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3.1 Two-way Tables

3.1.1 Examples

“Having been given the number of instances
respectively in which things are both thus and so, in
which they are thus but not so, in which they are so but
not thus, and in which they are neither thus nor so, it is
required to eliminate the general quantitative relativity
inhering in the mere thingness of the things, and to
determine the special quantitative relativity subsisting
between the thusness and the soness of the things”

M.H. Doolittle, (1887)
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3.1.1 Two-way Tables

(From Exercise 2.4 in Agresti (2013)) All the auto accidents in
Florida in 2008 were classified according to whether they were
fatal and whether the person involved was wearing a seat-belt.

Injury
Seat-Belt Use Fatal Non-fatal
No 1085 55623
Yes 703 441239

Source: Florida Department of Highway Safety and Motor
Vehicles
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3.1.1 Two-way Tables

Five hundred residents of Massachusetts are asked their
political affiliation and their opinion on some political statement.
The results are

Favor Indifferent Opposed Total
Democrat 138 83 64 285
Republican 64 67 84 215
Total 202 150 148 500
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3.1.1 Two-way Tables

The Physician’s Health Study was a 5-year randomized, blind
study to see if taking aspirin regularly reduces the mortality
from heart disease. Every other day, physicians taking part in
the study either took one aspirin or one placebo. The results
were

Myocardial Infarction
Fatal Attack Nonfatal Attack No Attack Total

Placebo 18 171 10845 11034
Aspirin 5 99 10933 11037

Source: Preliminary Report: Findings from the aspirin
component of the ongoing Physician’s Health Study. N. Engl. J.
Med. 318:262-264, 1988.
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3.1.1 Two-way Tables

A British woman claims to be able to tell if a cup of tea with milk
has had the milk poured first or the tea poured first. To test this,
she is presented with 8 cups of tea, with 4 cups of each type in
random order. She tastes each cup and guesses what was
poured first for each. The results were

Poured First \Guess Poured First Milk Tea Total
Milk 3 1 4
Tea 1 3 4
Total 4 4 8
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3.1 Two-way Tables

3.1.2 Response and explanatory variables

Two-way tables involve two categorical variables, X with r
categories and Y with c. Therefore, there are rc possible
combinations. (Traditionally, X is the row variable and Y the
column variable.)

Sometimes, both X and Y will be response variables, in which
case it makes sense to talk about their joint distribution.

On other occasions, Y will be a the response variable and X will
be the explanatory variable. In this case, it does not make
sense to talk about the joint distribution of X and Y. Instead, we
focus on the conditional distribution of Y given X. That is, how
does Y change as X changes.
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3.1 Two-way Tables

Consider this example: we sample 100 students at random
outside University station and categorise them by their gender
and whether they like beer. The results are

Likes Beer Does Not Like Beer
Male 45 5
Female 15 35

By chance, we have observed equal numbers of male and
female students. For this study, it makes sense to talk about the
joint distribution of the counts in the four cells. Three of entries
are free and the last must be 100 minus the sum of the rest. It
is essentially and one-way table, written in two dimensions.
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3.1 Two-way Tables

Now say we sample 50 female students and 50 male students
outside University station and ask them if they like beer. The
results are

Likes Beer Does Not Like Beer
Male 45 5
Female 15 35

In this study, the entries for the table are not as free. In each
row, one entry determines the entire row. A joint distribution of
the four counts doesn’t make sense here. It makes sense to
focus on the distribution of each row. It is essentially two
one-way tables put together.
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3.1 Two-way Tables

3.1.3 Notation

n: total number of observations (sample size).

nij: number of observations in row i and column j.

pij = nij/n: proportion of the total sample falling in the (i, j)-th
cell.

∑
i
∑

j pij = 1.

Sample joint distribution: the set {pij}.

Sample marginal distribution: the set {pi+} and the set {p+j}.

Sample conditional distribution: the set {pj(i)} or the set {pi(j)}.
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3.1 Two-way Tables

Let X and Y denote two categorical variables with r and c
categories, respectively. Classifications of subjects on both
variables have r × c possible combinations.

