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2.1 One-way Tables

2.1.1 Examples

In the first chapter, we covered
what kinds of data we are interested in

Nominal, Ordinal, Interval
what kinds of distribution will arise

Binomial, Multinomial, Poisson
how to estimate and test the parameters of these
distributions

Wald, Score, LR tests and confidence intervals
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2.1 One-way Tables

(From Exercise 1.5 in Agresti (2013))

When the 2010 General Social Survey asked, “Please
tell me whether or not you think it should be possible
for a pregnant women to obtain a legal abortion if she
is married and does not want any more children,” 587
replied “yes” and 636 replied “no”.

3



2.1 One-way Tables

You are a floor manager at a large casino in Macau. You
suspect one of your craps dealers is cheating, in conjunction
with a customer. You test the dice they are using by rolling it 60
times. You observe the following:

Face 1 2 3 4 5 6
Count 10 14 6 6 4 20

Should you punish the craps dealer and customer?

4



2.1 One-way Tables

It’s 1898. Ladislaus Bortkiewicz, given the job of investigating
the number of soldiers in the Prussian army killed by kicks from
horses and mules, has collected the following data: by
observing 14 army corps for 20 years each (for a sample of 280
corps-years), there were 144 corps-years with no deaths; 91
corps-years with one death; 32 corps-years with two deaths; 11
corps years with three deaths; 2 corps-years with four or more
deaths.

What can you say about these deaths in the Prussian army?
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2.1 One-way Tables

Each of those tables can be written as one-way frequency
tables:

Answer Yes No
Count 587 636

Face 1 2 3 4 5 6
Count 10 14 6 6 4 20

# deaths 0 1 2 3 4+
Count 144 91 32 11 2
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2.1 One-way Tables

2.1.2 Notation

We represent a one-way table with c categories by a vector
X = (X1, . . . ,Xc), where Xj is the (random variable) count or
frequency in cell/category j.
We then represent the observed counts or frequencies in
cell j by nj, j = 1, . . . , c. The total number of observations is
n =

∑c
j=1 nj.

We are concerned with the joint distribution of (X1, . . . ,Xn).
Let this be π = (π1, . . . , πc), where πj is the probability that
a randomly selected person/item/thing from the population
under study falls into category j and

∑c
j=1 πj = 1.

We want to estimate these πjs and their joint distribution.
Think of πj as a population proportion with a particular
characteristic. Let pj = nj/n be the sample version of πj.
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2.1 One-way Tables

Our analysis begins with an assumption about how the data is
generated.

One question suffices: did sampling occur with a fixed sample
size or not?

if fixed, binomial or multinomial sampling has been
employed.
if not fixed, perhaps Poisson sampling has been.
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2.2 Binomial Sampling

2.2.1 Characterisation

Binomial sampling is characterised by
n is fixed
each observation is a “trial” with only two possible
outcomes. Nominally we can call these “success” and
“failure”.
the trials are IID, meaning the probability of success π
does not change between trials and the trials do not affect
each other.
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2.2 Binomial Sampling

2.2.2 Inference

Inference in binomial sampling focuses on parameter π.
We have already found its MLE: π̂ = ns/n, where category
s is the “success” category.
In order to the use the Wald, Score and LR test for π, we
need approximate normality of the sample proportion of π̂.
This comes with “large” sample size n.
But what is large? A good rule of thumb is nπ ≥ 5 and
n(1− π) ≥ 5, so that the number of successes and failures
in the sample are not small.
With large n, we have the triumvirate of tests at our
disposal. However, if proportions are extreme, e.g. π or
1− π < 0.2, the Score and LR approaches can be
preferred to the Wald.
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2.2 Binomial Sampling

2.2.3 Example - Exercise 1.5 from Agresti (2013)

We summarize the data obtained in a one-way table:
Answer Yes No
Count 587 636

Let “success” be “Yes”. We want to know if π is different from
0.5 at the α = 0.05 level. The sample size n = 1223 is clearly
large enough for asymptotic tests to be used. Applying these,
we find

The MLE is π̂ = 587/1223 = 0.48.
The Wald, Score and LR 95% CIs all equal (0.452, 0.508).

