
loglikelihood functions:

they become more and more peaked around a maximum
value
their shape becomes more and more quadratic

Clearly this maximum value is important. We know how to find
it: differentiate l(θ; x) with respect to θ; equate this to zero and
solve. What results is a numerical value for θ which maximizes
the loglikelihood and therefore the likelihood. Intuitively, it
seems a good guess for what the true value of θ might be.

We usually label this number θ̂. It is called the maximum
likelihood estimate (MLE) of θ.
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1.3 Likelihood and Maximum-likelihood Estimation

e.g. Y ∼ Po(µ), we observe y = (y1, . . . , yn) hence
l(µ; y) = −nµ+

∑n
i=1 yi log(µ)−

∑n
i=1 log(y!).

Thus ∂l(µ;y)
∂µ = −n + 1

µ

∑n
i=1 yi.

MLE µ̂ satisfies 0 = −n + 1
µ̂

∑n
i=1 yi.

Solving, we find that µ̂ = 1
n

∑n
i=1 yi, the sample mean.

e.g. Y ∼ Bern(π), we observe y = (y1, . . . , yn) hence
l(π; y) =

∑n
i=1 yi log(π) + (n−

∑n
i=1 yi) log(1− π).

Thus ∂l(π;y)
∂π = 1

π

∑n
i=1 yi − 1

1−π (n−
∑n

i=1 yi).
MLE π̂ satisfies 0 = 1

π̂

∑n
i=1 yi − 1

1−π̂ (n−
∑n

i=1 yi).
Solving, we find π̂ = 1

n

∑n
i=1 yi, the sample mean.

Note that for finding MLEs, only the part of l(θ; y) involving θ is
relevant. This part is called the kernel.
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1.3 Likelihood and Maximum-likelihood Estimation

MLEs (usually) have several nice properties:
they are unbiased - E(θ̂) = θ

they are consistent - θ̂ → θ as the sample size n→∞
they are asymptotically normal - θ̂ ∼ N(θ, σ2

MLE) where
σ2

MLE = 1
I(θ) and I(θ) = −E

(
∂2l(θ;Y)
∂θ2

)
, the Fisher

Information.
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1.3 Likelihood and Maximum-likelihood Estimation

e.g. Y ∼ Bern(π), we observe y = (y1, . . . , yn). We have shown
l(π; y) =

∑n
i=1 yi log(π) + (n−

∑n
i=1 yi) log(1− π) and

π̂ = y/n.
∂2l(π;y)
∂π2 = −

∑n
i=1 yi

π2 − n−
∑n

i=1 yi

(1−π)2 .
Observations y1, . . . , yn only appear in the sum

∑n
i=1 yi. The

random version of this sum,
∑n

i=1 Yi, follows the B(n, π)
distribution. Hence E(

∑n
i=1 Yi) = nπ.

−E
(
∂2l(π;Y=(Y1,...,Yn))

∂π2

)
= nπ

π2 + n−nπ
(1−π)2

We find I(π) = n
π(1−π) and π̂ ∼ N(π, π(1−π)

n ), or
π̂−π√
π(1−π)

n

∼ N(0, 1) for n large.
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1.4 Large Sample Inference

The asymptotic properties of maximum likelihood estimators
provide ways for us to make large sample inference on the
parameters of discrete distributions.

We shall consider three significance tests of a null hypothesis
H0 : θ = θ0.

1.4.1 Wald test and CI
1.4.2 Score test and CI
1.4.3 Likelihood Ratio test and CI
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1.4 Large Sample Inference

1.4.1 Wald test and CI
The asymptotic variance of the MLE θ̂ derived from the Fisher
Information I(θ) is a function of θ, the unknown parameter. If we
plug in the unrestricted MLE θ̂, we obtain an estimated
variance/standard error of θ̂. Let ι(θ̂) be the Fisher Information
evaluated at θ̂. Then the statistic

z = (θ̂ − θ0)/SE, where SE = 1/
√
ι(θ̂)

has an approximate standard normal distribution when θ = θ0.
Alternatively, the statistic z2 has an approximate chi-squared
distribution with df = 1, under θ = θ0.

This kind of statistic which uses the non-null estimated
standard error, is called a Wald statistic.
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1.4 Large Sample Inference

e.g. We have a sample of n IID Bernoulli random variables with
probability of success π (equivalently, we observe a
binomially distributed random variable with parameters n
and π).

Consider H0 : π = π0 vs H1 : π 6= π0

The Wald test statistic z = π̂−π0√
π̂(1−π̂)/n

can be used to obtain

one- or two-sided P-values.

The related 100(1− α)% confidence interval for π is given
by |z| < zα/2, or

π̂ ± zα/2

√
π̂(1− π̂)/n.
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1.4 Large Sample Inference

1.4.2 Score test and CI
The score function u(θ) is the first derivative of the
loglikelihood, i.e. u(θ) := ∂l(θ;y)

∂θ .

Evaluated at the MLE θ̂, the score function is zero. Evaluated at
the null value of θ, θ0, the score function tends to be larger in
absolute value the farther θ̂ is from θ0. Hence, roughly
speaking, the larger the absolute value of u(θ0), the less the
data supports the null hypothesis H0.

The test statistic z = u(θ0)/
√
ι(θ0) has an approximate standard

normal distribution. Alternatively, the statistic z2 has an
approximate chi-squared distribution with df = 1.