When the cells contain frequency counts of outcomes for a
sample, the table is called a contingency table or a
cross-classification table. An r × c contingency table is

X\Y 1 2 · · · c Total
1 n11 n12 · · · n1c n1+
2 n21 n22 · · · n2c n2+
...

...
...

...
...

...
r nr1 nr2 · · · nrc nr+

Total n+1 n+2 · · · n+c n
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3.1 Two-way Tables

Florida accident data: sample joint distribution:

Fatal Non-fatal Total

No p11 =
1085

498650
p12 =

55623
498650

p1+ = p11 + p12 =
56708
498650

Yes p21 =
703

498650
p22 =

441239
498650

p2+ = p21 + p22 =
441942
498650

Total p+1 =
1788

498650
p+2 =

496862
498650

1.0

Marginal distribution:

The set {pi+} for the row variable.
The set {p+j} for the column variable.
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3.1 Two-way Tables

Physician’s Health Study: sample conditional distribution:

Explanatory variable: Placebo or Aspirin (i = 1, 2)
Response variable: Heart Disease (j = 1, 2, 3)
Sample conditional distribution: pj(i)

Fatal Non-fatal None
Placebo p1(1) =

18
11034 p2(1) =

171
11034 p3(1) =

10845
11034

Aspirin p1(2) =
5

11037 p2(2) =
99

11037 p3(2) =
10933
11037
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3.1 Two-way tables

πij: probability of an observation falling in the (i, j)-th cell.

Population joint distribution: the set {πij},
∑

i
∑

j πij = 1.

Population marginal distribution:
the set {πi+} for the row variable,

∑
i πi+ = 1.

the set {π+j} for the column variable,
∑

j π+j = 1.

Population conditional distribution:
If Y is a response variable, and X is an explanatory variable,

πj(i) denotes the probability of falling in level j of the response
variable given level i of the explanatory variable,

c∑
j=1

πj(i) = 1, for i = 1, . . . , r
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3.2 Sampling Models

3.2.1 Poisson Sampling

As before with one-way tables, if the total sample size n is
completely random and so are both margins of the table, it is
common to treat each cell as an independent Poisson variable.

Each cell frequency nij has an independent Poisson distribution
with mean µij. The joint probability mass function for this model
is ∏

i,j

µ
nij
ij e−µij

nij!
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3.2 Sampling Models

Furthermore, if n is not of interest, data from Poisson Sampling
may be treated as if it were from Multinomial Sampling, by
conditioning on the value of n, because the inferences for π are
still valid. (Recall Slide 18 of the “Preliminaries” notes and
Question 4 of “Exercises for Week 1”.)

The Florida auto accident study is an example where Poisson
sampling could be assumed. The time frame in which accidents
were observed was fixed, but the number of accidents
observed was not. If our focus is not the number of accidents
but the proportions of accidents in the various categories, we
could treat the sample as being from a multinomial model, with
sample size n = 498650.
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3.2 Sampling Models

3.2.2 Multinomial Sampling

If the total sample size n is fixed and each element of the
sample is classified according to two categories X and Y, X with
r categories and Y with c, the joint distribution of the nij is
Mult(n,π), with π = (π11, π12, . . . , π1c, π21, . . . , πrc).

The probability mass function of the cell counts is

n!∏
i,j nij!

∏
i,j

π
nij
ij .

The study of 500 residents of Massachusetts, categorised
according to their political affiliation and opinion on some
political statement is an example of multinomial sampling.
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3.2 Sampling Models

3.2.3 Product Multinomial Sampling
Often, observations on a response Y occur separately at each
setting of X. Treating row totals as fixed, and using the notation
ni+, suppose that ni+ observations on Y at setting i of X are
independent, each with probability distribution {π1(i), . . . , πc(i)}.
The counts {nij, j = 1, . . . , c} satisfy

∑
j nij = ni+, and have the

multinomial form:

Y|X = i 1 2 · · · c Total
nij ni1 ni2 · · · nic ni+

πj(i) π1(i) π2(i) · · · πc(i) πi+

, ni+!∏c
j=1 nij!

c∏
j=1

π
nij

j(i)

Product Multinomial Sampling is usually the sampling scheme
when one of the variables is the response and the other is the
explanatory variable.
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3.2 Sampling Models

When samples at different settings of X are independent, the
joint probability function for the entire data set is the product of
the above multinomial functions from the various settings, i.e.

r∏
i=1

 ni+!∏c
j=1 nij!

c∏
j=1

π
nij

j(i)


This sampling scheme is also called independent multinomial
sampling.