We conclude at the 5% significance level, we cannot reject the
null hypothesis that π = 0.5. That is, a random person is
equally likely to answer the question “Yes” or “No”.
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2.3 Multinomial Sampling

2.3.1 Characterisation

Multinomial sampling is characterised by
n is fixed
each observation is a “trial” with only c possible outcomes.
the trials are IID, meaning the probability of success π
does not change between trials and the trials do not affect
each other.

We shall see later that the requirement “n is fixed” is not too
restrictive.
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2.3 Multinomial Sampling

2.3.2 Inference
Recall the distribution of X ∼ Mult(n,π)

p(X1 = n1, · · · ,Xc = nc) =
n!

n1!n2! · · · nc!
πn1

1 π
n2
2 · · ·π

nc
c

Hence, the loglikelihood function is

l(π; (n1, . . . , nc)) =

c∑
j=1

nj log(πj) + Const.

To find the MLE of π = (π1, . . . , πc) is to solve the problem

Maximize: l(π; (n1, . . . , nc))

Subject to the constraint: π1 + · · ·+ πc = 1

13



2.3 Multinomial Sampling

This kind of problem can be solved using Lagrange Multipliers
(if you know how), or simply by taking the constraint into
account straight away:

l(π; (n1, . . . , nc)) =

c−1∑
j=1

nj log(πj) + nc log(1−
c−1∑
j=1

πj) + Const

Hence, for j = 1, . . . , c− 1

∂l(π; (n1, . . . , nc))

∂πj
=

nj

πj
− nc

1−
∑c−1

j=1 πj
=

nj

πj
− nc

πc
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2.3 Multinomial Sampling

Setting these c− 1 equations to zero and solving yields the
MLEs

π̂j =
nj

nc
π̂c, j = 1, . . . , c− 1

and summing these equations gives

1− π̂c =

c−1∑
j=1

π̂j = (n− nc)
π̂c

nc

telling us π̂c = nc
n and consequently π̂j =

nj
n for j = 1, . . . , c− 1

too.

Recall that the marginal distribution for each Xj is B(n, πj).
Hence individual CIs for each πj can be found as before.
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2.3 Multinomial Sampling

What kind of hypothesis we will consider with multinomial
sampling? We could generalise the test we considered for
binomial sampling, i.e. move from

H0 : π = π0 to H0 : π = π0 = (π10, . . . , πc0)

H1 : π 6= π0 to H1 : π 6= π0

where π0 is a completely specified distribution. For example,
when testing the fairness of a die, π0 = (1/6, . . . , 1/6).

Of the tests we have considered so far, the LR is best placed to
test hypotheses like these.
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2.3 Multinomial Sampling

Recall the LR test statistic, which we now denote G2: if
X1, · · · ,Xn are sampled from p(x;θ), θ ∈ Θ ∈ Rk, and we
consider the hypotheses

H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ−Θ0 where Θ0 ⊂ Θ

then we have
Likelihood function: L(θ) =

∏
i p(xi;θ)

Loglikelihood function: l(θ) = log L(θ)

MLE of θ under Θ0: θ̂0

MLE of θ under Θ: θ̂
Likelihood-ratio test statistic:
G2 = −2 log Λ = −2 log L(θ̂0)

L(θ̂)
= −2[l(θ̂0)− l(θ̂)]
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2.3 Multinomial Sampling

Under H0, we have:

G2 = −2 log Λ→ χ2
r

where the degrees of freedom r is the difference between the
dimensions of the parameter spaces under H0 ∪ H1 (i.e. Θ) and
under H0 (i.e. Θ0).

Alternatively, think of r as:

(# parameters estimated under H0 ∪ H1) minus
(# parameters estimated under H0).
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Multinomial Sampling

We use the LR test to test the hypotheses

H0 :π = π0 = (π10, . . . , πc0)

H1 :π 6= π0.