Note the score statistic z (or z2) uses the null SE and does not
require the computation of θ̂, the MLE. 33



1.4 Large Sample Inference

e.g. Again consider a sample of n IID Bernoulli random
variables with probability of success π. We wish to test
H0 : π = π0 vs H1 : π 6= π0.

The score function is
u(π) := ∂l(π;y)

∂π = 1
π

∑n
i=1 yi − 1

1−π (n−
∑n

i=1 yi).

Thus the score test statistic is

z =
u(π0)√
ι(π0)

=
π̂ − π0√

π0(1− π0)/n
.

The related 100(1− α)% confidence interval for π is given
by all possible values for π0 for which |z| < zα/2.
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1.4 Large Sample Inference

1.4.3 Likelihood Ratio test and CI
The Likelihood Ration (LR) test takes two maximizations of the
likelihood function: one maximum over the possible parameter
values under the null hypothesis H0; the other is the maximum
over the larger set of possible parameter values under H0 or
H1, the alternate hypothesis.

Let `0 be the maximized likelihood under H0; let `1 be the
maximized likelihood under H1. The ratio Λ := `0/`1 cannot be
greater than 1.

It is known that the LR test statistic −2 log(Λ) has a
chi-squared distribution in the limit as n→∞. The df is the
difference between the difference in the dimensions of the
parameter spaces under H0 ∪ H1 and H0.
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1.4 Large Sample Inference

e.g. Again consider a sample of n IID Bernoulli random
variables with probability of success π. We wish to test
H0 : π = π0 vs H1 : π 6= π0.

Recall L(π; y) = π
∑n

i=1 yi(1− π)n−
∑n

i=1 yi . Under H0, π can
only take one possible value, π0. Hence, under H0, the
maximum (and only) value L(π; y) can take is `0 = L(π0; y).

Alternatively, under H0 ∪ H1, π can take any possible value
in [0, 1]. We have already shown that L(π; y) is maximized
at π = π̂ =

∑n
i=1 yi/n. Hence `1 = L(π̂; y).
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1.4 Large Sample Inference

The LR test statistic is given by

−2 log(`0/`1) = 2(log(`1)− log(`0))

= 2 log(π̂)

n∑
i=1

yi + 2(n−
n∑

i=1

yi) log(1− π̂)

− 2 log(π0)

n∑
i=1

yi + 2(n−
n∑

i=1

yi) log(1− π0)

= 2 log
(
π̂

π0

) n∑
i=1

yi + 2(n−
n∑

i=1

yi) log
(

1− π̂
1− π0

)
No unknown parameters occur under H0 but one occurs
under H0 ∪ H1. Thus the LR test statistic will have the χ2

1
distribution.
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1.4 Large Sample Inference

The related 100(1− α)% confidence interval for π is given
by the set pf π0 for which the likelihood ratio test has a
P-value exceeded α. That is, for all π0 which satisfy

2 log
(
π̂

π0

) n∑
i=1

yi + 2(n−
n∑

i=1

yi) log
(

1− π̂
1− π0

)
≤ χ2

1(α)

In practice, the confidence interval will be found using
numerical methods to iteratively solve for the values of π0
which satisfy the above inequality.
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1.4 Large Sample Inference

1.4.4 Comparing the tests

The three tests are asymptotically equivalent - in the limit,
their (squared for Wald and Score tests) test statistics will
follow a chi-squared distribution with the same df - if H0 is
true.
If H0 is not true, the test statistics may take very different
values. But in such a situation, usually the test statistics
will be large and so H0 will be rejected nevertheless.
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1.4 Large Sample Inference

The Wald test uses θ̂ and the curvature of likelihood at θ̂.
The Score test depends on the slope and curvature of
likelihood at θ0. The LR test uses the values of likelihood at
θ̂ and θ0.
The Wald test is the most commonly used, because it is
simplest. However, the other two are increasingly available
in software.
For small to moderate sample sizes, the LR and Score
tests are usually more reliable than the Wald test.
All three tests rely on “large” sample sizes. A rule of thumb
for testing binomial parameter π is nπ ≥ 5 and n(1− π) ≥ 5
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1.4 Large Sample Inference

1.4.5 Example: Eyesight of students and staff

We randomly selected 100 CUHK Statistics students. 53 of
these wear glasses. We wish to test whether the (binomial)
proportion of CUHK stats students who wear glasses is equal
to 0.5 or not. The triumvirate of tests yields the following
confidence intervals

Wald CI: (0.432, 0.627)

Score CI: (0.433, 0.625)

LR CI: (0.432, 0.626)
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1.4 Large Sample Inference

We randomly selected 10 CUHK Statistics staff. 6 of these
wear glasses. We wish to test whether the (binomial) proportion
of CUHK stats staff who wear glasses is equal to 0.5 or not.
The triumvirate of tests yields the following confidence intervals

Wald CI: (0.296, 0.904)

Score CI: (0.313, 0.832)

LR CI: (0.300, 0.854)
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1.4 Large Sample Inference

We randomly selected 10 CUHK Fine Arts students. 1 of these
wears glasses. We wish to test whether the (binomial)
proportion of CUHK Fine Arts students who wear glasses is
equal to 0.5 or not. The triumvirate of tests yields the following
confidence intervals

Wald CI: (−0.086, 0.286)

Score CI: (0.018, 0.404)

LR CI: (0.006, 0.372)
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