The Physician’s Health Study appears to be an example of
independent multinomial sampling - the size of the Placebo and
Aspirin groups were chosen to be very similar.
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3.2 Sampling Models

3.2.4 Hypergeometric Sampling

Occasionally, we encounter studies in which both marginal
totals (row and column) of the contingency table are fixed by
design. Consider the case where r = c = 2. Then a single entry
in the two-way table determines all the rest.

The situation is analogous to the following. We have N balls, of
which K are red and the rest are blue. We draw a sample of n
balls without replacement. What is the probability that our
sample contains k red balls?
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3.2 Sampling Models

For our sample of n balls to have k reds, we must choose k reds
from the K available. Likewise, we must choose n− k blues
from the N − K available. Moreover, there are

(N
n

)
possible

sample of size n from the population of N. The probability of us
choosing k reds in a sample of n is therefore

p(k;N,K, n) =

(K
k

)(N−K
n−k

)(N
n

) for k = 0, 1, . . . , n.

This is the hypergeometric distribution. (When the table is
larger than 2× 2, we have the multivariate hypergeometric
distribution.)
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3.2 Sampling Models

The “Lady Tasting Tea” study is an (very famous) example of
hypergeometric sampling. Say a success (picking a red ball) is
the lady correctly identifying a cup of tea with milk poured first.
Then

N = # cups of tea = 8;
K = # cups of tea with milk poured first = 4;
n = # sample size = 4;
k = # correct guesses by the lady, k ∈ {0, 1, 2, 3, 4}.

The two-way table for this study has the hypergeometric
distribution if the lady is essentially guessing (drawing a random
sample) whether the cups of tea have had milk poured first or
not. If she genuinely has skill, the distribution will be different.
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3.3 Test of Independence and Test of Homogeneity

3.3.1 Definitions

A principal aim of many studies is to compare conditional
distributions of Y at various levels of explanatory variables.

When both variables are response variables, descriptions of the
association can use their joint distribution, marginal
distributions, and conditional distribution of Y given X, or
conditional distribution of X given Y.

Independence, therefore, would mean that for a member of the
population P(X = i,Y = j) = P(X = i)P(Y = j), or in terms of the
population parameters

πij = πi+π+j for i = 1, . . . , r, j = 1, . . . , c
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3.3 Test of Independence and Test of Homogeneity

When Y is a response and X is an explanatory variable (for
example, in a product multinomial design), we are cautious
about using a joint distribution πij to define “independence”.

What does “independence” mean when we have Y as a
response and X an explanatory variable? We basically want for
Y not to change behaviour when we change the category of X.
That is, as we move rows, the conditional distribution of Y does
not change. In terms of population parameters, this means

πj(1) = πj(2) = · · · = πj(r) for j = 1, . . . , c.
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3.3 Test of Independence and Test of Homogeneity

3.3.2 Test of Independence
Observed frequencies:

X\Y 1 2 · · · c Total

1 n11 n12 · · · n1c n1+

2 n21 n22 · · · n2c n2+
...

...
...

...
...

r nr1 nr2 · · · nrc nr+

Total n+1 n+2 · · · n+c n

Sampling model: Multinomial model with size n and r × c
categories; X and Y are responses. 25



3.3 Test of Independence and Test of Homogeneity

X\Y 1 2 · · · c Total

1 π11 π12 · · · π1c π1+

2 π21 π22 · · · π2c π2+
...

...
...

...
...

r πr1 πr2 · · · πrc πr+

Total π+1 π+2 · · · π+c 1

∑
i
∑

j πij =
∑

i πi+ =
∑

j π+j = 1.
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3.3 Test of Independence and Test of Homogeneity

We wish to test if the data are independent or not. We can
frame this hypothesis in terms of the parameters:

H0 : πij = πi+π+j, for i = 1, . . . , r, j = 1, . . . , c,

that is, the parameters πij can be completely described by
parameters πi+, i = 1, . . . , r and π+j, j = 1, . . . , c, which are
constrained by

∑
i πi+ = 1 and

∑
j π+j = 1.