Under H0, likelihood L(π; (n1, . . . , nc)) can only take one value:

L(π0) =
n!

n1!n2! · · · nc!
πn1

10π
n2
20 · · ·π

nc
c0.

Under H0 ∪ H1, the likelihood is maximized by MLEs π̂j = nj/n:

L(π̂) =
n!

n1!n2! · · · nc!
(n1/n)n1(n2/n)n2 · · · (nc/n)nc

hence

Λ =

c∏
j=1

(
nπj0

nj

)nj
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Multinomial Sampling

The test statistic G2 is given by

G2 = −2 log Λ = 2
c∑

j=1

nj log
(

nj

nπj0

)

and will have the χ2
c−1 distribution for large n because under H0

no parameters were estimated (they were all given to us) and
under H0 ∪ H1 we needed to estimated c− 1 of the πjs (the last
πj is determined by the fact they must sum to one).

We are now in a position to test whether our craps dealer and
customer were cheating.
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2.3 Multinomial Sampling

2.3.3 Example: Cheating at Craps?

We want to test

H0 :π = π0 = (1/6, . . . , 1/6)

H1 :π 6= π0.

Calculate using the MLEs:
Face 1 2 3 4 5 6
Oj := Count nj 10 14 6 6 4 20
Ej := nπj0 10 10 10 10 10 10
Oj log(Oj/Ej) 0 4.71 -3.06 -3.06 -3.67 13.86

from which we find G2 = 17.56. The P-value is 0.0036, so we
reject the null hypothesis at the 1% level. The dealer and
customer must be punished.
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2.3 Multinomial Sampling

2.3.4 Inference: revisited

With a little thought, we realise the LR test can handle much
more than a simple test of whether π equals an exact value or
not. It can handle null hypotheses like

H0 : π1 = π2, π3 = π4

H0 : π1 + π2 = π3

in which not all (or maybe none of) the parameters are
completely specified, but rather a relationship between them is.

How would the LR test work with hypotheses like these, where
π0 is unknown?
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2.3 Multinomial Sampling

If π0 is unknown, we need to estimate it using the data we
have. This gives us estimates π̂j, j = 1, . . . , c for the
category/cell probabilities under H0. Multiply these by n to have
Ej, j = 1, . . . , c, the expected cell values under H0.

Use these Ej with the observed cell values Oj to compute the
LR test statistic (also called the deviance test statistic) G2:

G2 = 2
c∑

j=1

Oj log
(

Oj

Ej

)
.

The critical value comes from the χ2
r distribution, where

r = c− 1− # parameters estimated under H0.

23



2.3 Multinomial Sampling

2.3.5 Example: With π0 unspecified

We observe the following data
Cell 1 2 3 4 Total
Frequency 12 13 20 25 70

and wish to test the hypothesis H0 : π1 = π2, π3 = π4 against
the alternate hypothesis that the model does not hold.

First find the MLEs of the πj, j = 1, . . . , 4 under H0. The
loglikelihood function is

l(π) = n1 logπ1 + n2 logπ1 + n3 logπ3 + n4 logπ3

= (n1 + n2) logπ1 + (n3 + n4) logπ3
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2.3 Multinomial Sampling

Now, π1 + π2 + π3 + π4 = 2π1 + 2π3 = 1, hence π3 = 1/2− π1
and

l(π) = (n1 + n2) logπ1 − (n3 + n4) log(1/2− π1)

⇒ ∂l(π)

∂π1
=

n1 + n2

π1
− n3 + n4

1/2− π1

Thus the MLE for π1 satisfies

n1 + n2

π̂1
− n3 + n4

1/2− π̂1
= 0

which yields the solution π̂1 = n1+n2
2n . The rest of the MLEs

quickly follow: π̂2 = π̂1 and π̂3 = n3+n4
2n = π̂4.
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2.3 Multinomial Sampling

Plugging in the numbers, we see that, the MLEs under H0 are:

π̂1 = π̂2 =
25
140

=
5
28

and π̂3 = π̂4 =
45

140
We then have
Cell j 1 2 3 4 Total
Oj = Frequency 12 13 20 25 70
Ej = nπ̂j0 12.5 12.5 22.5 22.5 70

Now calculate the test statistic: G2 = 2
∑4

j=1 Oj log(
Oj
Ej

) = 0.597,
and the degrees of freedom is 2: three of πj, j = 1, 2, 3, 4 were
estimated under H0 ∪ H1 and one (π1) was estimated under H0.
Therefore the critical value is given by χ2

2,0.05 = 5.991 and we do
not reject H0.
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2.4 Pearson’s Chi-squared Test

2.4.1 Testing models

The last example gives some insight into how general the LR
test can be. Really, what we tested was whether the model
π1 = π2, π3 = π4 was a good fit, compared to the alternative.
More generally, it looks the LR test can be used to test
hypotheses like

H0 : Model M0 fits.
H1 : Model M0 does not fit.

There is another test which is commonly used to see if models
fit table data. It is called Pearson’s Chi-squared test.
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2.4 Pearson’s Chi-squared Test

2.4.2 Another test

Recall Oj is the observed count of category j and Ej is the
expected count of category j if H0 were true.

Pearson’s goodness-of-fit statistic, X2, is given by

X2 =

c∑
j=1

(Oj − Ej)
2

Ej
.

When n is large, X2 has the χ2
r distribution, where r = c− 1−#

parameters estimated under H0.
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2.4 Pearson’s Chi-squared Test

Where does X2 come from?
For an illustration, consider a one-way table with c = 2 and
H0 : π = π0. We observe a large sample of size n, with counts
O1 (in the “success” category) and O2. Calculate X2:

X2 =
(O1 − nπ0)2

nπ0
+

(O2 − n(1− π0))2

n(1− π0)

=
(O1 − nπ0)2

nπ0
+

(n− O1 − n(1− π0))2

n(1− π0)

=
(O1 − nπ0)2

nπ0(1− π0)

Under H0, since n is large, O1 ∼ N(nπ0, nπ0(1− π0)). Hence,
under H0, X2 is the square of a standard normal random
variable and therefore follows the χ2

1 distribution.
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2.4 Pearson’s Chi-squared Test

2.4.3 Example revisited: Cheating at Craps?

Face 1 2 3 4 5 6
Oj := Count nj 10 14 6 6 4 20
Ej := nπj0 10 10 10 10 10 10
(Oj − Ej)

2/Ej 0 1.6 1.6 1.6 3.6 10

from which we find X2 = 18.4 and the P-value is 0.0025. Recall
G2 = 17.56 and the P-value was 0.0036. In good practice to
perform the Pearson Chi-squared test and the LR test. If X2

and G2 are similar, we can be confident that the large-sample
approximation to normality has worked.
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2.4 Pearson’s Chi-squared Test

2.4.4 Example revisited: With π0 unspecified

From before

Cell j 1 2 3 4
Oj = Frequency 12 13 20 25
Ej = nπ̂j0 12.5 12.5 22.5 22.5
(Oj − Ej)

2/Ej 0.02 0.02 0.278 0.278

from which we find the test statistic X2 = 0.596 and the P-value
is 0.742. The P-value from the LR test was 0.742.

31



2.4 Pearson’s Chi-squared Test

2.4.5 Small expected cell counts

In the binomial setting, we said that having nπ and n(1− π) both
≥ 5 was good enough to be confident of using the large-sample
approximation employed by the likelihood based analysis.

In the multinomial setting, the rule of thumb used to be Ej ≥ 5
for each category j. However, these days the rule is slightly
modified: we can have Ej < 5 for at most 20% of the cells, but
none of the Ejs can be smaller than 1.

If some of the Ejs are too small, try combining categories until
the rule of thumb allows you to use the large-sample
approximation.
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2.5 Poisson Sampling/Distribution

2.5.1 Characterisation

The Poisson distribution is used to model counts which occur
randomly over a fixed time/place.

Poisson sampling is characterised by
The total sample size n is not fixed
The counts X1, . . . ,Xc are independent Poisson variables,
with rates µ1, . . . , µc.
The Poisson distribution itself requires independence of
events; homogeneity of the rate; and that the time or space
in which the events are observed is fixed.
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2.5 Poisson Sampling/Distribution

2.5.2 Inference

We have already shown that given a sample y1, . . . , yn from a
Po(µ) distribution, the MLE for parameter µ is µ̂ = 1

n

∑n
i=1 yi, the

sample mean.
Moreover, as n grows large, µ̂ ∼ N(µ, µn ).

The Wald test statistic is µ̂−µ0√
µ̂/n

.

The Score test statistic is µ̂−µ0√
µ0/n

.

The LR test statistic is 2n(µ0 − µ̂) + 2nµ̂ log(µ̂/µ0).

These are useful for testing whether a Poisson parameter takes
a particular value. But if we want to test whether the data we
observe follows some Po(µ) distribution?
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2.5 Poisson Sampling/Distribution

2.5.3 Example: Death by donkey kicks
The LR and Pearson’s Chi-squared test can handle a question
like this, since it is asking if the Poisson distribution is a good
model for the data. We demonstrate the method with the
Prussian army data.

Check whether the sample looks like it could come from a
Poisson distribution:

the time/space in which the events were observed were
fixed (280 corps-years)
the total sample of deaths (196) was not fixed
the # deaths in a corps-year does not affect the # deaths in
another corps-year (seems reasonable)
the mean # deaths is the same for all corps-years (seems
reasonable).
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2.5 Poisson Sampling/Distribution

We wish to test H0 : Data follows some Po(µ) distribution.

Under H0, π1, the probability a random chosen corps-year
contains zero deaths, is given by e−µ for some µ. Likewise,
π2 = e−µµ, π3 = 1

2 e−µµ2, π4 = 1
6 e−µµ3 and π5 = 1−

∑4
j=1 πj.

Essentially, we now see that H0 states the multinomial
probabilities πj depend on some unknown parameter µ in a
particular way. Let Θ0 be the parameter space of all
π = (π1, . . . , π5) which satisfy the equations above for some µ.
Let Θ be the parameter space of all π. Then our test is actually

H0 : π ∈ Θ0 vs H1 : π ∈ Θ−Θ0.
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2.5 Poisson Sampling/Distribution

We begin by estimating the Poisson parameter µ via the MLE,
µ̂, the sample mean. To do that, we need to know what
observations fell in the “4+” category. It turns out they were two
observation of 4 deaths a corps-year. Hence

µ̂ =
144× 0 + 91× 1 + 32× 2 + 11× 3 + 2× 4

200
= 0.61.

Now use µ̂ to estimate the πjs:

π̂1 = e−µ̂ = 0.497 π̂2 = e−µ̂µ̂ = 0.348

π̂3 = e−µ̂µ̂2/2 = 0.122 π̂4 = e−µ̂µ̂3/6 = 0.028

π̂5 = 1−
4∑

j=1

π̂j = 0.006
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2.5 Poisson Sampling/Distribution

# deaths 0 1 2 3 4+
Count 144 91 32 11 2
Ej 139.0 97.3 34.1 7.9 1.6

The “4+” category has a small expected value under H0, but
since the other 4 are ≥ 5, we can assume the large-sample
approximation is valid.

We calculate G2 = 1.86 and X2 = 1.98. Under H0, there was
one parameter to estimate: µ. Under H0 ∪ H1, there were four:
4 from πj, j = 1, . . . , 5. Therefore, we calculate P-values from
the χ2

3 distribution.

The P-value from the LR test is 0.603. The P-value from the
Pearson’s Chi-squared test is 0.577. Both tests suggest the
Poisson distribution is a reasonable model for the data.
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