As such, testing this null hypothesis of independence is a
matter of testing a model of the multinomial parameters.
Therefore, both the Likelihood Ratio Test and Pearson’s
Chi-squared test can be used.
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3.3 Test of Independence and Test of Homogeneity

We find MLEs of πi+ and π+j under H0 : πij = πi+π+j.

Under H0, the log-likelihood function is

l(π) =
∑

i

∑
j

nij logπij =
∑

i

∑
j

nij(logπi+ + logπ+j)

=
∑

i

(
∑

j

nij) logπi+ +
∑

j

(
∑

i

nij) logπ+j

=
∑

i

ni+ logπi+ +
∑

j

n+j logπ+j.

Since∑
i

πi+ = 1⇒ ∂πr+

∂πi+
= −1 and

∂ logπr+

∂πi+
= − 1

πr+
, i = 1, . . . , r − 1,

∑
j

π+j = 1⇒ ∂π+c

∂π+j
= −1 and

∂ logπ+c

∂π+j
= − 1

π+c
, j = 1, . . . , c− 1,
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3.3 Test of Independence and Test of Homogeneity

then
∂l(π)
∂πi+

=
ni+

πi+
− nr+

πr+
= 0⇒ πi+ =

ni+

nr+
πr+,

∂l(π)
∂π+j

=
n+j

π+j
− n+c

π+c
= 0⇒ π+j =

n+j

n+c
π+c.

Summing both sides of πi+ = (ni+/nr+)πr+, we have

1 =
∑

i

πi+ =
∑

i

ni+

nr+
πr+ =

n
nr+

πr+ ⇒ π̂r+ =
nr+

n
.

So,
π̂i+ =

ni+

nr+
π̂r+ =

ni+

nr+
× nr+

n
=

ni+

n
, i = 1, . . . , r.

Similarly,
π̂+j =

n+j

n
, j = 1, . . . , c.
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3.3 Test of Independence and Test of Homogeneity

Under H0, the MLEs of πi+ and π+j are

π̂i+ =
ni+

n
, π̂+j =

n+j

n
, i = 1, . . . , r, j = 1, . . . , c.

Thus, the estimated expected frequencies are

Eij = nπ̂i+π̂+j =
ni+n+j

n
.

The LR test statistic is

G2 = 2
∑
cells

Oj log
(

Oj

Ej

)
=

r∑
i=1

c∑
j=1

nij log
(

nijn
ni+n+j

)
and Pearson’s Chi-squared test statistic is

X2 =
∑
cells

(O− Ê)2

Ê
=

r∑
i=1

c∑
j=1

(
nij − ni+n+j

n

)2

ni+n+j
n

.
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3.3 Test of Independence and Test of Homogeneity

Both G2 and X2 have the χ2
df distribution when n is large, where

df = # parameters estimated under H0 ∪ H1− # parameters
estimated under H0.

Under H0, we estimated π1+, . . . , πr+ and π+1, . . . , π+c, with the
constraints

∑
i πi+ = 1 and

∑
j π+j = 1. Under H0 ∪ H1, we

estimated πij, i = 1, . . . , r, j = 1, . . . , c with the constraint∑
i,j πij = 1. Therefore

df = rc− 1− ((r − 1) + (c− 1)) = (r − 1)(c− 1).

The large sample approximation (i.e. the appeal to the
Chi-squared distribution) requires that n is large. The rule of
thumb is the same as for one-way tables: we can have Ej < 5
for at most 20% of the cells, but none of the Ejs should be
smaller than 1.
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3.3 Test of Independence and Test of Homogeneity

3.3.3 Example: Test of Independence

Recall the study of five hundred residents of Massachusetts
and their political opinion and affiliation:

Favor Indifferent Opposed Total
Democrat 138 83 64 285
Republican 64 67 84 215
Total 202 150 148 500

We test H0 : the political affiliation and political opinion of a
Massachusetts resident are independent. The test statistics
are: G2 = 22.339, X2 = 22.152. For both, the P-value is less
than 0.0001. We reject the null hypothesis that political affiliation
and political opinion are independent. (Unsurprisingly.)
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3.3 Test of Independence and Test of Homogeneity

3.3.4 Test of Homogeneity
Observed frequencies:

X\Y 1 2 · · · c Total

1 n11 n12 · · · n1c n1+

2 n21 n22 · · · n2c n2+
...

...
...

...
...

r nr1 nr2 · · · nrc nr+

Total n+1 n+2 · · · n+c n

Sampling model: Product multinomial model; n1+, n2+, . . . , nr+

fixed in advance; Y is response, X is explanatory. 33



3.3 Test of Independence and Test of Homogeneity

Population distribution:

X\Y 1 2 · · · c Total

1 π1(1) π2(1) · · · πc(1) 1.0

2 π1(2) π2(2) · · · πc(2) 1.0
...

...
...

...
...

r π1(r) π2(r) · · · πc(r) 1.0

Note:
c∑

j=1

πj(i) = 1, ∀i = 1, . . . , r
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3.3 Test of Independence and Test of Homogeneity

We wish to test if the data are independent or not, which in this
sampling scheme means whether the conditional distribution of
Y is the same for each level of X. We can frame this hypothesis
in terms of the parameters:

H0 : πj(1) = πj(2) = · · · = πj(r) = πj, j = 1, . . . , c

that is, the conditional probabilities πj(i) can be completely
described by parameters πj, j = 1, . . . , c, constrained by∑

j πj = 1.

Thus testing the null hypothesis is a matter of testing a model of
the product multinomial parameters. Therefore, both the LR
test and Pearson’s Chi-squared test can be used. This test is
called the Test of Homogeneity.
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3.3 Test of Independence and Test of Homogeneity

We find MLEs of πj under H0. Under H0, the log-likelihood
function is

l(π) =
r∑

i=1

c∑
j=1

nij logπj =

c∑
j=1

(
r∑

i=1

nij

)
logπj =

c∑
j=1

n+j logπj.

Since c∑
j=1

πj = 1⇒ ∂ logπc

∂πj
= − 1

πc
, for j = 1, . . . , c− 1,

from
∂l(π)
∂π

= 0⇒
n+j

πj
− n+c

πc
= 0, or πj =

n+j

n+c
πc.
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3.3 Test of Independence and Test of Homogeneity

Summing both sides of the last equation, we have

1 =

c∑
j=1

πj =

∑c
j=1 n+j

n+c
πc =

n
n+c

πc,

So,
π̂c =

n+c

n
, and π̂j =

n+j

n+c
π̂c =

n+j

n
.

Thus the estimated expected frequencies are

Eij = ni+π̂j(i) = ni+π̂j =
ni+nj+

n
.
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3.3 Test of Independence and Test of Homogeneity

We therefore have the rather remarkable result that no matter
we are conducting a test of independence or a test of
homogeneity, we calculate the LR test statistics with the same
formula. The same is true, of course, for the Pearson’s
chi-squared test statistic.

Moreover, since under H0 ∪ H1 there are r × (c− 1) parameters
to estimate and under H0 we estimated c− 1, the test statistics
for the test of homogeneity have

df = r(c− 1)− (c− 1) = (r − 1)(c− 1)

degrees of freedom. Just like for the test of independence. So,
when n is large, X2 and G2 follow the χ2

df distribution. We use
the same rule of thumb for deciding whether n is large enough.
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3.3 Test of Independence and Test of Homogeneity

3.3.5 Example: Test of Homogeniety

Recall the Physician’s Health Study:
Myocardial Infarction

Fatal Attack Nonfatal Attack No Attack Total
Placebo 18 171 10845 11034
Aspirin 5 99 10933 11037

We test H0 : taking aspirin has no more affect on heart disease
than taking a placebo. The test statistics are G2 = 27.589 and
X2 = 26.903. For both, the P-value is less than 0.0001. We
reject the null hypothesis that aspirin and a placebo have the
same affect on heart disease.
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3.4 Fisher’s Exact Test

3.4.1 The Lady Tasting Tea

Recall the experiment with the lady who thought she could tell
whether a cup of tea has had milk or tea poured first. The
results were
Poured First \Guess Poured First Milk Tea Total
Milk 3 1 4
Tea 1 3 4
Total 4 4 8

Since both marginal totals (rows and columns) are fixed, the LR
and Pearson Chi-squared tests are not appropriate for this
data. Moreover, the sample size is small, so an appeal to large
sample approximations should not be made. We shall have to
use the exact distribution instead.
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3.4 Fisher’s Exact Test

Fortunately we know what the exact distribution of the table is,
under the hypothesis that the lady is guessing her answers - it
is the hypergeometric.

Treating the (1, 1)th entry as the variable, we calculate that the
probability of observing this table under “H0: the lady has no
special tea-tasting ability” is

P(n11 = 3) =

(4
3

)(4
1

)(8
4

) = 0.229

The null hypothesis is the same as “The lady’s identification of
a cup has had milked poured first is independent of whether the
cup has had milk poured first”.
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3.4 Fisher’s Exact Test

Recall what a P-value is: a P-value is the probability of
observing results as extreme or more extreme than what was
actually observed.

The only other more extreme result would have been if the lady
correctly identifies all 4 cups with milk poured first. Under H0,
that could occur with probability

P(n11 = 4) =

(4
4

)(4
0

)(8
4

) = 0.014

hence the P-value is 0.229+ 0.014 = 0.243 and we are unable to
reject H0.
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3.4 Fisher’s Exact Test

3.4.2 A test for small sample sizes
It is rare to see a study design which fixes the totals of rows
and columns. However, it is common to see studies with small
sample sizes.

In such situations, it is common to use an exact test like
Fisher’s. By conditioning on the margin totals, it is possible to
calculate P-values and test independence of X and Y.

However, note that these tests consider a small number of
possible realizations (only 5 possible outcomes for the lady). As
a result, the P-values can be conservative, i.e. larger than they
actually are. For example, if we chose our significance level to
α = 0.01, under what realization could we reject H0 in favour of
the lady?
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3.4 Fisher’s Exact Test

3.4.3 Example: a test for small sample sizes

A study is made to compare the effectiveness of two treatments
in curing a rare blood disease. A total of 15 patients afflicted
with approximately the same severity of this rare disease are
available subjects for the study. Of these, 7 are randomly
chosen to receive treatment 1; the remaining 8 are to receive
treatment 2. The observed results are

cured uncured Total
Treatment 1 4 3 7
Treatment 2 1 7 8

Total 5 10 15
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3.4 Fisher’s Exact Test

H0: no treatment difference
H1: treatment 1 is more effective

Now, under H0, it is a randomization model. That is, we
consider the 5 cured and 10 uncured persons who are
randomly divided into groups of 7 and 8.

There are many possible configurations under the
randomization model.

Probability of the current configuration:

P(n11 = 4) =

(5
4

)(10
3

)(15
7

) =
5× 120

6435
= 0.093.
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3.4 Fisher’s Exact Test

More extreme configuration that favor H1:

cured uncured Total
Treatment 1 5 2 7
Treatment 2 0 8 8

Total 5 10 15

Probability of this configuration:

P(n11 = 5) =

(5
5

)(10
2

)(15
7

) = 0.007.

Significant probability = 0.093 + 0.007 = 0.1.

∴ Do not reject H0 at α = 0.05
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3.4 Fisher’s Exact Test

If H1: there is some treatment difference (Two-Tail test)

Need to search more extreme configuration in another direction.

Let n11 = x, we then have

cured uncured Total
Treatment 1 x 7-x 7
Treatment 2 5-x 3+x 8

Total 5 10 15

Find x such that ∣∣∣∣ x7 − 5− x
8

∣∣∣∣ ≥ ∣∣∣∣47 − 1
8

∣∣∣∣ ,
or |3x− 7| ≥ 5.

∴ x = 0 or x = 4 or x = 5. 47



3.4 Fisher’s Exact Test

The configuration for x = 0:

cured uncured Total
Treatment 1 0 7 7
Treatment 2 5 3 8

Total 5 10 15

Probability of this configuration:

P(n11 = 0) =

(5
0

)(10
7

)(15
7

) = 0.019.

Significant probability = 0.093 + 0.007 + 0.019 = 0.119.

∴ Do not reject H0 at α = 0.05.
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